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Introduction
Kriging (see Krige (1951)) aims at predicting the condi-
tional mean of a random field (Zt)t∈T given the values
Zt1, ..., ZtN of the field at some points t1, ..., tN ∈ T ,
where typically T ⊂ Rd. It seems natural to predict, in
the same spirit as Kriging, other functionals. In our study,
we focus on quantiles for elliptical random fields.

Elliptical Distributions
Cambanis et al. (1981) give the representation : the ran-
dom vector X ∈ Rd is elliptical with parameters µ ∈ Rd

and Σ ∈ Rd×d, if and only if
X = µ+ RΛU(d), (1)

where ΛΛT = Σ, U(d) is a d−dimensional random vector
uniformly distributed on Sd−1 (the unit disk of dimension
d), and R is a non-negative random variable independent
of U(d). Furthermore, X is said consistent if :

R d=
χd

ε
(2)

Distribution ε

Gaussian 1

Student, ν > 0 χν√
ν

Unimodal Gaussian Mixture
n∑
k=1
πkδθk

Laplace, λ > 0 1√
E(1
λ
)

Uniform Gaussian Mixture U (]0, 1[)

Table 1: Some consistent distributions

Now, we consider X = (X1, X2)
T be a consistent

(R, d)−elliptical random vector with with X1 ∈ Rd1,
X2 ∈ Rd2, d1 + d2 = d and parameters µ and Σ. Let us
write:

Σ =


Σ11 Σ12

Σ21 Σ22

 , µ =


µ1

µ2

 . (3)

The conditional distribution X2|(X1 = x1) has parame-
ters: {

µ2|1 = µ2 + Σ21Σ
−1
11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

(4)

Furthermore, X2|(X1 = x1) is elliptical, with radius R∗
given by :

R∗ d= R
√√√√1− β

∣∣∣∣∣∣∣∣∣∣∣∣

R
√√√√βU(d) = C−1

11 (x1 − µ1)
 (5)

where C11 is the Cholesky root of Σ11, and β ∼

Beta(d1
2
, d2
2
).

We can now define the notion of elliptical random fields.
Indeed, a random field (X(t))t∈T is R−elliptical if ∀n ∈
N, ∀t1, ..., tn ∈ T , the vector (X(t1), ..., X(tn)) is
(R, n)−elliptical.

Conditional quantiles
From now, we consider the following context: (X(t))t∈T
is an R−elliptical random field. We consider N observa-
tions at locations t1, ..., tn ∈ T , called (X(t1), ..., X(tN)).
Our aim is to predict, at a site t ∈ T , the quan-
tile of X(t) given X(t1), ..., X(tN). Notice that the
vector (X(t), X(t1), ..., X(tN)) is (R,N + 1)−elliptical.
Thus, we can denote X2 = X(t) ∈ R and X1 =

(X(t1), ..., X(tN)) ∈ RN and restrict ourselves to the
study of the qα(X2|X1).

General case
We denote : {

ΦR(x) = P(RU(1) ≤ x)
ΦR∗(x) = P(R∗U(1) ≤ x)

(6)

Then the α−quantile of X2|(X1 = x1) is given by :
qα (X2|X1 = x1) = µ2|1 +

√√√√Σ2|1Φ−1
R∗ (α) (7)

Gaussian case
Since a conditional Gaussian distribution is still Gaussian,
we have :

X2|(X1 = x1) ∼ N (µ2|1, Σ2|1) (8)
Then, the calculation of the conditional α−quantile of
X2|(X1 = x1) is immediate, and gives :

qα(X2|X1 = x1) = µ2|1 +
√√√√√Σ2|1Φ−1(α) (9)

Student case
Even if it is more calculative, we can also get theoretical
formula. The conditional α−quantile of X2|(X1 = x1)

has the following expression

qα(X2|X1 = x1) = µ2|1+
√√√√√Σ2|1

√√√√√√√√√
ν

ν+N

√√√√√√√√√√1+
1

ν
q1Φ

−1
ν+N(α) .

(10)
We did not obtain such simple results for other elliptical
distributions. It is why we propose, in what follows, two
approaches.

Quantile Regression
Quantile regression, introduced by Koenker and Bassett
(1978), approximates the conditional quantile as follows :

q̂α(X2|X1 = x1) = β
∗Tx1 + β

∗
0, (11)

where β∗ and β∗0 are solutions of the following minimiza-
tion problem
(β∗, β∗0) = arg min

β∈RN,β0∈R
E[φα(X2 − βTX1 − β0)]. (12)

and where the scoring function φα is
φα(x) = (α− 1)x1{x<0} + αx1{x>0} = αx− x1{x<0}.

(13)
In our context of elliptical random fields, we are able
to solve this minimization problem, and then define the
Quantile Regression Predictor :

q̂α(X2|X1 = x1) = µ2|1 +
√√√√Σ2|1Φ−1

R (α) (14)
Furthermore, its distribution is
q̂α(X2|X1) ∼ E1

µ2 +
√√√√√Σ2|1Φ−1

R (α), Σ21Σ
−1
11 Σ12, R



(15)

Extremal quantiles
In this section, the aim is to establish a relation between
Φ−1
R and Φ−1

R∗ for extremal values of α. For that, we do
an assumption : Their exist 0 < ` < +∞ and γ ∈ R
such as :

lim
x→+∞1−ΦR∗(x)1−ΦR(xγ)

= ` (16)

Under this assumption, we can define Extreme Conditional
Quantiles Predictors :

^̂qα↑(X2|X1 = x1) = µ2|1 + σ2|1

Φ−1
R

1− 1
`

1−α+2(1−`)



1
γ

^̂qα↓(X2|X1 = x1) = µ2|1 − σ2|1

Φ−1
R

1− 1
`
α
+2(1−`)



1
γ

(17)

Distribution γ `

Gaussian 1 1

Student, ν > 0 N+ν
ν

Γ(ν+N+1
2 )Γ(ν2)

Γ(ν+N2 )Γ(
ν+1
2 )

1+ q1
ν

N+ν
2 ν

N
2 +1

ν+N

Unimodal GM 1
min(θ1,...,θn)N exp

−min(θ1,...,θn)
2

2
q1


n∑
k=1
πkθ

N
k exp

−θ2k
2
q1



Uniform GM N+ 1
Γ(N+2

2 )q
N+1
2

1

√
2

Γ(N+1
2 )(N+1)χ2N+1(q1)

Table 2: Some examples

Thanks to the paper of Djurčić and Torgašev (2001), we
are able to prove that these predictors ^̂qα↑ and ^̂qα↓ are
asymptoticaly equivalent to the theoretical quantiles re-
spectively when α→ 1 and α→ 0.{

^̂qα↑(X2|X1 = x1) ∼
α→1 qα(X2|X1 = x1)

^̂qα↓(X2|X1 = x1) ∼
α→0 qα(X2|X1 = x1) (18)

Numerical study

Figure 1: Levels of quantile α = 0.995 and α = 0.005

Figure 2: Q-Q plots for Student example
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