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Abstract— In this note, we consider the use of 3D

models for visual tracking in controlled active vision.

The models are used for a joint 2D segmentation/3D

pose estimation procedure in which we automatically

couple the two processes under one energy functional.

Further, employing principal component analysis from

statistical learning, can train our tracker on a catalog

of 3D shapes, giving a priori shape information. The

segmentation itself is information-based. The allows us

to track in uncertain adversarial environments. Our

methodology is demonstrated on some real sequences

which illustrate its robustness on challenging scenarios.

I. INTRODUCTION

The use of 3D models can be a major advantage

for various tasks in visual tracking in controlled active

vision. Specifically, if one has a 3D model of a target,

the model can be used to guide the segmentation of the

object as well as estimate its location and pose in the

world as shown recently in [3]. The ability to measure

location and pose of a target can drastically improve

the usefulness of tracking results over those obtained

without knowledge of the target’s 3D characteristics.

The ability to acquire 3D models has become very

accessible. Models can be obtained off-line using meth-

ods such as high accuracy laser scanning and multi-

view stereo reconstruction. Additionally, models can

be learned on-line by registering multiple views of

an object acquired by 3D imaging modalities such as

light detection and ranging (LADAR) and stereoscopic

vision [18].

In this work, using statistical learning techniques,

we show how to train a tracker based on a catalog

of 3D shapes, which enables one to employ a shape

prior in 3D tracking tasks. Moreover, this allows us to

detect and track deformable objects even in cluttered

and noisy environments. The image segmentation part

of this method is crucial, and so we briefly outline here

what is involved.

Image segmentation consists of partitioning a scene

into an “object” and a “background.” We propose to

employ the geometric active contour (GAC) frame-

work [15], [10], [14], whereby a curve is evolved

continuously until it satisfies a stopping criterion that

coincides with the object’s boundaries. The model

used will be based on statistical information theory, in

particular, the Bhattarcharyya coefficient from informa-

tion theory [7]. Although this improves segmentation

results, one still may encounter problems with tracking

in cluttered adversarial scenarios. Thus, we will use

a shape prior to restrict the evolution of the active

contour using principal component analysis (PCA) [6].

To this end, we derive a novel 3D shape prior from a

dictionary of 3D shapes to do 2D image segmentation

rather than to derive a 2D shape prior from a collection

of 2D images. As a result, we are then able to reduce

computational complexity in statistical shape learning

approaches through a compact shape representation.

II. STATISTICAL LEARNING

The statistical learning procedure we will employ in

our tracking model is Principal Component Analysis

(PCA). This is a popular technique for shape analysis

and dimensional reduction. The overall method gives

an implementable solution to the following problem:

Given a number of observations about a complex

system describing different states, estimate the num-

ber of independent parameters of the system (i.e., its

dimension) and the way these are related. Thus PCA

is a linear version of manifold learning. All manifold

learning methods are based on the assumption that the

data (usually a point cloud in some n dimensional

space) lie on or are close to a submanifold M ⊂ R
n.

There have been a number of different approaches

proposed for this problem area including PCA, local

linear embeddings, Laplacian eigenmaps, and diffusion

maps to name a few; see [1], [5], [8], [16], [13] and

references therein. A number of the most important

methods may be classified as spectral, in the sense

a symmetric matrix is derived from the point cloud

data and the solution to a given optimization problem
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can be obtained from the eigenvectors of this matrix.

The geometric optimization problems that lead to a

spectral technique are usually of a least squares type,

e.g., finding the k-dimensional subspace that approxi-

mates the point cloud best in a least squares sense, or

computing the embedding of the point cloud in a k-

dimensional space that preserves the distances between

the points optimally in a least squares sense. The former

method is principal component analysis (PCA): every

data point gets replaced by its projection onto the best

approximating k-dimensional subspace which we will

employ in the present work.

Specifically, here we will follow the work of [6],

[17]. Accordingly, we let ϕi represent the signed dis-

tance function corresponding to a 3D surface Xi. The

average shape ϕ can then be computed from the n
surfaces as ϕ = ( 1

n
)
∑
ψi. From this, we can exploit

the variability in the training data through PCA by

first creating a mean-offset map τ = {ϕ̃1, ϕ̃2, ..., ϕ̃n}
where ϕ̃i = ϕi − ϕ. Each map ϕ̃i is then reorganized

into a Nx1 column vector with N being the number

of elements within ϕ̃i. The resulting column stacking

transformation of τ yields an Nxn matrix M. Using

Singular Value Decomposition (SVD), the covariance

matrix 1
n
MMT is decomposed as:

UΣUT =
1

n
MMT (1)

where U = {ψ1, ψ2, ..., ψn} is a matrix whose column

vectors represent the set of orthogonal modes of shape

variation and Σ is a diagonal matrix of the correspond-

ing singular values. Rearranging the column vectors

back into the structure of ϕi, we can then estimate a

novel 3D shape ϕ̂ = ϕ +
∑

i=k

i=0 wiψi, where wi is the

shape weight and k is the number of principal modes

used (see [17] for details). It is important to note here

that we are concerned only with the zero level surface

of the derived shape. This detail will be essential in

solving for the shape parameters.

III. INFORMATION-THEORETIC APPROACH TO

SEGMENTATION

The next ingredient in our statistical learning track-

ing scheme is an information-theoretic approach to

segmentation. We follow here the approach in [7] to

which we refer the interested reader for all of the

details. The overall method is based on active contours

implemented via level set techniques [10], [15], [14],

[2]. In our case, the evolution is driven by the gradient

flow derived from an energy functional that is based

on the Bhattacharyya distance. Because of the non-

local nature of the flow, it is very useful for target

tracking and can easily be combined with statistical

learning as described above. In particular, given the

values of a photometric variable, which is to be used

for classifying the image pixels, the active contours

are designed to converge to the shape that results

in maximal discrepancy between the distributions of

the photometric variable inside and outside of the

contours. This discrepancy is measured by means of the

Bhattacharyya distance that proves to be an extremely

useful tool for solving the problem at hand [7].

A. Bhattacharyya Flow

For simplicity, we consider the case of two classes

(i.e., the problem of segmenting an object of interest

from the background). This may be extended to multi-

object scenarios [7].

In the two class case, the segmentation problem is

reduced to the problem of partitioning the domain of

definition Ω ⊂ R
2 of an image I(z) (with z ∈ Ω)

into two mutually exclusive and complementary subsets

Ω− and Ω+. These subsets can be represented by

their respective characteristic functions χ− and χ+,

which can in turn be defined by means of a level set

function Ψ(z) : Ω → R as χ−(z) := H(−Ψ(z)),
χ+(z) := H(Ψ(z)) with z ∈ Ω, where H denotes the

Heaviside function. Given a level set function Ψ(z),
its zero level set {x | Ψ(z) = 0, z ∈ Ω} is used

to implicitly represent a curve as in [10], [15]. We

associate the subset Ω− with the support of the object

of interest, while Ω+ is associated with the support of

corresponding background. In this case, the objective

of active contour based image segmentation is given an

initialization Ψ0(z), construct a convergent sequence

of level set functions {Ψt(z)}t>0 (with Ψt(z)|t=0 =
Ψ0(z)) such that the zero level set of ΨT (z) coincides

with the boundary of the object of interest for some

T > 0.

We construct the sequence of level set functions via

a gradient flow that minimizes a certain cost functional

which we will now specify. First for the level set func-

tion Ψ(z), the following two quantities are computed:

P−(x |Ψ(z)) =

∫
ΩK−(x − I(z))H(−Ψ(z)) dz∫

ΩH(−Ψ(z)) dz
,

(2)

and

P+(x |Ψ(z)) =

∫
ΩK+(x − I(z)H(Ψ(z)) dz∫

ΩH(Ψ(z)) dz
, (3)
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where x ∈ R
N , and K−(x) and K+(x) are two scalar-

valued kernels having compact or effectively compact

supports, normalized to have unit integrals. Thus the

functions the functions P−(x |Ψ(z)) and P+(x |Ψ(z))
given by (2) and (3) are kernel-based estimates of the

probability density functions pdf of the image features

observed over the sub-domains Ω− and Ω+.

The key idea underpinning the segmentation ap-

proach of [7] is that for a properly selected subset of

image features, the “overlap” between the informational

contents of the object and of the background has

to be minimal. In other words, if one thinks of the

active contour as a discriminator that separates the

image pixels into two subsets, then the optimal contour

should minimize the mutual information between these

subsets. Note that for the case at hand, minimizing

the mutual information is equivalent to maximizing

the Kullback-Leibler divergence between the pdf’s as-

sociated with the “inside” and “outside” subsets of

pixels. However, because of computational efficiency

instead of the divergence, we propose to maximize the

Bhattacharyya distance between the pdf’s. (The Bhat-

tacharyya distance is defined to be − log of the integral

given in (4) below which defines the Bhattacharyya

coefficient.) Specifically, the optimal active contour

Ψ⋆(z) is defined as: Ψ⋆(z) = arg infΨ(z){B̃(Ψ(z))},
where

B̃(Ψ(z)) =

∫

x∈RN

√
P−(x |Ψ(z))P+(x |Ψ(z)) dx,

(4)

with P−(x |Ψ(z)) and P+(x |Ψ(z)) being given by the

equations (2) and (3), respectively.

Gradient Flow: In order to derive a scheme for

minimizing (4), we need to compute its first variation.

Accordingly, the first variation of B̃(Ψ(z)) (with re-

spect to Ψ(z)) is given by:

δB̃(Ψ(z))

δΨ(z)
= (5)

1

2

∫

x∈RN

∂P−(x |Ψ(z))

∂Ψ(z)

√
P+(x |Ψ(z))

P−(x |Ψ(z))
+ (6)

(7)

∂P+(x|Ψ(z))

∂Ψ(z)

√
P−(x |Ψ(z))

P+(x |Ψ(z))
dx. (8)

Differentiating (2) and (3) with respect to Ψ(z), one

obtains:

∂P−(x |Ψ(z))

∂Ψ(z)
=

δ(Ψ(z))

(
P−(x |Ψ(z)) −K−(x − I(z))

A−

)
,

(9)

and

∂P+(x |Ψ(z))

∂Ψ(z)
=

δ(Ψ(z))

(
K+(x − I(z)) − P+(x |Ψ(z))

A+

)
,

(10)

where δ(·) is the delta function, and A− and A+ are

the areas of Ω− and Ω+ given by
∫
Ω χ−(z) dz and∫

Ω χ+(z) dz, respectively.

By substituting (9) and (10) in (5) and combining

the corresponding terms, one can arrive at:

δB̃(Ψ(z))

δΨ(z)
= δ(Ψ(z))V (z), (11)

where

V (z) =
1

2
B̃(Ψ(z))(A−1

−
−A−1

+ )+

(12)

1

2

∫

x∈RN

K+(x − I(z))
1

A+

√
P−(x |Ψ(z))

P+(x |Ψ(z))
dx−

1

2

∫

x∈RN

K−(x − I(z))
1

A−

√
P+(x |Ψ(z))

P−(x |Ψ(z))
dx.

Assuming the same kernel K(x) is used for comput-

ing the last two terms in (12), i.e. K(x) = K−(x) =
K+(x), the latter can be further simplified to the

following form:

V (z) =
1

2
B̃(Ψ(z))(A−1

−
−A−1

+ )+ (13)

1

2

∫

x∈RN

K(x − I(z))L(x |Ψ(z)) dx,

where

L(x |Ψ(z)) =
1

A+

√
P−(x |Ψ(z))

P+(x |Ψ(z))
− (14)

1

A−

√
P+(x |Ψ(z))

P−(x |Ψ(z))
.

Introducing an artificial time parameter t, the gradient

flow of Ψ(z) that minimizes (4) is given by:

Ψt(z) = −
δB̃(Ψ(z))

δΨ(z)
= −δ(Ψ(z))V (z), (15)
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where the subscript t denotes the corresponding partial

derivative, and V (z) is defined as given by either (12)

or (13).

From the viewpoint of statistical estimation, the cost

function (4) can be thought of as accounting for the

fidelity of estimation of the optimal level set function

to the features of I(z).

IV. TRACKING

We will now see how to apply the above framework

to 3D tracking. We begin by assuming that we have

a 3D smooth surface S ⊂ R
3. We denote by X =

[X,Y,Z]T the spatial coordinates that are measured

with respect to the imaging camera’s referential. The

(outward) unit normal to S at each point X ∈ S
is referred to as N = [N1, N2, N3]

T Moreover, we

assume a pinhole camera realization π : R
3 7→

Ω;X 7→ x, where x = [x, y]T = [X/Z, Y/Z]T and

Ω ∈ R
2 denotes the domain of the image I with the

corresponding area element dΩ. From this, we define

R = π(S) to be the region onto which S is projected.

Similarly, we can form the complementary region and

boundary or “silhouette” curve as Rc = Ω \ R and

ĉ = ∂R, respectively. Alternatively stated, if we define

the “occluding” curve C to be the intersection of the

visible and non-visible region of S, then the image

curve can reinterpreted as ĉ = π(C).

Next let X0 and S0 ∈ R
3 be the coordinates and

surface that correspond to the 3D world. S0 itself is

given by the zero-level surface of the following PCA

functional: ϕ̂(X0, w) = ϕ(X0) +
∑

k

0 wiψi(X0). That

is, S0 = {X0 ∈ R
3 : ϕ̂(X0, w) = 0}. Then one

can locate the S in the camera referential via the

transformation g ∈ SE(3), such that S = g(S0).
Writing this point-wise yields X = g(X0) = RX0+T,

where R ∈ SO(3) and T ∈ R
3.

A. Gradient Flow for 3D Tracking

We follow here the set-up of [3] to which we refer the

reader for all of the details. Assume that if the correct

3D pose and shape are given, then the projection of

the “occluding curve’, i.e. ĉ = π(C), delineates the

boundary that optimally separates or segments a 2D

object from its background. Further assuming that the

image statistics between the 2D object and its back-

ground are distinct and are generally separable, we use

the Bhattacharyya energy function defined previously.

Since in our derivation here, we do not need its exact

form, we simply note that it may be written in the

following general manner:

E =

∫

R

ro(I(x), ĉ)dΩ +

∫

Rc

rb(I(x), ĉ)dΩ (16)

where ro : χ, Ω 7→ R and rb : χ, Ω 7→ R are suitably

defined functionals derived from the from the Bhat-

tacharyya formulation. Thus these functionals measure

the similarity of the image pixels with a statistical

model over the regions R and Rc, respectively, and

χ corresponds to the photometric variable of interest.

We need to optimize Equation (16) with respect to

a finite parameter set denoted as ξ = {ξ1, ξ2, ..., ξm}
where m being the number of elements in the respective

set:

∂E

∂ξi
=

∫

ĉ

(
ro(I(x)) − rb(I(x))

)〈
∂ĉ

∂ξ
, n̂

〉
dŝ (17)

where the “silhouette” curve is parameterized by the

arc length ŝ with the corresponding outward normal n̂.

Assuming that parameter ξi acts on 3D coordinates,

the above line integral may be difficult to compute since

ĉ and n̂ lie in the 2D image plane. Hence it is more

convenient to express the above line integral around

the “occluding curve” C , which is parameterized by s.
This can be done as follows. Write

〈
∂ĉ

∂ξ
, n̂

〉
dŝ =

〈
∂π(C)

∂ξ
, J
∂π(C)

∂s

〉
ds (18)

where J =

[
0 1
−1 0

]
, and this yields the following

expression

〈
∂ĉ

∂ξ
, n̂

〉
dŝ =

1

Z3

〈
∂X

∂ξi
,




0 Z −Y
−Z 0 X
Y −X 0


 ∂X

∂s

〉
ds

=
1

Z3

〈
∂X

∂ξi
,
∂X

∂s
× X

〉
ds

=
‖X‖

Z3

√
κXκt

K

〈
∂X

∂ξi
,N

〉
ds (19)

where K denotes the Gaussian curvature, and κX and

κt denote the normal curvatures in the directions X

and t, with t being the vector tangent to the curve C
at the point X, i.e. t = ∂X

∂s
. If we now plug the result

of Equation (19) into Equation (17), we arrive at the

following flow

∂E

∂ξi
=

∫

C

(
ro

(
I(π(X))

)
− rb

(
I(π(X))

))
·

‖X‖

Z3

√
κXκt

K

〈
∂X

∂ξi
,N

〉
ds

(20)
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Note, that in the above derivation we made no

assumption on the type of finite set. That is, we show

that the overall framework is essentially “blind” to

whether we optimize over the shape weights or pose

parameters. What is important is how the functional in

Equation 17 is lifted from the “silhouette” curve to the

“occluding curve” so that the gradient can be readily

computed. The remaining terms in Equation (20) can

be seen as “voting” weights for a particular point on

the C .

V. RESULTS

In this section, we present experimental tracking

results that demonstrate the algorithm’s robustness to

changes in scale as well as being able to cope with

varying degrees of occlusion. Like that of [4], we

generate a catalog of 8 shapes that depict several 3D

Toy Elephants to perform the task of shape analysis. In

particular, one can use stereo reconstruction techniques,

or range scanners to obtain accurate 3D models. More-

over, we have calibrated the camera that is responsible

for acquiring the images. That is, the focal length is

671 with principle point to be roughly the center of

the image.

In the work of [20], the task of tracking can be

decoupled into two fundamental parts: deformotion,

which is a finite group acting on the target, and

deformation, which is the small, but infinite dimen-

sional, perturbations that occur. However, because we

approach tracking with only a finite set of parameters,

namely the Euclidean group of g ∈ SE(3), we do

not need to directly identify the types of motion. For

example, this can be seen if one were to pan a camera

causing a deformation of the object projected onto the

2D image plane.

Thus, in the first set of experiments, we present a

typical tracking example that exhibits large changes

of scale. This can be seen in Figure 1. Interestingly,

if one were to use a purely 2D shape based learning

methodology like that of [17], one would have to learn

every possible projection of the 3D object object onto

to the 2D image plane (if no prior knowledge is given

about the aspect of the projection). Moreover, and more

importantly, we are able to return the 3D pose of the

object, which is a drawback to the method proposed in

typical 2D tracking algorithms [11]. Note, the principle

modes was chosen to be k = 4

In Figure 2, we demonstrate the algorithm’s robust-

ness to occlusion and clutter. In this tracking sequence,

the toy elephant is again stationary while we pass a

white marker through the camera’s view. Interestingly,

even though the sequence exhibits partial occlusion, we

note the differences in intensity between the elephant

and the marker. Without any notion of dynamics, we

are able to successfully maintain track throughout the

sequence. Moreover, the object is presented in clutter

that have similar intensity patterns and textures (e.g.,

black laptop behind the elephant). Employing a shape

prior, we are able to properly segment the object. Note,

the principle modes was chosen to be k = 4.

VI. CONCLUSIONS

In this work, we exploited knowledge of 3D models

for tracking in controlled active vision. A number of

modalities now provide such data including LADAR. A

key to the success of the tracker is a good segmentation

procedure as well being able to estimate the 3D pose.

In this work, using statistical learning techniques, we

show how to train the tracking on a catalogue of 3D

shapes, which enables one to employ a shape prior in

3D tracking tasks. Moreover, this allows us to detect

and track deformable objects in cluttered, uncertain,

and noisy environments. In future work we plan to

add an estimation scheme to our 3D tracker based on

particle filtering as in [11]. The geometric observer

framework (which is based on shape metrics) of [9]

is also very relevant in this regard.
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