
ts 02139

PHYSICAL REVIEW E 67, 016117 ~2003!
Packing-limited growth of irregular objects
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We study growth limited by packing for irregular objects in two dimensions. We generate packings by
seeding objects randomly in time and space and allowing each object to grow until it collides with another
object. The objects we consider allow us to investigate the separate effects of anisotropy and nonunit aspect
ratio. By means of a connection to the decay of pore-space volume, we measure power law exponents for the
object size distribution. We carry out a scaling analysis, showing that it provides an upper bound for the size
distribution exponent. We find that while the details of the growth mechanism are irrelevant, the exponent is
strongly shape dependent. Potential applications lie in ecological and biological environments where sessile
organisms compete for limited space as they grow.
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I. INTRODUCTION

In a previous work@1#, we examined packings formed b
spheres growing ind dimensions, immediately stoppin
upon contact with another sphere. We termed this to
packing-limited growth. Here, we address the question
what happens when we consider irregular~i.e., nonspherical!
objects of similar shape growing ind52 dimensions. We
focus in particular on collisions of growing rectangles. B
combining rectangles, we are able to form and examin
range of shapes whose growth patterns vary broadly in ra
anisotropy. Whereas in Ref.@1# we found universality classe
depending only on dimensiond, we find here that marked
nonuniversal behavior arises when shapes are varied.

Our problem finds several motivations. First, this is a re
tively unexplored kind of packing. Packings are genera
static or randomly generated@2#: physical mechanisms ar
only seldomly connected with the creation of packings@3,4#.
Furthermore, packings are typically of monodisperse obje
of the same form or taken from a small set of forms@5,6#.
From a physical point of view, two-dimensional packings
growing objects may be of use in modeling or understand
certain biological and ecological patterns. We consider
geometric approach presented here as a preliminary ste
wards describing how shape alters the size distributions
populations.

In Sec. II we describe the various objects we constr
from rectangles. Although not all of these objects have ob
ous physical parallels, they present a range of typolog
cases from which direct applications and comparisons m
be sought. In Sec. III, we provide a scaling analysis t
empirically appears to be exact ford>4 in the case of hy-
perspheres@1# ~details of the calculations for this section a
given in Appendix A!. We report the results of our numeric
investigations in Sec. IV along with a discussion of the fa
ings of the scaling theory. We conclude the paper in Sec
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and outline our algorithm for packing rectangles
Appendix B.

II. IRREGULAR OBJECTS CONSIDERED

The building block shape of the objects we consider is
rectangle. We denote the aspect ratio asa, defining all rect-
angles such thata>1. We record rectangle sizer as half the
length of the long side, the dimensions then being 2r and
2r /a. Examples of each object are provided in the packin
of Figs. 1 and 2.

For a51, we have squares and asa→`, rectangles ef-
fectively become line segments and the packing beco
one of fitting d51 objects into ad52 volume. Rectangles
afford a basic example of anisotropic growth since the lo
side grows at a rate slower than the short side by a facto
1/a. The growing square is distinguished from the rectan
since the former expands uniformly perpendicular to
edges. However, in comparison to disks, the growth rate
edge points relative to the center of both squares and r
angles is nonuniform.

The simplest combination of two rectangles is a cro
@Figs. 2~a! and 2~b!# and a natural generalization is th
2n-spoke object@with n51 being a rectangle andn52 be-
ing a cross, see Fig. 2~c!#. Each 2n-spoke object is then par
of a family of shapes indexed bya.

The last object we consider is an eight-pointed star
shown in Fig. 2~d!. This object is formed by two square
overlaid at an angle ofp/4 to each other.

All objects are packed using the approach of Manna@7#:
objects are added sequentially and allowed to instantly g
so as to just reach the existing packing structure. We h
observed and argued@1# that the values of the size distribu
tion exponent and all other related exponents are indep
dent of the growth dynamic.

In the context of packing, spheres make for straightf
ward calculations since the contact point between any
colliding spheres occurs along the line through their cent
Rectangles constitute a relatively simple generalization
©2003 The American Physical Society17-1
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FIG. 1. Rectangle packings of the unit square for varying aspect ratioa created using the packing-limited growth mechanism. Ea
packing consists of 1000 rectangles with periodic boundary conditions being imposed. The aspect ratios corresponding to the pa
~a! a51, ~b! a53, ~c! a510, and~d! a5100. The first three packings are initialized with four randomly placed and oriented recta
with longest side length of 0.25, with eight such rectangles being used in the fourth packing.
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spheres from a numerical point of view, hence we u
them here.

III. SCALING THEORY

In Ref. @1#, we argued that a simple scaling assumpt
may be made regarding the form ofP(r ;n), the distribution
of sphere sizes aftern objects have been packed. We ta
P(r ;n) to be described by a power law for radii above
cutoff valuer c and uniform below:
01611
e

n

P~r ;n!5H a21

a
r c

21 for r ,r c

a21

a
r c

21S r

r c
D 2a

for r>r c .

~1!

The tail of the distribution is fixed and the distribution fills i
(r c decreases withn) with the (n11)th object being chosen
from within the pore space. The size distributionP(r ;n) is
connected to the probability of inserting an object of sizer
after n objects have been deposited,Pins(r ;n). Since the
7-2
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FIG. 2. Packings of irregular objects formed by combinations of rectangles. As per Fig. 1, each packing contains 1000 object
boundary conditions are periodic. In~a! and ~b!, the crosses are formed by two rectangles at right angles with aspect ratiosa53 anda
510, respectively. Plot~c! shows a packing of six-legged stars composed of three rectangles with aspect ratioa510. In ~d!, the packing
object is an eight-pointed star formed by two overlapping squares set at an angle ofp/4 to each other.
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probability of adding a sphere of vanishing radii must
proportional to the total surface area of the existing sphe
S(n), we were able to estimatePins(r ;n) as @1#

Pins~r ;n!5
S~n!

F~n!
, 0<r<r c , ~2!

whereF(n) is the pore space volume. Using Eq.~1! to cal-
culateS(n) and F(n) and requiring thatPins(r ;n) be nor-
malized, we obtained the estimatea511/4 for disks.

More generally ind52 dimensions, if we now write are
asA5rr 2 and perimeter asL5sr , we find the scaling ex-
ponent to be
01611
s, â5
9s14r

3s12r
. ~3!

Setting s52p and r5p, we recovera511/4 for disks.
Note that the probability of adding a nonspherical object
still proportional toS(n) in the limit of r→0, regardless of
the object’s shape. For example, it is irrelevant that an ad
square of side length 2r may be oriented such that its cent
is betweenr andA2r away from its point of contact with the
existing packing. Also note that asa→`, the theoretical
prediction tends toâ53, in agreement with a previous de
termination of an upper bound for polydisperse packings@8#.
7-3
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Details of the calculations findingâ for the objects we con-
sider here are to be found in Appendix A.

All other exponents depend ona via simple scaling rela-
tions @1#. In particular, the pore volumeF(n) decays asn2b

with the connection betweenb anda being

a511
2

11b
. ~4!

We use this equation to calculate theoretical estimates ob,
denoting them byb̂. Since direct measurement ofb is a
significantly more robust exercise than determininga from
P(r ), we employ Eq.~4! in estimatinga in the following
section.

We note that an alternative approach to predictingb for
hyperspheres is due to the Andrienkov, Brilliantov, a
Krapivsky ~ABK ! model @3,4#. For hyperspheres, compar
sons between the scaling theory summarized in this pa
and the ABK model may be found in Ref.@1#. As yet, how-
ever, we see no clear method of extending the ABK mode
account for the growth of irregular objects; doing so wou
require incorporating a closed form solution for interobje
collision times, or at least suitable approximations thereo

IV. NUMERICAL RESULTS

For each shape, we generate statistics for single pack
with 105 objects. Some example distributions taken fro
rectangle packings fora51, 10, and 100 are shown in Fig
3. The distributionN(r ) is the un-normalized frequency dis
tribution corresponding toP(r ). In the case of plain rect

FIG. 3. For rectangle packings of 105 objects, plots ofF(n), the
decay of pore space as a function of number of rectangles adden,
andN(r ), the frequency of objects of sizer, for rectangles. In both
plots, the rectangles have aspect ratiosa51 ~solid line!, a510
~dashed line!, and a5100 ~dot-dash line!. N(r ) is binned in log
space for clarity. The exponenta @in N(r )}r 2a] increases with
increasing aspect ratioa, limiting to 3 asa→`. Correspondingly,
b decreases towards 0@see Eq.~4!#.
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angles, we see that asa increases, both the observeda and
the theoretical estimateâ increase, whileb and b̂ accord-
ingly decrease. Furthermore, for all the shapes conside
we find thata,â for all finite a. We note that measuring
power law exponents is not a trivial procedure and here
take some care to ensure the validity of our results. Wh
simple regression is the basic tool of analysis, the prese
of, for example, crossovers and finite size cutoffs can s
stantially degrade the level of precision attainable. T
method of measuring exponents we use here is based
examining a smoothed version of the derivative of the dis
bution as viewed in double logarithmic space~similar ap-
proaches are to be found in Refs.@9,10#!. For example, for
F(n), we perform regression analysis on log10F(n) versus
log10n over a sliding, variable width window of values o
log10n. Writing the upper and lower limits of this window a
log10n1 and log10n2, we have w5 log10n2 /n1 being the
width. In general, depending on the number of orders
magnitude spanned by the data, we would preferably cho
w in the range 0.5<w<3. Here, we fixw51 and calculate
the ‘‘local’’ exponentb(n1) for each window. We find in all
cases thatb(n1) tends towards a constant value. This ind
cates that the scaling law is robust and further allows us
estimateb along with an error based on the fluctuations o
served forb(n1). Measured values ofa andb are recorded
in Table I.

As we have noted above, our scaling theory appro
appears to be exact ford>4 dimensions in the case of hy
perspheres and an overestimate of the true value ofa for d

TABLE I. Estimates ofa, the exponent of the number distribu
tion, P(r )}r 2a, for irregular objects undergoing packing-limite
growth. The results for disks are included for comparison@1#. All
other objects are combinations of rectangles~see Figs. 1 and 2!,
with a being the aspect ratio. The exponentb is determined from
F(n) anda is subsequently obtained using Eq.~4!. Full details of
the method of measuringb are given in the text. Each measureme
is for a single packing containing 105 objects. Measurement error
reflect variation in the approach to a limiting value of the expone

using the method of Sec. IV. The scaling theory estimates ofb̂ and

â, which are lower and upper bounds, respectively, are calcula
using Eqs.~3! and ~4!, and those given in Appendix A.

Object b b̂ a â

Disk 0.278~1! 0.1429 2.564~1! 2.750
Square 0.223~2! 0.1429 2.635~2! 2.750
Rectangle (a52) 0.207~2! 0.1000 2.656~2! 2.818
Rectangle (a55) 0.145~2! 0.0526 2.746~2! 2.900
Rectangle (a510) 0.094~1! 0.0294 2.828~2! 2.943
Rectangle (a520) 0.055~1! 0.0156 2.897~2! 2.969
Rectangle (a550) 0.0242~3! 0.0065 2.953~1! 2.987
Rectangle (5100) 0.0125~1! 0.0033 2.975~1! 2.993
Cross (a53) 0.169~3! 0.0847 2.710~3! 2.844
Cross (a510) 0.074~1! 0.0307 2.862~2! 2.940
Cross (a5100) 0.009~1! 0.0033 2.983~2! 2.993
Six spoke (a510) 0.078~2! 0.0318 2.855~3! 2.938
Eight-pointed star 0.213~2! 0.1429 2.648~4! 2.750
7-4
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PACKING-LIMITED GROWTH OF IRREGULAR OBJECTS PHYSICAL REVIEW E67, 016117 ~2003!
,4. We therefore do not expect the scaling theory to
correct for nonspherical objects ind52 dimensions. Indeed

in all cases, we observe the theoretical estimateâ is an over-
estimate of the measureda. This direction of error makes
sense in light of the scaling assumption made by Eq.~2!. The
actual form ofPins(r ;n) is not precisely uniform but rathe
rolls over less steeply than a step function aroundr 5r c .
Given the manipulations that lead to Eq.~3!, it can be argued

that â>a must hold@1#.
In Fig. 4, we show howa varies as a function of both

aspect ratioa of the constituent rectangles and the objec
particular shape. The strongest influence is evidently the
pect ratio witha varying from 2.564~disks,a51) up to 3
~rectangles,n spokes,a5`). We observe a secondary effe
due to the details of the shape. Square and the eight-poi
star packings have a value ofa increased above that of disk
Cross packings have a higher value ofa than do rectangles
with the same aspect ratio.

V. CONCLUDING REMARKS

We have extended a model describing the interaction
growing disks@1# to the problem of growing irregular an
anisotropic objects. In this model, the exponent characte
ing the size distribution of objects is found to be independ
of growth dynamics. However, the main result presen
here is that the exponent is highly shape dependent, adop
a continuous range of values 2.564<a<3. Ultimately, un-
derstanding how geometry impacts on the structure of p
communities will require imposing a notion of packin
limited growth onto a reasonable set of dynamics. The res
here demonstrate that in doing so, we must keep in mind
shape matters.
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FIG. 4. Measured values ofa as a function of aspect ratioa and
shape. The symbols correspond to disks~circles!, rectangles
~squares!, crosses~plus sign!, six-spoke ~hexagon!, and eight-
pointed star~asterisk!.
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APPENDIX A: SHAPE PARAMETERS FOR MEAN FIELD
CALCULATIONS

In this section, we derive the formulas for the area a
perimeter of irregular objects ind52. For general rect-
angles, we have area given by

Arect54r 2/a, ~A1!

and perimeter as

L rect54~111/a!r . ~A2!

Using Eq.~3!, we therefore have the mean field estimate oa
for rectangles as

â rect532
2

513a
, ~A3!

where writing the result in this fashion makes plain the lim
iting value of â rect53 for a→`. For the 2n-spoke objects
described above, area grows as

A2n-spoke52n/a2~2a2cotp/2n!r 2, ~A4!

and perimeter is given by

L2n-spoke54n/a~a112cotp/2n!r , ~A5!

leading to the estimate

â2n-spoke5
1319a2~912/a!cotp/2n

513a2~311/a!cotp/2n
. ~A6!

Note that forn51, we recover the result for rectangles
Eq. ~A3!. Finally, for the eight-pointed star we have

Aeight point52@21~12tanp/8!2#r 2, ~A7!

and

Leight point516~12tanp/8!r , ~A8!

which yields

âeight point5
42240 tanp/812 tan2p/8

15214 tanp/81tan2p/8
511/4, ~A9!

the same as for disks and squares.

APPENDIX B: RECTANGLE COLLISIONS

We describe an arbitrary rectangle in thex-y plane as
follows. The sides of the rectangle are 2r and 2r /a, where
r .0 is half the length of the long side of the rectangle a
a>1 is taken as the aspect ratio. The rectangle is centere
(x0 ,y0) and rotated at an angleu. We takeu as the angle
between the direction of the positivex axis and the short axis
of the rectangle~i.e., parallel to the side with length 2r /a),
so that 0<u,p.

A rectangle described by (r ,a), u50, and (x0 ,y0)
5(0,0) satisfies the equation
7-5
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maxUFax

y GU5maxUF a 0

0 1GF x

yGU5r . ~B1!

This is a remapping of a rectangle into a square of s
length 2r . For an arbitrary rectangle, we can map it onto
basic square by recentering it at the origin, removing
rotation, and undoing the dilation by the aspect ratioa:

maxUF a 0

0 1GF cosu sinu

2sinu cosuGF x2x0

y2y0GU5r . ~B2!

Therefore, to determine whether or not an arbitrary po
(x,y) lies on or within a given rectangle, we need to che
whether or not

maxUF a 0

0 1GF cosu sinu

2sinu cosuGF x2x0

y2y0GU<r . ~B3!

In packing growing rectangles, the above is used to chec
a newly seeded rectangle has been placed in pore spac
not within an existing rectangle.

For a rectangle that passes this test, the next calculatio
to determine how large it may grow preserving its asp
ratio and orientation, so that it just reaches an existing r
angle.

To do this, we consider one arbitrary rectangle that d
not cover the origin and find the size of the largest rectan
centered at the origin with the short side along thex axis
such that the rectangles just touch. We will then generaliz
any configuration by appropriate rotations.

First, the ‘‘growing’’ rectangle could hit the already exis
ing one at any of the latter’s corner points. The four corn
points are given by

F x0

y0G1rF61/a cosu2sinu

61/a sinu1cosuG , ~B4!

F x0

y0G1rF7a cosu1sinu

7asinu2cosu G . ~B5!

The other possible collisions are between the corner
the added rectangle and the sides of the existing rectan
There may be 0, 1, 2, 3, or 4 such interceptions~1 or 3 if the
rectangles touch at corners!. To calculate these points, w
parametrize each side of the existing rectangle and find
interceptions withy56ax. For an arbitrary line segmen
described by

x5b11b2t and y5c11c2t, ~B6!

with 21<t<1, the intersection withy56ax occurs when

t5
2c16ab1

c27ab2
. ~B7!
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Parametrizing the sides of an arbitrary rectangle gives
following:

F x

yG5F x0

y0G1rF2sinu

cosu G1
rt

a F cosu

sinu G , ~B8!

F x

yG5F x0

y0G1rF sinu

2cosuG1
rt

a F cosu

sinu G , ~B9!

F x

yG5F x0

y0G1
r

a F cosu

sinu G1rtF2sinu

cosu G , ~B10!

F x

yG5F x0

y0G1
r

a F2cosu

2sinu G1rtF2sinu

cosu G . ~B11!

The first two equations describe the short sides and the la
two describe the long ones.

Using Eq.~B7! in Eqs.~B8!–~B11!, we respectively have
eight possible solutions~two for each side!:

t5
2~y01r cosu!6a~x02r sinu!

r /a sinu7r cosu
, ~B12!

t5
2~y02r cosu!6a~x01r sinu!

r /a sinu7r cosu
, ~B13!

t5
21/a~y01r /a sinu!6~x01r /a cosu!

r /a cosu7r sinu
, ~B14!

t5
21/a~y02r /a sinu!6~x02r /a cosu!

r /a cosu7r sinu
. ~B15!

Each of these has to be tested to see if21<t<1. If so, then
upon substituting the values oft determined in Eqs.~B12!
through~B15! into Eqs.~B8! through~B11!, we have

x5
~x0sinu2y0cosu2r !

sinu7a cosu
, ~B16!

x5
~x0sinu2y0cosu1r !

sinu7a cosu
, ~B17!

x5
~x0cosu1y0sinu1r /a!

cosu6a sinu
, ~B18!

x5
~x0cosu1y0sinu2r /a!

cosu6a sinu
, ~B19!

wherey56ax in all cases.
We are now able to write down how to determine the s

of the largest rectangle that may fit in, given it is centered
the origin with an anglef and there is one other rectang
already present at (x0 ,y0) oriented at an angleu.
7-6
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~1! Determine whether or not the new rectangle l
within the old one using Eq.~B3!.

~2! If it is not enclosed, rotate the coordinate system by
angle f, so that the central rectangle sits square with
axes. All that needs to be done is to move the exist
rectangle from (x0 ,y0) to (cosfx01sinfy0,2sinfx0
1cosfy0), and change its angle of rotation tou85u
2f(modp).

~3! Find the position of the four corner points using E
~B4! with u8 and (x08 ,y08).

~4! Determine which, if any, intersection points with th
n

.

t.

01611
n
e
g

.

diagonals of the new rectangle exist by calculatingt in Eqs.
~B12! through~B15!.

~5! Each value oft which satisfies21<t<1 is a valid
intersection point. The positions of all such points are th
taken from Eqs.~B16! through~B19! along withy56ax.

~6! For each valid (x,y) pair, calculate max(uaxu,uyu) to
obtain the half width of the shortest side of the rectan
centered at the origin that passes through the point (x,y).
Take the minimum over all such values to find the half wid
of the shortest side of the actual largest rectangle that ma
inserted without overlapping.
d
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