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Abstract. The study of the coronary vessel structure is crucial to the diagnosis
of atherosclerosis and other cardiovascular diseases, which together account for
∼ 35% of all deaths in the United States per year. Vessel Segmentation from
CTA data is challenging because of non-uniform image intensity along the ves-
sel, and the branching and thinning geometry of the vessel tree. We present a
novel method for vessel extraction that models the vasculature as a tubular tree
and individual vessels as 3D tubes. We create an initial tube from a few seed
points within the vessel tree, and then evolve this initial tube using a variational
energy optimization approach to capture the vessel while automatically detecting
branches in the vessel tree. A significant advantage of our proposed framework
is that the center-line of the blood vessel tree, which is useful in defining cross
sectional area of the vessel and evaluating stenoses, is detected automatically as
the tubular tree evolves. Existing approaches on the other hand need an explicit
step for skeletonization of the vessel volume after segmentation. Another bene-
fit is that the parent-child relationships between branches are also automatically
obtained, which is useful in fly-through visualization as well as clinical reporting.

1 Introduction

Blood vessel segmentation is vital to surgery planning and the diagnosis of cardio-
vascular disorders such as atherosclerosis. Segmentation using only intensity informa-
tion from CTA data is insufficient since variations in contrast along the vessel and lo-
cal ambiguities in intensity can cause leakages to occur. However using shape priors
for vessel segmentation is challenging because diseased vessels can have different and
abnormal shapes. In this work, we propose a model for a tubular surface as a center-
line coupled with a radius function. We build energy functionals using this represen-
tation which we optimize using a variational approach. Casting vessel segmentation in
this framework introduces a “soft” tubular shape prior. The center-line obtained is the
skeleton of the vessel tree, which facilitates fly-through visualization to gauge plaque
deposits and stenosis in the vessel interior. We also gain computational efficiency since
the problem of segmenting a closed surface in 3D is transformed into the segmentation
of a 4D open curve and the use of a parametric curve evolution approach for this 4D
curve is more efficient than levelset-based approaches such as in [1].
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2 Related work

We give a brief review of several relevant geometric techniques based on deformable
models pioneered by [2]) for vessel extraction. In [3], the authors approximate the evo-
lution of a one-dimensional curve embedded in 3D space based on edge information
of the image to segment vessels. In [4], a flux-maximizing flow on curves/surfaces is
constructed to align the curve/surface normal along the gradient direction of the image
and is implemented with level set methods. To take into account the geometrical shape
of a vessel, the authors of [5] construct a geometric shape prior to favor vessel-like
structures and combine it with image region statistics to deform the curve/surface to
capture the vessel. In [6], a level set method is used based on histogram information to
deform an initialized vessel tree that was obtained by registration of the image to a pre-
segmented reference image. These methods do not explicitly model the tubular nature
of the vessel(s) to be detected. Therefore in [7], the authors model vessel surfaces as the
envelope of a collection of spheres, thus having a explicit tube-like model for the vessel.
The segmentation is performed based on a minimal path technique [8]. The centerline
is thus detected without any additional effort in comparison to methods which process
the segmentation to obtain a centerline (e.g. [9]). The method of [7] requires that the
user inputs the endpoints of the vessel branch.

In this present work, we model an individual vessel as a tube-like surface that
evolves to detect the vessel. We do not require that the endpoints of the vessel are
known or fixed during the evolution. Also, while branch detection has previously been
dealt with as a problem of detecting branch points given a skeleton or the segmented
surface (e.g. [10],[11],[12]), our method automatically detects branches and generates
new tube-like surfaces to segment vessel branches, yielding a tubular tree structure for
the overall segmentation. We present the details of the framework in Section 3 and
discuss the experiments and results in Section 4.

3 Tubular Tree Segmentation framework
3.1 Tubular Surface model

We represent the vasculature as a tubular tree and model each individual vessel as a
tubular surface determined by a center line and a radius function defined at each point
of this center-line, akin to the model of Mohan et al [13]. Given an open curve c :
[0, 1]→ R

3, the center line, and a function r : [0, 1]→ R
+, the radius function, we can

define the tubular surface, S : S
1× [0, 1]→ R

3 (S1 is [0, 2π] with endpoints identified)
as: S(θ, u) = c(u) + r(u)[n1(u) cos θ + n2(u) sin θ] (1)

where n1, n2 : [0, 1] → R
3 are normals to the curve c defined to be orthonormal,

smooth, and such that the dot products c′(u) · ni(u) vanish. See Figure 1 for an illus-
tration of a tubular surface. The tubular surface is represented as a collection of circles
each lying in the plane perpendicular to the center line c̃ : [0, 1]→ R

4:
c̃(u) = (c(u), r(u))T . (2)

Note that we significantly extend the work of Mohan et al [13] since it is the stable
evolution of end points (Section 3.4) and the novel automatic branch detection algo-
rithm (Section 3.5) put forth in this work that allow the model to be applied to the
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Fig. 1: Illustration of Tubular Surface model

segmentation of Tubular Trees and practically usable for vessel segmentation. We also
propose a new energy suitable for vessel segmentation (Section 3.2) which is tailored
to CT imagery versus the MRI imagery used in [13].

3.2 Energy for Vessel Segmentation
We define an energy functional on tubes such that the optimum tube corresponds to the
vessel of interest. Since tubes are identified with 4D space curves in our method, we
define energies directly on 4D curves. Let Ψ : R

4 × S2 → R
+ (Ψ(x, r, v) ∈ R

+) be a
weighting function to be chosen, and we define the energy as

E(c̃) =

∫
c̃

Ψ(c̃(s̃),
c′(s̃)

|c′(s̃)|
) ds̃, c̃ = (c, r) (3)

where ds̃ = |c̃′(u)| du =
√

(r′(u))2 + |c′(u)|2 du is the arclength measure of the 4D
curve, and c′(s̃)/|c′(s̃)| is the unit tangent to c, the center line. The term ds̃ penalizes
the non-smoothness of the center line and the radius function. The energy (3) is related
to the length of a curve in a Finsler manifold [14–16].

The weighting function, Ψ , is chosen to maximize the difference in mean intensities
inside and outside the discs centered along the center-line. This is given as following:

Ψ(p̃, v) = μD(p̃,v) − μD((p,αr),v)\D(p̃,v) (4)

where p̃ is the 4D position along the curve, v is the tangential directions along the curve
and μ’s are means:

μD(p̃,v)(v̂) =
1

r2

∫
D(p̃,v)

I(x) dA(x) (5)

μD((p,αr),v)\D(p̃,v)(v̂) =
1

(α2 − 1)r2

∫
D((p,αr),v)\D(p̃,v)

I(x) dA(x), (6)

where dA is the area element and I(x) ∈ R
+ is the image intensity at a given position

x. Notice that the energy (to be maximized) uses local region-based statistics to separate
the tube’s interior and exterior in comparison to traditional region-based approaches
which separate the global mean intensities inside and outside the surface (e.g. [17]).
It is thus suited to vessel structures where the image intensity varies smoothly along a
vessel (but is not necessarily constant). Note also the dependence of Ψ on v̂, which is
the orientation of the disk.
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3.3 Optimization by variational approach

The energy functional (3) is optimized using a steepest ascent flow. By maximizing
(3), we are maximizing a weighted length and this process is unstable using traditional
gradient ascent because such a gradient flow results in a reverse heat diffusion. As dis-
cussed in the work of Mohan et al [13], such energies may be optimized by using a
gradient ascent flow derived from a Sobolev-type metric [18] (different from the tradi-
tional gradient flow technique that is based on an L

2-type metric), which results in a
stable ascent flow. The gradient ascent of (3) which we use to evolve the tubes is

1

L
∇SobE(c̃) = K(Ψp̃) + ∂ŝK(Ψ̂v

√
1 + (rs̃/|cs̃|)2 + Ψc̃s̃), (7)

where

K(f) :=

∫ L

0

K(·, s̃)f(s̃) ds̃, K(s̃1, s̃2) =
1

L

{
s̃2

L
(1− s̃1

L
) 0 ≤ s̃2 ≤ s̃1

s̃1

L
(1− s̃2

L
) s̃1 ≤ s̃2 ≤ L

. (8)

Note that as stated in [18], (7) can be computed efficiently in order N complexity, N
being the number of sample points of the curve.

3.4 Moving end points

For vessel segmentation, we wish to initialize a few seed points in frames where the
vessel cross sections are visible and then grow this initial tube to capture the entire
vessel structure including branches. While in the work of Mohan et al [13], the gradient
ascent of (3) was proposed for extracting the cingulum bundle in DW-MRI using an
initial guess of its centerline such that the endpoints of the 4D curve were fixed, we
must be able to evolve the end points (end disks of the tube). To do this, we compute
the variation of the energy with respect to the endpoints of the 4D curve. Thus in our
work, the endpoints are evolved according to

c̃t(0) = ∓Ψ̂v

√
1 +

(
rs̃

|cs̃|

)2

∓ Ψc̃s̃, c̃t(1) = ±Ψ̂v

√
1 +

(
rs̃

|cs̃|

)2

± Ψc̃s̃. (9)

To maximize the energy of a single tube, we alternatively evolve the endpoints of the
4D curve using (9) and its interior using (7). Note that we achieve stability in evolving
the end points outward (i.e increasing length) by the use of the Sobolev norm-based
gradient flow [18].

3.5 Automatic branching detection in vessel tree

The branching geometry of the blood vessel tree poses a challenge in applying the tubu-
lar surface extraction framework to vessel segmentation.We wish to detect the presence
of branches in the vicinity of the evolving structure, as it grows out, and then construct
new tube(s) to capture the detected vessel branches. We propose a novel branch detec-
tion algorithm (Algorithm 1) which is performed for each end point in the tree each
time it moves significantly.
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Algorithm 1 Branch detection algorithm
Construct a sphere S2 of radius R (a function of the input guess for typical vessel radius)
centered at the end point under analysis.
Sample N directions di(i = 1toN) uniformly off this sphere S2.
Construct tubes of radius 1 and length R along each of theN directions, originating at the end
point under analysis.
Estimate the mean image intensity within each tube as Imean(di).
Threshold the estimated mean intensities with respect to the parent branch intensity Ithres.
Extract the subset of directions di off the sphere S2 with mean intensities above the threshold.
Apply k-means clustering [19, 20] to the extracted directions di∀i ∈

(1, N)andImean(di) >= Ithres, with a target of 3 clusters.
if Number of non-empty clusters < 3 then
Declare non-existence of branching at end point under analysis

else
Compute the centroid of the directions in each cluster, to yield 3 candidate branch directions.
Eliminate the direction that has maximum overlap with the parent branch’s volume.
Compute the dot products of the 2 remaining candidate directions with the tangent of the
parent branch at the end point.
Extend the parent branch by the candidate direction better aligned with the tangent at the
end point.
Create a new branch in the tree structure using the 1 remaining candidate direction.

end if

Fig. 2: Results of experiments on synthetic curvilinear structures: the target structure (green),
segmentation result (red), extracted center-line (black), true centerline (blue), and initial volume
(blue).

4 Experiments and Results
4.1 Synthetic images

The proposed frameworkwas applied to synthetic images with curvilinear and branched
structures. The set-symmetric difference of the result with respect to ground truth was
found to be ∼ 4% across different synthetic structures of average radius 3 voxels. Fig-
ure 2 shows the ground truth, segmentation results and associated center-line for se-
lected experiments.

4.2 CTA Cardiac Images
The algorithm was tested on a population of cardiac data sets acquired from a Siemens
Sensation 64 slice CTA machine. The framework is initialized with 1 user-input point at
the root of the vessel tree, and a guess for typical vessel radius which guides the branch
detection process.
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Fig. 3: 3D Visualization of the extracted vessel tree for
Case 1 with segmentation result (red), extracted center-
line (green) and initialization (blue)

Fig. 4: Slicewise views of the ves-
sel segmentation result for Case 1

We show here the results for three of the many data sets tested on, for the Left
Anterior Descending (LAD) coronary artery. Figures 3 and 5 show the 3D visualization
of the segmented vessel trees for two cases. Also shown in these figures is the extracted
center-line. Note that no additional processing was required to obtain this center-line.
The algorithm captures the branching structure automatically and successfully handles
the thinning structure of the vessel tree, from the root to tips. Figures 4 and 6 show the
corresponding slice-wise views of the segmentation result. We can clearly see that the
framework copes well with the non-uniform contrast within the vessel volume, and is
capable of following an entire vessel ∼ 200 voxels in length, from the simple 1-point
input (with stability as a natural outcome of using the Sobolev norm). Finally in Figure
7, we show the tubular tree evolving in 3D for a third case, illustrating how the branch
detection works to capture the entire tree. The results have been qualitatively validated
by medical collaborators.

An important potential application of our framework is that since the 3D skeleton
and the associated radius function are direct outputs of the model, we can do a prelim-
inary stenosis evaluation by looking for local minima of the radius function along the
center-line. We show a proof-of-concept of this idea in Figure 8 which shows the cross-
sectional area of one of the branches of the extracted vessel tree shown in Figure 3 and
reveals a site of mild stenosis ( 40% blockage) (corresponding to the minimum of the
plotted curve).

5 Conclusion
In this work, we present a novel framework for extracting tubular, branched anatomical
structures that simultaneously returns the segmented volume and the 3D skeleton for the
structure (with the parent-child relationships of the branches in the vessel tree) starting
from a simple 1-point initialization. We have shown that the framework is successful in
segmenting blood vessels from cardiac CTA imagery of multiple subjects. The use of
statistics over local regions implies that the segmentation result is a smooth surface. The
framework also returns the parent-child relationships in the vasculature’s tree structure
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Fig. 5: 3D Visualization of the extracted vessel tree for
Case 2 with segmentation result (red), extracted center-
line (green) and initialization (blue)

Fig. 6: Slicewise views of the ves-
sel segmentation result for Case 2

Fig. 7: Visualization of the evolving tubular tree in 3D for Case 3: evolving volume (red), center-
line (blue)

automatically, which is extremely useful in clinical reporting and in further analysis
such as plaque detection. In future work, we plan to leverage these advantages and
apply the proposed framework in soft plaque detection, as well as explore in-depth its
potential in stenosis evaluation.
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