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Abstract 
When model input variables appear redundant, it is 
common practice to simply drop some of them until the 
redundancy is removed, prior to model identification. As a 
result, the final model has forgotten the interdependency in 
the original input data, which may be an essential condition 
for model validity. 
We provide a practical approach to neural network 
modeling, such that the final model will also incorporate a 
"memory" of the multicollinearity in training inputs and 
provide a check on new input vectors for consistency with 
this pattern. 
We approach this problem stepwise, pointing out the 
benefits achieved or lost at each step when model 
complexity is increased. The steps lead in a natural way to 
building implicit models, which also handle noise in inputs 
in close resemblance to total least squares. The practical 
tool for this is a feedforward network of specifically 
selected configuration. 

Introduction 

We will denote the vector of perceived independent 
variables by x, with components x i , and the 
perceived dependent variables (to be modeled) by y, with 
components yn. While it is conventional to use x as 
the inputs and y as the outputs of a neural model, we will 
see that other arrangements have their benefits. 
Feature selection and feature extraction reduce the 
dimensionality of the model input vector to reach a 
parsimonious model that can be identified from the 
available limited size empirical data set (Jain et al. 2000). 
Consider data in which the input variables x i  and x2 
contain essentially the same information; let xi=u(x2) as a 
good approximation. We then say that x i  and x2  are 
collinear, even when u is not a linear mapping; a more 
proper term would be "functionally related" or 
"redundant." 
The alternative models y=f- (x)=f(u(x 2),x2)=f(x1 ,111 (x1 )) 
seem equivalent, but neither of the last two models is valid 
when xi #u(x2); this condition needs to be retained with 

the model. The only exception is when, say, x 1  is only a 
dummy argument in f(x) and y is independent of it. 
Ideally the collinearity and variable range conditions in 
the learning data will be embedded in the model, and still 
the practical cost of creating and using such improved 
model should not be prohibitive. We provide an approach 
that matches these goals. 
As side products we will gain a simple saliency indicator 
for the inputs (for feature selection, reverting back to 
dropping variables which is occasionally justified), a 
procedure for reduction in the number of model 
parameters without dropping any inputs, and a practical 
approach close to nonlinear "total least squares" modeling 
that allows errors (unbiased noise) in the independent 
variables. 
Our ultimate models are of Non-Linear Factor Analysis 
(NLFA) type (Karrila and Rezak 2002, Karrila 2002), 
providing functional constraints in implicit form between 
x and y. Such models are symmetric in the sense of not 
distinguishing between inputs and outputs, and allow 
multivalued x#y relationships, at the cost of requiring an 
iterative solution for each evaluation. 
The basis for all of the above is simple: a linear bottleneck 
as the first hidden layer is employed with otherwise 
conventional feedforward nets, which can be trained with 
backpropagation. Hetero- and autoassociation, as well as a 
hybrid or mixed scheme between these, are used in 
network training to effect dimensionality reduction 
(Verveer and Duin 1995) that removes collinearity. 

Theory 
The removal of collinearity is based on dimensionality 
reduction, familiar to most in the linear setting of PCA or 
factor analysis. Original data are represented in a lower 
dimensional coordinate system (encoded), so that 
reconstruction error between decoded and real data is 
tolerable. 
Principal Component Analysis (PCA) is a well-established 
method, mathematically related to the Singular Value 
Decomposition or Polar Decomposition of a matrix. It 
finds the unique affine subspace of given dimensionality, 



such that the orthogonal projection of data into this 
subspace retains a maximal fraction of the variance; the 
extracted features are orthogonal projections to the axes 
spanning this subspace. Factor Analysis can be considered 
postprocessing of the PCA results by selecting a new, 
possibly oblique, set of axes (approximately) spanning the 
same subspace, often so that each of the feature values 
(called scores) is referred back to a small subset of the 
original variables. 
On performing PCA all variables are treated 
symmetrically; there are no inputs and outputs. Still the 
final result can be viewed as a linear, total least squares 
model — the squared deviations from a linear (or affine) 
subspace in its normal direction have been minimized, and 
some coordinates can be solved given others, based on the 
"implicit model" that data lie in this subspace. 
We will pursue similar traits in a nonlinear setting by 
using neural networks as the engine that performs the 
minimization of error. 
A feedforward neural network processes a data vector 
sequentially layer by layer. The outputs of any layer can be 
viewed as encoded values, mapped to the outputs of the 
network by the remaining layers. If the output target 
values are equal to the inputs, the network is 
autoassociative. Then the encoded values are 
approximately mapped back to the inputs; the same 
network also embeds the decoding mapping in its 
structure. 
If an autoassociative neural network (AANN) is 
successfully trained, it has learned encoding-decoding 
mappings that preserve the original data vectors with only 
a small reconstruction error (and when a validation set is 
used, the ability to interpolate has also been tested during 
training and network selection). If the AANN has a 
bottleneck layer with a small number of nodes, the 
encoding at this layer reduces the dimensionality of the 
data vectors. This is how the bottleneck AANN structure 
functions as a tool for data reduction. 
An AANN with linear activation functions and only one 
hidden bottleneck layer performs PCA. It finds the same 
subspace as PCA would find for a given reduction of 
dimensionality, but the factor loadings (weight vectors of 
linear encoding) will not be orthogonal without 
postprocessing or special network constructs. An extensive 
review is provided in a recent book (Diamantaras and 
Kung 1996). 
Kramer's nonlinear PCA (NLPCA) learns nonlinear 
mappings f and g to perform encoding and decoding. 
These mappings are each represented by an NN with (at 
least) one hidden sigmoidal layer, and when the two 
networks are combined at the bottleneck so that the output 
layer of f is the input layer of g, the AANN has (at least) 
three hidden layers. The universal approximation property 
of NN ensures that three hidden layers with enough nodes 
in the first and third will always suffice, and this is the 
configuration that Kramer originally presented (Kramer 
1991). NN training becomes more difficult as network 
depth is increased and even with convergence the weights 

may be stuck to a local suboptimal error minimum; this 
encourages limiting the network depth, but on occasions 
increasing the number of layers is useful (Villiers and 
Barnard 1992). 
An invertible mapping applied to the reduced values can 
be used to form new encoding-decoding pairs, so this 
nonlinear reduction is not unique (or user independent) 
like linear PCA is. While Kramer discusses the 
application of information theoretic principles to select the 
reduced dimensionality, using the validation set seems to 
be a good practical approach for avoiding over-fitting also 
with AANN. 
The NLPCA seems not to be popular in applications and 
we take a step back from it. In the following we explore 
the benefits of linear encoding, combined with nonlinear 
processing of the reduced inputs. 

Adding a linear bottleneck to an ordinary 1/0 
network; parsimony and saliency benefits 
Feature selection is a particular case of linear mapping 
x#Ax, with some rows of the identity matrix I dropped to 
form A; preprocessing with a linear mapping not of full 
rank is common in this form. The purpose is to reduce the 
number of parameters in a neural model and ensure that 
the available training data are sufficient for 
"identification." 
The number of hidden nodes may be dictated by the nature 
of the output, as each "ridge" in it requires at least one 
sigmoidal hidden node. We consider the number of 
sigmoidal hidden nodes r fixed. 
Insert a linear bottleneck layer (i.e., the nodes pass on 
their net activation as such) with p nodes after the input 
layer, without biases so the mapping is linear and not 
general affine. Prior to the sigmoidal layer there are now 
mp+pr+r parameters, compared with earlier mr+r 
parameters. We benefit if p<mr/(m+r) , or equivalently 
2p<H where H is the harmonic mean of m and r (the 
geometric mean G=4(mr) a H is a useful bound if m and r 
are of the same order of magnitude). The bottleneck 
should then be tried with p about H/2 (or G/2), and if 
small training error is reached, smaller values of p can be 
tried. This constriction in the network can be viewed as 
one sort of regularization. 
The activations of the p<m bottleneck nodes can be 
considered "indicators" that show the joint effects of 
inputs. If the input variables have been normalized, the 
weights to the bottleneck indicate relative strengths of 
effects on the output(s). The weights act as a saliency 
measure. 

Mixed association to embed collinearity rules in 
model and achieve total least squares fitting 
It as in the Introduction, xi=u(x2), then the linear 
bottleneck Ax=x2  does not lose information from x; the 
reconstruction of x.=(u(x 2),x2) will require a nonlinear 
mapping. The universal approximation capability of the 



network after the bottleneck ensures that x can be 
(approximately) reconstructed (Barron 1993). Let us then 
assign xEDy as the targeted output, i.e., add output nodes to 
the previous model type. 
The mapping u is now part of the network model, so the 
input collinearity is embedded; the model also calculates 
"corrected independent variables" that obey this 
collinearity, enabling checking or alerts if deviation from 
given new independent variables (inputs to model) is 
large. This "mixed" model between auto- and 
heteroassociation reaches our first goal. If the input nodes 
clip the input ranges according to the span of the training 
data, the model will also alert to extrapolation. 
Neglecting the outputs y and restricting the mapping after 
the bottleneck to linear, we recover the neural computation 
of principal components of x. The support of A, namely 
AT(  ) A, projects x into that subspace which spans 
maximal variance with dimensionality reduction to 
rank(A). Alternatively, this subspace provides a linear 
model that has been fit to the data in the total least squares 
sense. 
When a total least squares model is desired, the errors in 
independent variables need to be observed in fitting the 
model. With feedforward networks this only happens 
when the independent variables are included in the 
outputs — an error sum is formed only at the output layer. 
In the next section we will further discuss what the linear 
"encoding" bottleneck does in combination with a 
nonlinear "decoding." 

Implicit models and Non-Linear Factor Analysis 
Consider full autoassociation with a linear bottleneck as 
the first hidden layer. Now xEDy is both the input and 
targeted output of the neural network. For brevity, we will 
denote this set of variables by only x (as if dropping y 
from the previous model type). The perceived independent 
and dependent variables are now treated symmetrically. In 
recent publications this network topology has been given 
the name Non-Linear Factor Analysis (NLFA), as it 
encodes to "score values" with linear "factor loadings" in 
matrix A, and decodes nonlinearly (Karrila and Rezak 
2002. Karrila 2002). 
The combination of linear encoding to reduced 
dimensionality and nonlinear decoding back to 
approximate reconstruction seems to have been neglected 
prior to publication of the NLFA method. Viewing the 
encoding and decoding as inverse mappings we might 
assume that if one is linear so should be the other. Indeed, 
if the decoding is linear, the encoding is given by its 
pseudoinverse. However, our earlier example of 
x#x2#x=(u(x2),x2) provides a natural linear encoding with 
nonlinear decoding. It is easy to construct examples of this 
type that will show the shortcomings of linear PCA with 
nonlinear data. 
We define the optimal result of linear dimensionality 
reduction as follows, for the intrinsic smooth functional 
relationship between all variables in x. To get a rigorous 
definition, we consider a continuum of points (not a noisy 

and discrete set of data records) that obey the underlying 
relationship and form a manifold. 

Definition of LRID. A manifold M in V"' is linearly 
reducible to dimension p, if there is a linear mapping A 
into VP such that the restriction of A to M is bijective 
(one-to-one). The linearly reducible intrinsic 
dimensionality (LRID) of M is the smallest of such 
values p. 

If p<m, then data reduction is performed by the encoding-
decoding pair x # Ax # x. Denoting the (nonlinear) 
decoding by g, x=g(Ax) for all x in M. If p=LRID, then A 
must be onto VP and of full row rank, and AA T  is 
invertible, so the projection to support (orthogonal 
complement of null space) can be calculated as given 
earlier. 
Going backwards from Kramer's NLPCA, if we restrict 
the encoding to be linear we have NLFA, and if we further 
restrict also the decoding to be linear we have PCA. 
Clearly the capacity to reduce data decreases with each 
restriction, so NLFA is a compromise in complexity and 
capacity between the two earlier methods — a semilinear 
method between fully linear and fully nonlinear. There are 
cases where the intrinsic dimensionality is strictly less 
than the LRID, but in many practical cases the 
nonlinearity is "mild" and NLFA works very well. 
To visualize a comparison between these methods, Figure 
1 provides a taxonomy, which refines the conventional 
classification of data reduction methods to linear and 
nonlinear. It is appropriate to categorize methods based on 
the encoding and decoding types separately. With the 
addition of the NLFA method to the arsenal, an approach 
exists for every useful slot in this taxonomy. 
Note that the NLFA provides a model x=g(Ax)=g(v), 
which is implicit and can be used as follows. Given 
enough components of x as vector Bx, we can numerically 
solve Bx=Bg(v) for v and get the remaining components 
from g(v). Only g needs to be stored for model application, 
and the collinearity check is whether a satisfactory v can 
be found. Separate checking of ranges for components of 
can of course be done. When v lives in V 2  we can visualize 
g as contour plots. 

ENCODING 
Linear 	 Nonlinear 

Principal 
component 

analysis (PCA) 

Useless, revert to 
PCA 

NLFA Kramer's 
NLPCA 

Figure 1. Types of encoding and decoding are used to 
create taxonomy of some constructive data reduction 
methods. NLFA stands for Non-Linear Factor Analysis, 
while NLPCA refers to Non-Linear PCA with neural 
networks. 
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In the following summary the linear operator A serves as 
an indication of a linear bottleneck layer with p nodes in 
the first hidden position. Output approximating, say, 
target x is denoted by The independent and dependent 
variables are components of x and v, respectively. 
Model 
type 

NN dissected Benefit and Cost 

I/O 
_plain 

x# y' 
Heteroassociative 

Baseline 

I/O 
With 
linear 
feature 
extraction 

x#Ax# y' 
Heteroassociative 

+ parsimony 
+ saliency estim. 
- "extra" layer to 

train 

1/0 
With 
embedded 
NLFA for 
indep. 
variables 
only 

x#Ax# i'ey' 
Mixed association 

+ 	handles 
multicollinearit 
y with new 
inputs 

+ errors-in ears 
- apparent 

complexity up 
Implicit 
(NLFA) 

x0y#A(x(14) # x'EDy' 
Autoassociative 

+ all of the above 
benefits 

+ x# y' can be 
many-valued in 
an implicit 
model 

- use of model 
requires 
iterations 

Table 1. Comparison of the model types discussed in the 
order of increasing model complexity. 

A numerical example; laboratory refining 
data 
Wood pulp for making paper is mechanically beaten or 
refined to soften and break the fibers. The type and 
amount of refining can be observed through its effects on 
measured properties of paper made in a "standard way." 
First principle modeling of these phenomena is 
intractable, and empirical modeling is needed to gain 
insights. 
Linear factor analysis has been applied (Howard, Poole, 
and Page 1994) to a published collection of data (Cottral 
et al. 1954), of which we only inspect a subset. Up to the 
point of rotating the principal components the results of 
such analysis are user independent. Further background 
on linear factor analysis (and principal component 
analysis) can be found in the references of their 
publication. 
They found three major factors and gave an interpretation 
for each. With any method (including NLFA) one could 
dispute where the cutoff in required reproduction error 
should be; equally well four or five factors could have been 
retained from PCA, but the available interpretations 
happened to have a good match with only three factors. 

Our data come from Appendix I, Table 16, of the same 
reference dating back to 1954. These data are for a 
bleached sulfite pulp labeled "extra strong (green)." Six 
different types of beater were applied to the same pulp for 
various periods of time, by different laboratories; due to a 
duplication of the Lampen mill, there are seven "beating 
curves." 
We model ten pulp and paper characteristics with the 
NLFA method. These are freeness (of pulp), breaking 
length, Mullen burst factor, tear factor, Bekk porosity 
(transformed with natural logarithm), Schopper fold 
(transformed with natural logarithm), % stretch to failure, 
light scattering coefficient, contrast ratio, and apparent 
density. 
Two state variables are found to conserve the measured 
data within reasonable reproduction error. The lowest R2  —
value 0.88 is found on predicting stretch, mainly due to 
inaccuracy in the measurement of this variable. With the 
exception of natural logarithm of porosity (value 0.96) and 
tear (0.97), the remaining variables have R2  —values 
around 0.99. 
Only eight sigmoidal nodes are needed in the second 
hidden layer; the first has two linear nodes as stated 
above. There are 40 data records, and 20% of these were 
held as validation data during training. This is a typical 
case where the number of data records is seemingly small 
compared with the number of variables. 

Figure 2. The reduced coordinates (v in the theory 
section) trace distinct, nearly parallel curves for each type 
of beater device. Along each curve the amount of beating 
is varied. 
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Figure 3. The tear factor is shown as contours superposed 
on the curves of Figure 2. 
Graphics such as Figure 3 also serve as a check that no 
sharp kinks or other anomalies have been introduced in 
the model. 
In terms of the fraction of variance explained, the NLFA 
with reduction to two dimensions performs slightly better 
than PCA with reduction to three dimensions. This is to be 
expected when the functional dependencies between 
variables are nonlinear. As an illustration of what goes on 
here, the canvas of an umbrella can be poorly fit with a 
linear subspace, so PCA will claim it is three-dimensional; 
but only two parameters are needed to generate this 
surface — a two-dimensional manifold We expect that a 
semilinear method such as NLFA can gain acceptance and 
simultaneously far exceed the power of linear PCA in 
practical applications. 

Notes on practical application 
The methods presented are based on conventional 
feedforward networks with at least two hidden layers. The 
first hidden layer is a linear layer with fewer nodes than 
there are inputs. When total least squares-type models are 
generated, the perceived independent variables are 
included as targeted outputs. In the mixed-type (explicit) 
modeling, this may have a "hints" or "multitask learning" 
effect, which aids the network in learning to model the 
dependent variables (Caruana 1997). 
It has been theoretically shown recently that bypass 
connections from the bottleneck to the output layer can 
improve reconstruction of the inputs (Karrila 2002). 
Flexible neural software that allows arbitrary network 
configurations, based on Wan's transposed network for 
backpropagation, can be useful for further experimentation 
(Wan and Beaufays 1996; Principe, Euliano, and Lefebvre 
2000). 
The number of nodes needed in the bottleneck needs to be 
found by experimentation. While PCA can from a single 
calculation show the effect of any linearly reduced 
dimensionality on reconstruction error, NLFA requires 
separate (and perhaps repeated) training for each degree of 
reduction. Software that allows running a "batch," where 
the number of nodes in a hidden layer is sequentially 
varied, and each network configuration is trained multiple 
times, makes this process easy and automated for the user. 

Conclusions 
A linear bottleneck layer that learns to preprocess the 
inputs to an NN during its training has several benefits, 
especially when available data are limited and possibly 
plagued by functional dependencies between variables. 
Without autoassociation the benefits are in model 
parsimony, linearly constructed reduced (indicator) 
variables whose construction is easy to document, and in 

evaluation of the saliency of the independent variables for 
feature selection. 
Explicit models that calculate the dependent variables in 
one pass, given the independent ones, can be so 
constructed that multicollinearity in training data is 
modeled and can be automatically checked for when the 
model is applied with new input data. At the same time 
noise in the input variables is observed during training, 
and the fitting is reminiscent of total least squares. 
Implicit models can be built by autoassociation of NLFA 
type, when it is not clear that some variables depend on 
others as single-valued functions. The application of 
implicit models requires iterative numerical solution. 
However, with continuous increase in computing power, 
such cost of model evaluation decreases in proportion to 
the value of better performing models. We anticipate that 
implicit modeling will gain in popularity in the near 
future. 
The progression from simple to more complex models can 
serve as a step-wise approach to exploration in practical 
data-driven modeling. 
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