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SUMMARY

Receiver design, especially equalizer design, in communications is a major concern

in both academia and industry. It is a problem with both theoretical challenges and

severe implementation hurdles. While much research has been focused on reducing

complexity for optimal or near-optimal schemes, it is still common practice in industry

to use simple techniques (such as linear equalization) that are generally significantly

inferior. Although digital signal processing (DSP) technologies have been applied to

wireless communications to enhance the throughput, the users’ demands for more data

and higher rate have revealed new challenges. For example, to collect the diversity

and combat fading channels, in addition to the transmitter designs that enable the

diversity, we also require the receiver to be able to collect the prepared diversity.

Most wireless transmissions can be modeled as a linear block transmission system.

Given a linear block transmission model assumption, maximum likelihood equalizers

(MLEs) or near-ML decoders have been adopted at the receiver to collect diversity

which is an important metric for performance, but these decoders exhibit high com-

plexity. To reduce the decoding complexity, low-complexity equalizers, such as linear

equalizers (LEs) and decision feedback equalizers (DFEs) are often adopted. These

methods, however, may not utilize the diversity enabled by the transmitter and as a

result have degraded performance compared to MLEs.

In this dissertation, we will present efficient receiver designs that achieve low

bit-error-rate (BER), high mutual information, and low decoding complexity. Our

approach is to first investigate the error performance and mutual information of ex-

isting low-complexity equalizers to reveal the fundamental condition to achieve full

xvi



diversity with LEs. We show that the fundamental condition for LEs to collect the

same (outage) diversity as MLE is that the channels need to be constrained within

a certain distance from orthogonality. The orthogonality deficiency (od) is adopted

to quantify the distance of channels to orthogonality while other existing metrics are

also introduced and compared. To meet the fundamental condition and achieve full

diversity, a hybrid equalizer framework is proposed. The performance-complexity

trade-off of hybrid equalizers is quantified by deriving the distribution of od.

Another approach is to apply lattice reduction (LR) techniques to improve the

“quality” of channel matrices. We present two widely adopted LR methods in wireless

communications, the Lenstra-Lenstra-Lovász (LLL) algorithm and Seysen’s algorithm

(SA), by providing detailed descriptions and pseudo codes. The properties of output

matrices of the LLL algorithm and SA are also quantified. Furthermore, other LR

algorithms are also briefly introduced.

After introducing LR algorithms, we show how to adopt them into the wireless

communication decoding process by presenting LR-aided hard-output detectors and

LR-aided soft-output detectors for coded systems, respectively. We also analyze the

performance of proposed efficient receivers from the perspective of diversity, mutual

information, and complexity. We prove that LR techniques help to restore the diver-

sity of low-complexity equalizers without increasing the complexity significantly.

When it comes to practical systems and simulation tool, e.g., Matlab, only

finite bits are adopted to represent numbers. Therefore, we revisit the diversity

analysis for finite-bit represented systems. We illustrate that the diversity of MLE for

systems with finite-bit representation is determined by the number of non-vanishing

eigenvalues. It is also shown that although theoretically LR-aided detectors collect

the same diversity as MLE in the real/complex field, it may show different diversity

orders when finite-bit representation exists. Finally, the VLSI implementation of the

complex LLL algorithms is provided to verify the practicality of our proposed designs.

xvii



CHAPTER I

INTRODUCTION

1.1 Motivation and State-of-the-art

Wireless communications have become the fastest growing and most ubiquitous in-

dustry in almost all areas of our daily life, encompassing everything from radio and

television broadcasting to mobile phones and satellite communications. The increas-

ing demand for wireless services for voice, multi-media, and data transmissions results

in a continually expanding market. The rapid growth has benefited from the fact that

low-cost user terminals and affordable communication devices are feasible because of

the development of the solid-state technology and digital signal processing (DSP) de-

vices. More important, however, the globalization of wireless transmission standards

has accelerated the spread of wireless services. For example, driven by widespread

acceptance of the IEEE 802.11a/b/g standards, wireless local-area networking for

computers and other devices is spreading rapidly.

As wireless services spread and become integrated into our daily lives, the ex-

pectations of performance and reliability of wireless devices naturally increase. The

evolution of standards and systems is driven by the demand for better quality of

service, higher data rates, and higher mobility. Now, a generally accepted vision for

wireless communications is to provide smaller, faster, better, and cheaper devices that

can allow communication anywhere, anytime. As a result, system designers now face

more challenges than ever before. Particularly, channel fading effects introduced by

variations of the time, frequency, and space domains, introduce challenges in both

theoretical analysis and hardware implementation.

Receiver design, especially equalizer design, in communications is a major concern

1



in both academia and industry. Equalization is the process by which the effects of

noise, fading, and dispersion in the channel are mitigated to provide reliable symbol

reception. It is a problem with both theoretical challenges and severe implementation

hurdles. While much research has been focused on reducing complexity for optimal or

near-optimal schemes, it is still common practice in industry to use simple techniques

(such as linear equalization) that are generally significantly inferior. Although DSP

technologies have been applied to wireless communications to enhance the through-

put, the users’ demands for more data and higher rate have revealed new challenges.

For example, to collect the diversity and combat fading channels, in addition to the

transmitter designs that enable the diversity, we also require the receiver to be able

to collect the prepared diversity.

Most wireless transmissions, such as orthogonal frequency division multiplexing

(OFDM) systems of IEEE 802.11a, multi-antenna multi-input multi-output (MIMO)

systems of IEEE 802.11n, and multi-user code division multiple access (CDMA) sys-

tems, can be modeled as a linear block transmission system. Therefore, our research

is based on a generic linear system model. To quantify the performance of different

communication systems, two common but important criteria are the average bit-

error-rates (BERs) and ergodic (or outage) capacity [15, 28, 99, 101, 103, 106, 113].

The BER describes how reliable the transmission is and is usually quantified by two

parameters: diversity order and coding gain [106, 57, 62, 97]. Diversity is an inherent

property of fading channels and is defined as the minus asymptotic slope of the BER

versus signal-to-noise ratio (SNR) curve plotted in log-log scale. The higher the diver-

sity, the smaller the error probability at the high SNR regime. To enjoy the diversity

from fading channels, we have to design the transmitter properly so that the diversity

is enabled, and the receiver that is able to collect the diversity [101, 57, 97]. Most

of the existing diversity-enabled schemes adopt the maximum-likelihood equalizer

(MLE) at the receiver to collect diversity [106, 57, 62, 97, 100, 111].
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Another important criterion to quantify the performance of a receiver is the mu-

tual information when a particular receiver is adopted. Traditionally, capacity is an

inherent property of the channel and does not depend on transceiver designs. How-

ever, we adopt the word “capacity” here to describe the maximum information rate

for a transmission system with a certain equalizer employed at the receiver. The

capacity measures how efficiently the transceiver utilizes the channel. Given a ran-

dom channel, the instantaneous capacity is also random. In this case, to depict the

capacity, one needs not only the average capacity, but also the outage capacity [4].

Similarly, the outage diversity is adopted to depict how reliable the transmission is.

In addition to improving the BER and capacity, practical systems also give high

priority to reducing receiver complexity. Although MLE enjoys the maximum BER

diversity and outage diversity, its exponential decoding complexity makes it infeasible

for certain practical systems. Some near-ML schemes (e.g., sphere-decoding [34]) can

be used to reduce the decoding complexity. However, at low SNR or when large

decoding blocks and/or high signal constellations are employed, the complexity of

near-ML schemes is still high [104, 39]. To reduce the decoding complexity, low-

complexity equalizers, such as linear equalizers (LEs), decision feedback equalizers

(DFEs), and successive interference cancelation (SICs) are often adopted. These

methods, however, may not utilize the diversity enabled by the transmitter and as a

result have degraded performance relative to the system with MLEs [12, 30, 90, 66, 67].

Lattice reduction (LR) techniques have been introduced to improve the performance

of low-complexity equalizers without increasing the complexity significantly [111, 67,

19, 89, 87, 117, 121, 122].

1.2 Objectives

Apparently, the ultimate goal of the receiver design is to achieve

1. low error probability (high BER diversity),
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2. high rate (both data rate and information rate),

3. low complexity.

Therefore, our research focuses on the design of low-complexity receivers for wireless

systems based on a generic linear system model to achieve these three goals simulta-

neously. The proposed equalizer designs must be able to achieve high BER diversity

for low error probability, and also high outage diversity to guarantee high mutual

information for high rate transmissions. Furthermore, when error control codes are

adopted to boost the information rate, the proposed designs can be modified to fit the

iterative detection and decoding receivers. On the other hand, the proposed scheme

should exhibit low-complexity property especially when large block size and/or high

constellations are adopted to increase the data rate. Finally, the performance should

not be affected much in practical system when finite bits are adopted to represent

numbers.

The approach in this dissertation is to first investigate the performance of ex-

isting low-complexity equalizers to reveal the fundamental condition to achieve the

same diversity as MLE with LEs. Then, we propose different LR algorithms to meet

this condition and achieve full diversity with LR-aided equalizers. We also analyze

the performance of proposed efficient receivers from the perspective of diversity, com-

plexity, and capacity, respectively. The effect of finite-bit precision in simulations and

practical systems has also been investigated. Furthermore, the results of hardware

implementation verify the practicality of our proposed receiver designs.

1.3 Outline

The rest of this dissertation is organized as follows.

In Chapter 2, we first present the generic linear system model we adopt in this

dissertation. The generic linear block model is general enough to represent many

existing designs and practical systems. Two specific wireless communication systems
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are also presented as simulation examples in later chapters. Following the system

model, the literature research on existing results of different receiver designs is pro-

vided. The limitations of existing designs are summarized to motivate the proposed

schemes in the following chapters.

In Chapter 3, the fundamental condition with which LEs can collect the same

diversity as MLEs do is given. We show that the orthogonality deficiency (od) of

the channel matrices plays a key role in quantifying the diversity of LEs. Then,

we quantify the mutual information for LEs and also the gap from MLEs. The

application of these results to receiver design is also given. A hybrid equalizer frame-

work is proposed to achieve the revealed fundamental conditions. To quantify the

performance-complexity trade-off of hybrid equalizers, we provide the exact and ap-

proximate forms for the distributions of the channel matrix od. The decoding com-

plexity of different equalizers is discussed and compared. Then, simulation results are

presented to corroborate the theoretical claims on the fundamental limits of LEs on

diversity, complexity and mutual information.

In addition to the orthogonality deficiency, there are many other metrics that

can be adopted to quantify the orthogonality of matrices. In Chapter 4, we briefly

introduce metrics that have been adopted in literatures. We focus on two metrics: the

condition number and Seysen’s metric. We compare the function of od and conditional

number in quantifying the diversity of LEs. Furthermore, the general relationship

between od and Seysen’s metric is compared.

In Chapter 5, we introduce lattice reduction algorithms that improve the orthog-

onality of matrices. Two widely adopted LR methods in wireless communications are

the Lenstra-Lenstra-Lovász (LLL) algorithm [51] and Seysen’s algorithm (SA) [88].

In this chapter, we focus on these two algorithms by providing detailed descriptions

and pseudo codes. The properties of output matrices of the LLL algorithm and SA

are also quantified. Furthermore, other LR algorithms are also briefly introduced.
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In Chapter 6, we show how to adopt LR algorithms into the wireless commu-

nication decoding process. Basically, LR-aided detectors are introduced based on

whether an iterative detection and decoding receiver is adopted in the system. For

uncoded systems, we provide the detailed process for LR-aided hard-output detectors

- LR-aided LEs and LR-aided DFEs (SICs), respectively. For receivers with iterative

detection and decoding structure, e.g., in systems with error control codes (ECC),

LR-aided soft-output detectors are designed based on the LLL algorithm and SA.

Furthermore, the performance of LR-aided detectors is quantified in terms of error

probability, mutual information, and complexity, respectively.

When it comes to practical systems and simulation tool, e.g., Matlab, only finite

bits are adopted to represent numbers. Therefore, we revisit the diversity analysis for

finite-bit represented systems in Chapter 7. We first analyze the effects of finite-bit

representation on the Gaussian channel. We show that the Gaussian complex channel

represented by finite bits loses diversity when SNR is high enough. We then study

the diversity of different systems with finite-bit representation and MLE. We also

compare the sensitivity of different receivers (MLE and LR-aided equalizers) with

finite-bit representation. It is shown that although theoretically LR-aided detectors

may collect the same diversity as MLE in the real/complex field, it may show different

diversity when one considers finite-bit representation. Note that the key player of this

analysis is not how good the quantizer is, but lower and upper bounds of the finite-bit

representation cause the diversity loss.

The VLSI implementation of the complex LLL algorithms is provided in Chapter

8 to verify the practical value of the proposed LR-aided detectors. Finally, in Chapter

9, we summarize this dissertation and suggest topics for future research.
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CHAPTER II

BACKGROUND

In this section, a literature review is presented to emphasize the necessity of designing

efficient receivers for wireless systems. We start with a generic linear system model.

By summarizing existing results on diversity and complexity of different receivers, the

design of efficient receivers has been shown to be well-motivated. Furthermore, the

direction of research becomes clear after the literature study on limitations of existing

methods.

2.1 Generic Linear System Model

Consider linear block transmissions depicted in Figure 1

y = Hs + w, (1)

where H is the M ×N complex Gaussian channel matrix with zero mean, the N × 1

vector s consists of the information symbols, y is the M ×1 received vector, and w is

independent and identically distributed (i.i.d.) complex additive white Gaussian noise

with variance σ2
w. We assume that the channel matrix H is known at the receiver,

but unknown at the transmitter. Note that the channel matrix H is general enough

to represent a number of cases, e.g., multi-antenna MIMO [97], precoded OFDM [57],

single-carrier Toeplitz channels [100, 108], and multiuser channels [103]. The results

and analysis in the following sections are based on this linear model, and thus can be

easily applied to the specific wireless systems whose input/output (I/O) relationship

can be expressed as the general system model in (1). In the following, we introduce

two specific transmission systems of which the system model is characterized as in

(1). These two systems will be adopted as simulation examples in later chapters.

7



y

w

H Equalizer
s ŝ

Figure 1: Block diagram of linear transmission system model

MIMO i.i.d. Channels: Consider a multi-antenna system with N transmit-

antennas and M receive-antennas. For Vertical-Bell Laboratories Layered Space Time

(V-BLAST) transmissions in [15, 27], the data stream is divided into N sub-streams

and transmitted through N antennas. The channel matrix H consists of M ×N in-

dependent and identically distributed (i.i.d.) complex Gaussian coefficients with zero

mean and unit variance. We assume a flat-fading quasi-static environment where

the channel coefficients are invariant during a frame and change independently from

frame to frame. We also assume that the channel matrix H is known at the receiver,

but unknown at the transmitter.

Linear Precoded OFDM Systems: Another example is the linear precoded OFDM

(LP-OFDM) system in [57], where the Nc subcarriers of OFDM systems are split into

Ng groups, each of size K, so that the gth group is sg = [s(gK), . . . , s(gK +K−1)]T .

Group sg is linearly precoded by a K × K full-rank square precoder Θ, and the

entries of the precoded sub-block ug = Θsg are transmitted through K equi-spaced

sub-carriers. Some designs of precoder Θ can be found in [57] and references therein.

Therefore, we can express the I/O relationship for the gth group as

yg = DH,gΘsg + wg = Hequsg + wg, (2)

where DH,g = diag[H(g),H(g + Ng), . . . ,H(g + (K − 1)Ng)], H(n) =
∑L

ℓ=0 hℓe
−j2πℓn/Nc

is the channel response at subcarrier n, and wg is the corresponding white complex

Gaussian noise for the gth group with zero mean and variance σ2
wI. In this case, the

maximum multipath diversity order is Gd = min(K, ρh), which is less than or equal

to L + 1 [57].
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Given the linear block transmission model in (1), there are various ways to de-

code the transmitted symbol vector s from the observation y. Here, we generalize

the term “equalizer” as the one to equalize the channel effect. Different equalizers

lead to different system performance. To quantify the performance of different com-

munication systems, two common but important criteria are the average BER and

outage capacity [15, 28, 99, 101, 103, 106, 113]. The BER describes the reliability of

the transmission while the capacity measures how efficiently the transceiver utilizes

the channel. The BER performance of wireless transmissions over fading channels

is usually quantified by two parameters: diversity order and coding gain. Diversity

order is defined as the negative asymptotic slope of the BER versus SNR curve plot-

ted in log-log scale. It describes how fast the error probability decays with SNR.

The coding gain further measures the SNR gap among different coding schemes that

have the same diversity. The higher the diversity is, the smaller the error probability

is when SNR is high. Therefore, diversity-enriched transmitters and receivers have

well-appreciated merits to cope with the deleterious fading effects on the performance

[57, 97, 101].

To quantify the outage capacity of the transmission system when a particular

receiver is adopted, we employ the outage diversity. The outage diversity is defined

as the negative asymptotic slope of the outage capacity versus SNR curve plotted in

log-log scale. Similar to the diversity of BER, outage diversity measures how fast the

outage capacity decays with SNR. Higher outage diversity leads to smaller probability

that the instantaneous capacity is less than the threshold. We summarize these two

types of diversity as follows.

Definition 1 (Diversity) Suppose that the error probability is Pe = P (ŝ 6= s) and

the signal-to-noise ratio is SNR. The diversity order of a given system is defined as:

Gd = lim
SNR→∞

− log Pe

log(SNR)
. (3)
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Suppose that P (C < Cth) is the probability that the instantaneous capacity C is less

than a threshold Cth for a certain system. The outage diversity order Go is defined

as:

Go = lim
SNR→∞

− log P (C < Cth)

log(SNR)
. (4)

Note that Gd and Go quantify different aspects of the performance of a system:

one is error performance, and the other is the mutual information. The maximum

diversity is determined by the degrees of freedom of the channels. Different channels

provide different diversity flavors, e.g., frequency-selective channels provide multipath

diversity [57], multi-antenna channels provide spatial diversity [97]. To enjoy the

diversity from fading channels, we must design both the transmitter and receiver

appropriately. In this dissertation, we focus on the receiver designs that can collect

the prepared diversity with low complexity. In the following, we first briefly review

the existing equalizer designs.

2.2 Optimal and Near Optimal Equalizers

One often used and also optimal detector (If there is no prior information about the

symbols and/or symbols are treated as deterministic parameters) is the maximum-

likelihood equalizer (MLE), which is based on an exhaustive search among all N × 1

symbol vectors as

ŝml = arg min
s̃∈SN

‖y −Hs̃‖2, (5)

where S is the finite alphabet of the symbols. MLE in (5) provides optimal error per-

formance with the price paid on high decoding complexity (O(|S|N)). Some near-ML

equalizers have also been proposed to reduce the complexity and achieve near-ML

performance. For example, the sphere-decoding (SD) method [34] formulates the de-

coding process into a tree search and reduces the average complexity to polynomial

when N is small and the SNR is high [34], but the variance of the complexity remains

10



high [104]. Another example is the semidefinite programming (SDP) detector [61],

which is based on semi-definite relaxation of the original ML problem. The worst-

case polynomial complexity of SDP is theoretically proven to be O(N3.5). However,

the complexity of (near-) MLEs is especially high when the size of the channel ma-

trix and/or the constellation size is large. Furthermore, early termination and fixed

memory considerations for hardware implementations may degrade the performance

of near-MLEs.

Some algorithms have been proposed to reduce the complexity of the SD method

by pruning the tree structure. The K-best algorithm proposed in [115] adopts the

breadth-first search strategy to reduce the complexity but does not guarantee the full

diversity. Recently, the fixed-complexity SD (FSD) has been proposed to reduce the

decoding complexity while maintaining near-ML performance [6], by splitting the N

detection layers into full expansion and single expansion stages. It has been shown

in [38] that when the number of layers detected in full expansion is greater than

or equal to ⌊
√

N⌋, the diversity of FSD is the same as that of MLE. However, the

complexity is still high when it comes to systems with large channel matrices, since

the decoding complexity is still not polynomial. Some suboptimal detection methods

also exist, e.g., the improved M-algorithm in sequential decoding [73], though none

of them has analytically proved the diversity. The major disadvantages of these

tree-search algorithms are two folds: (1) the complexity depends on SNR and the

constellation size and thus can be infeasible when it comes to systems with large

channel matrices and large constellations; (ii) the tree-search algorithm is executed

whenever new signal comes in even when the channel stays the same. Therefore,

people are looking to low-complexity detection methods for practical implementation

purpose.
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2.3 Low-complexity Equalizers

There are some equalizers that are usually characterized and referred to as low-

complexity equalizers: linear equalizers (LEs) and decision feedback equalizers (DFEs).

LEs, as depicted in Figure 2, are in the form

ŝ = Q(Gy), (6)

where Q(·) corresponding to the “Decision” block in Figure 2 denotes element-wise

quantization to the nearest constellation point for a given modulation scheme. Two

often adopted LEs are the zero-forcing (ZF) equalizer and the linear minimum mean-

square error (MMSE) equalizer. Given the model in (1), the ZF-LE is given as

xzf = Gy = H†y = s + H†w = s + η, (7)

where G = H† = (HHH)−1HH denotes the Moore-Penrose pseudo-inverse of the

channel matrix H and η := H†w is the noise after equalization. Another often

adopted LE, the linear MMSE-LE, is defined as

xmmse = Gy =
(
HHH + σ2

wIN

)−1
HHy, (8)

followed by the quantization step. Here, we notice that, with the definition of an

extended system (also shown in [117, 33]):

H̄ =




H

σwIN


 and ȳ =




y

0N×1


 , (9)

the MMSE equalizer in (8) can be rewritten as xmmse = H̄
†
ȳ. Thus, the MMSE-

LE has the same form as the ZF-LE in (7) with respect to this extended system.

The analysis based on the ZF equalizer in (7) can be extended to MMSE equalizer

accordingly.

From Eqs. (7) and (8), we can see that the ZF equalizer aims to cancel the channel

effect by assuming a noiseless environment, while the MMSE equalizer further takes
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Figure 2: Block diagram of linear equalizers

into account the noise effect. Thus, the MMSE-LE achieves better performance in

general, but requires an estimate of the noise variance at the receiver. The complexi-

ties of both equalizers are dominated by matrix inversion, which requires polynomial

complexity O(N3) via Gaussian elimination.

+
_

y Feedforward Filter
F Decision ŝ

Feedbackward Filter
B

Figure 3: Block diagram of decision feedback equalizers

To improve the performance, successive-interference-cancelation (SIC) equalizers

are proposed [27]. Since the DFEs have been shown to be equivalent to SICs in [24],

we consider them as one category of low-complexity equalizers. The block diagram of

DFEs (SICs) is depicted in Figure 3. The major difference between DFEs and LEs is

the feedback of the detected symbols through a feedback matrix B, which is an upper

triangular matrix. The equalization procedure is described in Table 1. According to

Table 1: Equalization process of DFEs (SICs)
(1) x = Fy ;
(2) for n=N:(-1):1

(3) s(n) = Q
(
x(n)−∑N

k=n+1 B(n, k)s(k)
)

;

(4) end

the equalization method, DFEs are divided into two categories: ZF-DFE (ZF-SIC)

and MMSE-DFE (MMSE-SIC). The specific designs of the feedforward matrix F

and the feedback matrix B for both DFEs can be found in [24, 41]. Different from
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LEs, matrix decompositions, e.g., QR-decomposition, comprise the major part of the

DFEs’ complexity. Such algorithms are usually associated with the complexity of

O(MN2). Compared to LEs, the corresponding DFEs achieve better performance.

However, the performance of DFEs is greatly affected by the decoding order and

the error propagation. To improve the performance of DFEs and to mitigate the

complexity overhead introduced by the feedback filter, optimum ordering is usually

adopted in DFEs. For example, V-BLAST ordering optimizes the BER performance

but the complexity is sub-optimal [41].

2.4 Limitations of Existing Designs

To see the limitations of current receiver designs, we first provide a comparison of

low-complexity equalizers with (near-) MLEs. We find the SNR of different equalizers

to achieve the target BER by searching the SNR with step size 0.05 dB. The corre-

sponding complexity of different equalizers is calculated in terms of average arithmetic

operations (including real additions and real multiplications). The results are given in

Table 2 for QPSK constellation and i.i.d. complex channels for different sizes, where

the SNR is defined as the symbol energy per transmit dimension versus noise power

spectral density. The complexity of ZF-LE is based on the Gaussian elimination of

square matrices, while the complexity of SICs is obtained from the QR-decomposition

approach. Furthermore, the complexity of MMSE (MMSE-SIC) equalizer does not

include the procedure of estimating the noise variance. The SD method is imple-

mented as in [34]. For higher QAM constellation, the complexity of SD increases

dramatically while the complexity of LEs and DFEs stays the same. From Table 2,

it is obvious that the low-complexity equalizers need higher SNR to achieve a certain

BER though their complexity is quite low. Another example is the linear precoding (

a.k.a. linear complex-field coding) techniques for OFDM systems in [57]. We plot the

performance of five equalizers: ZF-LE, ZF-SIC, MMSE-LE, MMSE-SIC and SD, for
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Table 2: Comparison of different equalizers for i.i.d. complex channels with QPSK
modulation

M = N = 4 M = N = 6 M = N = 8
Target BER 10−3 10−4 10−3 10−4 10−3 10−4

SD SNR (dB) 8.25 11.05 5.05 7.35 3.05 5.0
Complexity 3662 3550 16019 14090 55957 54150

ZF-LE SNR (dB) 27.1 37.05 27.05 37.35 27.00 37.05
Complexity 298 869 1892

MMSE-LE SNR (dB) 22.4 32.45 20.1 30.25 18.20 28.25
Complexity 812 2618 6040

ZF-SIC SNR (dB) 23.75 33.15 23.15 33.60 22.50 32.80
Complexity 748 2401 5546

MMSE-SIC SNR (dB) 19.75 29.65 16.85 27.10 14.60 24.75
Complexity 1284 4333 10266

Table 3: Diversity of different transmission systems
Diversity of Diversity of

(near-) MLEs LEs and DFEs
V-BLAST in [27] with i.i.d. channels M M-N+1
OSTBC in [97] with i.i.d. channels MN MN

Golden code in [123] for 2× 2 systems 4 1
uncoded OFDM systems 1 1

LP-OFDM in [57] with square encoding matrices min(K, ρh) 1
LP-OFDM in [106] with tall encoding matrices ρh ρh

FDFR MIMO-OFDM in [63] MNρh M-N+1
STF MIMO-OFDM in [64] MNρh MN

the linear precoded (LP-) OFDM system in [57]. We assume the multipath channel

has channel order L = 3, which means the maximum multipath diversity is L+1 = 4.

From Figure 4 we can see that low-complexity equalizers only collect diversity 1, while

the SD method exploit the full diversity.

From Table 2 and Figure 4, we can see that the main drawback of the foremen-

tioned low-complexity equalizers is that these equalizers usually cannot collect the

same diversity as (near-) MLEs. For example, the diversity order collected by LEs

and DFEs is only M − N + 1 for spatial multiplexing systems with i.i.d. channels,

while (near-) MLE exploits diversity M [67]. The impact of the lack of diversity

order becomes especially severe when the channel matrix is square, e.g., M = N as
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Figure 4: Performance of LP-OFDM with channel order L = 3

shown in Table 2. Furthermore, as shown in [41], optimal ordering cannot increase

the diversity order collected by DFEs, but only improves the performance in terms of

coding gain. We summarized the existing results on the diversity of different wireless

systems collected by different equalizers in Table 3, where ρh represents the rank of

the covariance matrix of frequency-selective channel taps. From the table we can see

that for most systems low-complexity equalizers cannot exploit the same diversity as

that of (near-) MLEs. However, since (near-) MLEs exhibit either high average com-

plexity or high complexity variance, the cubic order complexity makes LEs and DFEs

widely adopted in practical systems. A natural question is whether the complexity

reduction is worth the performance sacrifice. Or in other words, is there a way to

keep the complexity low while improving the performance in terms of coding gain or

even diversity order?
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CHAPTER III

FUNDAMENTAL LIMITS OF LINEAR EQUALIZERS

One major reason that prevents LEs from getting more attention in theory and prac-

tice is that their performance loss is not quantified in general. For specific cases, it

has been shown that LEs lose diversity and capacity relative to MLEs for MIMO V-

BLAST systems [12, 30, 67]. It has also been shown that LEs collect full diversity for

precoded OFDM systems in [100] and orthogonal space-time block coding schemes in

[97]. Therefore, we are interested in the fundemental condition with which LEs can

collect the full diversity enabled by the transmitter. Or in other words, under what

condition LEs will exploit the same diversity as that of (near-) MLEs.

In the following, we introduce a parameter – orthogonality deficiency (od) – for the

channel matrix H as [96], which is critical to quantify the performance gap between

LEs and MLEs as we will show later.

Definition 2 (Orthogonality Deficiency) For an M×N matrix H = [h1, h2, . . . , hN ],

with hn being H’s nth column, its orthogonality deficiency (od(H)) is defined as:

od(H) = 1− det(HHH)
∏N

n=1 ‖hn‖2
, (10)

where ‖hn‖, 1 ≤ n ≤ N is the norm of the nth column of H1.

Note that 0 ≤ od(H) ≤ 1, ∀H . If H is singular, od(H) = 1, and if the columns

of H are orthogonal, od(H) = 0. The smaller od(H) is, the more orthogonal H is.

Given the model in (1), if od(H) = 0, i.e., HHH is diagonal, then LEs have the

same performance as that of MLEs. Furthermore, for the MMSE equalizer in (9), we

1od has also been defined as
∏Nt

n=1
‖hn‖

| det(H)|
in [42], which is equivalent to (10) when H is square, but

is unbounded.
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obtain the following result on od(H̄).

Lemma 1 With the extended system defined in (9), for all possible H and σ2
w, if

sup
H

(od(H)) = ǫ, then sup
σ2

w,H
(od(H̄)) = ǫ′, where ǫ′ = 1, when ǫ = 1 and ǫ′ < 1, when

ǫ < 1.

Proof: See Appendix A.

Thus, with this lemma, the following analysis and claims on ZF equalizer can be

extended to MMSE equalizer2.

3.1 The Diversity of Linear Equalizers

In this section, we study the BER performance of LEs in terms of diversity order.

The results for different systems with MLEs are well-known. However, the ones for

LEs are not well established. With the definitions of diversity in (3) and od(H) in

(10), we present the condition with which LEs collect the same diversity as MLEs do.

Theorem 1 Consider a linear system in (1), where the entries of the channel matrix

are complex Gaussian distributed with zero mean, and the information symbols are

drawn from integer lattice (Gaussian integer ring). The linear equalizers in (7) and

(8) collect the same diversity as MLE does (5) if there exists a constant ǫ ∈ [0, 1)

such that ∀H , od(H) ≤ ǫ, i.e., sup(od(H)) = ǫ.

Proof: See Appendix B.

Theorem 1 reveals the fundamental relationship between the od of the channel

matrix H and the diversity order collected by LEs. If the supremum of od(H) is 1

(i.e., sup(od(H)) = 1 ), i.e., there is no ǫ < 1 such that od(H) ≤ ǫ, ∀H , then in

general, LEs lose diversity relative to MLEs.

2Since MMSE equalizer may be biased, a diagonal matrix Dsc may be multiplied to xmmse to
reduce the bias. It is not difficult to verify that od(H̄D−1

sc
) = od(H̄). Thus, the claims hold true

for this scaled MMSE equalizer.
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The same claim can be made for the MMSE equalizer based on the definition in

(9) and Lemma 1. Furthermore, Theorem 1 and our proof are general enough even

for correlated non-Gaussian channels. Thus, Theorem 1 can be extended as:

Corollary 1 Given a random channel matrix H, when od(H) ≤ ǫ, ∀H and ǫ ∈

(0, 1), then LEs collect the same diversity as MLE does.

Proof: The proof for general channels is quite similar to the one for Gaussian channel

case in Theorem 1. The major difference is at Eqs. (92) and (93). For general chan-

nels with pdf given in [106, Eq. (7)], it can be verified that LEs collect the diversity

∑Dn

d=1(tn,d+1) where tn,d comes from the series form of the pdf of |h̃n,d|2. For Gaussian

case, tn,d = 0. Similarly, MLE collects the same diversity. Therefore, the claim in

Corollary 1 holds true. �

A well-known special case of Corollary 1 is:

Corollary 2 When od(H) = 0, ZF equalizer has the same performance as MLE

does.

In the following, we give some examples to verify Theorem 1. The diversity orders

of these transmission systems using LEs have already been derived in the literature.

However, we show that applying Theorem 1 to these systems also provides the same

results but in a simpler way compared with the original approaches.

Example 3.1 (Toeplitz Channel Matrix): Consider an M × N tall Toeplitz

channel matrix H generated by the first column [h1, h2, . . . , hL, 0, ..., 0]T and the first

row [h1, 0, . . . , 0], where M ≥ N + L and N > L3. One example for this kind of

transmissions is the zero-padding (ZP-) only transmission in [108]. Apparently, if

the block size N is large, the complexity of MLE becomes prohibitive. Likewise, as

3These are necessary conditions if one wants to guarantee a reasonable transmission rate N

M
.
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the channel length L becomes high, decoding with Viterbi algorithm (which is also

optimal in this case) becomes excessively complex. Therefore, in this case, applying

LEs is well justified. Using Theorem 1, we obtain that:

Corollary 3 If the channel matrix H in (1) with size M ≥ N + L and N > L is

Toeplitz with first column [h1, h2, ..., hL, 0, ..., 0]T and first row [h1, 0, ..., 0], LEs collect

the same diversity as MLE does.

Proof: Since H is Toeplitz, then det(HHH) > 0 for any non-zero channel response,

i.e., hℓ’s are not equal to zero simultaneously. Suppose m = arg maxℓ∈[1,L] |hℓ|2, and

then |hm|2 > 0. The Toeplitz matrix H can be split into three submatrices as

H = [HT
o1, H

T
m, HT

o2]
T , where matrix Ho1 consists of the first (m − 1) rows of H ,

Ho2 has the last (L −m) rows, and Hm is of size N × N with hm on the diagonal

entries. Therefore, we have HHH = HH
o1Ho1+HH

mHm+HH
o2Ho2. According to the

expression of matrix determinant in [45, p. 11] and the structure of Hm, it is ready

to show that det(HH
mHm) = (|hm|2)N

when N > L. Thus, we bound det(HHH) as

det(HHH) ≥ det(HH
mHm) =

(
max
ℓ∈[1,L]

(|hℓ|2)
)N

, (11)

where the inequality holds true since HH
mHm is positive definite while HH

o1Ho1 and

HH
o2Ho2 are positive semi-definite (see [108, Appendix B] for the proof). In this case,

we can verify that od(H) is strictly less than 1 and can be bounded as

od(H) ≤ 1− (maxℓ∈[1,L](|hℓ|2))N

(∑L
ℓ=1 |hℓ|2

)N
≤ 1− 1

LN
. (12)

Therefore, according to Theorem 1, we claim that LEs collect the same diversity as

MLE does. �

Our result in Corollary 3 is consistent with the result in [100].

Example 3.2 (Orthogonal Channel Matrix): Consider that the channel matrix

in (1) is orthogonal, e.g., the orthogonal space-time block codes in [97]. In this case,
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od(H) = 0 for any non-zero realization of H . Thus, the LEs exploit the same diver-

sity as MLE does. Another example is diagonal H in OFDM systems. In this case,

again the LEs collect the same diversity order as MLE does [106] and both of them

have diversity 1.

Example 3.3 (i.i.d. Channel Matrix): When channel matrix H has i.i.d. Gaus-

sian entries, it has been shown that LEs lose diversity [30, 29, 67, 37]. In this case, it

can be verified that sup(od(H)) = 1, i.e., there is no ǫ which is strictly less than 1.

This also verifies Theorem 1.

Example 3.4 (FDFR Channel Matrix): By defining H := IN ⊗ H with H

having i.i.d. complex Gaussian entries, and a well-designed unitary matrix Φ (see

[17, 63, 123] for details), the full-diversity full-rate (FDFR) transmissions can be

represented compactly as:

y = Heqs + w = HΦs + w. (13)

In the literature (e.g., [17, 63, 123]), it has been shown that the FDFR design in

(13) achieves full diversity (MN) if MLE is adopted at the receiver. However, when

LEs are employed, the diversity order is only M − N + 1 as shown in [68], which is

the same as V-BLAST transmissions with LEs (as shown in Fig. 5 for 2 × 2 case).

Furthermore, for the model in (13), we can verify that

od(Heq) = 1− (1− od(H))N .

Based on Example 3, we know that sup(od(H)) = 1, and thus, sup(od(Heq)) = 1 for

FDFR case. This also verifies our Theorem 1.

In summary, Theorem 1 quantifies the diversity order collected by LEs for linear

systems. Furthermore, the proof of Theorem 1 implies that, if ǫ (the upper bound of

od(H)) is smaller, i.e., the channel is more orthogonal, the upper bound of BER in

(141) also becomes smaller, which indicates that LEs may achieve better performance

in this case. Later, we will verify this by simulations.
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Figure 5: Performance of FDFR design with M = N = 2

3.2 The Outage Diversity of Linear Equalizers

In addition to error probability, mutual information is another important metric when

comparing the performance of different receivers, since it measures how efficiently

the receivers utilize the channels. The word “capacity” here denotes the maximum

mutual information when a certain transceiver is adopted. Given a random channel,

the instantaneous capacity is also random. In this case, to depict the capacity, one

needs not only average capacity, but also outage capacity [4]. In this section, we

compare the outage capacity of ZF equalizer with that of MLE. The results can be

easily extended to other LEs.

Let us first revisit the capacity when no channel state information is available at

the transmitter, and MLE is adopted at the receiver. Given the linear model in (1),

the mutual information is given as (say e.g., [30, 29, 99])

I(y; s|H) = H(s|H)−H(s|y; H), (14)
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where H(·) denotes the entropy. It is not difficult to show that

H(s|H) ≤ log2 det(πeRs), (15)

where the equality holds when s is Gaussian and Rs = E[ssH]. Since the noise is

Gaussian, we obtain

H(s|y; H) = log2 det(πeRs|y;H)

= log2 det

[
πe

(
R−1

s +
1

σ2
w

HHH

)−1
]

. (16)

Suppose that the information symbols s are Gaussian distributed with zero mean and

covariance matrix Rs = IN . The instantaneous capacity achieved by MLE is given

as (see also [99])

CML(H) = log2

[
det

(
IM +

1

σ2
w

HRsH
H
)]

= log2

[
det

(
IN +

1

σ2
w

HHH

)]
. (17)

The closed form of the average capacity of MLE for i.i.d. MIMO channels can be

found in [90].

When ZF equalizer is adopted at the receiver, the covariance matrix of the equiv-

alent noise vector η from (7) is σ2
wRη with

Rη = diag[C1,1, C2,2, . . . , CN,N ] (18)

and Ci,i being the (i, i)th entry of matrix C = (HHH)−1. Here because of symbol-

by-symbol detection for ZF equalizer, the covariance matrix of the noise is diagonal.

Given H , what we call “ZF capacity” is defined as the maximum mutual information

between xzf and s, I(xzf ; s|H) with symbol-by-symbol detection. Following the

similar procedure as the derivation of the capacity of MLE, the instantaneous capacity

of ZF equalizer given H can be expressed as

CZF (H) = log2

[
det

(
IN +

1

σ2
w

R−1
η

)]
. (19)
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The closed form of the average capacity of ZF equalizer is derived for i.i.d. MIMO

channels in [12]. Here, for generality, we keep the instantaneous forms.

Now, let us check the relationship between the ML capacity in (17) and ZF ca-

pacity in (19). When the SNR is high, we can simplify the expressions in (17) and

(19) as

CML(H) ≈ log2

[
det

(
1

σ2
w

HHH

)]

= log2

[
det
(
HHH

)]
−N log2 σ2

w, (20)

CZF (H) ≈ log2

[
det

(
1

σ2
w

R−1
η

)]

= log2

[
det
(
R−1

η

)]
−N log2 σ2

w. (21)

Based on Hadamard inequality and the definition of Rη in (18), it can be verified

that (see also [12])

CZF (H) ≤ CML(H), (22)

where the equality holds if and only if HHH is diagonal, i.e., od(H) = 0. This is

consistent with the diversity analysis in Corollary 2. Furthermore, we quantify the

difference between CZF (H) and CML(H) for each realization of H as

CML(H)− CZF (H) ≈ − log2

[
det
(
(HHH)−1

)

det(Rη)

]

= − log2

(
1− od(H(HHH)−1)

)
, (23)

where od is defined in (10) and H(HHH)−1 is (H†)H. Surprisingly, the capacity

difference between ZF and MLEs is also related to the od of the channel matrix.

Based on (23), we observe that as od((H†)H) decreases, i.e., the inverse of the channel

matrix is more orthogonal, then the capacity gap between ML and ZF equalizers

decreases. Before we introduce the statistical properties of ZF capacity, let us revisit

the definition of outage diversity.

Definition 3 (Outage diversity) Suppose that P (C < Cth) is the probability that

the instantaneous capacity is less than a threshold for a certain system. The outage

24



diversity order Go is defined as:

Go = lim
SNR→∞

− log P (C < Cth)

log(SNR)
. (24)

With the definitions of outage diversity in (24) and od(H) in (10), we present the

condition with which LEs have the same outage diversity as MLEs do.

Theorem 2 Given the system model in (1) with channel state information at the

receiver but not at the transmitter, in the high SNR regime, the capacity gap between

ML and ZF equalizers is determined by od((H†)H) in (23). If od((H†)H) ≤ ǫ, ∀H

and ǫ ∈ (0, 1), ZF equalizers have the same outage diversity (24) as that of MLEs.

Proof: See Appendix C.

Note that the conditions on od numbers in Theorems 1 and 2 are different. To

unify them, we need the following lemma.

Lemma 2 Suppose that H is a random matrix with od(H) < ǫ < 1. There exists

ǫ′ < 1 such that od((H†)H) < ǫ′ < 1, and vice versa.

Proof: See Appendix .

With Lemma 2, we can modify Theorem 2 as follows.

Corollary 4 Given the system model in (1), if od(H) ≤ ǫ, ∀H and ǫ ∈ (0, 1), then at

high SNR regime, ZF equalizers collect the same outage diversity as that of MLEs, i.e.,

the cumulative density functions (CDFs) of the instantaneous capacity P (C < Cth)

with ML and ZF equalizers are parallel in the log-log scale plot.

In this section, we have shown that the mutual information loss between ZF

equalizer and MLE also depends on the od of the channel matrix. When the od of the

channel matrix has an upper bound which is strictly less than one, the performance

diversity in (3) and the outage diversity in (24) of ZF equalizer are the same as those

of MLE. Now a natural question is what if the od of the channel matrix does not have

an upper bound.

25



3.3 Applying Theorems 1 and 2

In Section 3.1, we have shown that for some particular transmission systems, od(H)

has an upper bound which is strictly less than 1. However, in most practical systems,

od(H) does not have an upper bound less than 1. For example, when the channel

matrix has independent entries (Example 3 in Sec. 3.1), od(H) does not have an

upper bound less than 1. As shown in [66], for these systems, LEs have inferior

performance relative to MLEs due to loss of diversity. Thus, to collect the same

diversity as MLE does and reduce the capacity gap, channel matrix H needs some

“modification” to upper bound od(H) by a constant less than 1. One approach is to

design the transmitter properly so that at the receiver od(H) has an upper bound,

e.g., space-time orthogonal coding [97]. Another approach is to modify the receiver

which we will focus on in the following.

One way to apply Theorem 1 is to design a hybrid equalizer that combines LEs

with other full-diversity detectors based on the od of the channel matrix H . Unlike

the combined ZF-ML equalizer in [77], our hybrid equalizers are able to guarantee

the same diversity as MLE does. Our hybrid equalizers are also different from the

equalizer proposed in [13] which combines decision feedback equalizer and ML detector

for every single realization of the channel matrix H . Here, we only apply one kind of

equalizer for one realization of the channel H .

We summarize our framework in the following proposition.

Proposition 1 Consider the model in (1) and a constant ǫth ∈ (0, 1). A hybrid

equalizer is designed as: If od(H) ≤ ǫth, LEs are employed; otherwise, MLE (or any

other decoder with maximum diversity) is adopted. This hybrid equalizer collects the

same diversity order as pure MLE does and exploits the same outage diversity of the

capacity as that of MLE, but requires lower complexity.

Obviously, the average complexity of this hybrid equalizer is lower than that of
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MLE or near-MLE that is adopted, but higher than the pure LEs, since only some

realizations of H are dealt with MLE. Furthermore, we notice that by selecting ǫth,

we can balance the trade-off between the complexity and the performance. That

means, when ǫth is small, more realizations of H are dealt with by (near-)MLE, and

then the complexity of this hybrid equalizer is higher, while the performance is also

better with larger coding gain.

The hybrid equalizer framework is general enough to accommodate different de-

signs. A special case is worth mentioning. An attractive hybrid equalizer is a hybrid

using LEs and the SD method [34] as




LEs if od(H) ≤ ǫth

SD method if od(H̃) > ǫth

. (25)

The reason to combine these two equalizers is not only to achieve the full diversity,

but also to improve the performance of pure LEs and reduce the complexity of the

SD-only method. Since LEs are usually adopted as preprocessing of the SD method, it

is natural to combine these two without introducing extra hardware complexity. The

computational complexity of this kind of hybrid LEs is close to LEs when ǫth is close

to 1 (but not exactly 1), but the diversity is always the same as MLE’s. Note that

each burst of data may experience one realization of the channel and then employ

an equalizer (either LE or (near-)MLE). Different decoders may result in different

decoding delay since they have different complexity. However, this does not create an

obstacle to implementing our equalizer in practical systems, because usually there is

enough guard period between two bursts.

For our hybrid equalizers, selecting ǫth can trade between performance and com-

plexity, since by choosing ǫth we can determine the probability to adopt LEs or (near-

)MLEs. To further quantify the trade-off (e.g., control the percentage of the usage of

(near-)MLEs), we need the distribution of od(H) which will be discussed in the next

section.
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3.4 The Distribution of od(H)

Since the channel matrix H is random, od(H) is also random. The distribution of

od(H) affects the performance. In this section, we focus on the general Gaussian

random channel H where sup(od(H)) = 1 to study the distribution of od(H).

3.4.1 i.i.d. Gaussian Channels

First, we consider channel coefficients of H in (1) with i.i.d. complex Gaussian entries

with zero mean and unit variance. Two practical examples of this kind of channels are

V-BLAST multi-antenna transmissions in [15] and multiuser transmissions in [103].

To find the distribution of od(H) for i.i.d. Gaussian channels, we need the following

lemma:

Lemma 3 [102, Lemma 2.1] Suppose that H is an M ×N matrix, whose entries

are i.i.d. complex Gaussian random variables with zero mean and unit variance.

Denote the QR decomposition of H by H = QR, where Q is a unitary matrix, and

R is an upper triangular matrix with real diagonal entries. Then the entries of R

are independent of each other and its diagonal entries, Rn,n, for n ∈ [1, 2, . . . , N ], are

such that 2R2
n,n are Chi-square random variables with 2(M−n+1) degrees of freedom

(DOF). The off-diagonal entries, Rm,n for m < n, are complex Gaussian distributed

with zero-mean and unit variance.

With this lemma, we obtain the following theorem on the exact distribution of

od(H) of i.i.d. Gaussian channels.

Theorem 3 Suppose that H is an M ×N matrix with all the entries i.i.d. complex

Gaussian distributed with zero mean and unit variance. Then, od(H) in (10) is a
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random variable with the probability density function (PDF) expressed as

f(x) =

(
N∏

n=1

(M − 1)!

(M − n)!

)

N−1∑

k=1

k−1∑

ℓ=0

ρk,ℓ(1− x)M−N+k−1(− ln (1− x))k−1−ℓ

(k − 1− ℓ)!ℓ!
(26)

where

ρk,0 =

N−1∏

q=1,q 6=k

(q − k)−q and

ρk,ℓ =
ℓ−1∑

r=0

N−1∏

q=1,q 6=k

(−1)r+1




ℓ− 1

r




r! · q · ρk,ℓ−1−r

(q − k)r+1
(27)

Proof: See Appendix E.

The expression in (26) is still complicated and the number of parameters increases

as the size of H increases. Fortunately, it has been shown in [14] that the product

of Beta variables can be well approximated by another Beta variable which only

needs two parameters. Thus, we establish the following proposition about the simple

expression of the distribution of od(H) for i.i.d. channels.

Proposition 2 Given the system model in (1), if the channels are i.i.d. complex

Gaussian distributed with zero mean and unit variance, then od(H) is approximated

by a Beta distributed random variable with parameters (a, b), which are determined

as

a =
(Φ−Ψ)(1− Φ)

Ψ− Φ2
, b =

(Φ−Ψ)Φ

Ψ− Φ2
, (28)

where

Φ=
N∏

n=1

M − n + 1

M
, Ψ=

N∏

n=1

(M − n + 1)(M − n + 2)

M(M + 1)
. (29)

29



3.4.2 General Gaussian Channels

If the channels are not i.i.d. but still complex Gaussian distributed, e.g., correlated

channels, od(H) can still be approximated as a Beta random variable, because 1 −

od(H) is still a product of N Beta random variables. Though these Beta random

variables may be correlated with each other, the product can still be approximated

by a Beta random variable.

One example of this kind of general Gaussian channels is the precoded OFDM sys-

tem in [57]. In this case, the channel matrix H = DHΘ, where DH = diag[H(0), H(1),

. . . , H(N − 1)] with H(n) =
∑L

l=0 hle
−j2πln/N being the channel response of the nth

subcarrier of the OFDM system, hl’s are complex Gaussian distributed with zero

mean, and Θ is the N × N unitary complex encoder. Thus, we can express the od

for the equivalent channel matrix DHΘ as [cf. the definition of od in (10)]

od(H) = od(DHΘ) = 1−
∏N−1

n=0 |H(n)|2
(

1
N

∑N−1
n=0 |H(n)|2

)N
. (30)

From this expression, we know that od(H) does not have an upper bound in (0, 1),

since sup(od(H)) = 1 when any one of H(n) approaches 0, which means deep fading

on that subcarrier. Here it is difficult to obtain the exact distribution of od(H) if the

channel response of the subcarriers are correlated with each other. Since H(n)’s are

still Gaussian distributed, according to [47], the second term in (30) is the product of

N random variables which are jointly Dirichlet distributed. However, 1− od(H) can

still be approximated by a Beta random variable, since |H(m)|2∑N−1
n=0 |H(n)|2 is Beta distributed.

Thus, in practical systems, we may treat od(H) as Beta distributed again. We

summarize the results regarding the distribution of od(H) as follows.

Corollary 5 Suppose that H is complex Gaussian distributed with zero mean and

sup(od(H)) = 1. Then od(H) is approximately a Beta random variable with two

parameters.
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Table 4: Distribution of the od(H) for i.i.d. channels

n Exact Distribution f(1− x) Approximate β(a, b)
2 1 (1, 1)
3 4(1− x) + 4x ln(x) (3.1818, 0.9091)

4 13.5 + 216x− 229.5x2 + (108x + 135x2) lnx− 27x2 ln2 x (7.4529, 0.7710)
5 128

3
+ 6912x− 58752x2 + 155392

3
x3 + 1728x lnx− 20736x2 ln x

−25792x3 ln x− 6912x2 ln2 x + 4992x3 ln2 x− 384x3 ln3 x (16.1011, 0.6430)

Using the distribution of od(H) obtained by estimating the two parameters of

Beta distribution, one has more control on the system design, e.g., one can trade-off

between the performance and the complexity by designing the equalizer appropriately

as we have shown in Section 3.3. Also the distribution of od(H) will be helpful for

further analyzing the performance and capacity of LEs.
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Figure 6: PDF of od(H) for i.i.d. channels
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Figure 7: PDF of od(H) for precoded OFDM systems

Example 3.5 (The distribution of od(H)): After analytically finding the dis-

tribution of od(H), we now use some numerical examples to verify the results in

Theorem 3, Proposition 2, and Corollary 5. First, we specialize the expressions of the

exact and approximate distributions of od(H) for i.i.d. channels to N = M = n for

n = 2, 3, 4, 5 in Table 4. We approximate the PDF of od(H) for i.i.d. channels by

plotting histograms in Fig. 6. The histograms are obtained by recording od(H) for

more than 1, 000, 000 random realizations of i.i.d. Rayleigh fading channels. In the

same figure, the distributions in Table 4 (both exact and approximate expressions)

are also plotted. It is observed that the theoretical results match the simulation

results very well. For general Gaussian channels, we choose the precoded OFDM

system in [57] as an example. As stated in Corollary 5, we do not have the exact

PDF of the od for the equivalent channel matrix. We only know it is approximately

Beta distributed. We plot the PDF histograms of od(DHΘ) as in (30), for block size

32



N = 4 and 6 respectively, and the order of the frequency-selective channels L = 2.

Then, we approximate these curves using Beta distributions. From Fig. 7, we can

see, for N = 4, β(1.55, 0.79) fits the simulation results, while β(2.72, 0.66) works well

for N = 6 case.

Instead of histogram, parameters (a, b) for Beta distributions can be obtained

from the mean and variance of od(H). Suppose the mean and the variance of od(H)

are µ and σ2 respectively. Then, we have [78]

µ =
a

a + b
, and σ2 =

ab

(a + b)2(a + b + 1)
. (31)

Thus, we can find parameters a and b as

a =

(
µ(1− µ)

σ2
− 1

)
µ, and b =

(
µ(1− µ)

σ2
− 1

)
(1− µ).

In practice, the mean and variance of od(H) can be obtained as the channel mean

and variance are obtained.

3.5 Complexity of Linear Equalizers

In practical systems, the decoding complexity is usually given high priority. Thus,

the decoding complexity is an important metric to compare different equalizers. In

this section, we discuss the complexity of the commonly used equalizers, and then

address that the overhead paid by our hybrid equalizers to compute od is negligible

compared with the equalization complexity.

3.5.1 Complexity Comparison among Different Equalizers

To quantify the decoding complexity of different equalizers, we count the average num-

ber of arithmetic operations needed to estimate s in (1). This number of arithmetic

operations takes into account the numbers of real multiplications and real additions.

Though usually the SD method and other tree-search algorithms use the number of

possible end nodes to represent the decoding complexity, we do not adopt it here be-

cause it is impossible to compare the complexity of a tree-search based algorithm with
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that of other non-search methods (e.g., LEs) in this way. We focus on analyzing the

difference in complexity among different equalizers and how the various parameters

(e.g., M , N , |S| or od(H)) influence the complexity.

The major advantage of LEs is their low decoding complexity. Using ZF equalizer

in (7) as an example, the complexity results from computing H† = (HHH)−1HH

using the QR decomposition and calculating H†y. As shown in [77], the number of

real multiplication for ZF equalizer is O(N3)+O(N2M)+O(NM2) while the number

of real addition is also O(N3) +O(N2M) +O(NM2). There is no need to calculate

od(H) when linear equalization is performed, though it determines the performance

of LEs.

As shown in [34], the SD method generally requires an exponential worst-case

complexity, whereas the heuristic search methods require only O(N3) computations

in average. Note that this complexity does not include the complexity from any

preprocessing (e.g., QR decomposition) and it is an average. Simulation results in

[113] show that SD method still has a high complexity compared with conventional

LEs. It is not surprising to see this result, since LEs are used as the preprocessing

step. Later, in our simulation, we count the average arithmetic operations of the SD

method in [34], including the preprocessing step.

The optimum equalizer, MLE in (5), consumes the highest complexity among

these equalizers. As shown in [77], both the number of arithmetic operations is

O(|S|NMN).

3.5.2 Complexity Overhead of Hybrid Equalizers

Now, let us revisit our proposed hybrid equalizers in Proposition 1 to verify the

complexity. Compared with the original LEs (say in (7)), the main complexity over-

head the hybrid equalizer pays is to compute od(H). To compute od(H), we need
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(4M2N + 8N2 − 7N) real multiplications and (4M2N − 2MN + 4N2 − 4) real ad-

ditions. However, most of the operations to compute od(H) are already required for

the equalization process in (7). Since QR decomposition is also needed in the SD

method, for the channel matrices that need the SD method, the overhead to compute

od(H) becomes (2N2 + 4N) real multiplications and (2N2 − 2N + 1) real additions.

For the other channel matrices where only LEs are employed, the extra complexity to

compute od(H) is 2N real multiplications and 1 real addition, because HHH is also

needed when applying LEs. For both cases, the overhead of computing od is negli-

gible compared with the equalization complexity, not to mention the situation when

MLE is employed. Thus, the complexity of the hybrid equalizers is lower than that

of (near-) optimum equalizer but higher than the conventional LEs, since only some

realizations of H are decoded by the conventional LEs. Our hybrid equalizer provides

a feasible approach to trade-off between performance (coding gain) and complexity

while enjoying ML diversity.

3.6 Simulation Results

In this section, we use computer simulations to verify our theoretical claims on the

diversity, capacity and complexity. QPSK is adopted as modulation scheme and

channels are complex Gaussian distributed.

Test case 3.1 (Bounded od values): In this example, we verify Theorem 1 and

Corollary 1 for i.i.d. Gaussian channels with M = N = 4. As we have shown,

od(H) for this kind of channels does not have an upper bound in (0, 1). However,

in simulations, by only counting the channel realizations of which od is less than ǫ,

we upper-bound the od of the channel matrix by ǫ. In Fig. 8, we plot the BERs

of the ZF and MMSE equalizers with ǫ = 0.8, 0.99 respectively. The BERs of the

ZF and MMSE with unconstrained od(H) (without discarding those od(H) > ǫ

realizations), and MLEs are also plotted as references. From Fig. 8, we observe that,
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Figure 8: Performance of LEs for i.i.d. channels
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Figure 9: Performance of ZF equalizer for precoded OFDM systems
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Figure 10: Performance of hybrid ZF equalizer for i.i.d. channels with M = N = 4
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Figure 11: Complexity of hybrid equalizers with N = M = n
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if od(H) ≤ ǫ < 1, LEs collect the same diversity order as MLE does, which is 4 here,

while the LEs without the od bound only collect diversity 1. On the contrary, the

performance of MLEs is not highly influenced by od(H). We also notice that when

ǫ is smaller, the gap between LEs and MLE is smaller. This is consistent with the

analysis, when ǫ is smaller, the upper bound of the BER performance in (141) also

becomes smaller. In general, for LEs, a smaller od(H) bound indicates higher coding

gain while the diversity is the same as that collected by MLE. To further show the

effect of od(H) on performance, we depict another specific case for precoded OFDM

systems in [57]. The frequency-selective channel order L is fixed to be 2 and the block

size M = N = 4, which means the maximum diversity order is 3.

In Fig. 9 we plot the performance of the ZF equalizer for the channel realizations

whose od is upper bounded by ǫ = 0.8, 0.99, 0.999 respectively. For reference, the

BER curve of ZF equalizer for all the channel realizations is also plotted. From the

figure, we know that, if od(H) of the channel matrix has an upper bound, ZF equal-

izers collect the same diversity order as MLE, while unconstrained case only collects

diversity 1.

Test case 3.2 (Performance and complexity comparisons of hybrid equal-

izers): In this example, we illustrate the performance and the complexity of our

two hybrid equalizers for i.i.d. channels with N = M = 4. In Fig. 10, we plot the

BER curves for the hybrid equalizer which combines ZF equalizer and SD method

as in Proposition 1 (referred as “Hybrid ZF”) with ǫth = 0.869, 0.938, 0.976, for

which the percentage of channel realizations that are decoded by ZF equalizer are

pǫ = 25%, 50%, 75% respectively. The performance of ZF and SD equalizers is also

plotted as references. From the figure, we know that the diversity of the hybrid ZF

equalizer is 4 in this example. We also notice that the diversity orders of all three

hybrid ZF equalizers are the same as that of MLE, and the one with ǫth = 0.869 has
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Figure 12: Outage complexity of hybrid equalizers with N = M = 4 and SNR=30dB

the best performance, since for this equalizer, only 25% of all the realizations of H

are decoded by ZF equalizer. By adjusting ǫth, the hybrid ZF equalizer bridges the

performance gap between LEs and SD.

With the comparable performance, we are interested in the complexity of these

hybrid ZF equalizers. In Fig. 11, we plot the complexity of the hybrid ZF equalizers

with ǫth satisfying the percentages of channel realizations that are decoded by LEs

are pǫ = 25%, 50%, 75%, as N = M = n increases. We fix the search radius of the

SD method as 4 and SNR=30dB. From this figure, we observe that the complexity

of our hybrid ZF equalizers is between that of ZF and SD. The smaller ǫth is, the

higher the complexity of the hybrid equalizers is. This is because in general, smaller

ǫth means more realizations of H are decoded by SD. Thus, we can see that ǫth plays

an important role in hybrid equalizers. We also plot the curve of O(n3) in the same

figure to give a reference.
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Figure 13: Performance of hybrid ZF equalizer for precoded OFDM with L = 3

Besides the average complexity, the outage complexity (the probability that the

complexity is higher than a threshold value) is another important metric to compare

different equalizers. We plot the outage complexity of these hybrid ZF equalizers

with pǫ = 25%, 50%, 75% by fixing M = N = 4 and SNR=30dB in Fig. 12. The

outage complexity of the SD method with radius 4 is also plotted. From the figure,

we observe that, there is a gap between the SD method and hybrid ZF equalizers.

This shows that the probability that worst cases (high complexity) happen is reduced

by applying hybrid equalizers. Furthermore, the gap increases as pǫ increases, which

means increasing the percentage of the usage of ZF equalizer will not only reduce the

average complexity but also the probability that worst cases show up.

The same experiments are tested on precoded OFDM systems in [57]. Fig. 13

shows the performance of hybrid ZF equalizers with ǫth = 0.521, 0.760, 0.915, for

which the percentage of the channel realizations that are decoded by ZF equalizer is

40



2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3
x 10

4

N
um

be
r 

of
 A

rit
hm

et
ic

 O
pe

ra
tio

ns

M=N=L+2

 

 

ZF equalizer
Hybrid ZF with p

ε
=25%

Hybrid ZF with p
ε
=50%

Hybrid ZF with p
ε
=75%

SD method

Figure 14: Complexity of hybrid equalizers with different channel order L

pǫ = 25%, 50%, and 75%, respectively. The complexity versus M = N = L + 2 is

plotted in Fig. 14. This figure shows that the complexity of the hybrid equalizers can

be tuned by selecting ǫth.

Test case 3.3 (Capacity of different LEs): In Fig. 28, we plot the average

capacity of i.i.d. channels with M = N = 4 and different equalizers: ZF (ǫ = 1 and

0.976), Hybrid ZF (ǫth = 0.976) and MLEs. From the figure, we notice that all these

curves are parallel to each other. This confirms the observation in (23) that in the

mid to high SNR region, the difference between capacities does not depend on SNR

but on od(H). When ǫ = 0.976, the average od(H) decreases, and thus the average

capacity is higher. The CDFs of the capacity with these equalizers are depicted in

Fig. 37 with SNR = 20 dB. Outage probabilities of the capacity versus SNR are
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plotted in Fig. 38 with Cth = 20 bits/sec/Hz. Comparing Figs. 37 and 38, we notice

that (i) when sup(od((H†)H)) = 1 (ZF with ǫ = 1 case) LE loses outage diversity

(i.e., the curve of LE is not parallel with the one of MLE); this is different from the

average capacity in Fig. 28; and (ii) when od((H†)H) has an upper bound which is

less than 1 (ZF with ǫ = 0.976 case), the outage probability curves of LEs become

parallel with those of MLEs. This is consistent with Theorem 2 and our analysis in

Section 3.3.
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Figure 16: CDF of the capacity based on different equalizers
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CHAPTER IV

QUANTIFYING THE ORTHOGONALITY OF MATRICES

Now, one may ask whether there exists other metrics to quantify the orthogonality

of a channel matrix and corresponding LR algorithms to reduce it. The answer is

positive. There are several metrics that have been adopted to measure the “quality”

of a matrix and further judge whether the fundamental condition is met. In addition

to od in (10), condition number and Seysen’s metric also quantify the distance to

orthogonality. We summarize these metrics as follows.

• Condition Number : κ(H) = ‖H−1‖ · ‖H‖; κ(H) ∈ [1,∞); κ(H) = 1 for

unitary H ; and κ(H) =∞ for singular H

• Orthogonality Deficiency : od(H) = 1−det(H
H

H)
∏N

n=1 ‖hn‖2
; od(H) ∈ [0, 1]; od(H) =

0 for orthogonal H ; od(H) = 1 for singular H

• Seysen’s Metric : S(H) =
∑N

n=1 ‖hn‖2‖aT
n‖2; S(H) ∈ [N,∞); S(H) = N

for unitary H ; S(H) =∞ for singular H

where hn is the nth column of H and aT
n is the nth row of H†.

4.1 od or Condition Number

In the literature, a condition number of the channel matrix is an often-used criterion

to judge the condition of the channel matrix. For the condition number, the analysis

in [71] shows LEs collect the same diversity as that of MLE when κ(H) has a finite

upper bound. The reason that we adopt channel od number instead of condition

number as in [77] is two-fold: (i) the performance gap between ZF and ML equalizers

is not due to condition number because when channel is diagonal, ZF equalizer has
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the same performance as MLE no matter the condition number is large or small; and

(ii) as we have shown, performance diversity and outage capacity of the LEs depend

on the od of the channel matrix instead of channel condition number. Thus, in this

dissertation, we focus on the study of od(H) on the fundamental limits of LEs.

4.2 od and Seysen’s Metric

Seysen’s metric further balances the orthogonality between the matrix and the inverse

matrix. Following similar procedures in Appendix B for Theorem 1 in Chapter 3, we

arrive at the following result.

Theorem 4 Consider a linear system in (1), where the entries of the channel matrix

are complex Gaussian distributed with zero mean, and the information symbols are

drawn from integer lattice (Gaussian integer ring). The linear equalizers in (7) and

(8) collect the same diversity as MLE in (5) does if there exists a finite constant ξ

such that ∀H , S(H) ≤ ξ, i.e., sup(S(H)) = ξ.

Proof: See Appendix G.

Furthermore, we find the general relationships between od(H) and S(H) in the

following two propositions.

Proposition 3 For a lattice basis B with size M ×N , if od(B) is upper bounded by

1− ǫ, then S(B) is also upper bounded by N
ǫ
.

Proof: From [96] we know that for a lattice basis {bi} and its dual lattice basis {b′
i}

the following inequality holds

‖bi‖2 ‖b′
i‖

2 ≤ 1

1− od(B)
≤ 1

ǫ
, i = 1, .., N. (32)

Thus, for Seysen’s metric, we have

S(B) =

N∑

i=1

‖bi‖2 ‖b′
i‖

2 ≤ N

ǫ
. �

(33)
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Proposition 4 For a lattice basis B with size M ×N , if S(B) is upper bounded by

ξ, then od(B) is also upper bounded by 1− 1
(ξ−N)N−1 .

Proof: Let αi represent the angle between bi and b′
i. Seysen’s metric S(B) can be

rewritten as

S(B) =

N∑

i=1

1

cos2(αi)
. (34)

Note here, for a two-dimensional (2-D) lattice, b1, b2, b
′
1 and b′

2 are in the same plane

as depicted in Figure 18, since [b′
1, b

′
2]
H forms the pseudo-inverse (inverse with the

shortest Euclidean norm) of B. Thus, we have α1 = α2 = α.

b
1


b
2


b
2
'


b
1
'


Figure 18: Sketch of lattice and dual lattice basis vectors for 2-D real case

With the expression of S(B) in (34), we have

S(B) =
N∑

i=1

1

sin2(βH,i)
≤ ξ, i = 1, .., N. (35)

Thus, it is ready to see sin2(βH,i) ≥ 1
ξ−N

for i ∈ {1, .., N}. Furthermore, we can

rewrite od(B) as

od(B) = 1− det(BHB)
∏N

i=1 ‖bi‖2
= 1−

∏N
i=1 sin2(φH,i) ‖bi‖2∏N

i=1 ‖bi‖2
= 1−

N∏

i=1

sin2(φH,i) (36)

where φH,i is the Hermitian angle between bi and the hyper plane spanned by b1, ..., bi−1

and sin(φH,1) = 1 [53]. Because βH,i is the Hermitian angle between bi and the hyper

plane spanned by b1, ..., bi−1, bi+1..., bN , it is straightforward to see that βH,i ≤ φH,i.

Thus, we can bound od(B) as

od(B) ≤ 1−
N∏

i=2

sin2(βH,i) < 1− 1

(ξ −N)N−1
. �
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Corollary 6 Given a 2-D lattice with basis B, the following relationship holds true:

od(B) = 1− 2

S(B)
(37)

Proof: For lattices in two dimensions, we have βH,2 = φH,2. With the expressions

of S(B) in (35) and od(B) in (36) it is straightforward to obtain the relationship in

(37). �

In addition to these metrics, other metrics exist that help quantify the performance

gap between a specific low-complexity equalizer and MLE. For example, the proximity

factor in [52] is a function of not only the channel matrix but also the specific low-

complexity equalizer adopted. However, for most practical systems, no matter which

metric is adopted the “quality” of the channel matrix does not have a lower bound for

the worst case, which means the channel matrices can be arbitrarily close to singular.

For example, when the channel matrix has i.i.d. entries, od(H) does not have an

upper bound less than 1. For these transmissions, low-complexity equalizers usually

have inferior performance relative to MLEs because of the loss of diversity [67, 68].

Thus, to collect the same diversity as MLE does using low-complexity equalizers and

reduce the capacity gap, besides adopting hybrid equalizers proposed in Proposition

1, we can “modify” the channel matrix H to upper bound the orthogonality metrics

by a constant and thus make sure H cannot be arbitrarily close to singularity. One

approach is to design the transmitter properly so that od(H) has an upper bound,

e.g., space-time orthogonal coding [97]. Another approach is to modify the receiver

by adopting lattice reduction algorithms, which we will focus on in the following.
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CHAPTER V

LATTICE REDUCTION ALGORITHMS

In the linear block transmission model in (1), the received signal vector y is the

noisy observation of the vector Hs, which is in the lattice spanned by the columns

of H since all the entries of s can be transformed to complex integers by shifting

and scaling. In general, a lattice has more than one set of basis vectors. There exist

some bases that span the same lattice as H but are closer to orthogonality than H .

The process of finding a basis closer to orthogonality is called lattice reduction (LR).

Theoretically, finding an optimal set of bases (closest to orthogonality) in a lattice

is computationally expensive. Thus, the ultimate goal of LR algorithms is to find a

“better” channel matrix H̃ = HT where T as a unimodular matrix, which means

that all the entries of T and T−1 are complex integers and the determinant of T is

±1 or ±j. The restrictions on the matrix T ensure that the lattice generated by H̃

is the same as that of H . Note that the equivalence of the two lattices spanned by

H and H̃ is based on the assumption that all the entries of s belong to the whole

complex integer set.

LR techniques have been studied by mathematicians for decades, and many LR al-

gorithms have been proposed. Gaussian reduction, Minkowski reduction and Korkine-

Zolotareff (KZ) reduction algorithms find the optimal basis for a lattice based on the

successive minimal criteria, but these algorithms are highly complex and therefore

infeasible for communications systems [121, 46, 84]. The well-known Lenstra-Lenstra-

Lovász (LLL) algorithm does not guarantee to find the optimal basis with minimal

od, but it guarantees in polynomial time to find a basis within a factor to the optimal

one [40, 52, 51, 121]. Seysen’s algorithm (SA) reduces Seysen’s metric to perform LR
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[87]. A simplified Brun’s algorithm is proposed and implemented in [10] to reduce

complexity but also sacrifices performance. For the worst cases these LR algorithms

may not terminate, but simulations have shown that this never occurs in practice (see

[121, p. 62] and [40]).

Given the array of LR algorithms in the literature, it is difficult to justify which

one is better in terms of both performance and complexity. In the following, we

look into two well-adopted LR algorithms: the SA and the LLL algorithm since they

are known to be able to reduce od(H) and S(H). We will find the property of the

output matrices, e.g., whether the conditions in Theorems 1 and 4 are met. We will

also briefly introduce other LR algorithms for readers’ interest.

5.1 The Complex Lenstra-Lenstra-Lovász Algorithm

So far, the most popular LR algorithm is the Lenstra-Lenstra-Lovász (LLL) algo-

rithm [51]. The LLL algorithm does not guarantee to find the optimal basis, but it

guarantees in polynomial average time to find a basis within a factor to the optimal

one [121, 51, 40, 54]. The results in [54] theoretically proved the upper bound on

the average complexity of LLL is O(N3 log N). Furthermore, [40] reduces the up-

per bound on the average complexity to O(N2 log( N
M−N+1

)). We need to note that

the worst-case complexity of the LLL algorithm can be infinite, since we can build

a special structure that needs exactly certain number of iterations to finish the LLL

algorithm [121, 40]. However, the probability that a system meets such a special

structure in practice or simulations is zero, not to mention the probability that we

meet it many times. Thus, though theoretically the worst-case complexity of the LLL

algorithm is not upper bounded, the complexity is still polynomial in practice and

simulations.

The real LLL (RLLL) algorithm is first applied by extending the system model in

(1) into an equivalent real system and use the real LR-aided equalizers [96, 111, 117].
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Table 5: The complex LLL algorithm (using Matlab notation)

INPUT: H ; OUTPUT: Q̃, R̃, T

(1) [Q̃,R̃] = QR Decomposition(H);
(2) δ ∈ (1

2
, 1);

(3) m = size(H , 2);
(4) T = Im;
(5) k = 2;
(6) while k ≤ m
(7) for n = k − 1 : −1 : 1

(8) u = round((R̃(n, k)/R̃(n, n)));
(9) if u ∼= 0

(10) R̃(1 : n, k) = R̃(1 : n, k)− u · R̃(1 : n, n);
(11) T (:, k) = T (:, k)− u · T (:, n);
(12) end
(13) end

(14) if δ|R̃(k − 1, k − 1)|2 > |R̃(k, k)|2 + |R̃(k − 1, k)|2
(15) Swap the (k − 1)th and kth columns in R̃ and T

(16) Θ =

[
α∗ β
−β α

]
where α = R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖
;

β = R̃(k,k−1)

‖R̃(k−1:k,k−1)‖
;

(17) R̃(k − 1 : k, k − 1 : m) = ΘR̃(k − 1 : k, k − 1 : m);

(18) Q̃(:, k − 1 : k) = Q̃(:, k − 1 : k)ΘH;
(19) k = max(k − 1, 2);
(20) else
(21) k = k + 1;
(22) end
(23) end

The complex LLL (CLLL) algorithm is proposed in our paper [67] based on the QR

decomposition and [19] based on the Gram-Schmidt orthogonalization. The definition

of a reduced basis in the complex field is given as follows.

Definition 4 An M × N complex matrix H̃ is called a reduced basis of a lattice if

the QR-decomposition H̃ = Q̃R̃ satisfies the following two conditions:

|ℜ[R̃i,k]| ≤
1

2
|R̃i,i|, |ℑ[R̃i,k]| ≤

1

2
|R̃i,i|, for 1 ≤ i < k ≤ N, (38)

δ|R̃i−1,i−1|2 ≤ |R̃i,i|2 + |R̃i−1,i|2, for i = 2, . . . N, (39)
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where the parameter δ now is arbitrarily chosen from (1
2
, 1), and R̃i,k is the (i, k)th

entry of R̃.

The detailed pseudo-code of the CLLL algorithm can be found in Table 5. The

parameter δ controls the complexity and performance of the LLL algorithm and the

bigger δ is, the higher the complexity is. Compared with the RLLL algorithm in

[116, 117], the major differences of the CLLL algorithm are: (i) at Step (8), the

rounding equation is on complex numbers; and (ii) at Step (16), a complex unitary

Θ is adopted. It has been shown that the CLLL algorithm reduces the complexity

of the RLLL algorithm without sacrificing performance [19, 67]. This may counter

intuition since the matrix dimensions are doubled in RLLL, but only real operations

are required. As shown in Table 6, the RLLL algorithm requires more basis updates

than the CLLL algorithm. One basis update is defined as the process that updates the

nth basis vector using the mth basis as hn ← hn + am,nhm. Furthermore, the sorted

QR-decomposition (SQRD) in [117] is introduced into the LLL process to further

reduce the complexity as shown in Table 6. The CLLL algorithm has been applied

to the dual basis of the channel matrix and the performance is further improved

[52]. The complexity of the LLL algorithm depends on the specific realization of the

channel but has an polynomial upper bound on average [40].

Table 6: Number of basis updates needed for different LR algorithms for i.i.d.
channels

M = N = n 2 4 6 8 10
Greedy SA Average 1.0733 5.4579 11.1725 16.9698 22.0766

Std. deviation 0.6378 2.3032 4.4139 6.9265 9.3423
Real LLL Average 3.5204 19.0711 46.5706 84.7531 132.36

Std. deviation 2.7614 9.6056 21.5811 39.5851 61.8293
Complex LLL Average 1.1151 6.6624 16.2276 29.0076 44.2684

Std. deviation 0.6963 3.0824 7.0284 12.6450 19.4835
Complex LLL Average 1.0505 5.7555 13.4083 23.3189 35.2554
with SQRD Std. deviation 0.6208 2.6426 5.9486 10.3063 15.5275

Following the CLLL algorithm, we find a “better” channel matrix H̃ = HT from
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the original channel matrix H . Adopting od as the orthogonality metric, we quantify

the condition of the output matrix H̃ of the CLLL algorithm as follows.

Proposition 5 Given a matrix H ∈ CM×N with rank N , H̃ is obtained after apply-

ing the CLLL algorithm in Table 5 for a given parameter δ ∈ (1
2
, 1). Then, the od of

H̃ satisfies:

√
1− od(H̃) ≥ 2

N
2

(
2

2δ − 1

)−N(N+1)
4

:= cδ. (40)

Proof: See Appendix F.

For real H , the upper bound in (40) is consistent with the result in [51, Proposition

1.8]. Here, we extend it to the complex field according to the CLLL algorithm in Table

5. If H is singular, i.e., rank(H) < N , then the upper bound in (40) does not hold

true since H is not a basis any more. In this case, we need to reduce the size of

H and then apply the CLLL algorithm. From Eq. (40), we can see that the CLLL

algorithm does not guarantee to reduce the od for every realization of H , but the new

basis H̃ now has an upper bound on od which is strictly less than 1. Later, we show

that thanks to this upper bound on od, the LLL based equalizers collect the same

diversity as MLEs. Furthermore, according to Proposition 3, we know the Seysen’s

metric of the output matrix H̃ is also upper bounded by a finite number.

Test Case 5.1 (Effects of LLL on the distribution of od(H)): We use this

example to verify the effect of LR on od(H) for both i.i.d. channels and correlated

Gaussian channels. For i.i.d. Rayleigh fading channels, we plot the PDFs of od(H)

and od(H̃) obtained after the CLLL algorithm in Fig. 19. The histograms are ob-

tained by recording the od samples over 1, 000, 000 different realizations of H for

n = M = N = 3 and 4, respectively. It is shown that the LR algorithm not only

upper-bounds the od of the equivalent channel matrix, but also changes its distribu-

tion. Most realizations of the channel matrix now have a smaller od, since the PDF

of od(H̃) after LR is no longer concentrated near 1. For general correlated Gaussian
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Figure 19: PDF of od(H) for i.i.d. channels

channels, we choose the precoded OFDM system in [57] as an example. We plot the

average od(H) versus channel order L in Fig. 20, when M = N = L + 1. From the

figure we observe that the average od(H) increases as L (or N) increases, because

as the size of the channel matrix increases, it becomes more difficult for the random

matrix to be close to orthogonal. In the same figure, we also plot the average od(H̃)

and the od bound from Proposition 5. It can be seen that LR reduces the average

od(H) and thus improves the performance.

5.2 Seysen’s Algorithm

As an alternative to the LLL algorithm, SA is an iterative method to reduce the

lattice based on the Seysen’s metric [50, 88]. The Seysen’s metric that SA adopts to

quantify the orthogonality of matrices is defined as follows (see e.g., [50, 88]).

53



2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M=N=L+1

O
rt

ho
go

na
lit

y 
D

ef
ic

ie
nc

y

Average od(H)

Average od(H̃)
od bound in (40)

Figure 20: Average od(H) for precoded OFDM systems

Definition 5 For an M ×N matrix H, the Seysen’s metric (S(H)) is defined as

S(H) =

N∑

n=1

‖hn‖2‖an‖2, (41)

where hn is the nth column of H and aT
n is the nth row of H†.

For any H , S(H) ≥ N , with equality when H is a unitary matrix. In general,

smaller S(H) indicates that H is closer to being a unitary matrix. Compared with

the definition of od in (10), we can see that S(H) optimizes the orthogonality of both

H and HH, while od(H) focuses on the orthogonality of H only.

The ultimate goal of SA is to find a set of bases H̃ , of which the Seysen’s metric

cannot be reduced anymore. The lazy method and the greedy method are first pro-

posed to implement SA [50], while a simplified greedy implementation is proposed in

[87] to further reduce the complexity. The lazy implementation of SA guarantees to

find the optimal bases that minimize S(H̃) but requires extremely high complexity.
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The greedy implementation requires much fewer operations, but the algorithm may

stop at a certain set of bases H̃ with suboptimal S(H̃) (a local minimum).

SA adopts iterative basis updates to generate H̃ whose S(H) cannot be reduced

any more. The new basis and the unimodular matrix are initialized as H̃ = H and

T = IN . In each basis update, an index pair (m, n) and an integer λm,n are found to

update H̃ and H̃
†

as

h̃m ← h̃m + λm,nh̃n and ãT
n ← ãT

n − λ∗
m,nã

T
m, (42)

where h̃m is the mth column of H̃ and ãT
n is the nth row of H̃

†
, and the unimodular

matrix T is also updated correspondingly as tm ← tm + λm,ntn [50, 87]. According

to [50, 88], given the indices m and n, the integer λm,n is chosen as

λm,n =

⌊
0.5

(
ãT

n ã∗
m

‖ãm‖2
− h̃

H
n h̃m

‖h̃n‖2

)⌉
(43)

to maximize the reduction of S(H), where ⌊·⌉ is the rounding operator that rounds

the real and imaginary parts to the nearest integers. The corresponding reduction of

S(H) is expressed as

∆m,n = 2‖h̃m‖2‖ãT
n‖2

(
ℜ
(

λ∗
m,n

(
ãT

n ã∗
m

‖ãm‖2
− h̃

H
n h̃m

‖h̃n‖2

))
− |λm,n|2

)
. (44)

The algorithm continues updating the bases as in (42) until no more reduction can be

made on S(H), i.e., all the entries of the matrix ∆ defined in (44) are zero. However,

the algorithm may stop at H̃ with suboptimal S(H) (a local minimum). Only when

the right index pairs are chosen in the right order, can the global optimal H̃ (i.e., H̃

with minimum S(H)) be found. Thus, how to choose the index pairs to update the

bases is the crucial problem of SA. As shown in [50, 87], the index pair (m, n) is chosen

randomly in the lazy implementation of SA, while in the greedy implementation,

(m, n) = arg max
m,n=1,...,N

∆m,n. In the following, we propose a tree-search algorithm to

choose index pairs based on the corresponding reduction in S(H).

We design our implementation of SA by formulating the choice of index pairs into

a spanning tree. The tree is composed of different versions of H as
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(i) the tree roots at the initialization H̃ = H ;

(ii) the pth level of the tree denotes the pth basis update;

(iii) each leaf node on the pth level of the tree represents a candidate of H̃ after

basis updating with a selected index pair of its parent and is associated with

the corresponding S(H̃); and

(iv) each end node with a path from the origin represents a candidate of H̃ after a

series of basis updates.

Thus, finding the optimal H̃ in terms of S(H̃) is equivalent to finding the end node

with the smallest S(H̃) of this spanning tree. This is a regular tree where every

interior node has N(N − 1) children. There are many existing search strategies to go

through the tree and find the optimal end node, e.g., depth-first, breadth-first, and

best-first tree-search algorithms. However, we need to note that, this tree is built

up by H ’s and thus is random. This is different from the setup of other tree-search

algorithms, e.g., the sphere-decoding method [34], where the spanning tree is based

on the symbol constellation and thus fixed for every H . Therefore, depth-first and

best-first strategies are not computationally efficient for our problem here since we

even cannot predict how many levels this tree has for a given H . To simplify the

tree-search process, we adopt the breadth-first approach.

In the pth basis update, instead of updating only one pair of basis indices as in the

greedy implementation, we find the best Kc index pairs (Kc nodes with the smallest

S(H) at the pth level of the tree), which give us at most Kc different candidates of

H̃ , {H̃k}Kc

k=1. For each candidate H̃k, we check Kℓ children nodes (the largest Kℓ

entries in the ∆(k)
m,n matrix associated with the current candidate). Then from these

KcKℓ children nodes, we again choose the best Kc nodes with the smallest S(H). In

other words, we select Kc nodes on each level of the tree, which are from the KcKℓ

children nodes of the Kc nodes we chose in the previous level. The program stops
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Table 7: The tree-search implementation for SA (using Matlab notation).

INPUT: H , Kc, Kℓ ; OUTPUT: H̃ , T

Initialization:

(1) H̃ = H ;
(2) T = IN ;

(3) Calculate H̃
†
;

(4) Calculate λm,n and ∆m,n matrices as in Eqs. (43) and (44);
(5) Find Kc index pairs associated with the Kc largest value in ∆;
(6) for k = 1 : Kc

(7) Update H̃k, H̃
†
k, and T k as in Eq. (42)

(8) Update λ(k)
m,n and ∆(k)

m,n matrices based on Eqs. (43) and (44);
(9) end

Iteration:

(10) while there exists λ(k)
m,n 6= 0

(11) for k = 1 : Kc

(12) Find Kℓ index pairs associated with the Kℓ largest value in ∆(k)
m,n;

(13) end
(14) Find Kc index pairs among KcKℓ index pairs with the smallest S(H);
(15) for c = 1 : Kc

(16) Update H̃k, H̃
†
k, and T k as in Eq. (42);

(17) Update λ(k)
m,n and ∆(k)

m,n matrices based on Eqs. (43) and (44);
(18) end
(19) end

(20) Find H̃ with the smallest S(H̃) among Kc candidates {H̃k}Kc

k=1

when none of the candidates has children nodes, i.e., ∆ matrix is zero. Then, we can

choose the end node with the smallest S(H) as the output H̃ . One major advantage

of SA over the LLL algorithm is that it reduces the metric S(H) by ∆m,n in each

basis update whereas the LLL algorithm does not guarantee reduction of od(H).

Specifically, if Kc = Kℓ = 1, the tree-search SA becomes the greedy method

[50, 87]. If Kc =∞ and Kℓ = N(N−1), it is the lazy implementation of SA, which is

also the implementation that achieves optimal S(H) [50, 87]. The detailed algorithm

chart is given in Table 7. With this tree-search implementation of SA, we can adjust

Kc and Kℓ according to the complexity that we can afford. The larger Kc and Kℓ are,
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the higher is the probability that the global optimal H̃ (H̃ with the smallest S(H̃))

is found, while the complexity is also higher.

Different from the LLL algorithm, SA needs a fixed number of arithmetic op-

erations in each basis update, though the number of basis updates is still random.

Another difference between SA and the LLL algorithm is that SA does not require QR

decomposition but needs to compute the channel matrix inverse at the preprocessing

stage, while the LLL algorithm needs to compute the matrix inverse after H̃ is found.

As shown in Table 6, the number of basis updates needed by simplified greedy SA in

[87] is less than that needed by the CLLL algorithm and even CLLL with SQRD, in

both average and standard deviation. However, the number of arithmetic operations

needed by SA in each basis update (16M + 104N − 90) is far more than that of the

CLLL algorithm (at most (28M +46N +6) even if δ condition is violated), which leads

to higher algorithm complexity. Another major drawback of SA is that it requires

more memory storage during the updating process.

The analysis on the final condition (λmn = 0) reveals that for any two-dimensional

(2-D) lattice, Seysen’s reduced basis is the same as the Gaussian reduced basis (up

to signs).

Proposition 6 For any 2-D lattice, Seysen’s reduced basis is the same as the Gaus-

sian reduced basis (up to signs).

Proof: See Appendix H.

Because SA and the Gaussian algorithm yield the same reduced basis, the same

performance can be expected in a 2x2 MIMO communication system. Furthermore,

for a 2-D lattice, the following results on the output matrices of SA is obtained.

Proposition 7 For any 2-D lattice, Seysen’s reduced basis is the same as the Gaus-

sian reduced basis (up to signs). Furthermore, for a 2-D lattice, Seysen’s metric of a

Seysen reduced basis is upper bounded by 8
3

if the lattice is real, and by 4 if the lattice
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is complex.

Proof: See Appendix I.

Because SA and the Gaussian reduction algorithm yield the same reduced basis,

the same performance can be expected for applications (e.g., for 2x2 MIMO commu-

nication systems). Furthermore, the bounds in Proposition 7 guarantee the resulting

basis is within a certain distance from orthogonality, which may be applied to further

quantify the performance of applications of SA (e.g., diversity in MIMO communica-

tion systems). According to Proposition 4, we know the output matrices of SA also

has an upper bound on od(H) for 2-D lattices. In general, there is no theoretical

result on whether the Seysen’s metric is also upper bounded for N-D lattices with

N > 2. However, the complementary cumulative distribution function (CCDF) of

S(H) of the output matrices of SA obtained in simulations shows the existence of a

finite upper bound.
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Figure 21: CCDF of S(B) and od(B) after SA for real and complex lattices
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Figure 21 serves as a numerical verification for Proposition 7. The CCDF after

LR is plotted. The real (complex) 2×2 lattice basis matrix B used in the simulation

has i.i.d. real (complex) Gaussian distributed entries. It can be observed that S(B)

is bounded by 8
3

and 4, respectively.

However, for N -D lattices with N > 2, the situation is not clear. Here, we numer-

ically show that S(H̃) also has a finite upper bound even with the greedy SA. When

Kc and Kℓ are greater than 1, the S(H̃) of the output matrices is further reduced

compared with greedy SA. To facilitate visualization of the results, we transform the

range of S(H) from [N, +∞) to [0, 1] by defining

S ′(H) = 1− N

S(H)
. (45)

Obviously, S ′(H) is monotonically increasing with S(H), which means that if S(H)

has a finite upper bound, then S ′(H) has an upper bound that is strictly less than 1.
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60



Test case 5.2 (Effect of SA): We consider a N ×N channel matrix H whose ele-

ments are independent complex Gaussian variables with zero mean and unit variance.

We simulate 108 channel realizations, which amount to over 60 days nonstop com-

munications for pedestrian at 3km per hour, or 6 days nonstop communications for

vehicle traveling at 30km per hour, considering IEEE 802.11g systems as an example.

We plot the resulting empirical CCDF of S ′(H̃) for the channel matrix H and the

output matrix H̃ of greedy SA, i.e., Kc = Kℓ = 1, by fixing M = N = 4, 6, and 10.

From Fig. 22, we see that the upper bound on S ′(H̃) is strictly less than 1, which

means a finite upper bound for S(H̃) exists. Therefore, we can consider the finite

upper bound on S(H̃) for practical performance analysis. Furthermore, the bound

in Fig. 22 increases with N , as expected.

5.3 Other LR Algorithms

In addition to the LLL algorithm and SA, many other LR algorithms have been

proposed in the literature. The Gaussian reduction [32, 125], Minkowski reduction,

and Korkine-Zolotareff (KZ) reduction algorithms [46] find the optimal basis for a

lattice based on the successive minimal criteria. However, the Gaussian reduction

method is only for 2 × 2 systems and has been shown to be equivalent to SA [125].

The Minkowski and the KZ algorithms do not have polynomial time implementation

and therefore infeasible for communications systems (see [121] and references therein).

Furthermore, it has been shown that for LR-aided equalizers, the KZ algorithm only

achieves performance similar to that of the LLL algorithm [111].

A simplified Brun’s algorithm is proposed and implemented in [10] to reduce com-

plexity but also sacrifices performance. Based on the approximation of eigenvectors

of H , the complexity of the simplified Brun’s algorithm is even lower than the LLL

algorithm. However, the performance of the simplified Brun’s algorithm is much
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worse than that of the LLL algorithm as shown in [10]. Furthermore, the prop-

erty of resulting matrices of the Brun’s algorithm is not studied analytically. Thus,

whether LR-aided equalizers based on the simplified Brun’s algorithm can collect the

same diversity as LLL based equalizers is not clear. In next chapter, we provide the

performance of LR-aided equalizers based on the simplified Brun’s algorithm.
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CHAPTER VI

LATTICE REDUCTION AIDED DETECTORS AT THE

RECEIVER

LR algorithms find a better basis H̃ = HT that is more orthogonal than H based on

different metrics. For example, the CLLL algorithm upper bounds the od of output

matrices while SA generates a new matrix with a reduced Seysen’s metric. Note that

the equivalence of the two lattices spanned by H and H̃ is based on the assumption

that all the entries of s belong to the complex integer set. In the following, we show

how to adopt LR algorithms into the wireless communication decoding process.

With the new channel matrix H̃ generated by applying LR algorithms onto the

channel matrix, the system model in (1) can be written as

y = HT
(
T−1s

)
+ w = H̃z + w. (46)

Since all the entries of T−1 and the signal constellation belong to Gaussian integer

ring, the entries of z are also Gaussian integers. Basically, LR-aided equalization

is to apply traditional equalizers like LEs and DFEs onto the system model in (65)

to obtain the estimate of z and then the estimate of s. Furthermore, when error

control codes are applied onto the system, soft-output detectors are usually adopted

for iterative detection and decoding (Turbo equalization) receivers. Compared with

hard-output detectors which only obtain the estimate of the transmitted signal, soft-

output detectors also generate the reliability information for the estimate. In the

following, we introduce the LR-aided hard-output detectors and LR-aided soft-output

detectors, respectively.
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6.1 Lattice-Reduction-Aided Hard-Output Detectors

Hard-output detectors are adopted to obtain the estimate of the transmitted signals,

e.g, ŝ. Depending on the traditional equalizer that is adopted to estimate z, LR-aided

hard-output equalizers are divided into two major categories: LR-aided LEs and LR-

aided DFEs (SICs). We now provide the detailed process for these two hard-output

detectors, respectively.

6.1.1 LR-aided LEs

Based on the general system model in (1), we first introduce LR-aided LEs using

LR-aided ZF-LE as an example. Since the MMSE-LE agrees with the ZF-LE with

respect to the extended system in (9), to perform LR-aided MMSE-LE, it is equivalent

to perform LR-aided ZF-LE on the extended system. For LR-aided ZF-LE, we first

apply the ZF equalizer in (7) onto the system in (65) to obtain ẑ, the estimate of z,

by taking the constellation of z as the whole Gaussian integer ring. After obtaining

ẑ, we recover s by mapping T ẑ to the original signal constellation. These two hard

decoding steps consist of the LR-aided low-complexity equalizers for linear block

transmission systems.

Note that the possible values of z are determined by the original signal constel-

lation and the unimodular matrix T . Given a specific constellation of s, the actual

constellation of z is random due to the randomness of H . To simplify the estima-

tion of z, we assume that all the entries of z belong to Gaussian integer ring. Since

T is random, the assumption is valid if the real and imaginary parts of s belong

to consecutive integer sets. However, for M-QAM symbols, the real and imaginary

parts of each symbol are drawn from the set {−(
√
M− 1), · · · ,−1, 1, · · · ,

√
M− 1},

which is not a consecutive integer set. Therefore, we need to shift and/or scale the

constellation to make sure the real/imaginary part of the constellation belong to a

consecutive integer set. For example, by applying (s − (1 + j)1)/2, we transfer the
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real and imaginary parts of the M-QAM constellation to a consecutive integer set

{−
√
M/2, · · · ,−1, 0, 1, · · · , (

√
M−2)/2}, which makes the real and imaginary parts

of z are also consecutive integers. Therefore, the quantization to obtain ẑ is now as

simple as rounding to the nearest complex integer. Furthermore, the scaling and

shifting operation on signal constellations must be considered when obtaining the

estimate of s. Using LR-aided ZF-LE as an example, the estimate ŝ is expressed as

ŝ = 2Q̄
(

T

⌊
1

2

(
x− T−1(1 + j)1

)⌉)
+ (1 + j)1, (47)

where x = H̃
†
y and Q̄ denotes the quantization operation that maps the real and

imaginary parts to the nearest integer in the set {−
√
M/2, · · · ,−1, 0, 1, · · · , (

√
M−

2)/2}.

Table 8: LR-aided LEs with QAM constellations (using Matlab notation).

INPUT: y, H for ZF-LE (ȳ = [y; 0N×1], H̄ = [H ; σwIN ] for MMSE-LE);

OUTPUT: ŝ ;

(1) [H̃ , T ] = LR(H);

(2) x = H̃
†
y;

(3) x̂ = (x− T−1(1 + j)1)/2;

(4) ẑ = round(x̂);

(5) ŝ = 2Q̄(T ẑ) + (1 + j)1;

We summarize the main steps of the LR-aided LEs for QAM signals in Table 8.

The inputs are y and H for LR-aided ZF-LE, and ȳ and H̄ as in (9) for LR-aided

MMSE-LE. In step (3), we manually shift and scale the original constellation to make

sure that the constellation of z is in the whole complex integer set. Therefore, the

estimation of z in step (4) is a simple rounding operation. The quantization operation

Q̄ in step (5) is the same as the one in (47). Other constellations like PSK that belong

to the Gaussian integer ring and can be transferred to consecutive integer sets through
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scaling/shifting can also be adopted. The shifting and scaling operations in steps (3)

and (5) need to be modified accordingly.

6.1.2 LR-aided DFEs

LR-aided DFEs (SICs) can be obtained by replacing the linear estimation of z in

LR-aided LEs by the DFEs (SICs). Here, we introduce the detailed process of LR-

aided ZF-DFE, while LR-aided MMSE-DFE can be obtained by applying LR-aided

DFE onto the extended system in (9). For the system model in (65) obtained by

applying LR algorithms onto the channel matrix H , ZF-DFE with the feedforward

matrix F = Q̃
H

and the feedback matrix B = R̃ is applied to obtain the estimate of

z by assuming the constellation of z to be the whole complex integer set. Q̃ and R̃

are the QR decomposition of the new channel matrix H̃ . For readers’ convenience,

we summarize the equalization process of the LR-aided ZF-DFE in Table 9. Note

that the quantization in step (7) is the same as the mapping operation in (47).

Table 9: LR-aided DFEs with QAM constellations (using Matlab notation).

INPUT: y, H for ZF-DFE (ȳ = [y; 0N×1], H̄ = [H ; σwIN ] for MMSE-DFE);

OUTPUT: ŝ ;

(1) [Q̃, R̃, T ] = LR(H);

(2) x = Q̃
H
y;

(3) x̂ =
(
x− R̃T−1(1 + j)1

)
/2;

(4) for n = N : (−1) : 1

(5) ẑ(n) = ⌊(x̂(n)−∑N
k=n+1 R̃(n, k)ẑ(k))/R̃(n, n)⌉ ;

(6) end

(7) ŝ = 2Q̄(T ẑ) + (1 + j)1;
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6.1.3 Dual LR-aided Equalizers

The above LR-aided equalizers apply LR algorithms onto the channel matrix H to

obtain a new matrix H̃ , which is closer to orthogonality. However, as shown in (7), the

covariance matrix of the colored noise η after equalization is (HHH)−1. Therefore,

a more orthogonal H† ((HHH)−1 is more like a diagonal matrix) may lead to better

performance than a more orthogonal H . The dual LR-aided equalizers proposed in

[52] aim to improve the orthogonality of H−1 and have been shown to achieve better

performance than LR-aided equalizers.

Dual LR-aided equalizers apply LR algorithms onto the dual basis of the channel

matrix
(
H†)H to obtain a new matrix Ĥ =

(
H†)H P , where P is also a unimodular

matrix. Then, the linear system model in (1) can be rewritten as

y = H
(
PH)−1

PHs + w =
(
Ĥ

H)†
z + w, (48)

Comparing to the system model of LR-aided equalizers in (65), it is straightforward

to see that LR-aided equalizers can be applied onto (48) to obtain the estimate of

s by replacing T with
(
PH)−1

and H̃ with
(
Ĥ

H)†
. As shown in [52], the dual

LLL (DLLL) aided equalizers achieve better performance than LLL-aided equalizers.

Since the LLL algorithm focuses on the orthogonality of the input matrix, applying

the LLL algorithm onto the dual basis makes (HHH)−1 more orthogonal than the one

generated by applying LLL onto H . However, this is not true for all LR algorithms.

For example, applying SA onto the dual basis leads to the same performance as SA-

aided equalizers, because SA balances the orthogonality between the original basis

and the dual basis by adopting Seysen’s metric as shown in (41). In the following,

we compare the performance of the aforementioned (dual) LR-aided equalizers.

6.1.4 Performance Comparisons

With so many LR algorithms in the literature, it is difficult to justify which one is

better in terms of performance and complexity. Therefore, it is difficult to position
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SA among various LR algorithms. Here, we try to delineate the performance of the

following well-known algorithms: the SA in [50], the CLLL algorithm in [66], the

DLLL algorithm [53], and Brun’s algorithm in [86]. We do not consider Gaussian

reduction and KZ algorithms because the Gaussian reduction method is only for

2× 2 matrices while the KZ algorithm has much higher complexity but only achieves

a performance similar to that of the LLL algorithm [112]. Here, we need to note

that the performance comparison of LR-aided equalizers with LLL and SA has been

conducted in [49] and [118] for systems with small constellation (4-QAM) and small

channel matrix size (e.g., 6× 6). In the following, we put more emphasis on systems

with large channel matrix and higher constellation (e.g., 64-QAM).
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Figure 23: Performance comparisons for uncoded 4× 4 systems with QPSK

Test case 6.1: In this example, we verify the performance of the proposed SA based

detectors for i.i.d. channels with M = N = 4 and QPSK modulation. Here, we do

not apply any error control codes. Seven detectors are employed on model (1): ZF,
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LR-aided ZF hard detectors based on the CLLL algorithm, DLLL algorithm, and SA

with Kc = Kℓ = 1, Kc = Kℓ = 3, and Kc = Kℓ = 10, and the MAP detector. The

bit-error rate (BER) versus SNR performance is obtained by simulating 106 channels

and is depicted in Fig. 23. It shows that all the LR-aided equalizers achieve diversity

4. Furthermore, we observe that, increasing Kc = Kℓ from 1 to 10 also improves the

performance at the cost of higher complexity.
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Figure 24: Performance comparisons for 8× 8 systems with 64-QAM

Test case 6.2 (Performance comparison of LR-aided equalizers): We compare

the BER performance of LR-aided MMSE and ordered MMSE-SIC equalizers with

four different LR algorithms: the CLLL algorithm, DLLL algorithm, SA, and Brun’s

algorithm. SA is adopted with Kc = Kℓ = 1 (greedy SA) and Kc = Kℓ = 3. The

8× 8 channel matrix H has i.i.d. zero-mean unit-variance Gaussian entries; the sig-

nal constellation was 64-QAM. Performance, averaged over 107 channel realizations,

69



10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

B
E

R

 

 

LLL based ZF−LE
LLL based ZF−SIC
SA ZF−LE (K

c
=K

L
=1)

SA ZF−SIC (K
c
=K

L
=1)

SA ZF−LE (K
c
=K

L
=3)

SA ZF−SIC (K
c
=K

L
=3)

DLLL based ZF−LE
DLLL based ZF−SIC
Brun based ZF−LE
Brun based ZF−SIC

Figure 25: Performance comparisons for 50× 50 systems with 64-QAM

is depicted in Fig. 24. We can see that Brun-aided equalizers have the worst perfor-

mance while SA achieves the best performance among LR-aided MMSE-LEs. Among

LR-aided equalizers, ordered MMSE-SICs, SA and LLL have similar performance. As

stated in [49] and [118], the LLL algorithm can be easily combined with SIC ordering

by employing the sorted QR decomposition (SQRD) given in [118]. Therefore, the

LLL algorithm is preferable if successive interference cancelation is desired, whereas

SA is preferable with direct LEs.

It has been mentioned that SA will fail if the matrix size is more than 35 [50].

However, this is based on the assumption that the lattice is an integer lattice, i.e.,

all the basis vectors are integer vectors. When the entries of the basis vectors are

complex, such as the channel matrix H in our setup, the situation is not clear. Thus,

we study the performance of SA for the challenging case of a 50 × 50 system with

64-QAM in Fig. 25 by simulating 50, 000 channel realizations. The figure shows
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that SA-based LEs still work for high dimensional channels and achieve the best

performance among the four different LR-aided LEs.

6.2 Lattice-Reduction-Aided Soft-Output Detectors

To enhance the information rate, error-control codes (ECC), e.g., Turbo codes [9] and

low-density parity check (LDPC) codes [16], are concatenated in practical systems.

The challenge to apply these concatenated systems is on designing a reliable but low-

complexity receiver. A global optimal decoder is infeasible because of the long length

of ECC. Decoupled hard detectors and decoders do not perform well (see e.g., [35]).

The iterative receivers with joint detection and decoding have been well studied in

the literature [35, 56, 94, 105, 134]. The key issue of iterative decoding is two-fold: i)

generating a list of candidates with low complexity; ii) computing the soft information

on the candidates.

ECC Interleaver Modulation mapper Soft Detector Deinterleaver

Interleaver

Soft decoder
b b̂c̃ c LE,ts

w

y
H

LA,d

LE,dLA,t

Figure 26: Block diagram of coded linear systems

Though these methods achieve near-optimal performance, their complexity is high

especially when the constellation size and/or the channel dimension is high. Thus,

we want to further reduce the complexity while maintaining the near-optimal perfor-

mance. Similar to the case for hard detectors, we resort to the LR technique. The

LR-aided soft-output detector is first proposed in [114], which consumes high complex-

ity by applying LR on different submatrices of the channel matrix to obtain different

candidates. Low complexity LR-aided soft-output detectors are developed indepen-

dently by [72] and [91], and then improved in [79] by taking the covariance matrix of
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the equivalent noise into consideration. [81] proposes another LR-aided soft-output

detector by combining LR with the K-best method in [115]. It has also been shown

that LR-aided linear equalizers with soft-decision have better coding gain [72, 79]

than its hard-decoding counterpart, and can achieve near-optimal performance if the

number of candidates is large enough [81, 91].

Consider a coded multiplexing transmission depicted in Fig. 26. A sequence of

binary information bits b is drawn. After ECC and interleaving, the coded sequence

c is mapped into a symbol sequence s where the constellation size is κ bits/symbol.

Consider linear block transmissions during each channel use, the I/O relationship

is the same as Eq. (1). At the receiver, iterative detection and decoding structure

is adopted to exchange extrinsic information between the soft-output detector and

the soft decoder of the ECC. Given the system model in (1), the extrinsic informa-

tion is calculated by a posteriori probability (APP), which, for the ith bit of c, is

approximated as [35, 72, 81, 91]

LE,t(ci | y) ≈ 1

2
max

c∈Cs

⋂
Si,+1

{
− 2

σ2
w

‖y −Hs‖2 + cT LA,t − LA,t(ci)

}

−1

2
max

c∈Cs

⋂
Si,−1

{
− 2

σ2
w

‖y −Hs‖2 + cT LA,t + LA,t(ci)

}
, (49)

where Si,+1 represents the set of all the κN -bit-long sequences with the ith bit as

+1 and similarly defined Si,−1. Then, this new APP is passed to the soft decoder of

ECC, which takes it as the priori information. Now both complexity and performance

depend on the size of the candidate list Cs. If the list of candidates is too long, the

complexity is too high (near the exhaustive search), but if the list is too short, the

performance will be close to the one of hard detectors. In the following, we show

low-complexity algorithms to generate the lists of candidates based on the CLLL

algorithm and SA, respectively.
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6.2.1 CLLL-aided Soft-Output Detectors

The CLLL algorithm finds a matrix H̃ = HT that is closer to orthogonality than

the original channel matrix, and the system model in (1) is rewritten as Eq. (65) with

respect to H̃ . Then we perform the ZF equalizer H̃
†
instead of H† to the observation

vector as

x = H̃
†
y = T−1s + H̃

†
w := z + n, (50)

where n is colored noise with zero mean and variance

Cnn = E[nnH] = σ2
wH̃

†
(H̃

†
)H = σ2

w

(
H̃

H
H̃
)−1

. (51)

For LR-aided hard detectors, the first step is to obtain an estimate of z in (83) and

then s is estimated through one-to-one mapping. This implies that to have a soft-

output detector, one needs to get a candidate list of z. In the following, we introduce

a method which constructs a sphere in z-domain and find the candidate list of s.

6.2.1.1 Fixed radius algorithm (FRA)

For the soft input x in (83), we generate a list of candidates Cz by finding all possible

z vectors which fall into the sphere centered at x with a radius rz, i.e.,

Cz = {z̃ : ‖z̃ − x‖2 < rz}. (52)

Since for LR-aided hard-output equalizers, the estimate of z is obtained by applying

element-wise rounding operation onto x, the criterion in (52) leads to a list which

includes all candidates around the LR-aided hard-decision result. One may argue

that because of the colored noise n with variance matrix in (51), finding the optimal

candidate set for z in ML sense in the z-domain should be

C′z =
{
z̃ : ‖z̃ − x‖2

H̃HH̃
< rz

}
=
{
z̃ : (z̃ − x)HH̃

H
H̃(z̃ − x) < rz

}
. (53)

However, searching for candidate set for z based on (53) is infeasible because of the

high complexity (i.e., it becomes the same as the original ML search). Furthermore,
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as we have explained, H̃ is more like an orthogonal matrix than the original matrix

H , i.e., H̃
H
H̃ is close to a diagonal matrix after LR algorithms. Therefore, we

can replace H̃
H
H̃ in (53) by an identity matrix, which leads to Eq. (52). This

approximation has been adopted and justified by the analysis of LR algorithms as in

[67, 86]. Thus, to reduce complexity, we adopt the search criterion in (52) to find the

candidate set of z vectors.

Different from the SD method in [34], the sphere here is built in the z-domain

centered at LR-aided estimate instead of the s-domain centered at ZF estimate or

other estimate from pre-processing. However, because of matrix T , the constellation

of z is not ready. Some candidates z̃ on integer lattice may not generate valid

candidates in s-domain. One way is to find all possible z’s and then perform searching

[91]. This costs high computational complexity. Since our final goal is to obtain s

not z and the alphabet of s is known, instead of building Cz in (52), it is equivalent

to finding the list of candidates on s, Cs as:

Cs = {s̃ : ‖T−1s̃− x‖2 < rz}. (54)

To solve this problem, one obvious way is to calculate this Euclidean norm for all

possible vectors s. However, when the vector length or the constellation size is large,

the complexity is still high.

To further reduce the complexity, we perform a low-complexity list searching

method. Defining the QR-decomposition of T−1 as T−1 = QT RT , we obtain

‖T−1s̃− x‖2 = ‖QH
T x−RT s̃‖2, (55)

where RT is an upper triangular matrix. Starting from the bottom layer, we imple-

ment a width-first tree-search method to obtain the list of candidates. The initial

radius is controlled by the signal-to-noise ratio (SNR) and the average number of can-

didates which we will discuss later. The procedure of the FRA method is summarized

in Table 10, where the detailed tree search algorithm (from S5 to S11) can refer to
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[34]. Table 10 uses the Matlab notation (e.g., RT (n, n) denotes the (n, n)th element

of matrix RT , q(n : N) consists of the nth to the N th elements of q).

FRA searches all possible candidates in the sphere. In this case the number of

candidates is random, i.e., there is no restriction on the number of candidates, which

may cause difficulty on hardware implementation. In the following, we introduce

another method which fixes the number of nodes (or tree leaves) on each detection

layer.

Table 10: Fixed radius algorithm (FRA)
Input: y, H , rz; Output: Cs
Initialize: Cs = ∅

(1) [H̃ ,T ] = CLLL (H);
(2) [QT ,RT ] = QR decomposition (T−1);

(3) x = H̃
†
y;

(4) q = QH
T x;

(5) For n = N : (−1) : 1
(6) For each partial candidate vector s̃ ∈ Cs
(7) Find symbols u ∈ S that
(8) ‖RT (n : N, n : N)[u; s̃]− q(n : N)‖2 < rz

(9) Replace s̃ ∈ Cs with [u; s̃];
(10) end
(11) end

6.2.1.2 Fixed points algorithm (FPA)

Instead of searching the whole vector with a fixed radius, one may apply an element-

by-element searching with a fixed number of points on each layer. The idea here

is similar to the K-best SD method in [115], but to guarantee diversity, we always

include the LR-aided hard-decision in the candidate list.

First, we calculate the LR-aided hard-decision estimate. Then, for each detection

layer, we calculate the partial Euclidean norm as in (55) for all the children nodes of

each partial candidate, and then pick up the Kp best candidates with the smallest

Euclidean norm (except the hard-decision point). Given these Kp-best candidates,

one may move to the next layer and find another Kp-best candidates. The detailed
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algorithm is provided in Table 11, where again the conventional Matlab notation

is adopted. To further improve the performance, the ordering of the detection layers

with different criteria may be taken into consideration.

Table 11: Fixed points algorithm (FPA)
Input: y, H , Kp; Output: Cs
Initialize: Dist = zeros (1, Kp); and Cs = ∅

Dist records the distance between RT s̃ and QH
T x, for s̃ ∈ Cs

(1) [H̃ ,T ] = CLLL (H);
(2) Hard-decision solution: ŝhd;
(3) [QT ,RT ] = QR decomposition (T−1);

(4) x = H̃
†
y;

(5) q = QH
T x;

(6) For n = N : (−1) : 1
(7) For each partial candidate vector s̃i ∈ Cs, i ∈ [1, Kp]
(8) For each symbol ul ∈ S, l ∈ [1, |S|] except the one in ŝhd

(9) Dt(i, l) = Dist(i) + |q(n)−RT (n, n : N)[ul; s̃i]
T |2;

(10) end
(11) end
(12) Find the Kp minimum values in Dt and save them as Dist;
(13) Save the corresponding vectors [ul; s̃i] as Cs;
(14) end

Note that in our FPA method the candidate obtained from hard decision is also

added to the candidate list after FPA finds Kp best candidates, if it is not in the list.

This is the same as LRMAP in [91] and LRLSD in [72]. Thus, the average number

of candidates on s is between Kp and Kp + 1. Note that, the number of candidates

for FPA is fixed while the size of the candidate set for FRA is random given rz. FPA

reduces the complexity and saves memory relative to FRA. However, the performance

of FPA is sacrificed compared with FRA due to the local optimization to each level.

In terms of memory usage, FPA is too pessimistic while FRA is too optimistic. In the

following, we introduce a method which combines these two algorithms while fixing

the memory usage.
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6.2.1.3 Fixed memory-usage algorithm (FMA)

In this approach, we assume the number of the allowable memory units for each de-

tection layer is fixed. To perform the tree search, one starts with finding the nodes

that fall into a sphere centered at x with radius rz as in (54). If the number of candi-

dates for the current detection layer is smaller than the number of memory units, all

the partial candidates are kept and carried to next level. If the number of candidate

points for the current detection layer is larger than the number of allowed memory

units, say Km, we pick the Km best candidates among them. Thus, it can be seen that

FMA is a combination of FRA and FPA with fixed memory cost. Furthermore, since

we still find all the nodes as in (54) when the number of candidates on the current

layer is less than Km, the performance of FMA should be better than FPA. Because

some tree branches may be pruned due to fixed memory cost, we also expect FMA

has worse performance than FRA. The detailed algorithms can be found in Table 12,

where again the conventional Matlab notation is adopted. Note here, the number

of candidates is also random given rz and Km.

After generating the list of candidates Cs using FRA, FPA, or FMA, we now need

to obtain the reliability information of the estimate from the candidate list in (49).

For uncoded systems, the proposed soft-output detectors are applied as hard detectors

by finding estimate in the candidate list as

ŝ = arg min
s∈Cs

‖y −Hs‖2. (56)

Because of the multiple choices in the candidate list, the performance is improved

relative to the original LR-aided equalizers, while we pay extra complexity to calculate

this list. In the simulation part, we will show the performance improvement by (56)

and illustrate how far these soft-output detectors’s performance is from the optimal

one.
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Table 12: Fixed memory-usage algorithm (FMA)
Input: y, H , rz, Km; Output: Cs
Initialize: Cs = ∅

(1) [H̃ ,T ] = CLLL (H);
(2) [QT ,RT ] = QR decomposition (T−1);

(3) x = H̃
†
y;

(4) q = QH
T x;

(5) For n = N : (−1) : 1
(6) For each partial candidate vector s̃ ∈ Cs
(7) Find symbols u ∈ S that
(8) ‖RT (n : N, n : N)[u; s̃]− q(n : N)‖2 < rz

(9) Replace s̃ ∈ Cs with [u; s̃];
(10) end
(11) If |Cs| > Km

(12) Choose the Km points in Cs with shortest distance;
(13) end
(14) end

6.2.1.4 Comparisons with the existing methods

The LR-aided soft-output detector is first proposed in [114] with high complexity

coming from executing LR on each M × (N − 1) sub-matrix of H . A low complexity

LR-aided soft-output detector is then proposed in [91], which is named as LRMAP.

For this method, the generation of the candidate list is based on listing all possible z

vectors. Thus, the computational complexity of LRMAP is still high, and this method

may be computationally infeasible to get all the candidates on z when N and κ are

large. Compared with the LRMAP method in [91], it is not difficult to see that our

FRA outperforms the LRMAP method in terms of both performance and complexity

when we fix the number of candidates for s. The reason is that the LRMAP method

in [91] uses some local optimal criterion to find the list, and it needs to enumerate all

possible vectors z, which increases the complexity.

To reduce the complexity of the LRMAP method in [91], the so-called LRLSD

method is proposed in [72]. By defining an integer matrix D whose columns are

ordered nondecreasingly according to their Euclidean norms, the first Ldes column
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vectors in T (ẑ + D) with all the entries belonging to the original constellation S are

taken as the candidates. Since the LRLSD method does not need to generate Z, the

complexity is greatly reduced. The major problem of [72] is that the list of candidates

for z may have a large size (depends on the maximum value of T ). Even if the desired

set of candidates Cs is small, the size of Cz in [72] can be large (the worst case can

be arbitrarily large). When the number of candidates on s is small, the performance

improvement of LRLSD to hard-decision LR is marginal. Furthermore, when the

number of candidates on s is small, to achieve better performance, we may consider

ordering the columns of the D matrix in [72, Eq. (7)] according to the quantization

error of each entry of x and the structure of matrix T , instead of ordering them

in nondecreasing Euclidean norm. However, this also sacrifices the low-complexity

merit.

For the two LR-aided soft-output detectors in [79], the first one is similar to [72],

and the second one considers the covariance matrix of the noise after LR equalization

(η in (83)), which increases the complexity to search for the candidates. [81] also

combines LR with K-best algorithm to search on the z-domain, which requires higher

complexity than our FPA and may lose diversity over certain channels.

Our FPA method is similar to the K-best lattice decoding method in [115]. How-

ever, our method guarantees the same diversity as that of LR-aided equalizers (the

same as ML equalizer enabled for i.i.d. channels), while K-best lattice decoding

method in [115] cannot especially when K is small, because it starts from the original

ZF, MMSE, or DFE solution. Therefore, with comparable complexity, our method

achieves better performance.

6.2.1.5 Choosing the sphere radius

The sphere radius plays an important role for FRA. When the radius is small, only

a few points can be found in the sphere and the probability that the optimal one is

79



included is small. On the other hand, if rz is large, the optimal estimate falls into the

candidate list with high probability, but the complexity is also high. Therefore, we

want to delineate the relationship between the radius and the performance. Based

on the decision rule in (54), we define the difference between x and the true z as

‖x− z‖2 = ‖n‖2 = wH(H̃
†
)HH̃

†
w := r. (57)

According to [92, p. 96], we obtain the pdf of r as

f(r) =
M∑

m=1

Cm

σ2
wλm

exp

(
− r

σ2
wλm

)
, (58)

where λm, m ∈ [1, M ] are the eigenvalues of the matrix (H̃
†
)HH̃

†
, and

Cm =

M∏

i=1,i6=m

λm

λm − λi
.

Because H is random with i.i.d. entries, λm = λi, for m 6= i is zero probability and

(58) holds true with probability one. Obviously, the distribution of r depends on

the channel matrix H and noise variance. Now, with the distribution of r, one can

determine the search radius rz based on the probability that the optimal solution is

included in the candidate list by solving P (r ≤ rz) = ǫ. On the other hand, rz can

also be determined by simple trial to achieve a certain average number of candidates

based on the afforded complexity, and then by integrating Eq. (58) from 0 to rz, we

can find the probability that the optimal solution is in Cs to predict the reliability of

the performance.

6.2.1.6 Complexity comparisons

For soft-output detectors, adjusting the number of candidates can achieve the tradeoff

between performance and complexity. Generally, increasing the number of candidates

improves the performance while also increasing the computational complexity. Thus,

when comparing the complexity of different equalizers, we fix the number of candi-

dates for s. However, for some soft-output detectors, e.g., the FRA and FMA, the
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number of candidates for s is random in a large range given the fixed searching radius.

For these kinds of soft-output detectors (LRMAP, FRA and FMA), we fix the average

number of candidates, while for other soft-output detectors like FPA and LRLSD in

[72], the number of candidates on s is deterministic.

Table 13: Average numbers of operations for one transmission block with 4 symbols

Candidates LR-ZF FRA FPA FMA LRMAP [91] LRLSD [72] MAP
3 2152 7396 6301 6745 29056 3809 98312
4 2152 8579 7561 8012 29995 4714 98312
5 2152 9876 8796 9236 30829 5384 98312

We list the numbers of arithmetic operations for different methods in Table 13, for

which we take the complexity of LR operation into consideration and the complexity of

the generation of Z if used. The results in Table 13 are found on a 4×4 i.i.d. Rayleigh

fading channel with 20dB SNR and QPSK as the modulation scheme. We list the

complexity by fixing the (average) number of candidates for s as 3, 4, 5 respectively.

From the table, we observe that, with the same number of candidates, among these

soft-output detectors, the LRLSD method in [72] has the lowest complexity, while

the performance is also low as we will confirm through the simulations in the next

section. The complexity of MAP which is cited from [91], is the highest. All three

proposed methods, FRA, FMA or FPA have lower complexity than LRMAP in [91].

Note that, for LRMAP in [91], the generation of the list of the candidates Z costs

more complexity compared with the algorithm itself. Thus, our algorithms save a lot

of complexity since they do not need to generate Z. As we expected, FRA has higher

complexity than FPA, and FMA has complexity in between. Furthermore, we notice,

as the number of candidates increases, the complexity of all the soft-output detectors

increases. Specifically, it is observed that FRA with 4 candidates has a complexity

comparable with that of FPA with 5 candidates. Later, we will show that they also

have similar performance. Considering the memory load of them, FPA is preferable
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in this case.

6.2.2 SA-based Soft-Output Detectors

As shown in Section 5.2, SA is employed as one LR method that has been shown

to have better performance than the well-documented LLL algorithm. Based on the

tree-search implementation of SA in Section 5.2, we proposed following LR-aided soft-

output detectors. The performance-complexity tradeoff of our proposed algorithms

will also be studied.

[K-Best tree]: As we have explained, during the process of finding the optimal H̃ ,

many candidate H̃ ’s are found, which have higher S(·) than the optimal one but

lower than the original one. Thus, we can utilize these already generated candidate

matrices to find candidates for s. We keep the final Kc candidates for H̃ generated

by SA instead of just the one with the smallest S(·). Then, for each of them, we apply

LE and thus obtain Kc estimates of s. We choose the distinct estimates in these Kc

candidates and build a candidate list. In this way, the generation of candidates for s

does not consume much extra complexity compared with that of the hard detector.

Furthermore, since it is based on the tree-search implementation of SA, Kc and Kℓ

can be adjusted to balance the trade-off between complexity and performance. In

the last step (i.e., upon convergence, or when the maximum number of iterations has

been exceeded), one could retain many more than the best Kc channels (up to KcKℓ

channels), potentially giving rise to more candidates, if needed.

[Greedy tree]: Another way to further reduce the complexity of this LR-aided soft-

output detector is to adopt the greedy implementation of SA [50, 87], which means

Kc = Kℓ = 1 for the general implementation depicted in Fig. 7. Though Kc = 1

means that in every step we only find one index pair that maximizes the reduction of

S(H), we could record Kg matrices that the search algorithm has already generated

as candidates for the optimal H̃ . As with the K-best tree, this leads to additional
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candidates for s. The complexity is lower than that of the K-Best tree method, but

the expected performance is also worse. These two algorithms are summarized in Fig.

27.

The second basis update
candidates
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to generate
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· · · Kc · · ·

· · · Kc · · ·
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· · ·

· · ·
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The first basis update

H̃ and H̃
†

s

Kc candidates of H̃ and H̃
†

to generate candidates of s

Figure 27: Diagrams of SA based soft-output detectors: (left)K-best tree (right)
greedy tree

Compared with other LR-aided soft-output detectors, e.g., [72, 81, 91], our SA

based soft-output detectors have several advantages. First, the extra complexity

of the soft-output detectors is low, only slightly higher than that of the hard-output

detector. Unlike the LR-aided maximum a posteriori (MAP) detector in [91], our LR-

aided soft-output detector does not require generation of the Z matrix which contains

all the possible points for z in (83). This leads to a large complexity advantage for our

method over LR-aided MAP, though LR-aided MAP is claimed to have near-optimal

performance when the number of candidates is large.

Compared with the LR-aided soft detectors in [72, 81], our proposed soft-output

detector avoids the huge memory storage required for the predetermined matrix D

as in [72, Eq. (7)]. Though the proposed soft-output detector may also need large

memory storage to record the candidates for H̃ and their pseudo-inverses, we can

still control the size of the required memory by controlling the parameters Kc and

Kℓ. Second, the performance of our proposed detector is better than that of the

soft-output detector in [72], especially when the number of candidates for s is small.

However, unlike the soft-output detectors in [72, 81, 91], our method may not
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achieve optimal performance even when Kc, Kℓ or Kg increase and approach infinity.

This is mainly because the proposed soft detectors may not be able to list all possible

candidates for the information symbols. However, the methods in [72, 81, 91] can

achieve near-optimal performance only if a large number of candidates is available,

which means really high complexity. Thus, for practical systems which cannot afford

high complexity, our proposed soft-output detectors are preferable, since they have

better performance and also lower complexity when the number of candidates is small.

6.2.3 Simulation Results

In this section, we use computer simulations to verify the performance of our pro-

posed LR-aided soft-output detectors. In the following examples, QPSK modulation

is used and SNR is defined as symbol energy versus noise power, i.e., E[|s|2]/σ2
w. For

uncoded systems, SNR is calculated on each dimension, while for coded systems, the

total transmit power is normalized to 1 as in [35]. Unless specifically stated, the linear

mapper adopted here is spatial multiplexing, i.e., V-BLAST transmissions.

Test Case 6.3 (Performance comparisons of different detectors for uncoded

systems): In this example, we verify the performance of FRA and FPA for i.i.d.

channels with M = N = 4. The channel is time-invariant for one symbol period

and changes independently from symbol to symbol. Here, we do not apply any ECC.

Eight detectors are employed on model (1): ZF, LR-aided ZF hard detector, LR-

aided soft-output detectors with FRA, FPA and FMA, LRMAP in [91], LRLSD in

[72] and MAP detectors. When comparing the performance of different LR-aided soft-

output detectors, we fix the (average) number of candidates of s as 3. By selecting

the search radius of FRA as rz = 1, and (rz, Km) = (1.1, 4) for FMA, the average

number of s candidates is approximately 3 for FRA and FMA given SNR at 18dB.

Kp = 2 for FPA is to get almost 3 candidates including the one obtained by LR-aided
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hard detector. The bit-error rate (BER) versus SNR performance is depicted in Fig.

28. It shows that all the LR-aided equalizers achieve diversity M = 4. However, the

performance of LRLSD in [72] is quite close to the one of LR-aided hard detector since

the number of total candidates for s is only 3. Furthermore, we observe that, among

these soft decision methods, FRA reaches the near-optimal performance with only

7.5% complexity of MAP. If rz, Kp and Km are large enough, FRA, FPA and FMA

reach the MAP decoder performance. An interesting observation is that FRA not

only has better performance than LRMAP in [91], but also requires lower complexity

as shown in Table 13.
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Figure 28: Performance comparisons with M = N = 4

One of FPA’s advantages is easy to be implemented in VLSI. One natural com-

petition for FPA is the K-Best algorithm in [115], which is a modification of the SD

method to facilitate the hardware design. From Fig. 28, we notice that with 3 can-

didates K-best algorithm only collects diversity 1, the same as ZF equalizer. This is
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because the K-Best algorithm uses the estimate of ZF as the initial point and also em-

ploys a width-first tree-search algorithm instead of the original depth-first algorithm

of SD [34]. However, for our FPA, though the tree-search structure is like K-best

algorithm, the diversity collected is 4, the same as the optimal one. This is because

FPA includes the estimate of LR-aided ZF equalizer as one of the candidates. Thus,

it guarantees the full diversity.
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Figure 29: Performance comparisons for a coded system with M = N = 4

Test Case 6.4 (Performance comparisons of different detectors for coded

systems): In this example, we verify the performance of FRA, FMA, and FPA with

the same channel setup as the previous example but with Turbo codes. The parallel

rate 1
2

Turbo code is adopted with the generator (1, 1+D2

1+D+D2 ). The information bit

sequence is of length 1024. We employ the iterative decoder [9, 82] of Turbo code with

4 iterations as the soft decoder. Additionally, we use the method in [56] to constrain
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the priori information transmitted between detector and decoder. Now we apply iter-

ative receiver as shown in Fig. 26 with different soft-output detectors. Six detectors

are employed respectively on model (1): LR-aided soft-output detectors with FRA,

FPA and FMA, LRMAP in [91], LRLSD in [72] and LSD in [35]. From Fig. 29, we

observe LRLSD in [72] still has the worst performance with only 3 candidates for the

detector. Here we use LSD in [35] as a benchmark. The number of candidates for

LSD is 3 for all SNR which requires adaptively changing the radius. We observe that

among all LR-aided soft-output detectors FRA reaches the best performance with

lower complexity. Compared with the performance shown in Fig. 28 for uncoded

systems, the performance gap between FRA and LSD is enlarged when the Turbo

code is applied onto the system. This is mainly because for FRA we fix the radius

which results in the number of candidates smaller than 3 at low SNR. Adaptively

adjusting the radius for FRA for different channel realizations is out of the scope of

this paper.

Test Case 6.5 (Performance-complexity tradeoff for soft-output detectors):

In this example, we compare the performance of FPA with different Kp in terms of

performance for an uncoded 4 × 4 system. Here, as in many publications on tree-

searching algorithms, we count the number of s candidates to represent the complex-

ity. We plot the performance of FPA with Kp = 2, 3, 4 in Fig. 38, for which the

number of candidates for s is 3, 4, and 5, respectively. From the figure, we observe

that, as Kp increases, the performance becomes better and approaches the optimal

one. Note that as shown in Table 13, when Kp is 4 (i.e., almost 5 candidates), the

complexity of FPA is comparable with FRA with 4 candidates (in Fig. 28) and their

performance is also comparable, but FPA is easier to be implemented by hardware

with lower storage overhead.
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Figure 30: Performance comparison of FPA with different Kp

Test Case 6.6 (Performance comparison of different numbers of iterations

for soft-output detectors): We adopt a Turbo coded 4 × 4 system with iterative

receivers to show the effect of the number of iterations in the receiver. The perfor-

mance of LR-aided soft-output detector with FRA algorithm is plotted in Fig. 31,

with 1, 2, and 3 iterations at the receiver respectively. From the figure, we observe

that, as the number of iterations increases, the performance becomes better. How-

ever, if we keep increasing the number of iterations, the performance improvement

becomes marginal. We plot the performance of FRA, FPA, and FMA with 1 and 3

iterations respectively in Fig. 32. The performance improvement of FPA and FMA

from one iteration to three iterations is not as big as that of FRA.

Test Case 6.7 (Performance comparisons of soft-output detectors for un-

coded systems): Here, we verify the performance of the proposed SA based soft-

output detectors for i.i.d. channels with M = N = 4. Here, we do not apply any
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Figure 31: Performance of FRA with different numbers of iterations

error control codes. Thus, the soft-output detector output is

ŝ = arg min
s∈Cs

‖y −Hs‖2. (59)

Because of the multiple choices in the candidate list Cs, the performance is improved

relative to that of the original LR-aided hard detectors, while we pay extra complexity

to calculate this list. Six detectors are employed on model (1): LR-aided ZF-LE based

on SA with Kc = Kℓ = 1, LR-aided soft-output detectors based on greedy SA with

Kg = 3, SA based soft-output detectors with Kc = Kℓ = 3 and Kc = Kℓ = 10, LRLSD

in [72] and LRMAP in [91]. For the LRLSD detector in [72], we fix the average number

of candidates of s at 3 when SNR = 20dB. The number of candidates generated for

the SA based soft-output detectors is small. For example, the average number of

candidates is approximately 1.5 for greedy soft SA with Kg = 3. The bit-error rate

(BER) versus SNR performance was obtained by simulating more than 106 channels

89



0 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

FPA−one iteration
FPA−three iterations
FMA−one iteration
FMA−three iterations
FRA−one iteration
FRA−three iterations

Figure 32: Performance comparisons of FRA, FPA, and FMA with different numbers
of iterations

and is depicted in Fig. 33 for 4×4 systems. It shows that all the LR-aided soft-output

detectors achieve the maximum possible diversity order M = 4. The performance of

LRLSD in [72] is quite close to that of the SA based hard detector, while LRMAP in

[91] has the best performance.

Test Case 6.8 (Performance comparisons of soft-output detectors for coded

systems): In this example, we verify the performance of the proposed LR-aided soft-

output detectors based on SA for 4 × 4 systems. The channel setup is the same as

in the previous example but with Turbo codes. The parallel Turbo code is rate 1
2

with the generator (1, 1+D2

1+D+D2 ). The information bit sequence is of length 1024. We

employ the iterative decoder of Turbo code with 4 iterations as the soft decoder. The

extrinsic information is calculated as in (49) at the detector during each iteration.
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Four detectors are employed on model (1): linear ZF equalizer, LRLSD in [72], LR-

aided soft-output detectors based on greedy SA with Kg = 3, and LRMAP in [91].

We also fix the average number of candidates of s at 3 for LRLSD and LRMAP, while

the average number of candidates for greedy SA soft-output detector is less than 3.

As shown in Fig. 34, LRLSD in [72] still has the worst performance, the same as

that for uncoded systems. Furthermore, we observe that, with fewer number of basis

updates and fewer candidates, the LR-aided soft-output detector based on greedy SA

is better than LRLSD in [72], while LRMAP in [91] has the best performance and

much higher complexity.
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Figure 34: Performance comparisons for coded systems with M = N = 4

6.3 Performance Analysis of Lattice-Reduction-Aided De-

tectors

In this section, we analyze the performance of the proposed LR-aided equalizers in

terms of error probability, mutual information, and complexity.

6.3.1 Probability of Errors

To our best knowledge, the performance of LR-aided equalizers has been analyzed

only when the LLL algorithm is adopted as the LR method. SA-aided equalizers

have also been discussed following similar procedures of LLL-aided low-complexity

equalizers. The performance of LR-aided equalizers with other LR methods, e.g., the

KZ and Brun’s algorithms, has not been studied theoretically, since the property of

output matrices of these LR methods has not been quantified yet. In the following,

we give the results on the performance analysis of LR-aided equalizers with the LLL
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algorithm and SA as LR methods.

6.3.1.1 LR-aided hard-output detectors

With the result in Proposition 5, we analyze the performance of LLL-aided equalizers

for different transmission systems. We summarize the results for i.i.d. channels in

the following proposition.

Proposition 8 Given the model in (1), if the channels are i.i.d. complex Gaussian

distributed, the diversity order collected by an LR-aided LE (LR-aided ZF or LR-aided

MMSE) is N , which is the same as that achieved by the ML detector.

Proof: See Appendix J.

Similarly, for LR-aided MMSE equalizer, we can show that it also collects diversity

M . As we have shown in [67], the linear equalizers can only collect diversity M−N+1

for V-BLAST transmissions. However, after introducing LR technique into the linear

equalization process, the maximum diversity is recovered for V-BLAST systems. This

confirms that the LR technique brings the performance curves of the linear equalizers

parallel to that of MLE.

The performance of LLL-aided equalizers for LP-OFDM system in [57] is given in

the following proposition.

Proposition 9 For the LP-OFDM system in [57] with group size K and frequency-

selective channel order L with channel correlation matrix with rank (ρh ≤ L +1), the

diversity order collected by the LR-aided LEs is min(K, ρh) which is the same as that

obtained by the (near-) MLEs.

Proof: See Appendix K.

As we have shown in [69], LEs cannot exploit any multipath diversity for LP-

OFDM systems. However, after introducing the LR technique into the linear equal-

ization process, multipath diversity is collected. Similarly, one can show that the
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LR-aided MMSE equalizer also collects full multipath diversity. Furthermore, since

DFEs (SICs) achieve better performance than that of LEs, LR-aided DFEs are ex-

pected to achieve the same diversity as (near-) MLEs for these two transmission

systems.

Example 6.1 (LR-aided equalizers for i.i.d. channels): We verify Proposition 8

by plotting BER curves of different equalizers for i.i.d. channels with (M, N) = (4, 3)

and QPSK in Figure 35. We notice that the linear detectors can only achieve diversity

order M − N + 1, which is 2 in this case. The MLE collects diversity M = 4. As

expected, the LR-aided linear detectors achieve the same diversity order as the MLE

does. However, there still exist performance gaps between LR-aided equalizers and

the MLE.
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Figure 35: Performance of i.i.d. channels with (M, N) = (4, 3) and QPSK modula-
tion

Example 6.2 (LR-aided equalizers for LP-OFDM): To verify the performance

for LP-OFDM systems, we fix the channel order of frequency-selective channel as L =
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3, and the number of subcarriers Nc = 64. The channel taps are independent complex

Gaussian random variables with zero mean and variance 1
L+1

. The subcarriers are

split into Ng = 16 groups with size K = 4. Figure 36 shows the BER performance of

LR-aided ZF, MMSE, ZF-DFE, MMSE-DFE, and MLE. From this figure, we observe

that LR-aided equalizers collect diversity order L + 1, as does the MLE, although

there still exists a gap between the performance of the LR-aided equalizers and the

MLE. The performance of the LR-aided MMSE-DFE equalizer is better than that of

the LR-aided ZF equalizer, ZF-DFE, and MMSE.
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Figure 36: Comparisons among different LR-aided equalizers for LP-OFDM with
QPSK modulation

Similar to the LLL algorithm, if SA upper bounds the output S(H̃) by a finite

constant, it can be easily proved that SA-aided low-complexity equalizers collect the

same diversity as MLE does as Propositions 12 and 9. For 2×2 systems, Proposition

7 shows that SA upper bounds the Seysen’s metric of the output matrix H̃ by a

finite number. For an N -D lattice, the simulation results show the existence of a
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finite upper bound, but it is not theoretically proved yet. However, according to

the simulation results in [87] and our own simulation experience, SA-aided equalizers

collect the same diversity as LLL-aided equalizers for many transmission systems.

6.3.1.2 LR-aided soft-output detectors

We now analyze the BER performance of our three LR-aided soft-output detectors in

a coded system. Suppose c(1) is the transmitted codeword generated by the original

information bits. At the receiver, it is erroneously detected and decoded to a different

information sequence. These two bit sequences are different in de positions. Because of

the interleaver between ECC and linear mapping, which is random for every codeword,

these de errors are sufficiently far from each other. Furthermore, usually an interleaver

is added just before the transmission to decorrelate the channels and make the channel

vary fast enough. Based on these assumptions, we suppose that for each transmitted

symbol vector of this codeword c(1), i.e., s(1)(k), has at most one entry different from

the detected block, where k ∈ [1, Mc] with Mc being the number of transmission

blocks for one codeword.

Without loss of generality, we assume the blocks that have an error are s(1)(i) for

i ∈ [1, de]. For each transmitted block, we use the LR-aided linear equalizer to detect

the transmitted symbol vector s(1)(i). Suppose s(1)(i) is estimated as s(s)(i) through

LR-aided soft-output detectors or s(h)(i) by LR-aided hard detectors. For FRA, since

the hard estimate is adopted as the center point of the tree search algorithm, s(h)(i)

is always included in the candidate list. Furthermore, as we mentioned, for FPA and

FMA algorithms, the estimate from the LR-aided hard detector is manually added

to the candidates set. Thus, for the three proposed LR-aided soft-output detectors,

we have

‖y −Hs(s)‖ ≤ ‖y −Hs(h)‖. (60)
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If the ML solution is sML, then

‖y −HsML‖ ≤ ‖y −Hs(s)‖. (61)

These mean that

P ML
e ≤ P (s)

e ≤ P (h)
e ,

where Pe denotes bit error probability depending on different equalizers. Thus, the

diversity order of soft-output detectors is greater than or equal to that of hard de-

tectors but less than or equal to that of the ML detector. Furthermore, as shown

in [67] and [96], the diversity order of LR-aided hard detectors for V-BLAST MIMO

transmission systems is the same as that of the ML detector. Thus, for V-BLAST

transmission over i.i.d. channels, the diversity order of the proposed LR-aided soft-

output detectors is the same as that of the ML detector.

In summary, if the diversity of LR-aided soft-output detectors is Gd, at high SNR

regime, we have

P
(
s(1)(i)→ s(s)(i)

)
= EH(i){P (s(1)(i)→ s(s)(i) |H(i))} ≈ c

(
1

σ2
w

)−Gd

, (62)

where c is a constant that depends on the size and the distribution of the channel

matrix H . For coded case, suppose the channel matrix for each transmitted symbol

vector is independent, which is enabled by the interleaver before transmission. We

have the following expression on the probability that c(1) is erroneously decoded as

c(s)

P (c(1) → c(s)) = EH(1),H(2),...,H(de){P (c(1) → c(s) |H(1), H(2), . . .H(de))}

=

de∏

i=1

EH(i){P (s(1)(i)→ s(s)(i) |H(i))} ≈ cde

(
1

σ2
w

)−Gdde

. (63)

This is for the de errors case. Applying the union bound to all error events, we can

get the average BER as (see e.g., [8, p. 514])

Pe ≈
Mc∑

de=dmin

cde

(
1

σ2
w

)−Gdde

, where cde
= cde

Kc∑

w=1

w

Kc

Bw,de
, (64)
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Bw,de
is the number of error events with input sequence weight w and de output

weight, and Kc is the number of information bits per input sequence. Define dmin the

minimum Hamming distance of ECC. Thus, the diversity of the coded transmissions

through i.i.d. channels with LR-aided soft-output detectors is at most dminGd. Here,

we assume the channel varies fast enough. However, this is not necessarily true even

when the interleaver is added before transmission. This means usually the diversity

of a practical system is less than dminGd. One extreme case is that the channel

remains the same for one codeword (Mc transmitted symbol vectors). In this case,

the diversity order of this coded system is Gd, which is between that of the ML

detector and that of LR-aided hard detectors. The analysis here is consistent with

the one for ML detectors in [23, Chapter 10].

6.3.2 Mutual Information

Now let us analyze the effect of LR on mutual information. Since H̃ is obtained after

applying LR algorithms onto the channel matrix H , we can rewrite the system model

in (1) as

y = HT (T−1s) + w = H̃z + w.

Following the same procedure as in Section 3.2, when MLE is applied on (65) in two

steps (first estimate z and then estimate s), it is ready to show that

CLR
ML(H) = log2

[
det

(
IM +

1

σ2
w

H̃RzH̃
H
)]

= log2

[
det

(
IN +

1

σ2
w

HHH

)]
, (65)

where Rz = E[zzH] = T −1Rs(T
−1)H. From this equation, we know the capacity

of MLE after LR preprocessing is the same as using MLE directly. This is not

surprising because LR process does not change the system model. Now let us focus

on the capacity of LR-aided LEs.

Although H(s|H) is the same as in (15), H(s|x; H) now changes since ẑ is

estimated from x in (83) first, and then s is decoded by mapping T ẑ to the original
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Figure 37: CDF of the capacity based on different equalizers

constellation. Thus, the covariance matrix of s given H and x in (83) is expressed

as

Rs|x;H = TRz|x;HTH = T

(
R−1

z +
1

σ2
w

R−1
ξ

)−1

TH

=

(
(TH)−1THR−1

s TT −1 +
1

σ2
w

(TH)−1R−1
ξ T−1

)−1

=

(
R−1

s +
1

σ2
w

(TH)−1R−1
ξ T−1

)−1

, (66)

where Rξ = diag[C̃1,1, C̃2,2, . . . , C̃N,N ] is the covariance matrix of the equivalent noise

vector ξ in (83), with C̃i,i being the (i, i)th entry of the matrix C̃ = (H̃
H
H̃)−1. As we

have assumed for MLE and LEs, the information symbols s are Gaussian distributed

with Rs = IN . Thus, we obtain the instantaneous capacity of the LR-aided ZF

equalizer as

CLR
ZF (H) = log2

[
det

(
IN +

1

σ2
w

(TH)−1R−1
ξ T−1

)]
. (67)
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Figure 38: Outage probability vs. SNR

Similar to (20), when SNR is high, the expression in (67) can be approximated as

CLR
ZF (H) ≈ log2

[
det
(
R−1

ξ

)]
−N log2 σ2

w, (68)

because det(THT ) = 1. Since we have shown that LR preprocessing does not change

the capacity when MLE is adopted at the receiver [cf. (65)], similar to (22), we have

CLR
ZF (H) ≤ CLR

ML(H) = CML(H). (69)

According to Proposition 5, we know od(H̃) has an upper bound 1−c2
δ < 1. With

Lemma 2, Proposition 5, and Theorem 2, the outage probability of the capacity of

the LR-aided ZF equalizer P (CLR
ZF < Cth) is parallel to that of MLE. However, the

original ZF equalizer does not have this property.

Example 6.3 (Mutual information of LR-aided LEs): The CDFs of the capacity

with these equalizers are depicted in Fig. 37 with SNR = 20 dB for i.i.d. channels

with M = N = 4 and different equalizers: ZF (ǫ = 1 and 0.99), LR-aided ZF
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and MLEs. Outage probabilities of the capacity versus SNR are plotted in Fig. 38

with Cth = 20 bits/sec/Hz. Comparing Figs. 37 and 38, we notice that (i) when

sup(od((H†)H)) = 1 (ZF with ǫ = 1 case) LE loses outage diversity (i.e., the curve of

LE is not parallel with the one of MLE); this is different from the average capacity in

Fig. 28; and (ii) when od((H†)H) has an upper bound which is less than 1 (LR-aided

ZF case and ZF with ǫ = 0.99 case), the outage probability curves of LEs become

parallel with those of MLEs. This is consistent with Theorem 2 and our analysis in

Section 3.3.

6.3.3 System Design Issues

For iterative algorithms such as the SA and the LLL algorithms, a common approach

for hardware implementation is to fix the maximum number of iterations so that the

algorithms are forced to stop when the number of iterations reaches this threshold.

However, to make efficient usage of the hardware components, this limit cannot be

too large. Thus, with a certain probability, the algorithms will be terminated before

they end normally, which means performance degradation compared with the fully

executed algorithms. Obviously, the number of iterations needed for the algorithms is

an important criterion to quantify implementation complexity. On the other hand, the

total number of arithmetic operations (real additions and real multiplications) needed

for the algorithms is another important criterion to quantify algorithm complexity.

After comparing the performance of different LR-aided equalizers, we focus on the

complexity comparison of different LR algorithms in terms of the number of basis

updates and the number of arithmetic operations in this section.

We start the comparison by considering the number of arithmetic operations per

basis update. During one basis update iteration, the basis is updated as hm ←

hm + chn, where c is an integer. For SA, we keep finding index pairs (m, n) and

integers λm,n to reduce S(H̃). In each iteration, we need to update H̃ , H̃
†
, and B as
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in (42), which takes 24N arithmetic operations. Furthermore, updating the entries of

λ and ∆ matrices as in (43) and (44) is more complex. Here, we adopt the method

in [87] to simplify the computation. However, it still needs (104N − 18) operations.

Thus, in total, SA needs (128N − 18) arithmetic operations in each basis update.

For the complex LLL algorithm, the number of arithmetic operations for each

basis update is random. The basis updates of the LLL algorithm are composed of

size reduction process and δ condition updating process [19, 66]. In the nth basis

update, size reduction requires at most (16N +2) arithmetic operations. In addition,

the δ condition updating process needs 28(M + N) · pu operations, where pu is the

probability that the δ condition fails and thus updating is necessary. Thus, the LLL

algorithm needs (16N + 2) + 28(M + N) · pu operations in each basis update, which

is less than that of SA (unless M >> N). Furthermore, the probability pu is small

according to simulations [19, 66], which means the actual complexity of each basis

update is even lower. Similar bounds on the worst-case complexity per iteration can

be found in [49].

Here, we need to note that though SA needs more arithmetic operations per basis

update than the LLL algorithm, the number of arithmetic operations is fixed given

the channel size, while the number of arithmetic operations for each basis update is

random for the LLL algorithm. This leads to a more efficient usage of the hardware

components for SA. Considering the less average number of basis updates SA needed,

the choice of fixed maximum number of iterations is more flexible.

Example 6.4 (Complexity comparisons for i.i.d. channels): We verify the

complexity by plotting the average number of arithmetic operations (including real

additions and real multiplications) per channel realization for M = N = 2 to 16 in

Figure 39. Five equalizers are adopted: ZF-LE, ZF-DFE, LR-aided ZF-LE, LR-aided

ZF-DFE, and SD method. For LR-aided equalizers, the CLLL algorithm is adopted.

Here, the complexity of ZF-LE is obtained by adopting the Gaussian elimination for
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matrix inversion, while ZF-DFE adopts the QR decomposition implemented through

Householder transformation. The SD method is implemented as in [34]. From the

figure, we can see that the complexity gap between LR-aided equalizers and traditional

low-complexity equalizers is much smaller than that between SD and LEs/DFEs.

The difference becomes larger as the dimension increases. Provided the significant

performance improvement by the LR-aided equalizers, the complexity of LR-aided

equalizers is really low. Furthermore, the complexity of LR-aided ZF-LE is slightly

smaller than that of LR-aided ZF-DFE. Comparing the operations in Tables 8 and 9,

we can see LR-aided ZF-DFE only requires an extra matrix-vector multiplication.
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Figure 39: Complexity comparison of different equalizers with QPSK modulation.

In Fig. 40, we plot the average number of arithmetic operations for SA and the

complex LLL algorithm (dual LLL algorithm has the same complexity as LLL), SA-

aided ZF and LLL-aided ZF equalizers. For reference, we also plot the complexity

of ZF equalizer and QR decomposition. From the figure, we can see that SA needs
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Figure 40: Complexity comparisons for uncoded systems with N = M = n

more arithmetic operations than LLL does. This verifies our analysis. Though SA

needs less number of basis updates, the larger number of arithmetic operations per

iteration makes the complexity of SA higher than that of LLL. Furthermore, the gap

between the SA-aided ZF and LLL-aided ZF equalizers is smaller than that between

SA and LLL. The complexity of the LLL-aided ZF equalizer is quite close to that of

SA-aided ZF. This is because even more extra complexity is needed to implement the

LLL-aided ZF equalizer than that with SA. Recalling the performance comparison

in Fig. 25, we can see that, with comparable complexity, SA-aided ZF equalizer has

better performance than dual LLL-aided ZF equalizer. Thus, SA is preferred to for

use with LR-aided LEs, where the inverse of matrices is involved. However, when it

comes to SICs, it is favorable to adopt LLL from an implementation point of view

since LLL is based on QR decomposition.

As we have mentioned, one major advantage of SA over LLL is that SA reduces
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Figure 41: Average complexity and standard deviation comparison of SD method
and LR-aided ZF equalizer at SNR = 30dB

S(H) in every basis update, while LLL does not even guarantee to reduce od(H) for

each realization of H . This advantage becomes especially important when it comes

to hardware implementation since we need to set an upper bound on the number of

iterations for these iterative algorithms. We use the following test case to demonstrate

the performance when we have fixed number of iterations.

Example 6.5 (Complexity comparison of decoding schemes for LP-OFDM):

We set the number of sub-carriers to Nc = 120 and the channel order to L = 5.

Hence, the maximum multipath diversity order is 6. To compare the complexity of

different decoding methods, we fix SNR at 30 dB and count the number of arithmetic

operations (real additions and real multiplications). In Fig. 41, we plot four curves

to represent: the SD method [34], the LR-aided ZF equalizer, a general ZF equalizer

and a simplified ZF detector for LP-OFDM . Here, the general ZF equalizer inverts
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Hequ directly (i.e., (DHΘ)−1) and the simplified ZF detector is ΘHD−1
H based on the

knowledge that Θ is unitary. The SD method chosen here may not be up-to-date [34],

but it is representative. The standard deviations of the complexity are also plotted for

LR-aided ZF and SD method on each group size. From Fig. 41, we notice that, the

curve of the LR-aided ZF equalizer is much closer to that of the general ZF detector

than to that of the SD method. This means that the decoding complexity of the LR-

aided ZF is very close to that of general ZF equalizers (about twice), and much lower

than that of the SD method. Furthermore, the standard deviation of the complexity

of LR-aided ZF is smaller than that of the SD method. Note that the complexity

shown in Fig. 41 is in the high SNR regime. When SNR is low, SD has much higher

complexity (it is exponential for the worst case), while LR-aided ZF equalizer still

keeps the same complexity shown in Fig. 41. In the same figure, we also observe

that the complexity of the simplified ZF equalizer is quite low thanks to the unitary

property of Θ. However, it can only collect diversity 1. With a complexity that is a

little bit higher than that of the general ZF equalizer, the LR-aided ZF equalizer can

guarantee the diversity order of the ML detector.

Example 6.6 (Performance comparisons of LR algorithms with fixed-complexity):

In Fig. 42, we plot the performance of SA, LLL and dual LLL-aided ZF equalizers

with a fixed number of iterations Ni for a 6× 6 V-BLAST system. We fix the max-

imum number of iterations as Ni = 8, 10, and 12, respectively. From the figure,

we can see that SA-aided ZF equalizer has the best performance among these three

equalizers with fixed number of iterations, and the performance gap becomes larger

as Ni increases. Thus, once again we confirm that SA is more friendly to hardware

implementation than LLL algorithm.
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Figure 42: Performance comparisons with fixed complexity for N = M = 6
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CHAPTER VII

DIVERSITY WITH FINITE-BIT REPRESENTATION

So far, all existing results on diversity and also our previous analysis are based on

the mathematical derivation in real or complex field, which assumes the numbers are

represented in infinite accuracy. However, in practical systems and even simulation

tools (including Matlab), only finite bits are afforded to represent real/complex

numbers. Surely, this will affect the performance of the communication systems [55].

Therefore, the diversity has to be revisited and quantified for systems with finite-bit

representation.

Suppose that signal s is transmitted while vector s̃ 6= s is detected at the receiver.

The pairwise error probability (PEP) of MLE in (5) is quantified as [7, 57, 123]

Pe(s→ s̃|H) = Q

(
1

σ2
w

‖H(s̃− s)‖2
)

:= Q

(
1

σ2
w

‖He‖2
)

, (70)

where e = s̃−s is the error vector, and Q(·) is the Gaussian tail function. By defining

an MN × 1 vector h = [hT
1 , . . . , hT

N ]T , where hn is the nth column of H , we have

‖He‖2 = hHEh ∼ h̃
H
Aeh̃, (71)

where E = IM ⊗
(
(eT )HeT

)
, the correlation matrix of h is Rh = E[hHh] with rank

ρh, for which the SVD is UH
h ΛhU h, an ρh × 1 vector h̃ has i.i.d. complex Gaussian

entries, Ae = Λ
1
2
h UH

h EUhΛ
1
2
h is determined by the error vector e and Rh, and “∼”

denotes the identical distributions. Since each entry of the signal s is drawn from the

constellation S, the error signal e belongs to a set Se = {e := s̃−s|s̃ 6= s, s̃, s ∈ SN}.

With infinite bits representation, the diversity order G
(i)
d collected by the MLE is

defined as (see e.g., [7, 57, 123])

G
(i)
d = min

e∈Se

rank(Ae). (72)
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In this paper, instead of assuming each number (the real or complex numbers) is

represented by infinite bits, we consider the situation where finite-bit representation

is adopted, e.g., fixed-point or floating-point number representation. In this case, a

small real number may be quantified to zero. Thus, the performance of MLE in (5)

is affected because the rank of Ae in (71) may be different due to the following two

cases:

S1) The statistical property of H is changed when the number of bits adopted is

too small;

S2) H is still well approximated as a complex Gaussian random matrix, but the

constellation S spans a wide range and thus the rank of finite-bit represented

Ae is smaller than the rank of original Ae.

In the following, we analyze the diversity order for these two cases with finite-bit

representation.

7.1 Finite Bit Represented Channels

A Gaussian random variable h is represented by finite bits as (using fixed-point with

two’s complement arithmetic)

F(h, G, F ) = −bG−12
G−1 +

G−2∑

i=0

bi2
i +

F∑

i=1

ai2
−i, (73)

where G and F are the number of integer and fractional bits, and ai and bi are binary

bits. When the number of bits is not enough, the Gaussian variable can not be well

approximated, and thus the diversity may be lost. Here, we use one example to show

how the number of bits adopted will affect the diversity.

Example 7.1 (Finite bit represented Gaussian channel): We assume 4-QAM

constellation and M = N = 1 in (1). We plot the bit-error-rate (BER) curves in Fig.

43 with fixed-point arithmetic, and the numbers of integer and fractional bits (G, F )
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are (10, 10), (8, 8), (6, 6), and (4, 4), respectively. We also plot one curve for the same

system with 15 digits scaled fixed-point format in Matlab as a benchmark. From

the figure we can see, the diversity is either one or zero (error floor), since H now is

a complex Gaussian random variable.
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Figure 43: Effects of finite-bit representation on diversity

Given finite-bit representation, when SNR is high enough, error floor of the BER

curves shows up because finite bits cannot differentiate large numbers above a certain

bound. How many bits are adopted determines when the error floor (zero diversity)

appears. Approximately, based on (73), the error floor appears at:

SNR = (G + F )10 log10 2 ≈ 3(G + F )dB.

Thus, in practical systems, the number of bits is chosen large enough (> (8, 8)) so

that within a reasonable SNR range (< 50 dB), the channel will not lose its diversity.
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7.2 Diversity with Different Transmitters

To analyze the diversity for ANY QAM constellation with finite-bit representation,

we need to focus on the structure of Ae. Suppose that the SVD of Ae in (71) is

UH
e ΛeU e, where Λe is a diagonal matrix with the diagonal entries α1, α2, . . . , αρe

as

the eigenvalues of Ae and ρe is the rank of Ae. Thus, we have h̃
H
Aeh̃ =

∑ρe

n=1 αn|h̄n|2,

where h̄n is the nth entry of h̄ = U eh̃. Since U e is a unitary matrix, we know

h̄ is a vector with i.i.d. complex Gaussian distributed entries. For systems with

finite-bit representation, if αn is less than ǫth which is the lower bound of the finite-

bit representation, it will be quantified to zero. Thus, for systems with finite-bit

representation, the rank of Ae needs to be revisited. The result is summarized as

follows.

Proposition 10 Suppose the transmission system is based on finite-bit representa-

tion. Given the specific constellation, the diversity order collected by the MLE in (5)

is

G
(f)
d = min

e∈Se

rank(F(Ae, G, F )), (74)

where F(a, G, F ) is defined in (73) and Ae is expressed as in (71).

Obviously, the system diversity with finite-bit representation in (74) depends on

two terms: i) the range of the values in Ae; ii) the number of bits adopted to represent

the numbers. For fixed number of bits, the diversity is determined by the rank of

quantized Ae, i.e., the non-zero eigenvalues of Ae. In general, the eigenvalues of Ae

depend on the constellation size and the transmitter structure. To find the non-zero

eigenvalues for any constellation is equivalent to finding non-vanishing eigenvalues

which are defined as follows.

Definition 6 Suppose α1 ≤ α2 ≤ · · · ≤ αρe
are the ordered nonzero eigenvalues of
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Ae in (71). If there exists a constant ǫ > 0 such that

inf
|S|→∞

|αn| > ǫ, (75)

then αn is called a non-vanishing eigenvalue as the constellation size increases to

infinity.

If the eigenvalue αn is vanishing, then given a finite number of bits (no matter how

many bits are adopted), αn will be smaller than ǫth and quantified to zero when the

constellation size is large enough. Furthermore, with some constraints of the trans-

mitter, e.g., the fixed norm of e or the determinant is nonzero, not all eigenvalues of

Ae vanish simultaneously. Thus, we can see, the asymptotic diversity as the constel-

lation size increases to infinity is the smallest number of non-vanishing eigenvalues of

Ae. Now we summarize our results as follows.

Proposition 11 The asymptotic diversity collected by MLE as the constellation size

increases to infinity is defined as

G
(a)
d = lim

|S|→∞,∀F
min
e∈Se

rank(F(Ae, G, F )). (76)

In other words, the asymptotic diversity equals the number of non-vanishing eigenval-

ues of Ae.

Proposition 11 shows that given finite-bit representation, when the constellation

size keeps increasing, even MLE may lose diversity. A natural question now is how

fast the schemes lose diversity. In the following, we use three examples [7, 27, 57, 123]

to illustrate this phenomenon.

Example 7.2 (V-BLAST systems): For V-BLAST system in [27], the error pat-

tern e is an N×1 vector. Suppose the channel coefficients are i.i.d. complex Gaussian

distributed. Eq. (71) can be rewritten as

‖He‖2 = hH (IM ⊗
(
(eT )HeT

))
h, (77)
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where h is an MN × 1 column vector by stacking all columns of H into one column.

Thus, according to [27], the maximum diversity is M . Specifically, in this case, the M

nonzero eigenvalues of IM ⊗ ((eT )HeT ) are the same as ‖e‖2, which is lower bounded

by the minimum Euclidean distance (dmin) of the constellation. Thus, if the minimum

value ǫth that the finite bits can represent is smaller than dmin, then the diversity is

M . Otherwise, the diversity is zero. All eigenvalues vanish simultaneously when we

reduce the number of bits.

Example 7.3 (Precoded OFDM systems): The LCFC-OFDM system [57] is de-

signed to collect multipath diversity of frequency-selective channels. The equivalent

channel matrix for LCFC-OFDM systems is H = DHΘ, where DH = diag[H(0), H(1),

. . . , H(N−1)] with H(n) as the channel response at subcarrier n, and Θ is an N×N

full-rank square unitary precoder. By stacking H(n) into one N × 1 column h, we

can rewrite (71) as

‖He‖2 = hH (diag[u]Hdiag[u]
)
h, (78)

where u = Θ(s̃ − s). The eigenvalues of Ae are the norm of the entries of u. As

shown in [57], the minimum entry of |u| only depends on the minimum distance dmin

of the constellation adopted. Thus, the minimum eigenvalue will not approach zero

as the constellation size increases to infinity. Neither will other eigenvalues. As the

number of bits decreases, not like V-BLAST, LCFC-OFDM loses diversity gradually

since the eigenvalues are not all equal.

Example 7.4 (Golden code for 2×2 systems): The golden code is a full-diversity-

full-rate space-time coding scheme for 2×2 i.i.d. channels [7, 123]. Since golden code

is implemented in two time slots, the error pattern e now is a 2 × 2 matrix. Thus,

(71) can be expressed as

‖He‖2 = hH (I2 ⊗AHA
)
h, (79)
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where h is a 4 × 1 vector by stacking all four channel coefficients into one column,

and

A =



e11 cos θ1 − e22 sin θ1 e12 cos θ2 − e21 sin θ2

e12 sin θ2 + e21 cos θ2 e11 sin θ1 + e22 cos θ1


 , (80)

where emn is the (m, n)th entry of e. In [123], it has been shown that |det(A)|≥ 1
2
√

5

with the optimal (θ1,θ2)=(1
2
arctan 1

2
, 1

2
arctan 2). The two eigenvalues of AHA are

α1,2 = ‖e‖2

1±

√

1− 4 det(AHA)

‖e‖4


 . (81)

If the error pattern is e12 = e22 = 0, and e11, e21 are real integers such that

|e11 −
√

2e21| < ǫ
√

e21 , ∀ ǫ > 0, (82)

then it can be verified that det(AHA) = (e2
11 − 2e2

21)
2 < (ǫ2e21 + 2

√
2ǫe

3
2
21)

2. Thus,

it is ready to show that when e11 and e21 go to infinity, one of the eigenvalues in

(81) approaches zero. Different from V-BLAST and LCFC-OFDM, as the constel-

lation size increases, the minimum eigenvalue of A decreases for golden code. To

maintain the determinant non-zero, at most one eigenvalue of AHA could approach

zero as the constellation size increases. Because there are two groups of identical

eigenvalues in Ae, the number of non-vanishing eigenvalues is 2. It is not difficult

to find such an error pattern that makes one of the eigenvalues be quantized to

zero. For example, using Matlab with 15 digits scaled fixed point format, when

e = [65780, 85786; 59796, 69848], one eigenvalue of AHA is quantified to zero, while

the determinant of AHA is 2.2 × 104 and rank(AHA) = 1. Although an extremely

large constellation is needed to reach this error pattern, the diversity for this partic-

ular constellation is 2, according to the code design in [123].

Example 7.5 (Diversity of systems with finite-bit representation): We plot

the performance of LCFC-OFDM [57] for frequency-selective channels with channel

order 3 (multipath diversity is 4), V-BLAST systems [27] for 4 × 4 i.i.d. channels,
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Figure 44: Performance with finite-bit representation

and golden code [123] for 2× 2 i.i.d. channels. We adopt 4-QAM and fix the number

of integer bits G and number of fractional bits F as (16, 16) and (6, 6), respectively.

From Fig. 44 we observe that diversity 4 is collected by all these three systems when

the number of bits is high enough. However, when the number of bits is low, diversity

is lost when SNR is high.

7.3 Diversity Collected by Different Receivers

In this section, we illustrate that finite-bit representation also affects the diversity

that a receiver can collect. Instead of MLE, we consider LRAEs, which are proposed

in [19, 67, 111, 122] to improve the performance of LEs without increasing complexity

much. We adopt the complex LLL (CLLL) algorithm [19, 67] to perform LRAE on

the channel matrix H . A reduced lattice basis H̃ = HT is obtained by the CLLL

algorithm, where T is a unimodular matrix with all the entries being Gaussian integers
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and the determinant of T being ±1 or ±j. Then we perform the ZF equalizer H̃
†

instead of H† to the observation vector as

x = H̃
†
y = T−1s + H̃

†
w := z + n. (83)

Since all the entries of T−1 and the signal constellation belong to Gaussian integer

ring, the entries of z are also Gaussian integers. Thus, we perform the first hard-

decoding step by rounding x to the nearest Gaussian integers to get ẑ. The second

hard-decoding step is to quantize T ẑ to the signal constellation S to obtain the

estimated symbols ŝ. The detailed algorithm can be found in [19, 67].

Note that the constellation size of z is infinite because the entries of T can be

arbitrarily large. Furthermore, as stated in [19, 67], the CLLL algorithm upper bounds

the orthogonality deficiency of H̃ . Thus, according to the results in [66], LEs based

on H̃ have the same diversity as that of MLE based on H̃ . For the MLE based on

H̃ , we can express the PEP as in (70)

Pe(z → z̃|H̃, {z̃, z} ∈ Z[j]N×1) = Q

(
1

σ2
w

‖H̃(z̃ − z)‖2
)

,

where Z[j] denotes the complex integer set whose elements have the form Z + jZ,

with j =
√
−1. Then, in the first quantization step, LRAEs achieve the same diver-

sity as MLE based on infinite constellation under finite-bit representation. Now, we

summarize the result as follows.

Proposition 12 Given finite-bit representation, the diversity collected by LRAEs is

the same as the asymptotic diversity enabled by the transmitter with infinite constel-

lation.

With Proposition 12, we can then quantify the diversity collected by LRAEs for

general systems. For example, for V-BLAST and LCFC-OFDM systems, LRAEs

collect the same diversity as MLEs, because the minimum eigenvalue is non-vanishing

as constellation size increases. This is consistent with the theoretical results in [67, 68].
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In general, we claim that to design a coding scheme which could achieve full diversity

with LRAEs at fairly low complexity, the matrix Ae in (71) needs to be designed

so that the minimum eigenvalue is non-vanishing when constellation size increases to

infinity.

Example 7.6 (Diversity of golden code): In this example, we implement the
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Figure 45: Performance of Golden code

golden code in [123] for a 2 × 2 system in Matlab. The channel coefficients are

assumed to be i.i.d. complex Gaussian random variables. Four detectors are adopted

to recover the signal: ZF, LR-aided ZF, sphere decoding (SD) and ML detectors. It

can be observed from Fig. 45 that both SD and ML detectors exploit full diversity 4.

ZF equalizer collects diversity 1 [68] while LR-aided ZF equalizer only has diversity

2. LRAE loses diversity 2 because of the finite-bit representation of Matlab, which

verifies our analysis in Proposition 12.
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CHAPTER VIII

HARDWARE IMPLEMENTATION

After analyzing the performance, we are well motivated to implement LR-aided equal-

izers on hardware to verify the performance. The first LR VLSI silicon implemen-

tation for MIMO systems reported in literature is the channel precoder described in

[11]. The implemented algorithm achieves lower algorithm complexity than the CLLL

algorithm at the cost of simplifications and approximations that greatly reduce the

performance [85] compared to the LLL algorithm. In the interest of closing this nearly

5 dB performance gap and implementing an algorithm that has been proven to collect

full diversity, we explore the datapath and scheduling aspects of a VLSI implemen-

tation of the CLLL algorithm for 4× 4 MIMO systems in [22]. Below we summarize

our initial contributions.

The major hardware complexity of the CLLL process (operations on the Q̃ and

R̃ matrix after the QR decomposition of the H matrix) comes from the iterative

checking of the condition in (39) and basis update if this condition fails. Since R̃k,k

is a real diagonal element and R̃k−1,k is a complex off-diagonal element of R̃, if we

group these elements into a real vector as

v =
[
R̃k,k,ℜ[R̃k−1,k],ℑ[R̃k−1,k]

]T
, (84)

then the right side of the inequality in (39) becomes the norm of a 3D vector. A well

understood and numerically stable algorithm, Householder CORDIC [36], exists that

employs low hardware complexity shift and addition iterations to compute arbitrary

3D rotations. In our existing work we use vectoring operations on v to determine the

right side of the inequality in (39) within a constant Householder CORDIC gain factor.

Furthermore, by checking the “early exit” condition,
√

δ|R̃k−1,k−1| < |R̃k,k|, we can
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often avoid computing this vector norm. The reverse application of these vectoring

operations (rotation) can then be used to compute the unitary matrix required for a

basis update.

Division operations in the CLLL algorithm function to force the condition in (38)

true. Full precision division, however, is not required because only integer-rounded

quotients are used in the CLLL algorithm. In addition, divisors are reused during the

algorithm, suggesting the utility of a reciprocation-based approach. In [20] we develop

a single Newton-Raphson iteration-based integer-rounded divider that reduces FPGA

resource usage by 40% and improves average divider latency when compared to a

straightforward SRT division architecture.
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Figure 46: Simplified block diagram of CLLL processor

The remaining operations of the CLLL algorithm consist of a varying number and
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varying sequence of complex-valued multiplications. The 4 × 4 architecture of our

existing work (Figure 46) accommodates this dynamic dataflow by employing a time-

multiplexed complex multiplier pipeline and separate control modules that handle

data fetching for and operations on the T̃ , R̃, and Q̃ matrices in addition to the 3D

CORDIC modules and integer-rounded divider modules described earlier. Contention

among these modules for the shared complex multiplier and matrix memory is han-

dled by arbitration modules that use priority-inversion to prevent deadlocks because

of data dependencies. A top-level control module tracks the overall progress of the al-

gorithm and issues start and stop commands to the various modules. These techniques

allow the architecture to take advantage of both within-iteration (size-reduction and

(39) condition checking) and across-iteration (basis updates) parallelism inherent in

the CLLL algorithm.
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Figure 47: Hardware fixed-point simulations of an LR-aided ZF-DFE for a 4 × 4
V-BLAST transmission using a variety of bit precisions
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Table 14: VLSI implementation results
Virtex4 Virtex5

Area
Real Multipliers 10/96 10/64
Gate Equivalents 88,308 78,683
Slices 3,617/67,584 1,712/17,280

Clock frequency 140 MHz 163 MHz
Avg. cycles per matrix 130 130

Fixed-point CLLL processor simulation results of a 4× 4 V-BLAST transmission

with LR-aided nulling canceling equalizer (LRNC) for a variety of R̃ number represen-

tations are shown in Figure 47. We choose the [13.13] R̃ representation because this

implementation achieves a BER of 10−5 at an SNR that is only 0.1 dB higher than

the SNR required by the floating-point implementation. The hardware realization

results obtained from a Synplify Pro synthesis and Xilinx ISE P/R implementation

flow are shown in Table 14. The modest FPGA resources and 1.25M matrices/s av-

erage throughput of this architecture are encouraging given that this architecture is

not optimized for a particular channel model or equalizer.
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CHAPTER IX

CONCLUDING REMARKS

The objective of the proposed research is to present efficient receiver designs that

can achieve low bit-error-rate (BER), high capacity, and low decoding complexity.

We focuses on the design of low-complexity receivers for wireless systems based on a

generic linear system model. We first revealed the fundamental condition to achieve

full diversity with LEs by investigating the error performance and mutual informa-

tion of existing low-complexity equalizers. To meet the fundamental condition and

then achieve the diversity, we propose a hybrid equalizer framework, for which the

performance-complexity trade-off is quantified by providing the distribution of chan-

nel quality. Another approach we proposed is to apply different LR algorithms to

achieve full diversity with LR-aided detectors. Both LR-aided hard-output detectors

and LR-aided soft-output detectors are proposed and analyzed in terms of diversity,

mutual information, and complexity, respectively. The effect of finite-bit precision

in simulations and practical systems has also been investigated. Furthermore, the

results of hardware implementation verify the practicality of our proposed receiver

designs. Throughout this research, the theoretical analysis is corroborated by com-

puter simulations.

9.1 Contributions

We summarize below primary contributions of this dissertation:

• Revealed the fundamental limits of linear equalizers on diversity, capacity, and

complexity;

• Proposed a hybrid equalizer framework to achieve full diversity for which the
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performance-complexity trade-off is quantified by deriving the distribution of

od;

• Investigated different metrics to quantify the distance to orthogonality for ma-

trices;

• Investigated the performance and complexity of different lattice reduction algo-

rithms;

• Proposed complex LLL-aided and SA-aided equalizers and analyzed the perfor-

mance in terms of diversity, mutual information, and complexity;

• Proposed tree-search implementation for SA and designed SA-aided soft-output

detectors based on the tree-search implementation;

• Analyzed the performance for general systems when finite-bit representation is

adopted;

• Verified the practicality of the proposed designs through hardware implemen-

tation.

9.2 Suggestions for Future Research

The following is a list of interesting research topics that can be pursued as extensions

of this dissertation:

• Diversity of LEs for general systems when the fundamental condition is not

satisfied;

• The diversity-multiplexing trade-off of LR-aided detectors;

• Outage diversity with finite-bit representation;

• High speed hardware implementation.
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APPENDIX A

PROOF OF LEMMA 1

According to the definition of od(H) in (10) and the extended system in (9), we have

sup
σ2

w ,H
(od(H̄)) = 1− inf

σ2
w ,H

(
det(HHH + σ2

wIN)
∏N

n=1(‖hn‖2 + σ2
w)

)

≥ 1− inf
H

(
det(HHH)
∏N

n=1 ‖hn‖2

)
= sup

H
(od(H)).

If sup(od(H)) = ǫ = 1, it is ready to obtain that 1 = sup(od(H)) ≤ sup(od(H̄)) ≤ 1,

which means sup(od(H̄)) = ǫ′ = 1.

Next, we want to show that ǫ′ is less than 1 when ǫ < 1. Suppose ǫ′ = 1, and then

we have

inf
σ2

w,H

(
det(HHH + σ2

wIN)
∏N

n=1(‖hn‖2 + σ2
w)

)
=1− sup

σ2
w,H

(od(H̄)) = 0. (85)

Furthermore, since

when σ2
w = 0, inf

(
det(HHH + σ2

wIN)
∏N

n=1(‖hn‖2 + σ2
w)

)
= 1− ǫ 6= 0

when‖hn‖→∞ or σ2
w→∞,

det(HHH + σ2
wIN)

∏N
n=1(‖hn‖2 + σ2

w)
→1 6=0,

to have (85) hold true, we need inf(det(HHH + σ2
wI)) = 0, where ‖hn‖ and σ2

w are

finite but non-zero. However, because det(HHH + σ2
wI) > det(HHH), we will have

inf(det(HHH)) = 0, which contradicts the assumption that sup(od(H)) < ǫ < 1.

Therefore, we have ǫ′ < 1 when ǫ < 1. �
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APPENDIX B

PROOF OF THEOREM 1

For the system given in (1), ZF detector is given in (7). Here, it is straightforward to

see that the quantization step amounts to make a hard decision on every single entry

of ŝ into alphabet S.

Since all the entries of s belong to the Gaussian integer ring, it is straightforward

to see that if the real and imaginary parts of the nth entry of η = H†w are in the

interval (−1
2
, 1

2
), we will definitely decode the nth symbol of s correctly. Let us define

H† = [a1, a2, . . . , aN ]T , where aT
n , n ∈ [1, N ] is the nth row of H†. Hence, if |aT

nw|

is less than 1
2
, that means both |ℜ[ηn]| and |ℑ[ηn]| are less than 1

2
, we will definitely

decode the nth symbol of s correctly. Thus, the error probability of the nth symbol

for a given H , Pe,n|H is upper-bounded by

Pe,n|H ≤ P

(
|aT

nw| ≥ 1

2

∣∣∣∣H
)

. (86)

From [96, Lemma 1], we obtain the following inequality:

‖aT
n‖ ≤

1√
1− od(H) · ‖hn‖

(87)

where hn, n ∈ [1, N ] represents the nth column of H . Because

|aT
nw| ≤ ‖aT

n‖ · ‖w‖ ≤
1√

1− od(H) · ‖hn‖
‖w‖, (88)

Pe,n|H is further bounded by

Pe,n|H ≤ P

(
‖w‖√

1− od(H) · ‖hn‖
≥ 1

2

∣∣∣∣∣H
)

. (89)

Furthermore, as we have assumed, if there exists ǫ ∈ (0, 1) such that ∀H , od(H) ≤ ǫ,

we obtain the following inequality:

Pe,n|H ≤ P

(
‖w‖ ≥

√
1− ǫ

2
‖hn‖

∣∣∣∣H
)

. (90)
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Here, we notice that ǫ is a constant independent of H .

Thus, by averaging (133) with respect to the random matrix H , the average error

probability can be further simplified as

Pe,n = EH

[
Pe,n|H

]
≤ EH

[
P

(
‖w‖2 ≥ 1− ǫ

4
‖hn‖2

∣∣∣∣H
)]

= Ew

[
P

(
‖hn‖2 ≤

4‖w‖2
1− ǫ

∣∣∣∣w
)]

. (91)

Suppose that the rank of the covariance matrix R = E[hnhH
n ] is Dn and Dn ≤

M . Using the eigenvalue decomposition, we have R = UΛUH, where U is an

M ×Dn unitary matrix and Λ is a Dn×Dn diagonal matrix. Define h̃n as a Dn × 1

vector, whose entries are independent Gaussian random variables with zero mean and

variance σ2
n,d. Since hn has identical distribution with Uh̃n, for any β > 0 we have:

P
(
‖hn‖2 ≤ β

)
=P

(
‖h̃n‖2 ≤ β

)
≤

Dn∏

d=1

P (|h̃n,d|2 ≤ β), (92)

where h̃n,d is the dth entry of h̃n. Because h̃n,d is Gaussian distributed, 2|h̃n,d|2/σ2
n,d

is Chi-square distributed with degrees of freedom 2. Therefore, we have

P

(
2|h̃n,d|2

σ2
n,d

≤ 2β

σ2
n,d

)
= 1− e−γn,d

= e−γn,d

∞∑

k=1

(γn,d)
k−1

k!
γn,d, (93)

where γn,d = β
σ2

n,d

. Plugging (93) into (92), we obtain the upper bound

P
(
‖hn‖2 ≤ β

)
≤ cnβDn, (94)

where cn is defined and bounded as

cn =
Dn∏

d=1

e−γn,d

σ2
n,d

∞∑

k=1

(γn,d)
k−1

k!
≤

Dn∏

d=1

1

σ2
n,d

.
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Consequently, the probability term in (134) is bounded as

Pe,n ≤ Ew

[
P

(
‖hn‖2 ≤

4‖w‖2
1− ǫ

∣∣∣∣w
)]

≤ Ew

[
cn

(
4

1− ǫ

)Dn

‖w‖2Dn

]

= cn

(
4

1− ǫ

)Dn (2Dn − 1)!

(Dn − 1)!

(
1

σ2
w

)−Dn

, (95)

where the last equality is based on the pdf of the Chi-square distribution [43, p. 25].

Therefore, the diversity order of the ZF equalizer for the nth symbol is greater than

or equal to Dn = rank(E[hnhH
n ]), if there exists ǫ ∈ (0, 1) such that ∀H , od(H) ≤ ǫ.

In general, for the system in (1), the diversity order of the ZF equalizer is greater

than or equal to minn{rank(E[hnhH
n ])}.

Now, let us revisit the diversity order of MLE. According to [101, p. 66], we know

that for MLE, the pairwise error probability for an error pattern e = s− s′ (s 6= s′)

is bounded as

P (s→ s′ |H) ≤ exp

(
−‖He‖2

4σ2
w

)
= exp

(
−‖he‖2

4σ2
w

)
, (96)

where he = He, which is a linear combination of hn’s, n ∈ [1, N ], with coefficients

e drawn from Gaussian integer ring. Furthermore, by averaging (96) with respect to

H , we obtain the error probability as [80, Chp. 14]

P (s→ s′) ≤ Ce

(
1

σ2
w

)−Gd,e

, (97)

where Ce is a finite constant and Gd,e = rank(E[heh
H
e ]). Thus, the diversity order

that MLE can collect is

GML
d = min

e 6=0
Gd,e = min

e 6=0
rank(E[heh

H
e ]). (98)

Compared with the diversity of the ZF equalizer, it is straightforward to obtain

GML
d = min

e 6=0
rank(E[heh

H
e ]) ≤ min

n
rank(E[hnhH

n ]) ≤ GZF
d .
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Thus, we conclude that, if od(H) < ǫ and ǫ < 1, the ZF equalizer collects the same

diversity as that exploited by MLE �
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APPENDIX C

PROOF OF THEOREM 2

Given the instantaneous capacity difference in (23) and the condition od(H(HHH)−1) ≤

ǫ, we have

CML(H)− CZF (H) ≤ − log2(1− ǫ) := Cǫ, (99)

where Cǫ is finite. Therefore, the outage probability of the capacity of ZF equalizer

is upper-bounded by

P (CZF (H) < Cth) ≤ P (CML(H) < (Cth + Cǫ)) . (100)

Because CZF (H) ≤ CML(H) in (22), we have that the outage capacity of the ZF

equalizer is lower bounded by

P (CML(H) < Cth) ≤ P (CZF (H) < Cth). (101)

Combining (100) with (101), we claim that when at high SNR, od(H(HHH)−1) ≤ ǫ,

and ǫ ∈ (0, 1), the outage probability of the ZF capacity is parallel with the one of

MLE. �
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APPENDIX D

PROOF OF LEMMA 2

Suppose that od(H) < ǫ < 1 but od((H†)H) does not have an upper bound less than

1. That means sup(od((H†)H)) = 1. Thus, for any constant ǫ′ ∈ (0, 1), there exists

a non-empty set P = {H : od((H†)H) > ǫ′}. Furthermore, ∀H ∈ P, based on the

definition of od in (10), we have

det
(
(HHH)−1

)
∏N

n=0 ‖an‖2
< 1− ǫ′, (102)

where an is the nth column of (H†)H. Based on (87), we have

(
√

1− od(H))2N
∏N

n=0 ‖hn‖2
det(HHH)

< 1− ǫ′.

Then, according to the definition of od in (10) again, it is straightforward to obtain

(1− od(H))N−1 < 1− ǫ′,

Therefore, we obtain the lower bound of od(H) as

od(H) > 1− (1− ǫ′)
1

N−1 . (103)

Thus, we can see as ǫ′ approaches 1, od(H) for H ∈ P also approaches 1, which means

there is no upper bound for od(H) that is strictly less than 1. This contradicts with

the condition that od(H) < ǫ. Hence, od((H†)H) has an upper bound which is strict

less than 1. �
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APPENDIX E

PROOF OF THEOREM 3

For the M ×N channel matrix H = [h1, h2, . . . , hN ] in (1), with the QR decompo-

sition, we rewrite od(H) in (10) as

od(H) = 1− det(HHH)
∏N

n=1 |hn|2
= 1−

∏N
n=1 R2

n,n∏N
n=1 |rn|2

= 1−
N∏

n=1

R2
n,n

R2
n,n +

∑n−1
m=1 |Rm,n|2

, (104)

where rn is the nth column of R. From Lemma 3, we know that 2R2
n,n is Chi-square

distributed with 2(M − n + 1) DOF. Since the off-diagonal entries Rm,n are i.i.d.

complex Gaussian random variables with zero mean and unit variance, 2
∑n−1

m=1 |Rm,n|2

is also Chi-square distributed with 2(n − 1) DOF [78]. As we know, a Chi-square

random variable with 2n DOF can also be considered as Gamma distributed with

parameters (n, 2). Thus, according to [78, p. 188],
R2

n,n

R2
n,n+

∑n−1
m=1 |Rm,n|2

is a Beta random

variable with parameters (M − n + 1, n− 1). Then we can rewrite (104) as

1− od(H) =

N∏

n=1

R2
n,n

R2
n,n +

∑n−1
m=1 |Rm,n|2

=

N∏

n=1

Xn, (105)

where Xn ∼ β(M−n+1, n−1) and β(a, b) denotes Beta distribution with parameters

a and b. Now to find the distribution of od becomes to find the distribution of the

product of N independent Beta random variables. The distribution of the product

of N independent Beta random variables can be computed by induction from the

distribution of the product of N − 1 Beta variables. The exact distribution of the

product of independent Beta random variables can be found by following the approach

in [31, p. 58]. Here, we correct and simplify the expression according to our specific

problem. Specifically, the PDF of the od of the i.i.d. Gaussian channel matrix H is
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expressed as

f(x) =

(
N∏

n=1

(M − 1)!

(M − n)!

)

N−1∑

k=1

k−1∑

ℓ=0

ρk,ℓ(1− x)M−N+k−1(− ln (1− x))k−1−ℓ

(k − 1− ℓ)!ℓ!
(106)

where

ρk,0 =
N−1∏

q=1,q 6=k

(q − k)−q and

ρk,ℓ =
ℓ−1∑

r=0

N−1∏

q=1,q 6=k

(−1)r+1




ℓ− 1

r




r! · q · ρk,ℓ−1−r

(q − k)r+1
. (107)

�
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APPENDIX F

PROOF OF PROPOSITION 5

According to the CLLL reduction criterion in (39), for a reduced basis H̃ , we have

|R̃i,i|2 ≥ δ|R̃i−1,i−1|2 − |R̃i−1,i|2 ≥
(

δ − 1

2

)
|R̃i−1,i−1|2,

which can be generalized as |R̃i,i|2 ≤ (δ − 1
2
)i−k|R̃k,k|2, for 1 ≤ i < k ≤ N . Further-

more, we have

‖r̃k‖2 = |R̃k,k|2 +
k−1∑

i=1

|R̃i,k|2 ≤ |R̃k,k|2 +
k−1∑

i=1

1

2
|R̃i,i|2

≤ |R̃k,k|2 +
k−1∑

i=1

1

2

(
δ − 1

2

)i−k

|R̃k,k|2, (108)

where r̃k is the kth column of R̃. Defining ξ = 2
2δ−1

, since δ ∈ (1
2
, 1), ξ ∈ (2,∞). Eq.

(108) can be simplified as

‖r̃k‖2 ≤
(

1

2
+

1− ξk

2(1− ξ)

)
|R̃k,k|2 ≤

1

2
ξk|R̃k,k|2. (109)

Thus, for the reduced basis H̃ , the orthogonality deficiency od(H̃) satisfies

od(H̃) = 1− det(H̃
H
H̃)

∏N
k=1 ‖h̃k‖2

= 1−
∏N

k=1 |R̃k,k|2∏N
k=1 ‖r̃k‖2

≤ 1−
∏N

k=1 |R̃k,k|2∏N
k=1

1
2
ξk|R̃k,k|2

= 1− 2Nξ−
N(N+1)

2 = 1− 2N

(
2

2δ − 1

)−N(N+1)
2

. (110)

Therefore, we have

√
1− od(H̃) ≥ 2

N
2

(
2

2δ − 1

)−N(N+1)
4

:= cδ.

Similar proof for RLLL can be found in [51]. �
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APPENDIX G

PROOF OF THEOREM 4

If the S(H) is bounded by a finite number ξ, ∀H , it is ready to see that

‖hm‖2‖aT
m‖2 ≤

N∑

n=1

‖hn‖2‖aT
n‖2 = S(H) ≤ ξ, for m = 1, 2, . . . , N, (111)

where aT
m is the mth row of H†. Furthermore, we obtain that

‖aT
m‖ ≤

ξ

‖hm‖
, (112)

which is different from Eq. (87) in Appendix B by only a constant factor on the right

side of the inequality. Thus, following the procedures in Eqs. (87)-(141) in Appendix

B, we arrive the following upper bound on the average error probability

Pe,n ≤ cn ξM (2Dn − 1)!

(Dn − 1)!

(
1

σ2
w

)−Dn

, (113)

where cn is a finite constant, the same as in Eq. (141). Therefore, the diversity order

of ZF-LE is greater than or equal to Dn = rank(E[hnhH
n ]). Therefore, as shown in

Appendix B, ZF-LE collects the same diversity as that of the MLE.
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APPENDIX H

PROOF OF PROPOSITION 6

The Gaussian reduction algorithm is an LR algorithm for lattices in two dimensions

[32]. It has been applied onto linear equalizers to improve their performance for 2x2

MIMO communication systems by Yao and Wornell [122]. The pseudo code of this

algorithm is given in Table 15, where the basis vectors are b1 and b2. When the

iterative procedure stops, the resulting basis will have the following properties

‖b1‖ ≤ ‖b2‖ , (114)

|Re(〈b1, b2〉)| ≤
1

2
‖b1‖2 and |Im(〈b1, b2〉)| ≤

1

2
‖b1‖2 . (115)

Bases satisfying (114) and (115) are called Gaussian reduced bases. These two prop-

erties imply that: i) For a Gaussian reduced basis, b1 is the shortest vector in the

lattice and b2 is the shortest vector not a multiple of b1 [122]; ii) A Gaussian reduced

basis of a particular lattice is unique (up to signs) [124, p. 244].

For a real lattice, define the angle between b1 and b2 as β and the angle between

b1 and b′
1 as α, as shown in Figure 18. It is ready to see that b′

1 and b′
2 are also β

(or 2α + β) angle apart from each other, because b′
1 is orthogonal to b2 and so is b′

2

to b1. Thus, we can rewrite the inner products (see Figure 18) as

〈b1, b2〉 = ‖b1‖ ‖b2‖ cos(β) and 〈b′
1, b

′
2〉 = −‖b′

1‖ ‖b′
2‖ cos(β), (116)

This algebraic argument also holds for complex case. As shown in [124, Eq. (7)],

the complex angle β between b1 and b2 is expressed as

cos(β) = cos[∠(b̃1, b̃2)] +
√
−1 cos[∠(b̄1, b̃2)], (117)

135



Table 15: The Gaussian Reduction Algorithm
Do

If ‖b2‖ < ‖b1‖ swap (b1,b2)

µ←
⌊
〈b1,b2〉
‖b1‖2

⌉

b2 ← b2 − µb1

While ‖b2‖ < ‖b1‖

where

b̃1 = [Re(b1(1)); Im(b1(1)); Re(b1(2)); Im(b1(2))]

and b̄1 = [−Im(b1(1)); Re(b1(1));−Im(b1(2)); Re(b1(2))]

are obtained by extending b1 to real vectors. Similarly, the complex angle β ′ between

b′
1 and b′

2, can be expressed as cos(β ′) = cos[∠(b̃
′
1, b̃

′
2)] +

√
−1 cos[∠(b̄

′
1, b̃

′
2)] by ex-

tending b′
1 and b′

2 to real vectors. Because the real lattice (b̃
′
1, b̃

′
2) is still the dual

lattice of (b̃1, b̃2) and the same for (b̄
′
1, b̃

′
2) and (b̄1, b̃2), we have cos(β) = − cos(β ′).

Thus, Eq. (116) also holds true for complex case.

Furthermore, according to the definition of the dual basis, we obtain





1 = 〈b′
1, b1〉 = ‖b′

1‖ ‖b1‖ cos(α)

1 = 〈b2, b
′
2〉 = ‖b2‖ ‖b′

2‖ cos(α)
⇒ ‖b1‖
‖b2‖

=
‖b′

2‖
‖b′

1‖
. (118)

Furthermore, the parameter λij is calculated as

λij =
⌊

λ̃ij

⌉
=

⌊
1

2

(
〈b′

i, b
′
j〉∥∥b′

j

∥∥2 −
〈bi, bj〉
‖bi‖2

)⌉
. (119)

Plugging (116) and (118) into (119) for i 6= j, we have

λij =

⌊
1

2

(
−‖b

′
i‖ cos(β)∥∥b′

j

∥∥ − ‖bj‖ cos(β)

‖bi‖

)⌉
=

⌊
−‖bj‖ cos(β)

‖bi‖

⌉
= −

⌊〈bi, bj〉
‖bi‖2

⌉
.

Specifically, λ12 and λ21 for 2-D lattices can be simply expressed as

λ12 = −
⌊〈b1, b2〉
‖b1‖2

⌉
, λ21 = −

⌊〈b2, b1〉
‖b2‖2

⌉
. (120)
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When the algorithm stops, we have the resulting basis satisfying λ12 = λ21 = 0 [50]. If

‖b1‖ ≤ ‖b2‖, we note that−µ = λ12, where µ is defined in Table 15. Therefore we have

µ = 0. Thus, the Seysen reduced basis satisfies both properties of a Gaussian reduced

basis stated in Eqs. (114) and (115). If ‖b2‖ < ‖b1‖, we can just interchange b1 and

b2 by multiplying B with a permutation matrix. Then, we still have −µ = λ21 = 0.

This means, the Seysen reduced basis B is the same as the Gaussian reduced basis

(up to signs). �
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APPENDIX I

PROOF OF PROPOSITION 7

We first define the angle between two vectors either in a real or a complex vector

space as follows.

Definition 7 The angle between two vectors a and b is defined as

cos(θ) =
〈a, b〉
‖a‖‖b‖ . (121)

If {a, b} ∈ R the angle is real, and if {a, b} ∈ C, the angle is generally complex.

Furthermore, for the complex case we define the real Hermitian angle θH ∈ [0, π
2
] as

in [83]

cos(θH) =
|〈a, b〉|
‖a‖‖b‖ . (122)

We give the analysis for real lattices (i.e. bi ∈ RN) and complex lattices (i.e.

bi ∈ CN) respectively.

a) Real lattices: When SA stops λ12 = λ21 = 0. Thus, λ̃ij’s in (119) are bounded

as follows 



−1
2
≤ λ̃12 ≤ 1

2

−1
2
≤ λ̃21 ≤ 1

2

⇔





−1
2
≤ ‖b2‖
‖b1‖ cos(β) ≤ 1

2

−1
2
≤ ‖b1‖
‖b2‖ cos(β) ≤ 1

2

.

Multiplying these two equations yields cos2(β) ≤ 1
4

which leads to sin2(β) =

1 − cos2(β) ≥ 3
4
. Thus, with the expression of S(B) in (34) for N = 2, we

obtain

S(B) =
2

cos2(α)
=

2

sin2(β)
≤ 8

3
. (123)
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b) Complex lattices: When SA stops, the real and imaginary parts of λ̃ij are

bounded as follows





−1
2
≤ {Re(λ̃12), Im(λ̃12)} ≤ 1

2

−1
2
≤ {Re(λ̃21), Im(λ̃21)} ≤ 1

2

⇔






−1
2
≤ ‖b2‖
‖b1‖{Re(cos(β)), Im(cos(β))} ≤ 1

2

−1
2
≤ ‖b1‖
‖b2‖{Re(cos(β)), Im(cos(β))} ≤ 1

2

Multiplying the inequalities for real and imaginary parts respectively, we get

(Re(cos(β)))2 ≤ 1
4

and (Im(cos(β)))2 ≤ 1
4
. Furthermore, we can bound the

Hermitian angle βH defined in (122) as

cos2(βH) = | cos(β)|2 = (Re(cos(β)))2 + (Im(cos(β)))2 ≤ 1

2
. (124)

To continue our proof we need the following lemma.

Lemma 4 Suppose that u and v are two orthogonal complex vectors (i.e. 〈u, v〉 =

0) and w is a complex vector that lies in the vector space spanned by u and v.

Denote the Hermitian angle between u and w as θH and the Hermitian angle

between v and w as γH . Then we have

θH + γH = π
2
.

Proof: Since w belongs to the vector space spanned by u and v, we can express

w as a linear combination of u and v

w =
〈w, u〉u
‖u‖2

+
〈w, v〉v
‖v‖2

(125)

Because u and v are orthogonal, we get

‖w‖2 =
|〈w, u〉|2 ‖u‖2

‖u‖4
+
|〈w, v〉|2 ‖v‖2

‖v‖4
(126)

With some simple mathematical derivations, we can rewrite (126) as

|〈w, u〉|2

‖u‖2 ‖w‖2
= 1− |〈w, v〉|2

‖v‖2 ‖w‖2
(127)

With the definition of the Hermitian angle, (127) can be rewritten as cos2(θH) =

1 − cos2(γH) = sin2(γH). Since θH and γH are real angles in [0, π
2
], we have

θH + γH = π
2
.
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From (34) we know that Seysen’s metric S(B) in two dimensions can be written

as S(B) = 2
cos2(α)

. Because cos(α) = 1

‖b1‖‖b
′

1‖
∈ R, with Lemma 4 it is ready to

see that cos(α) = cos(αH) = sin(βH). Thus, with the inequality in (124) we are

now able to upper bound S(B) by

S(B) =
2

cos2(α)
=

2

sin2(βH)
=

2

1− cos2(βH)
≤ 4. �
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APPENDIX J

PROOF OF PROPOSITION 8

The output of the LR-aided ZF equalizer is given in (83). For QAM symbols,

the real and imaginary parts of each symbol are drawn from the set {−(
√
M −

1), · · · ,−1, 1, · · · ,
√
M−1}. Then, by applying (s− (1+ j)1)/2, we transfer the real

and imaginary parts of the constellation to a consecutive integer set, which makes

the real and imaginary parts of z are also consecutive integers. Thus, the estimate

of s is expressed as

ŝ = 2T

⌊
1

2

(
x− T −1(1 + j)1

)⌉
+ (1 + j)1

= s + 2T

⌊
1

2
H̃

†
w

⌉
. (128)

Apparently, if
⌊

1
2
H̃

†
w
⌉

= 0, s will be decoded correctly. Therefore, the symbol error

probability Pe|H for a given H is upper-bounded by

Pe|H ≤ 1− P

(⌊
1

2
H̃

†
w

⌉
= 0

∣∣∣∣H
)

. (129)

Let us denote H̃
†
as [a1, a2, . . . , aNt

]T , where aT
i , i ∈ [1, Nt] is the ith row of H̃

†
. The

upper bound can be written as

Pe|H ≤ P

(
max

1≤i≤Nt

|aT
i w| ≥ 1

∣∣∣∣ H

)
. (130)

From [96, Lemma 1], we obtain the following inequality:

max
1≤i≤Nt

‖aT
i ‖ ≤

1√
1− od(H̃) · min

1≤i≤Nt

‖h̃i‖
, (131)
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where h̃i, i ∈ [1, Nt] represents the ith column of H̃ . Because

max
1≤i≤Nt

|aT
i w| ≤ max

1≤i≤Nt

‖aT
i ‖ · ‖w‖

≤ ‖w‖√
1− od(H̃) · min

1≤i≤Nt

‖h̃i‖
,

Pe|H is further bounded by

Pe|H ≤ P




‖w‖√
1− od(H̃) · min

1≤i≤Nt

‖h̃i‖
≥ 1

∣∣∣∣∣∣∣
H


 . (132)

Furthermore, since H̃ is reduced from H using the CLLL algorithm with parameter

δ and H is full rank with probability one, according to (40) in Proposition 5, we have
√

1− od(H̃) ≥ cδ. Let hmin represent the vector with minimum non-zero norm of all

the vectors in the lattice generated by H . Since T is unimodular, H̃ spans the same

lattice as H with an infinite coefficient set. From the definition of hmin, we know

that ‖hmin‖ is less than or equal to min
1≤i≤Nt

‖h̃i‖. In summary, we have [c.f. (130) and

(132)]

Pe|H ≤ P

(
max

1≤i≤Nt

|aT
i w| ≥ 1

∣∣∣∣H
)

≤ P (‖w‖ ≥ cδ‖hmin‖ | H) . (133)

Thus, by averaging (133) with respect to the random matrix H (or hmin), the

average symbol error probability can be simplified as:

Pe = EH

[
Pe|H

]
≤ EH

[
P
(
‖w‖2 ≥ c2

δ‖hmin‖2
∣∣H
)]

= Ew

[
P

(
‖hmin‖2 ≤

‖w‖2
c2
δ

∣∣∣∣w
)]

. (134)

Since w is an Nr × 1 complex white Gaussian noise vector with covariance matrix

σ2
wINr

, ‖w‖2 is a central Chi-square random variable with 2Nr degrees of freedom

and mean Nrσ
2
w. To simplify the bound in (134), we need the following lemma.
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Lemma 5 Define a lattice L in C
Nr×1 generated by a set of bases H = [h1, h2, . . . , hNt

]

and a complex integer coefficient set. If all the entries of H are i.i.d. complex Gaus-

sian distributed with zero mean and unit variance, then we have P (‖hmin‖2 ≤ ǫ) ≤

cNrNt
ǫNr , where cNrNt

is a finite constant depending on Nr and Nt.

Proof: See Appendix C in [67].

Consequently, we obtain that the average error probability in (134) is bounded as

Pe ≤ Ew

[
P

(
‖hmin‖2 ≤

‖w‖2
c2
δ

∣∣∣∣w
)]

≤ Ew

[
cNrNt

(
1

c2
δ

)Nr

‖w‖2Nr

]

= cNrNt

(
1

c2
δ

)Nr (2Nr − 1)!

(Nr − 1)!

(
1

σ2
w

)−Nr

, (135)

where the last equality comes from the N th
r moment of Chi-square random variable

‖w‖2, which can be found in [92, p. 14]. Therefore, the diversity order of the

LR-aided ZF equalizer is greater than or equal to Nr. However, as we know, the

maximum diversity order for the MIMO V-BLAST system is Nr. Thus, the LR-aided

ZF equalizer collects diversity Nr. Similarly, for LR-aided MMSE equalizer, we can

show that it also collects diversity Nr. �
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APPENDIX K

PROOF OF PROPOSITION 9

Following the same procedures in Appendix J, to prove Proposition 9, we only need

to prove the following lemma to establish the diversity claim of the LR-aided LEs for

LP-OFDM systems.

Lemma 6 Let L be a lattice in C
K×1 generated by the set of bases Hequ = DHΘ in

(2) with complex integer coefficients. Define hmin as the vector that has the minimum

non-zero norm among all vectors in L. Then for any ǫ > 0, we have

P{‖hmin‖2 ≤ ǫ} ≤ cDǫD, (136)

where the finite constant cD depends on D = min(K, ρh) and the channel covariance

matrix.

Proof: Let pa = Hequa be a K×1 vector in the lattice L with finite elements spanned

by Hequ with a being a K×1 vector with all entries belonging to the complex integer

coefficient set. By definition, ‖hmin‖2 = arg min
p

a
∈L, p

a
6=0
‖pa‖2. By putting the diagonal

entries of DH into a K × 1 vector hH = [H(1), . . . , H(K)], we have

‖pa‖2 = ‖Hequa‖2 = ‖DHΘa‖2

= hH
Hdiag[Θa]diag[Θa]HhH . (137)

Consider the gth group in (2); let F denote the Nc × (L + 1) DFT matrix; in

Matlab notation, let F g := F (g : Ng : Nc, 1 : L + 1) with size K × (L + 1). Then

we have hH = F gh, where the (L + 1)× 1 column vector h consists of all the L + 1

channel taps. The correlation matrix of h is Rh = E[hHh] with rank ρh, and SVD

as UhΛhU
H
h . Define a ρh × 1 vector h̃ with i.i.d. complex Gaussian entries. Then,

144



h and UhΛ
1
2
h h̃ have identical distributions and thus the same statistical properties.

Hence, we can rewrite (137) as (in the following, equality should be interpreted in the

sense of equivalence of distributions)

‖pa‖2 = h̃
H
Λ

1
2
h UH

h FH
g diag[Θa]diag[Θa]HF gUhΛ

1
2
h h̃

= h̃
H
Aah̃ = h̃

H
UH

a ΛaU ah̃

= h̄
H
Λah̄ =

min(K,ρh)∑

k=1

αk|h̄k|2, (138)

where Aa with SVD as UH
a ΛaU a depends on a and the correlation matrix of the

channel taps, and αk, k ∈ [1, min(K, ρh)] are the eigenvalues of Aa. Since F g+1 =

F gdiag[1, ej2π/Nc, . . . , ej2πL/Nc ], the analysis in (138) holds true for any group g. Since

U a contains the min(K, ρh) rows of a unitary matrix, h̄k’s are still i.i.d. complex

Gaussian random variables as the entries in h̃. Thanks to the precoder design of Θ,

all αk’s are nonzero if a is not a zero vector, i.e., there exists a nonzero minimum of

αk’s which does not depend on a [57]. From the definition of hmin, it is easy to show

that

‖hmin‖2 ≥
(

min
a∈Z[j]K , a6=0

αk

)


min(K,ρh)∑

k=1

|h̄k|2


 . (139)

Eq. (139) provides an upper bound for the probability that ‖hmin‖2 is less than ǫ as

P (‖hmin‖2≤ǫ)≤P



(

min
a∈Z[j]K , a6=0

αk

)


min(K,ρh)∑

k=1

|h̄k|2

≤ǫ




≤ 1

2DD!

(
min

a∈Z[j]K , a6=0
αk

)−D

ǫD :=cDǫD, (140)

where D = min(K, ρh) and cD is a finite constant, and the second inequality is based

on [48, Eq. (40)] when ǫ is small. �

Note that the proof for Lemma 6 is quite different from the one for the i.i.d.

channel case in [67]. Correlated multipath channels are covered here. Thanks to the
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precoder design in [57], the minimum vector hmin has the same degrees of freedom as

other vectors in the lattice.

Now we are ready to quantify the diversity order collected by the LR-aided ZF

equalizer for the LP-OFDM systems. Given Lemma 6, inserting (136) into [67, Eq.

(27)] and following [66, Eq. (28)], one can upper bound the average pairwise error

probability of LR-aided ZF equalizer as

Pe ≤ cD

(
4

c2
δ

)D
(2D − 1)!

(D − 1)!

(
1

σ2
w

)−D

, (141)

where D = min(K, ρh). Therefore, the diversity order of the LR-aided ZF equalizer

is greater than or equal to min(K, ρh). Since the maximum diversity order enabled

by each group is min(K, ρh), for LP-OFDM , the LR-aided ZF equalizer collects the

full diversity order min(K, ρh). �
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