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PROGRESS TO DATE 

June 6, 1986 

Grant No. CBT-8414906 

The purpose of the program is to measure and model two elusive correlations 

which have given extreme trouble in the past in turbulent reacting flow 

calculations. These correlations occur between the pressure gradient and both 

the velocity fluctuations and species concentration fluctuations. The 

correlations appear in the following form in the theory of turbulent reacting 

flows: 

Ckt = v"ap/bx ,,,, 
— k  

D a c'ap/ax 
t 	t 

In the above, v
k 

is the velocity in the k
th 

direction, p is the pressure and c
ii 

 is the mass fraction of species i. The double prime superscript denotes a Favre, 

or mass weighted, fluctuation and the overbar indicates an ordinary time average. 

These correlations are exceptionally difficult to measure since they contain the 

fluctuating static pressure and require measurement of a gradient. They are 

equally difficult to model because of only scant experimental data available to 

guide the modelling work. 

The experimental work to date has centered about a.) construction of a 

moveable premixed gas burner to allow a fixed laser with a moveable experiment 

for simple laser diagnostics, b.) training of a new graduate student in the use 

of the laser Rayleigh scattering system and dynamic Pitot tube measuring system 



and c.) initial cold flow experiments to remove or explain some inconsistencies 

between theory and experiment in the correlation between the pressure fluctuation 

and velocity fluctuation. 

It has been decided to initially attempt to measure D
1 

because it is a a 

vector, as opposed to C kt  which is a second order tensor. The measurement 

requires a mass fraction measurement, which will be done by laser Rayleigh 

scattering on a premixed methane-air flame. The use of a dynamic Pitot tube for 

pressure measurement requires that a velocity measurement be simultaneously 

conducted. The velocity measurement will be made using laser velocimetry. The 

measuring systems are in place and the burner construction is complete. 

The analytical work is being conducted by the Principal Investigator and 

consists of three elements. The first is to confirm that inconsistencies exist 

between some past experimental results and the line-integrated momentum equation 

in the correlation between pressure and velocity. In the process, a new theory 

for this correlation will emerge, and it will have the experimental backing as 

mentioned above. Secondly, a new form of a model for the pressure-strain 

correlation is being developed, which will hopefully reduce to past models in the 

incompressible limit and will conform to the experimental results of this program 

in reactive flows. Thirdly, the procedure developed in the second phase will be 

extended to model the mass fraction - pressure gradient correlation. Here, 

however, since there is no current experimental guidance, it will be necessary to 

wait for the initial experimental results of this program. 

The program is proceeding as expected, and no difficulties other than those 

anticipated have arisen. 
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PROGRESS TO DATE 

June 2, 1987 

Grant No. CBT-8414906 

The purpose of the program is to measure and model two elusive 

correlations which have given extreme trouble in the past in turbulent 

reacting flow calculations. These correlations occur between the pressure 

gradient and both the velocity fluctuation and species concentration 

fluctuation. The correlations appear in the following form in the theory of 

turbulent reacting flows: 

Oki 	k 
v" 6p/6x 

D = c 613/x 
t 	i 	t 

In the above, v
k 

is the velocity in the k
th 

direction, p is the pressure and 

c. is the mass fraction of species i. The double prime superscript denotes a 

Favre, or mass weighted, fluctuation and the overbar indicates an ordinary 

time average. These correlations are exceptionally difficult to measure since 

they contain the fluctuating static pressure and require measurement of a 

gradient. They are equally difficult to model because of only scant 

experimental data available to guide the modelling work. 

The burner and flame being used for the experimental investigation are 

shown in the appended photograph. A methane-air flame is being used for 

minimal molecular weight effects in Rayleigh scattering measurement of gas 

density. Velocity is being measured in two components by a 5 watt argon-ion 



laser velocimeter. Pressure is being measured by a dynamic pitot guage, 

corrected for frequency response. Because gradients are involved in the above 

correlations an enormous number of one and two point correlations must be 

obtained with simultaneous measurements. Software development to treat the 

data has occupied much of the past year. Moreover, the Rayleigh measurement 

is contaminated by background radiation from the flame and special data 

reduction methods have had to be developed to remove this noise from the 

desired signal. 

The Rayleigh scattering measurements to data have shown an interesting 

two-temperature structure to the flame. This structure, known as the Bray 

Moss Libby structure, was hoped for, because it can aid the data reduction 

process. It was necessary, however, to prove this structure before 

incorporating the fact in this data reduction scheme. 

The analytical work is being conducted by the PI. Recently, a new model 

for the pressure-strain and pressure-scalar gradient has been generated. This 

model has been compared against some results of a prior NSF program and has 

been found promising. A full test of the model awaits the current 

experimental results, however. A new model for the pressure-velocity and 

pressure-scalar correlations is also currently under development and is being 

compared with some cold flow results. This model too is to be tested by the 

current experiment. 

All facilities, diagnostics and software are now operational and 

experiments are being conducted. The program is proceeding as planned. 
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Summary: 

Laser velocimetry, Rayleigh molecular scattering and intrusive dynamic 

Pitot barometry have been used in a premixed turbulent flame in an attempt to 

measure pressure-containing turbulence correlations. A new theory for the 

pressure-strain and pressure-scalar gradient correlations was developed. Many 

of the results of the program are contained in the following section of this 

proposal. However, there has been a dominant difficulty which has been 

encountered, especially with correlations involving a spatial derivative such 

as the strain rate or scalar gradient. Using the dynamic Pitot barometer the 

results depend upon subtraction of several large numbers containing 

experimental error to obtain a much smaller number. Adding to this the fact 

that there are some intrusiveness issues with the barometer, the dominant 

scientific conclusion of the program will most probably be that the 

pressure-containing correlations should not be attacked in this manner. A new 

method of attack has been discovered, however, and forms the basis for this 

proposal. Because this method requires a strong change of technique this 

proposal is to be considered new, rather than a request for renewal. 
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1. Strahle, 	W. 	C., 	"Pressure-Strain 	and 	Pressure-Scalar 	Gradient 

Correlations in Variable Density Turbulent Flows," AIAA Paper No. 

87-1351 (accepted for publication in AIAA Journal,  1988) 

2. Waldherr, G. A., de Groot, W. A. and Strahle, W. C., "Pressure-Scalar 

Correlations in a Turbulent Reacting Flow," submitted to Combustion and  

Flame. 



PROJECT DESCRIPTION 

Introduction  

The state variable pressure and its gradient in both average and 

fluctuation form enter into turbulence descriptions in troublesome ways. 

Problems arise with the pressure in constant density flows, and these 

problems are compounded in variable density situations such as in turbulent 

reacting flows. In time averaged treatment of the field equations the 

difficulty begins at the level of closure of the turbulent kinetic energy 

equation and becomes more severe if one proceeds to conservation of turbulent 

stresses and scalar transport. (1)  The problems are also inescapable in 

probability density function evolution descriptions of turbulence. (2)  

The quantities of interest in this proposal, as they occur in their most 

primitive form in stress transport and scalar transport equations, are 

C 	V "  al:0X 	 (1) 
kt 	k 	t 

D
t 
s c" ap/ax

t 	
(2) 

The quantity C
kt 

is a second order tensor where v
k 

is the velocity in the k
th 

direction, p is pressure, and x
t 

is the t
th 

Cartesian coordinate direction. 

The vector D
t 

contains the scalar, c, which may be density, mass fraction, 

enthalpy etc. Here the overbar denotes a time average, and the double prime 

denotes a Favre fluctuation where, for example, 

v
k 

=
k + vk 

and
k is the Favre average (mass weighted average). Regular time averages 

will be denoted by a single prime superscript, as, for example with 

P = T 	P' 
In constant density flows Favre and conventional averages are identical. 

3 



Because there are some advantages in physical interpretation, at least 

for constant density flows, and some advantages in measurement, Eqs. (1) and 

(2) are usually expanded as 

le — 	 a .- 	a 	
„ C 	= v" 	+ -- (p' v Id - p l  

kt 	k ax i 	3 XL 	
,A2,  

I 	II 	III 

	

D = c" 	+ a  re 	
ac" 

fl.\ - 	ac 
ax e 	axt 	" ' 
	p axt 

	

IV 	V 	VI 

The contracted form of Eq. (3), which appears in the turbulent kinetic energy 

equation, is 

av" 
— a-ff. 	a 	 it C 	= le 	+ — (p'v") - p' 

Et 	t ax t 	ax 	t 	ax L L 
VII 	VIII 	IX 

(5) 

The following points concerning Eqs. (3)-(5) are now noted: 

I. 

	

	In constant density and scalar flows terms I, IV and VII disappear 

since 

\f = c" = 1.,;(  = c' =0 

2. Term 	III, 	called 	the 	pressure-strain 	term, 	is 	regarded as 

"redistributive" in constant density turbulence since, upon contraction, 

term IX is zero in such flows and this term does not contribute to the 

turbulent kinetic energy. Term III loses this distinction in variable 

density flows. 

3. Terms II, V and VIII look diffusive in nature and are usually so 

treated; however, this treatment is challenged below. 

(3)  

(4)  

4 



4. 	Terms II, V and VIII do not actually require the distinction between 

Favre and conventional fluctuations since, for example, 

p'v'k = p'(v k  - 
k )  = PI (71 k 	vk 

= ptv il( 	 (6) 

Term III has been elaborately modelled by Launder et al (3)  for constant 

density flows with use of prior work of Rotta.
(4) 

Together with a 

modification by Lumley (5) , Jones
(1) suggests direct use of the constant 

density pressure-strain correlation in variable density flows, as long as 

conventional averages are replaced by Favre averages. Following Lumley's 

approach (5) , term VI has been suggested by Jones
(1) 

to be modelled in a 

fashion close to that of term III. 

Admitting that justification was lacking, Bray et al (7)  simply neglect 

all terms containing the pressure fluctuations (II, III, V, VI, VIII, IX). 

Kollmann and Vandrome (8)  neglect only IX in Eq. (5), arguing that dilation 

fluctuations are much smaller than vortical fluctuations. Bilger (8)  and 

Starner and Bilger
(10) 

also argue that IX should be neglected on the grounds 

that an undirected volume expansion interacting with a pressure fluctuation 

appears acoustic in nature and should probably not contribute to the 

turbulence energy. Borghi and Escudie (11) 
retain terms VI and IX in their 

work although the grounds for the models used are not clear. Virtually all 

workers retain terms I, IV and VII when they appear and the physical effects 

of these terms are usually quite striking. 

Except where neglected, terms II, V and VIII are always treated as 

diffusive and are lumped into another diffusive term appearing in the 

transport equation. The problem is that pressure is not diffusive. In 

constant density flows it is well known that the initial value problem in 

vortex dynamics can be solved without consideration of pressure. Pressure is 



then determined by solution of a Poisson equation which determines pressure 

at a point in terms of the entire acceleration field. In compressible flows 

an acoustic equation determines p' which has the same property; the pressure 

at a point is determined by events occurring over the entire field and not by 

the local carriage of fluid lumps. Moreover, in linear acoustics the quantity 

p'v 11(  is the acoustic intensity, if the Mach number is low, and this quantity 

is certainly not diffusive in nature. 

More damning evidence against treatment of the middle terms of Eqs. 

(3)-(5) as diffusion terms comes from experiment. Indirect measurements of 

VIII by Townsend
(12) 

and direct measurement by Kobashi (13)  show an 

unfavorable comparison of VIII with the diffusion of kinetic energy. Shown in 

Fig. 1 are Townsend's cylinder wake results. The results are even worse in 

the case of Laufer's
(14) pipe flow data where the pressure "diffusion" term 

is of opposite sign to the turbulence kinetic energy diffusion. Shown in Fig. 

2 are results obtained at this laboratory (to be discussed later) comparing 

the !Div' term to the radial normal stress gradient moving radially outward in 

a premixed axially symmetric propane-air flame. Again, there is no 

correspondence between the two, suggesting that, even if gradient diffusion 

of kinetic energy were a proper description, the pressure-velocity term does 

not belong in this category. 

The often neglect of terms III, VI and IX is also probably not correct. 

For example, concerning term IX, in the vorticity transport equation there is 

a strong effect of dilation-vorticity interaction. Consequently, in strongly 

dilating flows term IX can be expected to affect the turbulence energy. 

The pressure-strain term (terms III and IX) have been recently measured 

indirectly (15) 
in a hydrogen-air diffusion flame and shown to be important in 

4 
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stress transport. A new model for these terms has been developed
(16) 

under a 

current program, but experimental verification is required. 

The conclusion is that the situation is poor with regard to knowledge of 

CkL or D
t
, especially in turbulent reacting flows. There are also severe 

problems in the constant density limit. New models need to be developed in 

concert with experimentation for verification and model suggestions. This 

proposal addresses this need. 

Background at this Laboratory  

Two prior programs have been run at his laboratory attacking terms II, 

III, V and VI of Eqs. (3) and (4) from both theoretical and experimental 

points of view. Measurements have been made on fuel lean propane-air flames 

and stoichiometric methane-air flames, both of which were premixed. The flame 

geometry is shown in Fig. 3. It is seen that the shear layer between the jet 

flow and surroundings does not penetrate to the flame zone, so that the flame 

process is basically adiabatic. 

Results on this and a companion flame are located in Refs. (17)-(19). 

Shown in Figs. 4 and 5 are the axial and radial traverses of the cross 

correlation, and its coefficient, of p' and the axial velocity fluctuation. A 

typical curve of the same quantities, but with the radial velocity, is shown 

in Fig. 6. At first sight, there appears only weak correlation in the active 

reaction region and high correlation outside. However, when the divergence of 

plv i ' is constructed from these data (to obtain Term VIII of Eq. (5)), it is 

found that it is as large as any other term in the turbulent kinetic energy 

equation and therefore plays a role in energy transport throughout the flame; 

p'v' effects cannot be neglected. Moreover, it is dominantly a source of 

kinetic energy, although at certain locations it is a weak sink. 
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A surprising aspect of these measurements is the extremely high 

(negative) cross correlation coefficient of the pressure and axial velocity 

fluctuation in regions outside the reaction region. What is found in these 

regions is that, approximately, p' = - p u u', implying the total head is not 

fluctuating. Some theoretical support for this may be found in Ref. 20. 

However, the result does not yield Galilean invariance to p'ut, as it must 

have. Consequently, U must be interpreted as some relevant velocity 

difference of the order of the mean flow velocity, rather than the mean 

velocity itself. 

The above results have been obtained by a combination of intrusive and 

non-intrusive probes. Intrusive means have been heat flux probes, 

thermocouple thermometry and Pitot barometry. Non-intrusive methods have been 

laser velocimetry and molecular Rayleigh scattering thermometry. The crucial 

measurement, in the present context, is the measurement of pressure. 

Nonintrusive techniques
(21) do not have the sensitivity, as yet, to measure 

pressure fluctuations of the order of 0.01% of the mean pressure, which 

occurs in these flows. Nonintrusive sensing of temperature and density, which 

is possible, will, in principle, yield pressure through the equation of 

state. However density and temperature fluctuations in flames are of the 

order of the mean quantities themselves while the pressure fluctuation is 

small; consequently this method will fail because of experimental 

inaccuracies. Therefore, intrusive probes have been used. Usual static 

pressure probes are undesirable because of angle of attack fluctuations and 

thermal disturbances of the usual leading surface on such probes. 

Consequently, a microphone Pitot probe, shown in Fig. 7, was used. 

The Pitot tube measures the total pressure well (22) 
at angles of attack 

up to 10° and if the stagnation time is short compared with the reciprocal of 

an upper frequency limit of interest. Moreover, there is no thermal 

• 
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disturbance to the stagnating streamline if the Reynolds number is high. All 

necessary restrictions were met with the flows investigated and for the probe 

size involved, so the total pressure fluctuation at the probe tip is 

PT '  = P ' 	i (Pu2)' 
	

(7) 

There are four problems. First, the long tube to the microphone introduces a 

sensing path that makes the microphone reading not equal to P T '; that is, 

frequency compensation is required. Secondly, when expanded, Eq. (7) is 

nonlinear in the fluctuating quantities. Thirdly, in order to extract the 

static pressure, simultaneous measurement is required of velocity and 

density. Finally, there is the issue of what density to sense, since in a 

premixed flow the probe may act as a flameholder. 

Fortunately, by direct measurement it was determined that the only terms 

important in the expansion of Eq. (7) are 

_ PT ' 	p' + TUul + 1 p , u
2 	 (8) 

and Eq. (8) becomes the working equation after frequency compensation. 

Frequency calibration must be accomplished for several probe tip temperatures 

because the frequency response depends upon the gas column temperature in the 

probe. A transfer function is generated so that the Fourier transforms are 

related by 

PT  true Hw 
 PT true 	pT sensed 

(9) 

where capital letters denote transforms and Hw  is the temperature dependent 

transfer function. One has the option of working in the frequency domain with 

Eq. (9) or in the time domain 

CO 

PT ' 	= f h p  (t) PT ' (t - T) dT 	 (10) 
true 	0 	T 	sensed 
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where h(t) is the inverse transform of H 	, 
PT  

Concerning the flameholding problem, one was visibly observed, but even 

if it had it would introduce little error. This results from the fact that 

the change in dynamic pressure in going across a flame is of the order of 

pSE, where SL  is the laminar flame speed of the mixture. In our case this is 

small compared with the dynamic heads measured. 

One other restriction in the practical use of Eq. (7) is that the static 

pressure fluctuation should be of the same order as the total pressure 

fluctuation so that upon subtraction of the dynamic head from the total 

pressure there are still significant digits left. As mentioned this 

restriction was met in prior programs for pressure velocity correlations. 

However, a severe problem has arisen in pressure-scalar correlations and this 

problem will form the basis for this proposal. 

Velocity measurement has been carried out by a two component, 5 w 

Argon-ion laser velocimeter, using counter processing. Simultaneous Rayleigh 

scattering measurements have been most recently used for density measurement 

(the most easily obtained scalar). After and before LV particle arrival, 20 

points of the Rayleigh signal, sampled at 8 usec intervals, are used for 

density determination. Using a new technique for (23) 
background noise 

extraction from the Rayleigh signal both density and velocity and their 

correlation may be obtained. 

The fundamental problem which has been uncovered is that the pressure-

scalar and the pressure-scalar gradient correlations are subject to high 

error because a) the correlations of the Pitot barometer and density are 

large, b) the correlation of the Pitot barometer and velocity are large, but 

c) the true correlation of interest requires subtraction of these numbers to 

yield a small quantity as is illustrated in Figs. 8 - 10. The raw 
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measurements are shown in Fig. 8 and the derived pressure-density and 

pressure-density gradient correlations in Figs. 9 and 10. Error bars are 

shown and they are large. In fact, one can say over most of the range of 

measurement that no numerical value or sign of the results may be confidently 

predicted. 

A further difficulty is that even if the measurements are taken at face 

value they appear too large in magnitude. This follows from consideration of 

the density-velocity covariance transport equation from Ref. (1) 

a 	r 	 acf. 

ax. 	P l v." 	) = - ( p'v.H 	
1  + v .. 	v 	) 

j ax. 	 ax 

L_ 
P 	ax. 	- 131 IP-I  1 ax i j  

ply." v." 	 ay." 
— a r P 	 ) — 7). 

ax 
v" 

. axj 	 j  

The bracketed term on the right side of Eq. (11) is of issue as a source for 

the blv i " correlation. If the magnitudes implied by Figs. 9 and 10 were 

correct, a value of piv i " at least a factor of 5 too high would result as 

compared with actual measurement, shown on the flame axis in Fig. 11. 

As the current program continues efforts will be made to reduce the 

errors and make as much progress as possible with the current set-up. 

However, it is desired to a) get rid of the intrusive Pitot tube for several 

reasons, b) do completely non-intrusive measurements and c) be guaranteed 

that the magnitude of the result is correct. Fortunately we think there is a 

way to do this and this proposal is for a program to do just this. What has 

been accomplished in the past was a direct but intrusive measurement; what is 

proposed is an indirect, nonintrusive set of measurements. 
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Proposed Program:  

For general variable density flows which are not wall bounded, the 

pressure fluctuation is given by
(16) 

P' (x i , t) = f dV (y i ) G (x i , y i ) F (y i ) 	 (12) 

with 

F = - 	+ 2 a2 	(PIC1j vi" ) 	a 2 	("1"vi li 	Pvi uvi ") 
at 2 	ax.ax. 	 ax.8x^j 	 j 

(13) 

+2  
a2 ( n -Li ") 
---- 
8x.ax^

j  

and G the free space Greens function 

1 
G = 4nr 

r = ,/(y i  - x i )(y i  - x i ) 

The only approximation made in Eqs. (12) and (13) is that molecular viscosity 

effects are excluded, and this is an excellent approximation for the 

frequencies of the energy containing eddies which contribute most to 

correlations constructed with Eq. (12). One now multiplies Eq. (12) by either 

velocity or density fluctuations or rate of strain or scalar gradient and 

time averages. The result is that in principle only scalar and velocity 

correlations, albeit space separated at many points, need be measured. These 

may be measured nonintrusively and pressure may be bypassed. 

The initial demonstration of technique, to be compared against prior 

intrusive measurements, will be made on the correlation of p' and v' along 

the axis of a methane air premixed stoichiometric flame. It is anticipated 

that the fourth term on the right side of Eq. (13) will yield the dominant 

component of the plvl correlation (although this will be checked), and this 

is denoted p 1 v1) 4 . As an example of data reduction 



82  (Tili  v i " (y i ) vi 	 (xi ) ) 
13'14), = 2 f dV(y i ) G '71Tayj  

requires measurement (in addition to mean quantities) of 

v 1 " (y.) vi (x.) 

for various sets of y i  and x i . For this and for density measurement the 

space-separated LV beams of Fig. 12 will be used. The procedure is not 

without risk, however, for note that space derivatives occur in the integrand 

of Eq. (14). These derivatives occur on an experimental quantity and would be 

full of experimental error. The proposed solution around this problem is to 

transfer the derivatives to the Greens function. 

Surrounding the point x i  - y i  with a sphere of size E and excluding this 

sphere from the integration of Eq. (12) only introduces an error of order E 

compared with unity in a numerical evaluation of Eq. (12), given the 

experimental data for the integrand. Moreover, again excluding this region, 

Greens identity may be written as (twice applying the divergence theorem) 

a 2 G 82 	vi " vl  ) = 	dV TVi vi" vi aYiaYj 
dV G 8Tayi (15) 

Now the derivatives appear on an analytical function and not the experimental 

data. The caution is that the second derivative of G tends toward singular 

behavior as e -0- o so the results may be numerically sensitive near the region 

of exclusion. Nevertheless, the advantages of proceeding by this method 

appear to substantially outweigh the alternative of differentiating the data. 

The proposed program would proceed in the following manner: 

1. 	Develop the numerical algorithm to carry out the volume integrations of 

Eq. (12) 

(14) 
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2. Measure the necessary space separated correlations to fully determine 

the pressure-velocity correlation 

3. Compare against past intrusive measurements 

4. Proceed to the pressure-strain, pressure-scalar and pressure-scalar 

gradient correlations presuming success on the pressure-velocity 

correlation. 

5. Compare results on the pressure-strain and pressure scalar gradient 

correlations with the theory of Ref. (16) and modify the theory as 

necessary to bring theory and experiment into alignment. 

Concerning the theory of Ref. (16), it was derived by making several 

approximations to Eq. (12). Consequently, using the proposed approach, a 

direct experimental check on those approximations will result. This approach 

will also shed some light on the constant density theory of Ref. (3) to the 

pressure-strain correlation. 

It is to be emphasized that this program is not without risk. The 

primary risk element is the numerical sensitivity to the form of the 

experimental correlations. On the other hand, the approach almost guarantees 

that at least the magnitude of the results will be correct. 
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PRESSURE-DENSITY CORRELATION IN A 

TURBULENT REACTING FLOW 

Abstract 

Progress toward extraction of the elusive pressure-density 

correlation in variable density reacting flows is reported upon 

in this paper, using a premixed methane—air flame in open sur-

roundings as the test medium. The relationship between den-

sity and other scalars is shown. Molecular Rayleigh scattering, 

laser Doppler velocimetry, and dynamic Pitot barometry are the 

experimental techniques used. It is shown that the often ne-

glected pressure—scalar correlation is an important quantity in 

scalar transport and must be taken into account theoretically in 

ways which differ from past treatment. 

Introduction 

In theoretical closure models for turbulent reacting flows, especially at the level 

of second order closure, correlations involving the pressure fluctuation have given 

extreme trouble to modelers [1]. Experimental information on such correlations is 

scant, if nonexistent, primarily because of the difficulty of obtaining static pres-

sure fluctuation measurements and the current impossibility of making these mea-

surements nonintrusively at the fluctuation level encountered in usual flows. Past 
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progress has been made in measurement of pressure—velocity correlations in pre-

mixed [2,3] and diffusion flames [4] by either direct intrusive or indirect nonintru-

sive means, and the results have been quite illuminating. That is, many of the 

often made assumptions are simply incorrect and the pressure—velocity correlations 

play a large role in stress transport balance equations. The same may be expected 

of pressure—scalar correlations in scalar transport and these correlations are the 

subject of the current paper. 

Of interest here are the correlations appearing in the vector D i , where 

	

„ap ,a1-5 	,acm 	a 
Di  = c.. 	= 	— p. 	,,,-77p'c" 

erxi 	uxi 	OrXi 	17Xi 
(1 ) 

In Eq. (1), p is pressure, c is any scalar, x i  is the ith  coordinate direction, an overbar 

indicates a conventional time average, a prime indicates a conventional fluctuation 

and a double prime indicates a mass—weighted (Favre) fluctuation. The first term 

on the right side of Eq. (1), where c" = -pic' tfi and p is density, usually gives no 

trouble (it will, in fact, be zero in the flame considered here because of near zero 

mean pressure gradient) and is of no concern in this paper. The second term is 

called the pressure—scalar gradient correlation and the differentiated quantity, pie, 

in the third term is called the pressure—scalar correlation. It is this term which is 

of primary concern in this paper. The pressure—scalar correlation is usually either 

neglected or incorporated into a diffusion term [5] in scalar transport equations, a 

practice which will be shown in this paper to be unwise. 

Theory 

Some idea of what is to be expected from the correlation of interest may be 

obtained by viewing an approximate solution for the pressure fluctuation for a flow 
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in an unbounded medium [for full explanation of the approximations involved, see 

Ref. 6]. 

pi (xi  , t) = i dV(yi) G (xi, yi)
32(T irtviriri ) 

' 	 (2) 
aYtaYm 

Here V is the volume of all space, vt  is the velocity in the tth direction, y i  is the space 

variable of integration, a tilda denotes a mass-weighted average and G is the free 

space Green's function, (I (xi - yi) (xi - yi) 1 1/2 47)-1. The correlation in question is 

given by multiplication of Eq. (2) by c"(x i , t) and time averaging, producing a two 

point, space separated correlation and its derivatives under the integral. The double 

derivative in the integral, being a double divergence, produces many non-negligible 

terms. While each term may be of the order of magnitude of T.  ii c"v", the number 

of terms leaves the expected magnitude uncertain. With no theory for guidance, 

measurement seems the only resource for help, if the measurement may be reliably 

made. 

The scalar may be quantities like temperature, mass fraction, or, as is the case 

here, p i  I p which appears in the transport equation for the density-velocity covari- 

ance [1]. This covariance will be approximated, as is usual, by viispiip f.:..- pivr/p; the 

approximation yields analytical simplification which, while not numerically exact, 

should yield adequate semi-quantitative and certainly qualitative results in highly 

variable density flows. It should be noted here that a peculiarity of mass-weighted 

averaging yields exactly p'viii = fivl. From intrusive measurement [2,3] on the axis 

of an axisymmetric turbulent flame it is known that pivf should be of the order of 

magnitude of 0.01p -iii , where the 1 subscript denotes the axial direction. This order 

of magnitude is small, however, it will be shown to actually aid the confidence with 

which the pressure-scalar correlation may be determined. 

By way of theoretical confirmation, along the axis of a premixed turbulent flame 

in open surroundings, where experimentally [3] V i  is approximately constant, the 
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following differential equation may be derived for the density-velocity covariance: 

_ 073 
aX 

((ATI') - 	 = + K /Iv!' 
. 	

J axe 	' 

P i 	axe 
 

(3 ) 

In Eq. (3) theory has been used for the pressure-scalar gradient correlation with 

K=0 using the theory of Ref. 1 and K=0.6 for the theory of Ref. 6. By a posteriori 

inspection of magnitudes diffusion has been neglected in Eq. (3), and the pressure-

scalar correlation has been neglected. Using the continuity equation a(Toir- i)/axi = 0, 

and assuming for order of magnitude estimates that v, v i , Eq. (3) may be inte-

grated along the axis to yield 

  

yip 	K1 
vi  i 1 	po 

 

pivii  = (4) 

where To  is the cold gas density. Equation (4) also shows the above expected order 

of magnitude for this correlation if I vi/V i  IA..- 0.1 (as it is) and the behavior of the 

correlation is as measured in Ref. 3. 

Apparatus 

The Burner  

The burner and premixed flame are shown in Fig. 1. A stoichiometric mixture 

of methane and air flows through the mouth of a brass burner of inner diameter 

2.54cm. The turbulent premixed flame is anchored to the burner by a small annular 

methane diffusion flame approximately 0.7cm long. The methane-air mixture flows 

through a long pipe of 30 pipe diameters and exits the burner with a Reynolds 

number of 10000. The velocity profile at the exit was verified experimentally to be 

turbulent and fully developed. The flame is vertical and is surrounded by a 1.8m 

x 1.8m enclosure with the exhaust products vented at least thirty diameters above 
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the burner exit. The entire burner assembly is mounted on a traversing platform 

to allow property measurement at different locations within the flame. 

Velocity Measurement  

The axial velocity of the jet was measured nonintrusively using one component of 

a 5W two—component argon—ion laser Doppler velocimeter operating in back—scatter 

mode. By crossing two beams of the same color (in this case, the green beams at 

514nm) an interference pattern is generated. A particle crossing the fringes created 

by this interference will scatter the laser light giving a sinusoidally varying signal 

whose frequency is inversely proportional to the velocity. This signal is collected by 

a photomultiplier and then processed by a counter which measures the frequency by 

determining the time necessary to complete a fixed number of cycles. The velocity 

and time of arrival information is available digitally as an output from this counter. 

The premixed flow was seeded with titanium dioxide particles with a nominal 

diameter of 1 micron. A fluidized bed aerosol generator introduced the particles to 

the flow far upstream of the burner, so that the mixture was seeded uniformly. 

Pressure Measurement  

A specially constructed microphone Pitot probe shown in Fig. 2 is used within 

the flame. The tip of the probe consists of a 2.54cm long ceramic tube with outside 

diameter 1 6mm and inside diameter 0 8mm because this was the smallest diameter 

tip that did not attenuate the signal below the threshhold of the microphone. This 

configuration displayed a sensitivity of about 0.1Pa and the largest fluctuations 

expected were of the order of 50Pa. The portion of the probe behind the ceramic 

tube is covered by a water—cooled jacket which, along with the ceramic tip, help to 

avoid flameholding of the probe. The entire tube is situated ahead of a Briiel & 

Kjmr 1.27cm condenser microphone and preamplifier. 

The Pitot tube causes the flow to stagnate in a small region near the probe tip. 
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The arrangement above has been shown to measure the instantaneous total pressure 

that would exist at the probe tip in the absence of the probe [3]. A Pitot tube also 

measures the total pressure well for angles of attack up to 10 degrees [7]. The axial 

velocity pdf shown in Fig. 3 is one of the broadest pdfs found along the flame axis, 

and the high concentration of velocities about the mean shows that the fluctuating 

component is less than 20% of the mean axial velocity. Since, within a free jet, the 

transverse velocity is zero along the axis, this indicates that the angle of attack of 

the flow is within the limits specified previously. 

The total pressure is a function of static pressure, density, and velocity. Simul-

taneous measurement of the density and velocity near the tip allows the recovery 

of the instantaneous static pressure at the probe tip. Under a locally quasi—steady 

assumption for the stagnation process, the total pressure p t  in low speed flows is 

1 2 
Pt = P + —

2 
P v (5) 

Reynolds decomposition is performed on Eq. (5) and a subsequent experimental 

order—of—magnitude analysis [2] shows that the approximate relation between fluc-

tuations in total pressure, static pressure, density, and velocity is 

Pt = 	+ 	v' 	 (6) 

where -p-  and V denote the mean density and the mean axial velocity. 

To allow for the varied response of the probe within the flame, a calibration 

was performed to compensate the microphone signal in both amplitude and phase 

over the frequency range of interest. The signal from the Pitot microphone was 

compared to a reference microphone and a complex transfer function was computed. 

A simultaneously computed coherence function near unity ensured validity of the 

transfer function. The calibration was performed at various temperatures to allow 
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for the effect of heating on, and hence sound speed, density, and viscosity changes 

within, the ceramic tip. The water—cooled jacket maintained the remainder of the 

probe at the ambient temperature. 

Density Measurement  

To facilitate the measurement of density, one component of the laser was used 

as the source for Rayleigh scattering of light off of the molecules within the flame. 

The light scattered by the molecules crossing within the probe volume was collected 

by a lens and subsequently passed through slits, focusing lenses, and a polarizing 

filter, and sensed by a photomultiplier. From the theory of Rayleigh scattering a 

relation between the scattering intensity, density, and scattering cross—section is [8] 

I„ = K p (dold11). ff 	
( 7) 

where L is the scattered intensity, K is a calibration factor, p is the density, and 

(da/d11) eff  is the effective scattering cross—section. Equation (7) shows the signal 

from the photomultiplier is proportional to the density of the fluid in the probe 

volume and, therefore, dependent on the molecules within the probe volume. For 

methane—air combustion the problem of different molecules within the volume is 

avoided because the average molecular weight of the reactants is nearly the same 

as the average molecular weight of the products and the scattering cross—section of 

the methane-air mixture nearly matches the scattering cross—section of the product 

gases. Also, using the assumption of a single—step irreversible chemical reaction to 

conform to Bray—Moss—Libby structure [9,10], only reactants or products can be 

dominantly present at any point in the flow. One reason for using a stoichiometric 

flame was to closely achieve this structure, which was not achieved in Ref. 3. The 

proportionality between density and scattering intensity is therefore a constant and 

was determined from a calibration using a stoichiometric nonreacting methane—air 
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mixture at ambient temperature for reference. 

The density was chosen as the scalar of interest because it is the simplest to 

measure and the density can also be related to the progress variable c. Using 

relations from Ref. 11, the progress variable can be shown to be an inverse function 

of the density, namely 
Kl  

C = — K 2  
p 

(8) 

T. 
where 

15/R  
K 1  = 

Too  — T. 
K2 = 

Too  — T. 

Here, R is the universal gas constant, T o. is the temperature of the products (adi-

abatic flame temperature), and T. is the ambient temperature. In a turbulent jet 

the mean pressure can be assumed to be constant, resulting in K 1  and K2 being 

constant. From Eq. (8) the mass—weighted fluctuation c" is found to be 

c" = 
Ki p') 	

(9) 

In comparison with the density measurement the background noise present in the 

c" measurement is more difficult to decouple from the true measurement because of 

the ratio of two fluctuating quantities, p' and p. 

Data Acquisition  

For the measurement of the total pressure—density correlation the pressure probe 

measurement volume and the laser probe volume were aligned to get the closest 

spacing permissible for which each measurement would not be affected by interfer-

ence from the other. The resulting separation between measuring points became 

3mm The laser light had virtually no effect upon the pressure sensed by the Pitot 

probe. The ceramic tip of the Pitot tube however reflected some of the laser light 

causing changes in the density measured. The separation distance was adjusted 
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until the Pitot probe just began to influence the density, at which point the Pitot 

probe was backed away slightly. 

The signals from the Pitot probe and the photomultiplier were then sent through 

amplifiers and filters and finally sampled by a Preston 14—bit A/D converter and an 

HP1000 minicomputer system. The photomultiplier signal was filtered to eliminate 

the high-frequency spikes caused by occasional particles within the probe volume. 

The pressure signal was filtered to reduce the frequency components of the signal 

above the highest frequency of interest. Each of the signals was sampled at least 

5000 times at a rate of 3000H2 which is more than twice the highest frequency 

component of interest. The entire time—series were temporarily stored in the volatile 

memory of the computer and processed into power spectra or pdfs before storage. 

To measure the density—velocity correlation a compromise between the conflicting 

requirements of seeded flow for the velocimeter and clean flow for the Rayleigh 

scattering was necessary. The counter from the velocimeter was directly linked to 

the computer through one of the external ports. Special in—house software was used 

to buffer the data coming through the A/D converter from the Rayleigh scattering 

until a signal was received from the counter that a valid velocity point was acquired. 

At this time the density data from the A/D converter was recalled and stored along 

with the data from the counter. This arrangement allowed the measurement of 

density at 20 points before and after a valid velocity point. The density data was 

then further processed to remove the peak caused by the particle saturating the 

photomultiplier as it crossed the probe volume. To these ends the seeding rate 

had to be decreased to allow the measurement of the density between the velocity 

points. Data acquisition rates of approximately 5 samples per second were achieved 

by this method. 
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Data Reduction Techniques 

For the verification of bimodality within the flame the density signal was con-

verted from a time-series to a pdf. The bimodality was investigated since its exis-

tence is an indication of Bray-Moss-Libby theoretical structure. Simply converting 

the density signal to a pdf was not sufficient because of a significant amount of back-

ground noise from the natural luminosity of the flame. This background noise was 

recorded for every measurement with the laser off. To remove the background noise 

of the flame a deconvolution of the background noise and the combined true density 

with background pdf was performed [121. The true density pdf within the flame 

was thus recovered. The pressure signal was not necessary to determine bimodality. 

During measurement of the pressure-density correlation the two signals were 

converted from the time-domain to the frequency-domain via Fourier transforms. 

The transforms were processed into autospectra and a complex cross-spectrum and 

stored on magnetic media. The autospectrum and cross-spectrum were then con-

verted via inverse Fourier transforms into autocorrelations and a cross-correlation 

[13]. As in the bimodality measurements the background noise was significant and 

the correlations were recorded both with the laser on and the laser off. The true 

correlations could then be determined by subtracting respective cross-correlations 

and under the assumption that the noise is uncorrelated with the true density the 

true autocorrelations could be determined by addition. 

During measurement of the density-velocity correlation the two signals were con-

verted to pdfs. The background noise again had to be removed by a deconvolution 

process similar to the one used to determine the true density pdf for bimodality. 

The background noise in the density signal was assumed to be uncorrelated with 

the velocity. This fact, along with the slender profile of the velocity pdf, allowed 
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the joint density—velocity pdf to be deconvoluted using the background density and 

the average velocity. 

Taking Eq. (6) and multiplying throughout by p' and then time—averaging, 

results in the working relation 

    

= lYtP1  — AV 	— 
(10) 

From Eq. (10) it can be seen that the static pressure—density correlation could 

be determined from knowledge of the total pressure—density correlation, density—

velocity correlation, and density autocorrelation and also the mean density and 

velocity. One advantage that arises from the expansion shown in Eq. (10) is the 

ability to independently determine each correlation in separate experiments. Each 

of the correlations is statistically valid since a large number of samples was used to 

determine the correlation. The largest values of the correlations were then used to 

calculate the static pressure—density correlation. 

Results 

The flame is shown schematically in Fig. 1. It consists of a cold inner core of re-

actants surrounded by a very luminous reaction zone, above which is a large region 

of low luminosity product gases. The reaction zone converges about 2.3 diameters 

from the burner mouth and extends to a distance of about 2.8 diameters down-

stream. The temperature in the inner core approaches the ambient temperature 

towards the mouth of the burner and the temperature in the product region ap-

proaches the adiabatic flame temperature of 2250K for a stoichiometric methane—air 

reaction. 

The region of most intense reaction appears at about 2.4 diameters downstream 

and it is at this point that the probability distribution is most nearly bimodal. The 
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evolution of the probability distribution along the centerline of the flame is presented 

in Fig. 4. The bimodal distributions are a result of the flame front oscillating about 

the probe volume. The distributions have very smooth and broad profiles due to the 

deconvolution process which was necessary to remove the background noise from 

the true signal. Figure 4 shows that the Bray—Moss—Libby theoretical structure 

[9,10] is indicated by the flame and resulting simplifications from that theory can 

be applied to further invesigations. 

A representative density autospectrum is shown in Fig. 5. The low signal level 

above 1000Hz shows that the important information within the signal occurs below 

1000Hz. The frequency components through 1500Hz were always sampled to ensure 

that all the signals decayed by that point. 

Axial profiles of the terms comprising the largest static pressure—density cor-

relation are shown in Fig. 6. From these profiles it can be seen that the total 

pressure—density correlation and the density autocorrelation terms are the main 

contributors to the static pressure—density correlation. The density—velocity corre-

lation term, even though the most uncertain of the three correlations, is negligible 

in comparison with the others. The static pressure—density correlations were com-

puted from the terms shown in Fig. 6 and the resulting axial profiles is shown in Fig. 

7 along with the error bounds of the calculation. The error bounds were determined 

from the statistical deviation of the separate correlations. These deviations were 

determined by repeating the experiments at later dates and finding the standard 

deviation from the average of these separate measurements. The error bounds in 

the figure are a result of the subtraction of terms with the same order of magnitude 

and experimental error in the determination of the correlations. 

From Fig. 7 it can be seen that the pressure—density correlation decreases, and 

later increases, by 0.3 Pa•kg/m3  within half a pipe diameter, yielding a gradient 
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whose magnitude is about 25 Pa•kg/m 4 . For the same flame, the largest term in 

Eq. (3) has a magnitude of about 5 Pa•kg/m 4  within the flame. Also, the density-

velocity correlation must be zero when exiting the burner and must decay to zero 

far downstream of the flame. From these results it can be seen that the pressure-

scalar correlation can not be neglected. The overall effect of the pressure-scalar 

correlation, however, will be negligible if the entire flame is considered, since the 

pressure-scalar correlation is a dominating term only in the vicinity of the flame. 

Conclusions  

1. The pressure-scalar correlation is not a negligible quantity in turbulent flames 

and is important in the scalar transport balance equations. 

2. The density-velocity correlation is not significant in pressure-density correla-

tion determination. 

3. Interestingly, the structure of this turbulent premixed flame is approximated 

well by Bray-Moss-Libby theory. This was not necessary for the current data 

analysis but may prove useful in future analyses. 
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Figure Captions 

Figure 1. Geometry of the burner and the flame. 

Figure 2. a. Microphone Pitot probe configuration. b. Data acquisition system. 

Figure 3. A velocity pdf within the flame with one of the broadest profiles. 

Figure 4. Evolution of the density probability distribution function along the centerline 

of the flame. 

Figure 5. A characteristic density autospectrum. 

Figure 6. Centerline axial profiles of the various terms comprising the static pressure—

density correlation, namely, (a) the total pressure—density correlation, (b) the 

density—velocity correlation term, and (c) the density autocorrelation term. 

Figure 7. Axial profile of the static pressure—density correlation along the centerline of 

the flame, including error bounds. 
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