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Background 

In a previous analysis
(1) 

of pion-pion scattering numerical solutions for 

the scattering amplitude have been found by iterating partial wave inverse 

amplitude dispersion relations coupled by unitarity and crossing equations. 

Only S and P waves are included so that there are three amplitudes to consider 

Ao (v), Al(v) and A2(v) corresponding to isospin 0, 1, and 2 respectively. An 

 and A2  are S wave amplitudes and Ai is P wave; v = (k/0 2  where k is the 

magnitude of the center of mass 3 momentum and 4 is the pion mass. Dispersion 

relations with one subtraction are used and first derivative crossing conditions 

applied so that only the pion-pion coupling constant, X, remains as a free 

parameter. 

Some of the solutions included a P wave resonance and these can be 

characterized as follows. For the S waves the inverse amplitude right cut is 

only slightly (less than 10%) dependent on the left cut in the dispersion 

relations. Thus we have for v)) 0, I = 0, 2 

1 , 
Im A 	(v) = - 1 v/(v.  + 1) 1 1/2 

La 

(1 ) 
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by unitarity and from the dispersion relations 

.''' Im A-1 (v ' ) 
1, ‘ 	-1 	v-vo 	I dv

,  

	

Re A kv) = a
I 
+ — ID: 	  

I 	 Tr 	, 	. (v -v) ( v -vo ) 

	

,., 	, 
L+R 

where 
all  are the subtraction constants, vo  is the subtraction point 

(vo  = -2/3) and the integral runs over both the left cut, (- 	, -1), and the 

right cut, (0, 	If we neglect the left cut and use eqn. (1) for 

- 	, 
Im A

1 
 k

I 
v) for v > 0 we find 

1 	-1 
Re 

All 
	a

I 
+ h(v) 

where 

/ V 

h 
\ 

v ) = 
1 /V 

7
in i 

11 +,V+1 	0.554 
( 	—  

Tt 	v+1 
1 - v+1 

Equation (3) will be used whenever an expressed form of Re 
All 

(v) is needed. 

For the P wave inverse amplitude one finds an effective range behavior until 

well above the resonance energy. Thus we may write for 

and 

, 
v Re Al  (v) = C(v

R
-v) 

Alv Im  (v) = v3/(v+1)] 1/2 
1 

with C and v
R 

dependent on X. 

The amplitudes for v-1 may be found by first using the crossing 

equations for the imaginary parts and then the dispersion relations for the 

real parts. For present purposes it is more practical to use dispersion 

relations for the direct amplitude 

Re A
I
(v) 	 P dv = a + 

L+R 	
(v'-v)(v'-vo) 

, Dm A
I 

(v') 	

(7) 

(2) 

(3) 

(4) 
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where again the integral runs over both the left and right cuts. The crossing 

equations are, for v $: -1, I = 0 or 2 

-v-1 	. 

Im A (v) = dv
,  

3 
Im Ao (v') + bI 

 ImA2(v ' ) 

0 

.1 + d
I 

3(1+2 v+1) Im Al(v') 

0 	1 
where bo = 13  , b2 = 3, do  = 2 and d2  = -1 and 

-v-1  

/ 

	

Im Al(v) = — 	 (s i 2 v  ) 7 Im 0( ) 	 A2 ( ') 

	

1 	dv' " .
1__ v +1 	2 _m 

A 
 ,v, - 5 

_., 	7  Im A 	v 

] + 3(1+2 "1) Im Ai(v') 
v 

The parameters ao , al and a 2  as well as C and v
R 
are determined for any 

particular X, by the consistency requirements of the crossing conditions. For 

the partial wave analyses these become 

 

= 	
A2\ 

V=V0 	V V=V0 

 

3 a  _ 1aAo  
vo 	- av 

(10) 

   

In particular one finds ao  = -51 and a2  = -2X. al, C and v
R 

are not so 

simply determined but for X = -0.15 one finds al = -0.005, C = 19 and v 2  = 4.1. 

Problem 

The present problem centers around a modification of the solutions dis-

cussed above. The dispersion relation analysis is arbitrary to the extent of 

poles in the inverse amplitudes (CDD poles) and these cannot be found by 

v' 
(8) 

(9) 



numerical iteration on a computer since they introduce infinities in the 

physical region. These correspond to zeros of the amplitude itself. 

However, in the presence of any inelastic scattering the elastic scattering 

has a lower bound which is non zero. The CDD poles still may exist but are 

moved off the real axis into the negative half v-plane. Such poles can be 

treated by the computer and when a program including inelastic scattering 

was run solutions with CDD poles appeared but with one peculiar property. 

The CDD pole always occurred close to the original resonance position 2) 

The result of this was to split the resonance into two, one each side of the 

CDD pole, but still close together. (3) It appears then that in any P wave 

resonance type solution a CDD pole may be placed close to the resonance 

position without disturbing the consistency requirements of the analysis, 

i.e. the crossing equations. Our purpose here is to justify this statement. 

Analysis  

In the original discussion of CDD poles
() 

their position and strength 

were arbitrary. On the other hand for that analysis a very simple form of 

crossing, (actually direct reflection) was used. Here we have partial wave 

coupling in the crossing equations so that more restrictions on the CDD 

pole may be expected. To start with we modify eqns. (5) and (6) to include a 

CDD pole at v = vp  with Re vp  = v
R
. Thus 

T(v-v
R

) 
Re All  (v) = C(v -v)/v + k 

T2 4.( v _vR )2 

1/2 -1 	 14: T2  Im A (v) = - 1 T2 1.( v _
vR

)2 
(12) 
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where T = -Im v and A T is the strength of the CDD pole. The parameters N 

and T may be related to the real and imaginary parts of the P wave whose shift. 

For k large 

Im i(v) 	
-1 

, 

d 

 Re ul(v) 	
' 	= ( Re ,S- 1 = 	

77 	Re S = 
(13) 

Now using eqns. (1), (3), (4), (11) and (12) A/(v) (I = 0, 1, 2) may be found 

by inverting and then the Ai(v) for v—.; -I are determined by using first the 

crossing equations, eqns. (8) and (9), and then the dispersion relations, 

eqns. (7), since Im Ai(v) has then been determined for all v. The resulting 

1 
curves for Re A I , Im AI , Re AT  and Im All  are shown in Figs. 1, 2 and 3 both 

with and without the CDD pole. We are basically only interested in the difference 

between the results with and without the pole and this corresponds to making 

further subtractions in the dispersion relations. This point will be clarified 

by a careful consideration of the crossing conditions. 

The salient point shown in the curves in Fig. 1 is the double resonance 

behavior in Re Al  and Im Al . The two resonances are symmetrically positioned 

about v = v
R 

and are both lower and narrower than the original resonance. 

As shown in an earlier paper (3)  there combined effect in any dispersion integral 

is similar to that of the simple resonance except close to v = v R . On the 

other hand in the crossing equations the variable upper limit produces a 

change of slope of Im A(v) for v < -1 at the reflected resonance positions. 

When the CDD pole is present this occurs in two places and gives a somewhat 

different behavior as shown in Im A o (v) and Im A2(v) for v -I. These changes 

on the left cut are not important in the dispersion integrals in the low energy 

physical region due to the subtractions: their effect, if any, will be felt in 

the subtraction constants. Thus the consistency of the scheme with the CDD 

pole depends on satisfying the crossing c,nditions and, in particular leaving 
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the P wave subtraction constant unchanged. 

Using the dispersion relations (7) the crossing conditions (10) may be 

rewritten 

3 al 	1 	Im Ao (v) 1 jiIm 	A2(v)  
T( 	 dv = 	 dv 

vo 	T (v
-v0) 2 	 (v-vo) 2  

L+R 	 L+R 

The curves in Fig. 1 were obtained by fairly crude numerical calculations, 

mainly for purposes of illustration, and are not accurate enough for use in 

eqn. (l1.). Instead we set up a precise analytic expression and then evaluate 

only the part which is effected by the CDD pole. For I = 0, 2 consider then 

-1 
Im A

I
(v) 	 Im A

I 	
(v) 	 Im AI 	

(v) 
dv = 	 dv + 	 dv 

L+R (v-v0)2 	0 	 -v1-1 
(v-v0 ) 2 	 (v-v0 ) 2  

(14) 

-v -1 

dv 

 7 	

dv. 2  [3- Im Ao (v') + b
I 
 Im A2  (v')1 

(v-v0)2 	

1  

0 

vi 

7 
lf dv' dI 
	

v+1,)  2(1+2 	Im A/(v') 
v 

0 

-v1-1 

dv  

( V -Vo ) 2  _ 

where 

+ dI R+ 
	

(15) 

-v-1 

R
± 
 = 

I 	

dv  

j 	
dv' 3(1+2 v+1 ) Im Al(v') (16) 

(v-v0 ) 2   
_ ,0 	 vt 
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and by a suitable choice of vi (vi = v
R 

- 4T say) this is the only term 

effected by the CDD pole. The + designates the presence or absence of the 

CDD pole in Im Ai(v'). Writing PI  for the CDD pole - independent terms we 

have 

Im A
I
(v) 

dv = P
I + dI R+ (v-v0 ) 2  

L+R 

Thus because the CDD pole is only effective in a limited range of v we may 

treat it as a perturbation which takes us from R to R. But in the unperturbed 

case we have 

3al 	 \ 	-1 , 
, 	 ) = 	O2  + d2 R _ ) 

pole we require 

+ d2 R4.) 

- ) 

if the first is not, 

(18)  

(19)  

(20)  

(21)  

( Po 	
,

+ do  vo  = 
2n 

and to satisfy the crossing conditions with the CDD 

5a1 _ 1 	 -1 
(p° 
	do  R

(

P2 

	

vo 	 +) = 

i.e., 

dn  

	

 
0 = 	- R ) = - 	(R+ 	R 2n , 
	
+ 	- 	n 

The second condition is identically satisfied, even 

since by definition 

do  _ 1 	d2-  
2n - 7 = 

For the first condition to be satisfied we must have R + - R = 0 or, more 

in keeping with the spirit of the analysis, we require 

I 	!<.; I L'al I R+ - R 

	

- 	vo  
For the case X . -0.15, al = -0.005 and this reduces to 

	

R+  - R_ 	0.07 

( 17) 

(22)  

(23)  
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We now turn to the evaluation of R + and R - . 

Since the CDD pole effect is concentrated about v = v we shall only 

keep lowest order terms in v-vR. 
These approximations will be reviewed 

later. Thus g,(v-vR)/T 

vR 
Re A;

1 .  CT 1.
1rR -v  7 

- 

T 	j 	1 4. [(V-VR )/TJ 2  

	

-0x +k x/(1 +x2 ) 	 (24) 

-1 	VI3 	1
1/2 

Im A1  = -1 ---- +1 vR  j 	
1+x2 

= - U - 101+X2 ) 	 (25) 

where 
1/1 

0 = CT
/
v

.13
, u =117

R
/(v

R
+ ld and x = (v-v

R)/T. Inverting we find 

Im A - 	
UX2  4- (A +u)  

1   2  pJ x _(21( 0_024.u2)x2 	( 	u)2 
(26) 

Making similar approximations in R +  we write 

-v1 -1 

and 

= 2v 
	 v41 3(142 

(v - 3  vo)
3 	v

R 
Im Al(v') dv' 

  

vl 

Using eqn. (26) we find 

-v -1 

dv' Im Al(v') = f(-v -1 -vR) - f(v+1+vR ) 

- f(vi - vR) + f(vR - vi) 

v1 

with 

f( v) =- 
2 arctan( 2±I) + (Ø-11)T2  In I 1 + ( 27-7) 2 ,1 

8 	p 



where 

and 

Further define 

-9- 

p 	TL 4 k0 	(0 -11 ) 2 3 	d 

q = T(QC+u)/2 

= (3 	+ 6 + 4 vo)/12 q 

w= (vi + 1 + vo )/q 

x1= (vR  + 1 +2 vo _ p)/ci  

2 
X 2 = (v + 1 + 7  vo  + p)/q 

a = 6/1,-
R 
 (0+u) 

and 

= -P2  = T(0-u)/2p 

2 

Then 

= 

2  

a i 
1+x. i=1 

1+( xj -ko) 2 
 In 	 X 

2 

x. 

	

1 	 2 	) x 	 f3i  (xi 	
+ 
	) 	+ 

	

1+ x. 2 	 1+x. 2  

	

1 	 1 

4- 1 f 4- ar c tan ( xi 	(1) 

x + 
21  

) 
1+x.2 	i 

1 
(1 

x. 
1 

 

 

1 +x. 2  
1 

- 	
(1- 
	xi)/a, 
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This is to be compared with R or rather 

-V1 -1 	 -v -1 

dv 	311+2 v+1) dv 	1/u  

(v - 2 ) 3  3  v0 	 Vi 
1+1e(v'-v ) 2 /u2 T2  

where we have made the same approximations as in 	Values of R .: and R 

AR=R' -R' are given in table 1 for various values of 1<, T, and vi 

assuming C = 19 and vR  = 4.1. The calculations indeed show that t R is very 

small for a wide range of values of T and 1< and is not sensitive to the 

value of vi provided it is somewhat less than v
R' 

In fact we may use the 

freedom in vi to test the efficacy of the dispersion relations. By making 

vi. v2  we may evaluate the infinite tail of the integral. As shown in table 1 

its effect is negligible both in R .I. ' and A R. 

Finally let us consider the approximations made in the analysis: 

Firstly the computational approximations. 

[

v' 31/2. v 	71/2 
 . 	R 

v +1 _.), ! 	vR 
 +1 

c(vR -v')/v' 	c(vR -v')/v R  

v+1 	v+1 (1+2 	) 	---) 
v 	

v
R 

V 

• 

> vl 

V 

v 

• 	

vi 

(v -v0 ) 2  v 	- 3 vo )3 
	

v 

The first two just constitute variations on the analytic approximations to 

the physical amplitudes and are not related to the OD pole. The third is 

the most suspect since it distinguishes between the unperturbed case with Im Al 

 large on each side of v
R. 

This approximation will be refined in future work 



2 Vo
2 
	 Vo 

(vR+T+l+vo ) 2  

Vo 2 

(v
R
+14v0 ) 2  

E = R ) 
1 	 

+ 12 , 
— ( ,AvR-T+1+v0 ) 2  

by the addition of higher order terms in (v-vR). The fourth approximation 

is proportional to 

2 	, 
(-v -1 - 3  .70) 3 

E - 	  

( -v -1 -vo ) 2 (-vi -1) 

Vo 2 

(v+l+v0 ) 2  

and since the main contribution to R
+ 
and R occurs near v = v

R 	
T and 

v = v
R 

respectively the correction to A R will be of the order 

1 

3 V02 T2 R  

-5 
v
R 

which is negligible. 

Secondly there are the assumptions that the S wave right cuts are not 

effected by the modifications to the left cuts. However, if the changes near 

v = - v
R 

-I are not noticeable at v = vo  in the subtracting constant calculation 

they should also be negligible for 	0 in the dispersion integrals. 

Thirdly, there is the possibility of changes in the P wave right cut 

altering the effective range behavior independent of al. But arguments 

similar to these for the S wave right cut suggest that these may also be 

neglected. However, a more detailed analysis will be undertaken. 

One situation which has not been considered in detail here is that of a 

very weak CDD pole. In that case the resonance is not split (the variable P 

becomes imaginary) but only broadened and decreased in height. 
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Summary  

The effect of adding a CDD pole at the resonance position in pion-pion 

scattering has been treated analytically and it has been shown that, provided 

the CDD pole is not too strong, i.e., the inelastic scattering is not too weak, 

the crossing conditions are still satisfied. It is interesting to note that 

for the,- -meson which may be a split resonance there is a strong inelastic 

contribution from the cu-meson. 
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Table 1. 

Values of R
4-'  ' 
	R 

and vi. 

T 1< 

' and t R for C = 19
, 
v
R = 4.1 and various values of X , T 

vi 	 R
+ 	 R ' 	 A R _ 

0.01 0.2 2.5 0.145534 0.145535 -1 x 10 -6  

0.1 0.2 2.5 0.145528 0.145535 -7 x 10
-6 

 

1 0.2 2.5 0.145460 0.145535 -8 x 10 -5  

10 0.2 2.5 0.144540 0.145535 -1 x 10 -3  

10 0.01 2.5 0.145520 0.145535 -1.5 x 10 -5  

10 0.05 2.5 0.145429 0.145535 -1 x 10
-4  

10 0.1 2.5 0.145234 0.145535 -3 x 10
-4  

10 0.3 2.0 0.146730 0.147246 -5 x 10
-4  

10 0.5 1.5 0.147749 0.148290 -5 x 10
-4  

10 0.2 1.5 0.148420 0.148290 1.3 x 10
-4 

10 0.2 2 0.147088 0.147246 -1.6 x 10 -4  

10 0.2 2.5 0.144540 0.145535 -1 x 10 -3  

10 0.2 6 0.003348 0.002865 5 x 10
-4  

10 0.2 8 0.001058 0.001018 4 x 10-5 
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Figure 1. The S Wave, Tsospin 0, filiplitude without a CDD Pole (Continuous 
Line) and the Modifications Introduced Hy the ODD Pole (Draken 
Line). 
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Figure 2. The P Wave Amplitude without a CDD Pole (Continuous Line) and the 
Modifications Introduced by the CDD Pole (Broken Line). 
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