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SUMMARY 

  

Tilt systems are frequently prescribed to wheelchair users who are unable to 

independently reposition or perform pressure reliefs for the prevention of pressure ulcers. 

However, little is known about how people use these systems, the biomechanical effects 

of their use, or how they ought to be used for maximum benefit. The overall goal of this 

research is to improve the use of seated tilt to increase function, health and quality of life 

for people using power wheelchairs. Specifically, the objective of this dissertation is to 

evaluate the biomechanical responses to seated full body tilt and their relationships to the 

actual use of tilt-in-space wheelchairs.   

In the first phase of this study, researchers remotely monitored how 45 fulltime 

power wheelchair users used their tilt-in-space systems. Participants spent an average of 

12.1 hours in their wheelchair each day. They spent more than 2 hours seated at positions 

greater than 15° and performed tilts of 5° or greater every 27 minutes, but rarely 

performed tilts past 30°.  

Two distinct types of tilt behavior were identified: uni-modal (staying at a single 

position more than 80% of the time) and multi-modal (staying at a single position less 

than 80% of the time). Participants in the multi-modal group tilted significantly more 

frequently (4 times per hour) than the uni-modal group, and did not have a single typical 

position. Participants without sensation were more likely to exhibit uni-modal behavior. 

In the second phase of this study, researchers used interface pressure 

measurements and laser Doppler flowmetry to study changes in localized loading and 

superficial blood flow at the ischial tuberosities across different amounts of tilt. Eleven 
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participants with spinal cord injuries were studied in a laboratory setting. Results showed 

that biomechanical responses to tilt were highly variable. Pressure reduction at the ischial 

tuberosity was not present at 15°, but did occur with tilts to 30° and greater, and could be 

explained by the tilt position and upright pressure. Unlike pressure, blood flow increased 

with all tilts from an upright position, but did not increase when tilting from 15° to 30°. 

Only 4 of 11 participants had a considerable increase (≥10%) in blood flow at 30° tilt, 

whereas 9 participants did during maximum tilt (i.e., 45°-60°). Based on the results of 

this study, tilting for pressure reliefs as far as the seating system permits is recommended 

to maximize the potential for significant pressure relief and increased blood flow.  
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CHAPTER I 

INTRODUCTION 

 

Specific Aims 

The overall goal of this research is to improve the use of seated tilt to increase 

function, health and quality of life for people using power wheelchairs. Specifically, the 

objective of this project was to evaluate the biomechanical responses to seated full body 

tilt and their relationships to the actual use of tilt-in-space wheelchairs.  

Tilt systems are frequently prescribed to wheelchair users who are unable to 

independently reposition or perform pressure reliefs for the prevention of pressure ulcers. 

However, little is known about how people use these systems, the biomechanical effects 

of their use, or how they ought to be used for maximum benefit. For this dissertation, 

researchers remotely monitored how people used their tilt-in-space systems, and 

evaluated the biomechanical responses to tilt in a laboratory setting. A descriptive 

analysis of the remote monitoring included participants’ typical sitting positions, the 

magnitude and frequency of tilt maneuvers performed throughout the day, and the time 

spent at different tilt angles. In the laboratory, interface pressure measurement and laser 

Doppler flowmetry were used to study changes in localized loading and superficial blood 

flow at the ischial tuberosities across different amounts of tilt. Finally, tilt use was also 

analyzed based on the outcomes of the laboratory testing.  

Pressure ulcers remain a major problem for many wheelchair users. In addition to 

having an obvious detrimental impact on health, pressure ulcers often disrupt the 

educational, vocational and community participation of wheelchair users, thus negatively 
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affecting quality of life. Two factors, the magnitude of pressure and duration of loading, 

are the defining causes of pressure ulcers. Clinically, these causative factors are 

addressed by the selection of appropriate wheelchair cushions and by the establishment of 

pressure relief schedules. However, when power wheelchair users are unable to 

independently perform pressure reliefs, they may be prescribed powered tilt systems.  

The Consortium for Spinal Cord Medicine suggested that tilt systems be utilized 

to perform weight shifts every 15-30 minutes for at least one minute. Although the 

required tilt angle to perform a pressure relief has not been defined, research has shown 

that interface pressure decreases as the tilt angle increases. Therefore, recommendations 

in the literature and clinic vary from 30° to 65°, with an emphasis on tilting “all the way 

back.”  

In preliminary studies, Sonenblum, et al. (2009) found that instead of performing 

pressure reliefs as prescribed, many participants performed frequent, small magnitude 

tilts. This alternate use of the tilt feature may be clinically important due to limitations in 

tilting to large angles. First, a tilted position past 30° or 45° is not functional as the user 

cannot maintain vision of activities in front of them. The position may cause a sensation 

of instability and may not be considered comfortable. In contrast, positions with small tilt 

angles are frequently described as comfortable, stable and functional. Therefore, this 

study sought to identify if the type and frequency of tilts already performed provide 

biomechanical benefits to the users. 

As a first step, it was necessary to determine if the preliminary results on tilt use 

were generalizable to a larger population of wheelchair users. Given that many clinicians 

tend to agree with the pilot results, it was expected that the results would generalize. 
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Second, it was necessary to describe the relationships between tilting, and blood flow and 

localized loading. Finally, pressure relieving tilts were defined in the context of the 

measured biomechanical responses to tilt, and the definition was applied to the tilt-use 

data. The three phases of research are laid out in the following specific aims: 

Specific Aim 1: To describe how tilt systems are used. 

The tilt use of people who currently use tilt-in-space wheelchairs was monitored 

remotely for one week to provide a global picture of how people utilized their tilt 

systems. This aim was descriptive in nature. Aspects of tilt use such as the magnitude and 

frequency of tilts as well as the amount of time spent at each tilt angle (i.e., small, 

medium, large, extreme) are described. Additionally, hypotheses concerning whether 

participants tilted to angles currently associated with pressure relief (i.e., large or extreme 

angles) were tested, secondary to the descriptive analysis.  

 

Specific Aim 2: To determine the impact of tilting on blood flow and localized tissue 

loading. 

Laser Doppler flowmetry and interface pressure measurement were employed to 

measure the increase in blood flow and decrease in loading with increased tilt angle on a 

subset of subjects from Specific Aim 1. The overall relationship between tilt and blood 

flow and loading was described. Additionally, this relationship was used to define a 

minimum “pressure relieving tilt.” Although the efficacy of such a tilt in preventing 

pressure ulcers could not be defined within the scope of this study, a more justified 

definition of “pressure relieving tilt,” with which to analyze tilt feature use was 

developed. 
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Specific Aim 3: To reevaluate participants’ tilt use in terms of the measured 

biomechanical responses to tilt. 

The relationships between tilt angle and blood flow and loading, as well as the 

definition of pressure relieving tilt defined in Specific Aim 2, were used to evaluate the 

tilt use measured in Specific Aim 1. From this, the amount of biomechanical benefit 

participants received from their tilt use was determined.  

 

The completed research informs researchers and clinicians about behaviors in 

everyday life that may influence pressure ulcer prevention. It also provides information 

on the influence of people’s use of medical equipment on health. Manufacturers benefit 

from knowledge regarding how their wheelchairs are used as they may choose to 

optimize the devices for actual use rather than prescribed use. The blood flow results may 

allow for training to be focused on behaviors that can be more easily and comfortably 

integrated into a person’s everyday routine, thereby lowering the incidence of pressure 

ulcers. 

Background and Significance 

High Incidence and Costs for Pressure Ulcers 

Pressure ulcers (PUs) remain a leading secondary complication of spinal cord 

injury (SCI), affecting 29% of people with SCI during their initial hospital stay (Carlson, 

King et al. 1992). Furthermore, more than 50% of people with SCI experience PUs 

during their lifetimes (Vidal and Sarrias 1991; Salzberg, Byrne et al. 1998; Raghavan, 
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Raza et al. 2003; Krause and Broderick 2004). A 2005 multi-center cohort study by 

Chen, et al. involving nine Model Spinal Cord Injury Systems showed a significant trend 

toward increasing PU prevalence in recent years (1994–2004 vs. 1984–1993) (Chen, 

Devivo et al. 2005). Annual US treatment costs for PUs in this population are 

approximately $1.2 billion, accounting for 25% of the total cost of medical care for SCI 

(Byrne and Salzberg 1996). The costs of PUs extend far beyond the medical costs 

incurred for treatment. Personal and societal costs from inactivity, as well as missed 

educational, vocational, and recreational pursuits are equally important.  

Lack of Mobility Increases Risk for Pressure Ulcers 

All risk assessment tools include limited mobility as a risk factor for PU 

development. Specifically, the Braden, Norton and Gosnell Scales include scores for both 

activity and mobility while the Waterlow Scale combines the two into a single category. 

In all scales, an activity level of chairfast or bedfast is associated with the most risk 

(Waterlow 1985, 2005; Bates-Jensen 1998). Similarly, risk analyses have found 

numerous mobility-related factors that increase risk. Salzberg, et al. (1996) described 

reduced activity as an important risk factor. Multiple studies have found that 

completeness of injury, described as complete (Young and Burns 1981; Vidal and Sarrias 

1991; Carlson, King et al. 1992; Byrne and Salzberg 1996; Salzberg, Byrne et al. 1996; 

Salzberg, Byrne et al. 1998; Chen, Devivo et al. 2005) or by the ASIA or Frankel scores 

as having little or no motor function (Young and Burns 1981; Vidal and Sarrias 1991; 

Carlson, King et al. 1992; Fuhrer, Garber et al. 1993; Garber, Rintala et al. 2000) result in 

increased risk. Finally, two research groups found that spasticity, which results in 
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movement, reduces the risk of pressure ulcer development (Vidal and Sarrias 1991; 

Byrne and Salzberg 1996; Salzberg, Byrne et al. 1998). 

The reasons why these factors lead to pressure ulcers are numerous, but in general 

they relate back to the fundamental cause of pressure ulcers – external loading on tissue. 

Limited mobility in wheelchair users leads both to increased durations of loading (due to 

continuous sitting without the ability to reposition or relieve pressure) and increased 

magnitudes of loading (muscle atrophy causes body weight to be supported by smaller 

surfaces areas (Aissaoui, Kauffmann et al. 2001)). Fulltime power wheelchair users, 

including those prescribed tilt-in-space power wheelchairs, experience increased 

durations of loading – up to 16 hours each day (Sonenblum, Sprigle et al. 2009) because 

of their limited mobility and inability to change position. Considering this, as well as lack 

of sensation and incontinence (two other strong risk factors), fulltime power wheelchair 

users are often at the greatest risk for pressure ulcer development. 

From External Loading to Pressure Ulcer Development 

Bouten, et al. (2003) defined a hierarchical approach to pressure ulcer etiology. 

The hierarchy begins at the global level where the skin is exposed to external loading. 

This in turn loads and deforms the internal soft tissue which brings about 

pathophysiologic responses. External loading (i.e. interface pressure) has been studied 

regularly since the 1960’s, when the first interface pressure measurement technologies 

emerged (Lindan, Greenway et al. 1965). Because interface pressure measurement tools 

are commercially available and the measurements are non-invasive and clinically 

meaningful, they dominate the pressure ulcer literature.  
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The mechanisms by which internal loading and the physiological response lead to 

pressure ulcers are not known, however some theories have been proposed. Oomens, et 

al. suggested three hypotheses for the etiology of PUs based on the seminal work of Dr. 

Krouskop and others (Krouskop 1983; Oomens, Bressers et al. 2003): (1) Ischaemia of 

soft tissues occurs as a result of the occlusion or collapse of capillaries. (2) A disruption 

of the equilibrium in the interstitium between cells affects terminal capillaries and lymph 

vessels. (3) Cell damage results from prolonged deformation. Application of this model 

to PU prevention modalities requires a better understanding of the body’s physiologic 

response to such modalities.  

External Loading 

A variety of factors influence the external pressures. Intrinsic characteristics 

including ectomorphic index, gender, percent fat and stature (Moes 2007), body weight 

(Garber and Krouskop 1982; Moes 2007), diagnosis (Hobson 1992; Swain and Peters 

1997; Vaisbuch, Meyer et al. 2000; Thorfinn, Sjoberg et al. 2002), and spasticity (Swain 

and Peters 1997) can greatly affect external pressures. Finally, aspects of the seating 

system including the wheelchair cushion, additional positioning supports and overall 

posture can also affect external pressures (Vaisbuch, Meyer et al. 2000; Moes 2007). In 

part due to the many sources of variability, interface pressure alone cannot be used to 

predict who will develop PUs (Gefen and Levine 2007). Instead, the allowable pressure is 

believed to be individualistic and dependent on a person’s susceptibility as well as the 

durations of loading. 

Research shows that the damaging effects of pressure are related to both its 

magnitude and duration. Over short periods of time, tissues can withstand higher external 
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loads than over longer periods of time. Kosiak (1959) first demonstrated this 

characteristic 45 years ago by applying loads to the trochanters and ischial tuberosities of 

dogs. High loads for short durations and low loads for long durations induced ulcers with 

the time-at-pressure curve following exponential decay (Figure 1). Reswick and Rodgers 

(1976), who followed human subjects with spinal injury, determined this same pressure-

time relationship.  

In a seated posture, it can be estimated that the buttocks are loaded by 

approximately 68% of the person’s bodyweight (Winter 1990). In wheelchair sitting, that 

load is borne predominantly by the ischial tuberosities of the pelvis (Figure 2), with 

average pressures varying from 83.9 mmHg for elderly subjects seated on reference foam 

to 191.1 mmHg for subjects with SCI and no spasticity seated on the same reference 

foam (Swain and Peters 1997). 

 
Figure 1. As time-at-pressure increases, smaller pressures can be tolerated without 
inducing pressure ulcers. Extremely high pressures cannot be tolerated over short 

durations without damage.  

Pr
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Internal Loading and Deformation 

Internal loading has been studied predominantly in models and more recently in 

humans via MRI. Early studies used gel or elastomer models to determine internal stress 

and strain (Bennett, Kavner et al. 1979; Reddy, Patel et al. 1982; Sprigle, Haynes et al. 

1994). More recent studies have applied finite element models to better understand 

internal tissue deformations and to find relationships between external loading and 

internal tissue deformation and loading (Todd and Thacker 1994; Ragan, Kernozek et al. 

2002; Breuls, Bouten et al. 2003; Oomens, Bressers et al. 2003; Linder-Ganz and Gefen 

2004; Kuroda and Akimoto 2005; Linder-Ganz, Yarnitzky et al. 2005; Linder-Ganz, 

Shabshin et al. 2007). The common finding of these studies was that loading relationships 

(internal versus external) cannot be defined without considering the individual tissue 

properties and geometry.  

 
Figure 2. Distribution of upper body weight is predominantly on two ischial 

tuberosities. 

Ischial Tuberosity 

Greater Trochanter 
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Physiological Responses: Blood Flow Response to Loading  

The most frequently studied physiological responses to external loading include 

blood flow and tissue oxygenation. These studies are briefly described below. 

While research has clearly shown a relationship between tissue damage and 

pressure magnitude and duration, researchers have failed to define a single critical 

loading threshold above which ischaemia occurs. This may be the result of controlled, yet 

varying, experimental approaches aimed at determining a single critical pressure common 

among people. Lassen and Holstein (1974) found that the pressure required for vascular 

occlusion approximated diastolic pressures when the measured region approached heart 

level. Holloway, et al. (1976) found that blood flow decreased as external pressure 

approached mean arterial pressure and occlusion was reached around 120 mmHg. Ek, 

Gustavsson and Lewis (1987) found a “weak positive correlation” between blood flow 

during loading and systolic blood pressure. Sangeorzan, et al. (1989) determined that 71 

mmHg was needed to occlude flow over “soft” sites but only 42 mmHg occluded flow 

over “hard” sites. Bennett and colleagues (1979) measured occlusion pressure in non-

disabled subjects and found that 100-120 mmHg were necessary to occlude vessels in 

“low shear” conditions and 60-80 mmHg were needed in the presence of “high shear”. 

Bar (1988) reviewed the literature and concluded that a critical pressure is necessary to 

occlude blood flow, but that the pressure varies widely across people.  

Some researchers have studied the effects of SCI on blood flow’s response to 

load. Holloway, et al. (1976) found no differences in blood flow between six subjects 

with SCI and six non-disabled subjects when applying 0-15 mmHg near the sacroiliac 

joint. Patterson, et al. (1986) applied 30 and 75 mmHg and found an impaired flow 
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response to loading in SCI subjects although flow was never completely occluded. Bader 

(1990) found some very different blood flow responses following sacral loading across 

and within diagnostic groups. Sae Sia, et al. (2007) found that loading the sacrum within 

days of SCI caused a decrease in blood flow on the order of 40%, whereas loading on a 

person without SCI resulted in increased flow. These results highlight the importance of 

studying blood flow specifically in participants with SCI. Additionally, studying 

participants in their personal seating system guarantees that the analysis will occur at the 

relevant loading conditions. 

The average power tilt-in-space wheelchair user sits in their wheelchair for 11 

hours per day (Sonenblum, Sprigle et al. 2009). Given the literature described previously, 

it is evident that during this time under normal conditions, wheelchair users will 

experience impaired blood flow. In fact, research has shown considerable decreases in 

blood flow during sitting for able-bodied persons and persons with SCI (Thorfinn, 

Sjoberg et al. 2002; Thorfinn, Sjoberg et al. 2006; Makhsous, Priebe et al. 2007). This 

research also showed a pronounced post-loading hyperaemic response under the ischial 

tuberosities, indicative of blood flow occlusion during loading. (Thorfinn, Sjoberg et al. 

2002; Thorfinn, Sjoberg et al. 2006).  

Pressure Ulcer Prevention 

While PU causation is accepted to be multifactorial, as mentioned previously, one 

parameter, external loading on tissue, is the most significant. External loading is the 

defining characteristic of PUs, distinguishing them from other ulcers such as venous 

stasis or vascular insufficiency ulcers. The means by which tissue loading is managed 

form a substantial part of pressure ulcer prevention and treatment. To address the risks 
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mentioned above of increased magnitude and duration of loading, two interventions are 

utilized. Support surfaces are selected according to their abilities to distribute load. 

Turning and pressure relief schedules are introduced to limit the duration of continuous 

loading.  

Interventions affecting magnitude and duration are related according to the 

inverse relationship previously described (Figure 1), (Kosiak 1959; Reswick and Rogers 

1976). The body can withstand great loads for very short durations while even very low 

loads can cause damage if unrelieved for long enough. Therefore, an ideal cushion might 

reduce the pressure sufficiently to elongate the time between pressure reliefs, but some 

pressure reliefs are always necessary.  

Wheelchair Cushions 

Wheelchair cushions serve many purposes and affect many aspects of daily life, 

including: posture, upper extremity function, comfort and transfers. The function most 

relevant to this study is pressure reduction. Cushions reduce loading at bony prominences 

using two predominant approaches. First, a cushion may envelop the tissue, or deform 

around the contour of the buttocks, thereby equalizing the pressure across the entire 

region. Ideal envelopment approaches immersion in water, with equal pressure applied at 

every point, a situation in which pressure ulcers are unlikely to occur. The second 

approach utilizes off-loading. Off-loading cushions utilize cutouts or reliefs to completely 

unload an at-risk or affected region (Davis, Kreutz et al. 2009). 

Unfortunately, the myriad of functions performed by the cushions are often 

conflicting. For example, a very deep and soft cushion might provide complete 

immersion and therefore excellent pressure reduction. However, this same cushion would 
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make it impossible for a user to transfer in and out of their wheelchair. Therefore, 

cushions cannot be selected only to minimize external pressure, making the cushion alone 

insufficient for preventing pressure ulcers. Once pressure reduction has been optimized 

considering the presented limitations, pressure duration must then be considered. Pressure 

duration is attended to with pressure reliefs. 

Pressure Reliefs 

Recommendations for pressure relief frequency have typically ranged from 15-30 

seconds every 15-30 minutes to 60 seconds every hour (Nawoczenski 1987; Regan, 

Teasell et al. 2006; Alverzo, Rosenberg et al. 2009; Davis, Kreutz et al. 2009). In some 

cases, dynamic wheelchair cushions are prescribed for people who cannot independently 

perform pressure reliefs. More frequently, however, powered tilt and/or recline systems 

are prescribed for power wheelchair users who are unable to independently perform 

pressure reliefs. The Consortium for Spinal Cord Medicine suggested that the systems be 

utilized to perform weight shifts every 15-30 minutes for at least one minute (2000).  

Manual Pressure Reliefs  

Manual pressure reliefs are recommended for persons with the ability to 

reposition. Little is known about whether or not manual pressure reliefs are actually 

performed and whether or not they are effective. A recent study of persons with SCI and 

no recent (i.e., in the past 1 year) history of pressure ulcers found a relatively infrequent 

use of complete pressure reliefs (Yang, Chang et al. 2009). Participants performed 

complete pressure reliefs 10 times per day, with a mean time of 97 minutes between 

pressure reliefs. However, it is possible that participants performed partial weight shifts at 

more frequent intervals, as those were not considered in this study. In Garber, et al.’s 
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study of 130 men with chronic SCI, 75% of subjects reported doing pressure reliefs and 

this correlated with decreased pressure ulcer occurrence (Garber, Rintala et al. 2000). 

Yet, two additional studies found no relationship between self reported performance of 

regular weight shifts, and pressure ulcer development (Raghavan, Raza et al. 2003; 

Krause and Broderick 2004). One concern with the studies is that the accuracy of subject 

recall of retrospective activities over time is questionable. Research consistently shows 

that frequent behaviors are poorly represented in memory, forcing respondents to rely on 

estimation strategies (Pepper 1981; Schwarz 1999). In preliminary studies of tilt use, for 

example, many subjects claimed to perform tilts (a similarly mundane activity to manual 

pressure reliefs) much more frequently than observed in their data (Sonenblum, Sprigle et 

al. 2009). One subject claimed never to perform tilts, yet researchers observed 10 tilts 

during a 15 minute conversation. The activity was almost a reflex to her; she was not 

aware that she was tilting. It is for these reasons that the current study objectively 

monitored tilts rather than counting on subjective recall from participants. 

One way to better understand the impact of pressure reliefs is to study their 

indirect affects. According to the hierarchy described earlier, this would include studying 

the 1) external loading; 2) internal loading; and 3) physiological responses (i.e. blood 

flow or tissue oxygenation) during pressure reliefs. Researchers have studied external 

loading and blood flow during manual pressure reliefs. 

An ideal push-up manual pressure relief will relieve 100% of pressure at the 

ischial tuberosities. However, the ability to sustain a PR is dependent on a myriad of 

factors, not least of which are level of injury, strength of innervated musculature and 

presence of orthopedic complications (Sliwinski and Druin 2009). The length of time 
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needed for at-risk tissue to re-perfuse has been estimated between 100 and 300 seconds 

(Coggrave and Rose 2003; Makhsous, Priebe et al. 2007) based on TcPO2 recovery. 

Based on findings like this and clinical experience, many wheelchair users are taught to 

do partial weight shifts. Studies have shown that a sideways lean of approximately 20° 

can reduce peak pressures at the ischial tuberosities between 20 and 40% (Hobson 1992; 

Koo, Mak et al. 1996). Results from forwards leans are more variable, with pressure 

reductions of 20-30% in a 20° lean (Koo, Mak et al. 1996), 55-60% with a 45° lean 

(Vaisbuch, Meyer et al. 2000), 9% with a 50° lean (Hobson 1992), and 78% with a 

complete forwards lean (chest on thighs) (Henderson, Price et al. 1994). 

Studies of internal pressure are typically limited to MRI or models and none have 

explicitly addressed manual pressure reliefs. However, Linder-Ganz, et al. (2007) showed 

that the addition of 5kg of body weight increases internal compressions strains on the 

order of 150% and stresses on the order of 250%. From this, one might assume that 

transferring 5kg of body weight to the arms in a push-up or lean would reduce internal 

stresses and strains considerably. 

One recent study addressed the physiological response of tissue perfusion during 

manual pressure reliefs (Makhsous, Priebe et al. 2007). All subject groups increased their 

oxygenation from <10 mmHg during normal sitting to >50 mmHg during the pushup. 

Unfortunately, given the difficulties in maintaining the push-up described above, this 

oxygenation benefit is not frequently experienced by manual wheelchair users. 

Dynamic Wheelchair Cushions  

Dynamic wheelchair cushions present an alternative for people who are unable to 

manually redistribute their pressure. These cushions mechanically vary the load under 
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different regions of the body. Dynamic support surfaces are more common for mattresses 

because they have access to power and fewer weight requirements than when used with a 

wheelchair. Because dynamic mattresses present an alternative to assisted pressure reliefs 

while dynamic cushions provide an alternative to manual, independent pressure reliefs, 

only the latter will be discussed here. 

Dynamic wheelchair cushions typically alternate between inflation and deflation, 

over time resulting in higher maximum pressures at the ischial tuberosities and lower 

minimum pressures (Burns and Betz 1999; Stockton and Rithalia 2008). Blood flow 

perfusion (Stockton and Rithalia 2008) and oxygenation (Makhsous, Priebe et al. 2007) 

studies have demonstrated superiority of dynamic cushions over manual pressure reliefs. 

In a simulator wheelchair, comparable to a dynamic cushion, a recent study demonstrated 

an inverse correlation between pressure and blood flow with frequent pressure changes 

for persons with and without SCI (van Geffen 2009; van Geffen 2009). It is important to 

note that dynamic cushions are rarely utilized despite their potential benefits. There are 

many reasons including limited battery life (when the battery fails, the subject is required 

to stay in the loaded condition which puts them at higher risk for pressure ulcers), weight 

and cost. Dynamic cushions also do not provide any of the additional benefits 

experienced with tilt systems, as discussed below. 

Tilt and Recline Systems  

Tilt systems maintain constant hip and knee angles while tilting the whole system 

rearward (Figure 3). The goal of tilt systems is to redistribute body weight from the seat 

in upright sitting to the backrest in a tilted position, thereby offloading the pressure from 

the ischial tuberosities. Most tilt systems rotate rearwards to achieve a tilt angle of 45-60˚ 
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from the horizontal. Tilting reduces the frictional forces at the seat interface (Hobson 

1992) and permits consistent positioning and switch access throughout the range of 

movement. Tilt systems also provide many benefits beyond decreasing interface pressure 

(Sprigle and Sposato 1997; 2000; Lange 2000). Users may experience increased comfort 

and sitting tolerance secondary to the decreased pressure. Consequently, users may spend 

more time out of bed and experience increased function. Increased function may also 

stem from the variable positions available for access and reach in different situations, 

improved head and neck control and easier transfers. Improved sleep and rest, increased 

blood flow, easier feeding and improved respiratory function have also been reported. 

However, tilt systems are problematic for some people, including those who have trouble 

tolerating static joint positions (hip/knee) throughout the day or those who have difficulty 

with bladder drainage while tilted.  

Recline systems move the person from a sitting position to nearly supine position 

by opening the seat-to-back angle and elevating the footrests (Figure 3). The goal is to re-

distribute body weight from the seat to the backrest and leg rests. Recline systems have 

 
Figure 3. Tilt and recline wheelchair functions. 
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an added benefit of assisting with bladder drainage and management. Some people 

cannot use a recline system for pressure relief because of increased spasticity during 

recline (Sprigle and Sposato 1997) and increased sliding tendency (Hobson 1992) that 

occurs when opening the seat to back angle. Changes in posture during reclining can also 

impair switch access and interfere with postural support placement.  

Although both tilt and recline have advantages as pressure relieving modalities, 

only tilt was studied in the current project for a number of reasons. First, tilt-in-space 

wheelchairs are prescribed more frequently at the local seating clinic. In fact, more than 

125 tilt-in-space wheelchairs were prescribed in 2007 alone. This has led to considerable 

interest from clinicians working with clients who have tilt-in-space wheelchairs. The 

clinicians want to know the degree of tilt that improves blood flow because they know it 

is hard to convince some of their patients to tilt all the way back. Second, blood flow 

measurements are likely to be more accurate in tilt. Posture changes (i.e. increasing hip 

angle) affect the region of blood flow being monitored and result in highly variable, less 

reliable data. Finally, observations of tilt have suggested wide ranging benefits to the 

feature beyond pressure relief, making it worthy of further study. 

A number of studies have used interface pressure measurements to study the 

effects of tilt on interface pressure at the buttocks-seat interface. These studies aimed to 

document the pressure relieving capabilities of tilt, consistent with its purpose as a 

pressure ulcer prevention intervention. In 1992, Hobson (1992) found an 11% reduction 

in maximum pressure under the ischial tuberosities with a 20° tilt. Henderson (1994) 

found a 27% reduction in peak pressure with a 35° tilt and a 47% reduction with a 65° 

tilt, while Burns and Bets (1999) found a 33% decrease in maximum pressure with a 45° 



  19 

tilt. Finally, Aissaoui, et al. (2001) found a 27% decrease in peak pressure with a 45° tilt 

and 100° seat to back angle. Comparison of these and other studies can be found in 

Lacoste, et al. (2003). Despite the varied methods, surfaces, and subjects used throughout 

these studies, the message they illustrate is clear: the greater the angle of tilt, the lower 

the overall pressure at the buttocks-seat interface. However, the angle of tilt needed for an 

acceptable weight shift is not known as allowable interface pressures and resulting blood 

flow needed to prevent pressure ulcer formation depend on the individual and have not 

been determined (Bar 1988).  

To date, little data has been published on the change in blood flow or perfusion of 

persons with SCI during different tilt positions. Thus, it is not known the degree of tilt 

required to relieve blood flow occlusion.  

The impact of tilt in pressure ulcer prevention is dependent on its regular use. To 

date, few studies have tried to determine how tilt systems are used. Lacoste, et al. (2003) 

asked 40 people who used tilt or recline wheelchairs about how and when they tilted. 

97.5% of respondents reported using their systems daily. More than 70% of the 

respondents said they used their tilt and recline systems for comfort, rest, relaxation, and 

pain, while only about 50% reported using the chairs for physiological functions, a 

category that included prevention of pressure ulcers. To understand how tilt systems 

might be used to achieve comfort, rest and relaxation or to manage pain, Lacoste, et al. 

asked participants about the magnitude of their tilts for each purpose. Lacoste, et al. also 

found that large amplitude tilts (30-45°) were used for rest and to decrease pain while 

small amplitude tilts (0-15°) were used to increase comfort. Middle amplitude tilts (15-

30°) were used to increase stability. This self-report methodology found that most people 
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use tilt for reasons other than pressure relief. Given the limitations of self report as 

previously described, there is a need for a quantitative methodology to study the 

magnitude, frequency and duration of tilts.  

Two studies have been published looking at tilt use quantitatively. A study by 

Ding, et al. (2008) included 11 participants, 9 of whom had both tilt and recline available 

on their wheelchair. They found that participants performed 19±14 tilts per day (where a 

tilt required a change of 2.5°) and that subjects repositioned every 53.6 minutes. Tilts of 

less than 20° were found to be more frequent, but the role of recline in combination with 

the small tilts was not addressed and some of the wheelchairs involved did not tilt past 

20°, further skewing the results. Results of a pilot study by Sonenblum, et al. (2009) 

suggested that participants repositioned more frequently than proposed by Ding, et al. 

The pilot study included 16 subjects of varying diagnoses who used wheelchairs with a 

powered tilt-in-space feature. The median subject performed 3.1 tilts every hour he/she 

was seated in the wheelchair (mean (SD) = 4.3 (3.9)). Only two subjects tilted less 

frequently than once per hour. 

The pilot study’s results on pressure reliefs were less encouraging than overall tilt 

use. For the purpose of the pilot study, a pressure relieving tilt was defined as occurring 

when the seat reached a tilt angle of ≥ 30° for one minute. While subjects used their tilt 

feature to frequently change position, few performed pressure relieving tilts. The median 

subject performed approximately one pressure relieving tilt every seven hours (median = 

0.13/hr, mean (SD) = 0.5 (0.7)). Only one subject performed two or more pressure 

reliving tilts per hour, thereby meeting the recommended pressure relief guidelines 

(2000). Two subjects did not perform any pressure relieving tilts during an average day, 
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and another four subjects performed only one every few days, accumulating less than 1% 

of occupancy time at large or extreme tilt angles. 

The pilot results and results from the study by Ding, et al. motivated the current 

methodology in a number of ways. First, it raised the question of whether extreme tilts 

are needed to increase blood flow. Before tackling the problem of how to increase 

people’s use of large and extreme tilt angles, it would be beneficial to document the 

biomechanical changes during such tilts. Second, it illustrated the need to study small and 

medium tilts in greater detail. The differences in tilt use across participants illustrated the 

variability in function and activity among users as well as the diverse benefits of a tilt 

system for different users. This disparity in use of tilt is consistent with the belief that a 

combination of factors including living situation, availability of assistance, daily activity 

and functional ability will contribute to the use of a tilt-in-space system.  
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CHAPTER II 

THE USE OF TILT-IN-SPACE WHEELCHAIRS IN EVERY DAY 

LIFE 

 

The tilt use of people who currently use tilt-in-space (TIS) wheelchairs was 

monitored remotely for one week to provide a global picture of how people utilized their 

tilt systems. This aim was descriptive in nature. Aspects of tilt use such as the magnitude 

and frequency of tilts as well as the amount of time spent at each tilt angle (i.e. small, 

medium, large, extreme) are described in the data analysis section. The hypotheses listed 

below were based on preliminary findings but were secondary to the descriptive analysis.  

Hypotheses 

H1. Small and medium tilts were used more frequently than large and extreme 

tilts. 

H2. Pressure relieving tilts (according to the literature-based definition) were not 

used with the prescribed frequency. 

H3. Tilt behavior can be predicted based on sensation, ability to reposition, and 

wheelchair and pressure ulcer history. 

Methods 

Participants 

A convenience sample of 45 adults was recruited from a local hospital. Inclusion 

focused solely on the use of TIS without regard to diagnosis, gender or age. Only subjects 

who used a power tilt-in-space wheelchair as their primary mobility device were 



  23 

included. This study had IRB approval and subjects signed informed consent forms prior 

to beginning their participation in the study.  

Because of the descriptive nature of Specific Aim 1, power analyses were not 

technically appropriate. Ideally, the maximum number of subjects possible would be 

studied, to provide a sufficiently diverse population for generalizable results. The 

prediction model to be tested for Hypothesis Three was selected to have four factors 

including function (i.e. sensation and ability to reposition), wheelchair history, and 

pressure ulcer history. The factors and model are discussed further in the analysis section. 

Given the rule of thumb that 10 subjects are needed for each factor, 45 subjects were 

deemed sufficient.  

Instrumentation 

This study utilized instrumentation previously developed to study wheelchair use 

and activity (Lankton, Sonenblum et al. 2005; Sonenblum, Sprigle et al. 2006; e.g. Harris, 

Sonenblum et al. 2007; Sonenblum, Sprigle et al. 2008). The instrumentation included 

three components: the accelerometer / data logger (MSR 145, MSR Electronics GmbH), 

an occupancy switch, and external circuitry. The MSR is a microprocessor-controlled 

data logger in a compact package (18mm x 14mm x 62mm, Figure 4). Also included in 

the package is a battery, flash memory suitable for collecting 1 week of data, and a 

triaxial accelerometer sensitive to ±2 g. The MSR was mounted to the seat bottom. 

Accelerations were sampled at 1 Hertz and converted to a tilt angle using the arcsine of 

the stationary acceleration parallel to the seat bottom (Figure 5). Wheelchair occupancy 

was ascertained by a mechanical switch (i.e. the occupancy switch) placed under the 
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wheelchair cushion and logged through the MSR’s external analog input. Occupancy was 

sampled every 5 seconds. 

Protocol 

After providing informed consent, subjects’ wheelchairs were instrumented with 

the MSR data logger / accelerometer and occupancy switch. Subjects were asked a 

number of questions to ascertain demographic information (e.g. age, gender, education, 

and employment status), functional and physical presentation of their disability (e.g. 

sensation, function, spasticity, wheelchair history) and pressure ulcer history (See 

 
Figure 4. The MSR 145 is 18mmx14mmx62mm. 

 
 
 

 
Figure 5. Mounting orientation of accelerometer. 
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Appendix A for complete survey). Additionally, subjects’ “ability to reposition” (i.e., 

squirm) was defined to distinguish subjects able to change posture from those unable to 

independently reposition. Participants were divided into two groups based on observation 

or measurement. If a participant had no independent mobility within their wheelchair 

they were placed in the “no ability to reposition” group and participants who could 

completely unload their buttocks were grouped as having the ability to reposition. For the 

remaining participants with some ability to reposition, a small pressure sensor was placed 

under the trochanter, opposite the side to which they could lean the farthest. If the 

decision as to which side to study was unclear, both sides were studied. Participants were 

asked to lean as far in all directions as they were able. If the pressure at the trochanter 

during the lean was reduced to 25% or less of their upright pressure, participants were 

identified as having the ability to reposition. It is important to remember that this ability 

to reposition represents an ability to squirm and is different than the ability to perform a 

weight shift, as unloading the trochanter does not necessarily mean the participant can 

unload the ischial tuberosity. 

The instrumentation was left on the wheelchairs for one week, during which time 

the instrumentation operated without subject interaction. This resulted in six complete 

days of data to determine typical behavior. This timeframe was selected after analyzing 

the data of 10 pilot subjects with 12 days of data. Establishing a reliability of 0.95 

(described by Cronbach’s Alpha), 4.4 days of data would be needed to reliably measure 

the variable with the least day-to-day variability (i.e., typical position) and 7.5 days for 

the variable with the greatest day-to-day variability (i.e., number of tilts). Given the wide 
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range in variables and the convenience of a one week instrumentation period (takedown 7 

days following set up), six days was determined to be suitable. 

This study was conducted in two phases. The first 16 participants were 

instrumented for 1-2 weeks and were not asked all study questions. When possible, these 

subjects were contacted later to ask remaining demographic, disability and pressure ulcer 

history questions. The remaining 29 subjects were monitored for one week and asked all 

questions during instrumentation.  

Data Analysis 

Data processing was performed using Matlab R2008a (Mathworks Inc., Natick, 

MA) and statistical analyses were done using Minitab 14 (Minitab Inc., State College, 

PA).  

Accelerometer data was processed to filter noise and to identify tilt position 

changes. Seat position was defined as constant until the following conditions were met, at 

which point a new position was defined:  1) the tilt angle changed by 5°; and 2) the 

change was maintained (within ±2°) for 20 seconds. Because the accelerometer measures 

changes resulting from factors other than tilting (i.e., wheeling, bumpy ground, etc.), this 

algorithm was necessary to eliminate transient events and focus on changes in tilt angle 

only. A minimum change of 5° was selected because it exceeds the sensitivity of the 

accelerometer and based upon the belief that position differences of less than 5° may not 

be reliably differentiated by persons in wheelchairs. The 20 second threshold was 

selected to eliminate the transient events previously mentioned.  

The variables considered in this study are described below. Unless otherwise 

described, variables are reported based on the median day for each subject. For a day to 
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be included in the analysis, more than 23 hours of data were required (i.e., the first and 

last days of instrumentation were not included) and participants needed to occupy the 

wheelchair for at least 15 minutes. These thresholds were established because certain 

variables were dependent on the time spent in the wheelchair, and these are difficult to 

analyze unless some time was spent in the wheelchair. Variables requiring greater than or 

equal to 45° degrees of tilt were calculated only for participants having more than 45° of 

tilt available on their wheelchair.  

Wheelchair Occupancy Time – the number of hours per day that subjects occupied 

their wheelchairs. 

Typical Position – The position at which the subject spent the most time was 

defined as the mode of all the angles measured during the time the wheelchair was 

occupied. Angles were rounded to the nearest degree.  

Time spent at small (0-14°), medium (15-29°), large (30-44°), and extreme (≥45°) 

tilt angles – Both absolute time and percent of total occupancy time were calculated.  

Number and Percentage of small (0-14°), medium (15-29°), large (30-44°), and 

extreme (≥45°) magnitude tilts – These refer to the absolute value of the change in angle, 

regardless of the starting position. Percentage was computed based on all tilts performed 

by the participant. 

Tilt Frequency –“Tilts” were defined as position changes of 5° or more in either 

direction (i.e. towards tilted or upright) that were maintained for at least 20 seconds. Tilt 

frequency was computed by dividing the daily total number of tilts by the number of 

hours of wheelchair occupancy on that day. 
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Pressure Relieving Tilt (PRT) Frequency – Pressure relieving tilt maneuvers were 

defined as position changes from below 30° of tilt to greater than 30° of tilt lasting more 

than one minute. 30° was selected to include all possible PRTs, as recommendations in 

the literature and clinic vary from 30° to 65°. PRT frequency was computed by dividing 

the daily number of pressure relieving tilts by the number of hours of wheelchair 

occupancy on that day.  

Uni-Modal Behavior – Uni-Modal Behavior is a binary variable used to identify 

participants who spent at least 80% of their time in a single tilt range (i.e., small, 

medium, large, or extreme), as opposed to those who utilized multi-modal behavior by 

spending more than 20% of their time at multiple positions. Although this definition 

appears arbitrary, the variable was defined in post-hoc analysis to distinguish different 

behaviors. The 20% cutoff was motivated by the 81% median percent time in small tilts; 

therefore both groups have sufficient members for analysis. 

 Because most clinical research focuses on populations selected by diagnosis 

rather than function, two subgroups of the participants were created and compared. The 

demographics, wheelchair use, sensation, ability to reposition, and pressure ulcer history 

of participants with and without spinal cord injuries (SCI) were compared using a 

Kruskal-Wallis test for continuous variables and a Pearson Chi-Square test for categorical 

factors (Odds ratios and 95% confidence intervals were reported when the chi-square was 

significant) with p < 0.05 considered significant. Similar exploratory tests were also run 

across different demographic, diagnosis and wheelchair configuration factors and 

variables of tilt behavior. 
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Non-parametric statistics were used to test the first two hypotheses due to the 

skewed distributions in tilt behavior. Hypothesis One (Small and medium tilts are used 

more frequently than large and extreme tilts) was tested using a Mann-Whitney test. 

Specifically, the number of small and medium tilts per day was compared with the 

number of large and extreme tilts per day, for each subject. Hypothesis Two (Pressure 

relieving tilts are not used with prescribed frequency) was tested using a Wilcoxon signed 

rank test in which tilt frequency was compared with the conservative threshold of 1 tilt 

per hour.  

To test Hypothesis Three, tilt behavior (PRT frequency, tilt frequency, and most 

frequent size of tilt) was modeled using a multiple regression model with four factors: 1) 

presence of sensation at the buttocks, 2) years using a tilt wheelchair, 3) ability to 

reposition independently in the wheelchair, and 4) history of pressure ulcers in the pelvic 

region. If these four factors could explain at least 50% of the variance in tilt behavior, the 

hypothesis would be supported. The four factors were initially tested for co-linearity but 

the variables were sufficiently independent to proceed.  

The definitions of the model predictors warrant further explanation. The 

“presence of sensation at the buttocks” was defined by the self-reported responses to 

three questions – “are you able to feel the following on your buttocks: 1) deep pressure; 

2) light touch; or 3) pain?” Participants were defined as having sensation present if they 

answered yes to any of the above questions. A few measures related to years of 

wheelchair use were documented, including years using any wheelchair, years using any 

tilt-in-space wheelchair, years using their current wheelchair, and a binary response to 

‘did their first wheelchair have a tilt-in-space feature’. Repositioning was defined in the 
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protocol above, requiring 75% unloading of one trochanter. Finally, pressure ulcer history 

was documented based on self report, including the following variables: history of any 

pelvic pressure ulcer, presence of a current pressure ulcer, and history of a recurrent 

pressure ulcer (i.e. occurring more than once) at a pelvic location. 

Results 

Description of Sample Population 

45 subjects were enrolled in this study. Participant characteristics can be found in 

Table 1, Table 2, Figure 6, and Figure 7. In terms of diagnosis, the majority of the 

participants had an SCI (n = 30, 68.2%). The second most common diagnoses were 

multiple sclerosis (n = 4, 9.1%) and cerebral palsy (n = 4, 9.1%). Other diagnoses 

included brainstem stroke, spina bifida and muscular dystrophy. Of the 30 participants 

with SCI, half described their injury as incomplete, 14 as complete, and 1 was uncertain. 

Levels of SCI varied with 29 cervical injuries and 1 thoracic injury (Figure 6).  
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Figure 6. Level of injury in participants with SCI.  
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Table 1. Subject Demographics. 
 ALL Non-SCI SCI 
 Mean 

(SD) 
Median 
(Min-Max) 

Mean 
(SD) 

Median 
(Min-Max) 

Mean 
(SD) 

Median 
(Min-Max) 

Age (years) (n=44) 45  
(14) 

43 
(22-69) 43 (14) 39 

(23-61) 
45 
(15) 

46 
(22-69) 

Height (m) (n=43) 1.74 
(0.11) 

1.75 
(1.52-1.93) 

1.68 
(0.12) 

1.66 
(1.52-1.88) 

1.77 
(0.09) 

1.78 
(1.55-1.93) 

Weight (kg) (n=43) 75 (19) 75 
(39 – 114) 68 (23) 64 

(39-114) 
78 
(17) 

79 
(50-113) 

     
Gender # (n=45) % # (n=15) # (n=30) 
Female 12 26.7 5 7 
Male 33 73.3 10 23 
     
Race # (n=44) % # (n=14) # (n=30) 
African-American 18 40.9 4 14 
Caucasian 25 56.8 10 15 
Other (biracial) 1 2.3 0 1 
     
Education # (n=43) % # (n=13) # (n=30) 
Some or No high school 5 11.6 0 5 
High school diploma or GED  21 48.8 7 14 
Associates degree  5 11.6 1 4 
Bachelor’s degree  5 11.6 3 2 
Graduate degree  7 16.3 2 5 
     
Occupation (best option) # (n=44) % # (n=14) # (n=30) 
Paid employment 3 6.8 1 2 
Non-paid work, such as 
volunteer/charity 1 2.3 1 0 

Student 5 11.4 2 3 
Keeping House/ Home Maker  1 2.3 1 0 
Retired  5 11.4 1 4 
Unemployed (health reasons)  23 52.3 7 16 
Unemployed (other reasons)  5 11.4 1 4 
Other 1 2.3 0 1 
     
Living Situation  # (n=43) % # (n=13) # (n=30) 
Alone 10 23.3 2 8 
Spouse or Other Family 28 65.1 10 18 
Friend 2 4.7 0 2 
Other 3 7.0 1 2 
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The data revealed a number of trends relating to aging and changes in seating over 

time. Not surprisingly, participants who started with an upright wheelchair and later 

switched to a tilt-in-space wheelchair were more likely to be long time wheelchair users 

(median = 15 years) as compared with those having a tilt feature on their first wheelchair 

(median = 5 years, p = 0.000). This trend existed across populations with and without 

SCI. Additionally, all six participants using a TIS wheelchair with lower levels of SCI 

(C6 or below) were more than 50 years old and yet most had spent less time in a TIS 

wheelchair (1.5 years) than their counterparts with higher levels of injury (6.5 years) (p = 

0.038). 

Some expected relationships among participants with a history of pressure ulcers 

were also found. Persons able to reposition in their wheelchair were less likely to have 

recurrent pressure ulcers (4/23) as opposed to those who were unable to reposition 

(10/19), with an odds ratio [95% CI] of 0.19 [0.04, 0.92]. However, when all pressure 

ulcers were considered, including single instances of ulcers, there was no relationship 

with the participants’ ability to reposition. Additionally, participants with no self-reported 

sensation were significantly more likely to have a history of pressure ulcers (16/17) as 

compared with those who do have some sensation (12/25), with an odds ratio of 17.3 

[2.3, 132.9]. Although there were too few participants in each group to analyze the 

statistical significance of this relationship, lack of sensation may have been related to 

pressure ulcers within the SCI subgroup. 15/16 participants with SCI and no self-reported 

sensation had a history of pelvic pressure ulcers whereas 8/14 participants with some 

sensation had a history of pressure ulcers (odds ratio [95% CI] = 11.3 [0.9, 136.6]). 

Finally, participants with a history of pressure ulcers had greater body mass (81 kg vs. 64 
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kg) than participants who had never experienced a pressure ulcer (p = 0.011). There was 

no relationship between current or recurrent pressure ulcers and body mass. 
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Table 2. Wheelchair and pressure ulcer history, ability to reposition and sensation described across the entire population, 
and SCI and non-SCI subgroups. P-values are the result of a Pearson chi-square test (for categorical variables) or a one-way 

ANOVA (for continuous variables). 
 ALL Non-SCI SCI  

 Mean 
(SD) 

Median 
(Min-Max) 

Mean 
(SD) 

Median 
(Min-Max) 

Mean 
(SD) 

Median 
(Min-Max) p-val 

Years Using a WC 14.4 
(13.5) 

10 
(0.5-50) 

16.0 
(14.5) 

10.7 
(0.6-50.0) 

13.4 
(13.1) 

9.0 
(0.5-47.0) 0.512 

Years Using a TIS WC 6.1 
(6.1) 

3 
(0.25-20) 

4.7 
(5.8) 

1.7 
(0.3-19.0) 

6.7 
(6.3) 

4.5 
(0.3-20.0) 0.178 

Years Using Current TIS WC 2.2 
(2.3) 

1.5 
(0.1-10) 

1.6 
(1.5) 

1.0 
(0.3-5.0) 

2.5 
(2.6) 

2.0 
(0.1-10.0) 0.302 

 

 # 
(n=45) % # 

(n=15) % # 
(n=30) % p-val 

Tilt-in-Space is First Wheelchair 22 48.9 4 26.7 18 60.0 0.032 
 
Ability to Reposition Independently  
(Defined by ability to unload greater trochanter) 

# 
(n=44) % # 

(n=14) % # 
(n=30) % p-val 

 25 56.8 9 64.3 16 53.3 0.382 
 
Self Reported Sensation 
(any of: light touch, deep pressure, pain) 

# 
(n=42) % # 

(n=12) % # 
(n=30) % p-val 

 25 59.5 11 91.7 14 46.7 0.018 
 

Pressure Ulcer History # 
(n=42) % # 

(n=14) % # % p-val 

History of Recurrent (more than one at same location) 14 33.3 3 21.4 11 / 28 39.3 0.247 
Any History of Pelvic Pressure Ulcer 28 63.6 5 35.7 23 / 30 76.7 0.009 
Current Pelvic Pressure Ulcer 9 20.9 4 28.6 5 / 29 17.2 0.400 
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Wheelchair configurations were fairly limited, with most participants using an 

Invacare wheelchair in combination with a Roho Air Inflation (n = 20, 44.4%) or Jay 

Fluid cushion (n = 14, 31.1%). Other cushion types included layered foam, honeycomb, 

and various combinations of air, foam, and gel. Of 38 participants about whom complete 

wheelchair configuration information was known, 29 had chairs configured to tilt past 

45° (range approximately 45°- 60°). Finally, on average wheelchairs were configured 

with approximately 100° of seat to back angle (Figure 7). 
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Hypotheses 

The data supported Hypotheses One and Two. With a median of 21.3 small and 

medium tilts per day compared with 0.7 large and extreme tilts per day, small and 

medium tilts were used more frequently than large and extreme tilts (95% CI for 

difference [12.3, 25.7], p = 0.000). The median PRT frequency of 0.1 PRTs per 

occupancy hour was significantly less than the minimal recommended one per hour (p = 

0.000).  

Unlike Hypotheses One and Two, the data did not support Hypothesis Three. 

Hypothesis Three proposed that tilt behavior (i.e., PRT frequency, Tilt frequency, and 

most frequent size of tilt) could be predicted in a multiple regression model with factors 

of 1) presence of sensation at the buttocks, 2) years using a wheelchair, 3) ability to 

reposition independently in wheelchair, and 4) pressure ulcer status. As explained in the 

methods section, there were multiple variables for years in a wheelchair and pressure 

 
 

Figure 7. Distribution of Seat to Back Angles across 44 participants. 
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ulcer status. The different variables were tested to determine which variable explained the 

most variance. In terms of pressure ulcer status, having a current pressure ulcer had the 

most affect on behavior as compared with ever having a pressure ulcer or having a 

recurrent pressure ulcer. Years using any wheelchair also explained more variance than 

years using a TIS chair, years using their current wheelchair, or having TIS on their first 

wheelchair.  

Even with the optimized variables, however, predicting tilt behavior was 

unsuccessful (Table 3). The models explained only 11.7% of the variance (R2-adjusted) 

in tilt frequency and 2.5% of the variance in PRT frequency. Additionally, none of the 

coefficients in these models were significantly different from zero. The model to predict 

the most frequent size of tilt explained 26.7% of the variance. In this case, the 

coefficients associated with the ability to reposition and the presence of sensation were 

both significantly different than zero (p = 0.048 and p = 0.028), with presence of 

sensation and ability to reposition corresponding with a smaller typical tilt size. Overall, 

though, no aspects of tilt behavior were successfully predicted by the personal 

characteristics tested in Hypothesis Three, which required an R2 ≥50%. 

 
 

Table 3. Regression coefficients (p-values) for behavior models as functions of participant 
characteristics. Most frequent tilt size was modeled as 1 = small, 2 = medium, 3 = large, 4 = 

extreme. 
 Tilt Freq PRT Freq Most Freq Size Tilt 

Constant 5.915 (0.000) 0.712 (0.001) 1.478 (0.000) 
Sensation -0.906 (0.336) -0.208 (0.212) -0.347 (0.028) 
Years in wheelchair -0.072 (0.059) -0.006 (0.394) 0.008 (0.199) 
Reposition -1.729 (0.070) -0.280 (0.096) -0.311 (0.048) 
Current PU -1.599 (0.162) -0.024 (0.903) 0.230 (0.217) 
R2 11.7% 2.5% 26.7% 
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The variable ‘uni-modal behavior’ emerged as an important descriptor of behavior 

and was modeled using a binary logistic regression. Attempts to model the presence of 

uni-modal behavior using the same predictors as in the previous models were moderately 

successful, with only sensation contributing significantly to the model. The Somers’ D 

and Goodman-Kruskal Gamma were 0.62, i.e., there was a 62% reduction in predictive 

error of the rank of the dependent variable when the independent variables were known. 

Further exploration revealed that a bi-variate, binary logistic model with predictors of 

sensation, and typical position had Somers’ D and Goodman-Kruskal Gamma values of 

0.82. Both coefficients were significant with odds ratios [95% CI] of 0.08 [0.01, 0.87] 

and 0.76 [0.63, 0.91], respectively.  

Description of Tilt-in-Space Behavior 

Participants spent a considerable amount of time in their wheelchairs, with half of 

the participants spending more than 12.1 hours per day in their chair (Table 4). Seven out 

of the 45 participants went at least one day without getting into their wheelchair at all. 

The median participant’s typical position was in a small tilt, but varied across subjects 

from 0° to 47° of tilt. Each participant’s typical position (median = 8°) was significantly 

larger than the minimum position allowed by their wheelchair (median = 2°, p = 0.000), 

indicating that subjects engaged the tilt feature for their typical positions. 

The median participant tilted every 27 minutes, meaning half of the participants 

performed tilts more frequently than twice per hour (Table 4). Frequency of tilt use 

varied from barely once per day to every 3-4 minutes. As is typical with behavioral data 

in this population (Sonenblum, Sprigle et al. 2008), the distributions were skewed 

towards less use, making the median the appropriate descriptor despite the large sample 
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size (Figure 8). Pressure relieving tilts were used with much less frequency than general 

tilts, with the median subject performing only 1 PRT every 10 hours. 26 participants 

failed to perform a PRT on at least one day and 6 of these participants never performed a 

PRT. 
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Table 4. Use of tilt-in-space wheelchairs across median subject days. 
Variable Mean ± SD Median (Min – Max) 
Occupancy Time (hours)  11.7 ± 3.7  12.1 (4.1 – 24)  
Typical Position (⁰)  11 ± 9  8 (0 – 47)  
Tilt Frequency (tilts per occupancy hour) 3.0 ± 2.9  2.2 (0.1 – 16.6)  
PRT Frequency (PRTs per occupancy hour) 0.3 ± 0.5  0.1 (0.0 – 2.2)  
% Time at Position   

Small Tilt ( 0⁰ - 14⁰) 65 ± 33  81 (0 – 100)  
Medium Tilt (15⁰ - 29⁰) 26 ± 28  15 (0 – 92)  
Large Tilt (30⁰ - 44⁰) 5 ± 8  1 (0 – 29)  
Extreme Tilt (≥ 45⁰) (n=29) 4 ± 13  0 (0 – 71)  

% Tilts of Magnitude   
Small Magnitude (0⁰ - 14⁰) 65 ± 24  70 (5 – 100)  
Medium Magnitude (15⁰ - 29⁰) 23 ± 19  19 (0 – 83)  
Large Magnitude (30⁰ - 44⁰) 9 ± 13  4 (0 – 71)  
Extreme Magnitude (≥ 45⁰) (n=29) 3 ± 7  0 (0 – 28)  

 
  

  

 

 
Figure 8. Distribution of frequency of tilt (TOP) and PRT (BOTTOM) use across 

subjects. 
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Most participants spent their seated time in more than one tilt position (Table 4, 

Figure 9). In fact, the median participant spent almost two hours in a medium tilt. Figure 

9 illustrates the median daily use by each participant. The first 25 participants in the 

figure spent more than 80% of their time seated in a small tilt position (i.e., they utilized 

uni-modal behavior with a typical position between 0° and 14°). Of these participants, 9 

tilted at least every 30 minutes, 11 spent more than 1 hour tilted to a medium, large or 

extreme tilt, and 7 spent more than 30 minutes tilted to a large or extreme tilt. These data 

illustrate tilt use in participants who sat at a predominantly upright posture. Only three of 

these participants performed PRTs more than once per hour. An example of a participant 

who chose to sit with a uni-modal behavior that was a fairly upright posture but still 

performed regular tilts is illustrated in Figure 10. This participant has a clear typical 

position of 5°. Similar to participants 1-25, Participants 26-28 also chose to utilize uni-

modal behavior, but in this case their typical positions were in a medium tilt.  

The remaining participants, 29-45, spent more than 20% of their seated time at 

more than one position (i.e., they used multi-modal behavior). Participants 29-45 changed 

positions regularly throughout the day, usually without clearly defined “pressure reliefs”, 

although 4 participants performed hourly pressure relieving tilts. Everyone tilted more 

than once every 30 minutes. Participants who used multi-modal behavior performed 

significantly more frequent tilts (4.0 versus 1.3, p = 0.001) and PRTs (0.24 versus 0.07, p 

= 0.035). Although it is less meaningful in this group of participants, the measured 

typical position in participants who used multi-modal behavior was significantly higher 

than in other participants (15° versus 6°, p = 0.000). Data from a participant who used 
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multi-modal behavior is pictured in Figure 11. It is evident from the figure that this 

participant does not have a meaningful typical position.  
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Figure 9. Breakdown of time in chair by wheelchair tilt position. 
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Figure 10. Example of a participant utilizing uni-modal behavior. This participant 
sits at a typical position of 5°, but performs small, medium and large tilts from that 

position. (Subject 12)  
 
 

 
Figure 11. Example of a participant with multi-modal behavior who sits at various 
positions throughout the day. (Subject 44). Despite frequent position changes, this 

participant never reaches 45°. 
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 Exploratory Analysis 

Some exploratory analysis was done to develop an overall picture of tilt use. As 

previously described, the variable ‘uni-modal behavior’ emerged from the analysis. There 

were 17 participants who exhibited multi-modal behavior. They tended to perform more 

tilts and PRTs, and they typically sat at greater tilt positions. In addition, some 

relationships were identified between the daily time spent in the wheelchair and other tilt 

behaviors. For example, participants spending more time in their chair also performed 

less frequent PRTs (correlation = -0.345. p = 0.020). However, occupancy time was not 

related to tilt frequency. Persons who most frequently performed small tilts spent more 

time in their chair (13.1 hours) than participants who mostly performed medium or large 

tilts (n = 9, 8.1 hours, p = 0.002). 

Given the lack of success of the predictive modeling (i.e., Hypothesis Three), 

further relationships between personal characteristics and wheelchair use were also 

explored.  

Although presence of a current pressure ulcer was included in modeling attempts, 

the variables: history of pressure ulcers and history of recurrent pressure ulcers were also 

considered for inclusion. None of these pressure ulcer variables were related to the PRT 

frequency. Only two participants performed large tilts more often than small or medium 

tilts and both of these participants had current pressure ulcers. These two participants just 

about met or exceeded the prescribed pressure relief frequency (0.95 tilts per hour and 1.5 

tilts per hour). 7 of the 9 participants with current pressure ulcers performed PRTs more 

frequently than the median subject (0.1/hour), but with the exception of the two 

participants previously mentioned, the frequency did not meet the guidelines. The 
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number of years in a wheelchair, also included in the models, was related to less frequent 

tilts (Pearson’s r = -0.301, p = 0.047). 

The use of ‘ability to reposition’ and ‘presence of sensation’ in the models did not 

explain sufficient variance in tilt behavior to support Hypothesis Three. Yet the presence 

of sensation did play a significant role in the logistic model predicting uni-modal 

behavior. Unlike sensation, ability to reposition was not related to exhibiting uni-modal 

behavior. Finally, participants with the ability to reposition did spend significantly more 

time in a small tilt than participants with no ability to reposition (85% versus 50%, p = 

0.030).  

Researchers had considered the possibility that the seat-to-back angle would 

influence tilt use because it has an effect on interface pressure and also may have an 

effect on the perception of tilt position. Because tilt position was measured from the seat 

pan, at a 55° tilt someone with a 120° seat to back angle would have their back almost 

horizontal whereas someone with a 90° seat to back angle would not (Figure 12). Yet, 

according to the data, seat-to-back angle was not correlated with tilt behavior.  

Within the SCI population, a higher level of injury was related to less time spent 

in a small tilt (Pearson’s r = -0.38, p = 0.038). However, the diagnosis of SCI was not 

itself related to tilt behavior. 
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Figure 12. Seat to back angle affects the overall configuration and potential 

biomechanical influence of tilt. 
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Discussion  

Sample Population 

Little statistical data are available for describing all persons who use a wheelchair. 

However, within a given diagnosis it is possible to compare this study’s sample 

population with the larger national population. Overall, the segment of the population 

with SCI was similar to that of the larger population of persons with SCI in terms of age, 

gender and employment (Table 1, (2009)). Currently, the average age at time of injury is 

40.2 years, comparable to this study’s median age of 46 years at the time of the study. 

The overall population of persons with SCI includes 80% men, similar to the 77% 

included in the present study. Additionally, unemployment rates have been estimated at 

64.6% at 20 years following injury, comparable to the 67% unemployment rate found in 

the present study. In contrast, the study population included fewer persons who were 

Caucasian than the overall population (66% as compared with 50%). The study 

population was also skewed towards higher levels of education (2007). Fewer of the 

participants had not completed high school and more than 35% of the participants had a 

college degree compared with less than 10% in the overall population. Overall, the study 

population generalizes reasonably well within SCI and may also generalize to other 

populations using TIS wheelchairs, given the selection criteria based on function, not 

diagnosis. Although the higher education could be expected to result in stricter adherence 

to guidelines, across all participants (SCI and non-SCI) having a higher education was 

not associated with most aspects of tilt behavior and specifically was not associated with 

increased frequency of PRTs.  
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 In terms of the wheelchair configuration the study population was considerably 

more homogenous. 36 of the participants were prescribed their TIS wheelchairs at the 

same seating clinic and the majority used one of two wheelchair cushions. It is unknown 

whether or not wheelchair configuration should affect tilt behavior. However, there were 

no significant differences in tilt behavior between participants using a Roho cushion and 

those using a Jay 2 cushion. 23 participants switched to a TIS wheelchair after spending 

between 6 months and 50 years in an upright wheelchair (median = 10 years). In clinical 

practice, changes to skin and function over time are common and must be factored in 

when assessing a person’s seating needs. These changes are also important for 

consideration by funding agencies, as they might necessitate a new mobility device 

sooner than otherwise predicted. Similarly, older participants with lower levels of injury 

were provided with TIS wheelchairs, whereas it is possible that younger participants with 

the same levels of injury received upright wheelchairs, also drawing attention to 

functional limitations associated with age. 

Most of the relationships identified between personal characteristics and pressure 

ulcer history amongst participants were consistent with existing research on pressure 

ulcer risk factors. For example, the presence of sensation is a major component of the 

Braden Scale for predicting pressure ulcer risk (i.e., “Sensory Perception”). Within 

persons with SCI, the ASIA score has also been related to pressure ulcer risk (Garber, 

Rintala et al. 2000). The ASIA score accounts for muscle function and sensation below 

the level of injury. Mobility has also been related to pressure ulcer risk within persons 

with SCI (Byrne and Salzberg 1996; Salzberg, Byrne et al. 1996; Salzberg, Byrne et al. 

1998). Only one study has found that difficulty in repositioning does not increase 
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pressure ulcer risk, but the study was limited to hospitalized patients over the age of 55 

(Allman, Goode et al. 1995). Interestingly, body weight was shown not to be a risk factor 

in participants with SCI (Salzberg, Byrne et al. 1996), yet in the current study, increased 

body weight was associated with a history of pressure ulcers. This is also counter-

intuitive because decreased body weight, not increased body weight, is typically thought 

of as a risk factor, as it is associated with increased interface pressures (Garber and 

Krouskop 1982). However, one thing to remember is that the body weight of the 

participants was not measured at the time of the occurrence of their pressure ulcer, but 

rather at the time of the study. Additionally, there was no relationship demonstrated 

between body weight and recurrent pressure ulcers. Potential confounders that might 

relate to both body weight and pressure ulcer development, such as smoking history and 

nutritional status, were not measured in this study.  

Tilt-in-Space Behavior – Comparison with Previous Literature 

Wheelchair use described in this study was similar to findings of previous studies 

of power wheelchair users, but different from manual wheelchair users. The median time 

of wheelchair occupancy (12.1 hours) was slightly higher than in previous work by 

Sonenblum, et al., which found that power wheelchair users spent 10.6 hours per day in 

their wheelchairs (Sonenblum, Sprigle et al. 2008),  and that a subset of the current study 

population sat for 11.0 hours per day (Sonenblum, Sprigle et al. 2009). Results from the 

current study were also comparable to Ding, et al., (2008) who found that that 11 

participants who used multi-function (i.e., tilt, recline, and elevating) wheelchairs spent 

an average (SD) of 11.8 (3.4) hours per day in the wheelchair. In contrast, manual 

wheelchair users in a study by Yang, et al. (2009) spent a median time of only 9.7 hours 
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per day in their wheelchair. This discrepancy between manual and power wheelchair use 

is not surprising as only 4 participants in the current study were able to transfer 

independently and 24 regularly used a mechanical lift. With transferring requiring 

assistance and specialized equipment, fewer transfers throughout the day would be 

expected, compared with someone who is able to transfer independently. 

The frequency of tilt use measured in this study was lower than in the initial pilot 

study (2.2 per hour vs. 3.1 per hour, Sonenblum, Sprigle et al. 2009). Participants in the 

study by Ding, et al. tilted 19±14 times per day and sat for 11.8 hours per day, or in other 

words their tilt frequency was approximately 1.6±1.2 tilts per hour. It is likely that this 

mean tilt frequency represents a high estimate of tilt frequency within their population, 

due to the skewness of tilt use towards smaller values. However, many of the included 

participants also had access to a recline feature, which permitted more frequent 

repositioning than is documented by the tilt frequency. Thus, it is difficult to determine 

the similarity of the two sets of results, although they are of the same order of magnitude.  

The results of the first two hypotheses, that small and medium tilts are more 

common and that PRTs are not done frequently are also consistent with previous research 

(Ding, Leister et al. 2008; Sonenblum, Sprigle et al. 2009). Ding, et al. tested the 

hypotheses that tilts to positions less than 20° and time spent at positions less than 20° 

were greater than positions greater than 20°. While this is a common theme across all 

studies of wheelchair use, the results of the present study highlight the need to look more 

closely at the tilt behavior of individual participants, rather than just the central 

tendencies of the population. Addressing only the population as a whole neglects 

important behaviors, such as multi-modal behavior (17 of 45 participants) and having a 
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typical position greater than 15° (14 of 45 participants). It is also possible that manual 

wheelchair users perform more frequent pressure reliefs than TIS users, as Yang, et al. 

(2009) found that the manual wheelchair users in their study performed full lifts 10 times 

per day, which given the average 9.7 hours of occupancy averages to approximately 1 per 

hour. 

The finding that the median participant spent 19% of their seated time in a 

medium, large or extreme tilt is consistent with Ding, et al.’s finding that participants 

spent most of their time “not upright” (Ding, Leister et al. 2008). However, the definition 

of “not upright” in the study by Ding, et al. required less than 2.5° of tilt and a seat to 

back angle of less than 95°. Interestingly, many participants in the current study had their 

wheelchairs configured such that they were not capable of achieving an “upright” 

position according to that definition. However, the general result - that participants’ self-

selected typical position is not upright (median = 8°) is important when considering how 

to configure a wheelchair. It has been suggested that postures held longest in seating are 

the most stable postures (Zacharkow 1988). This is consistent with the decreasing shear 

forces pulling a person out of the seat as tilt increases up to 25°, where Hobson (1992) 

predicted the shear forces approach zero. Special attention should be paid during seating 

evaluations to the posture with the greatest stability. 

Tilt-in-Space Behavior – Overall 

The types of tilt behavior found in this study can be categorized hierarchically 

(Figure 13). The first level of groups are uni-modal (participants staying at a single 

position more than 80% of the time) and multi-modal (participants spending more than 

20% of their time in more than one position). Within the uni-modal group are three sub-
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categories of behavior: minimal use, or those who spent more than 97% of their time in a 

single position; pressure relieving tilt, or those who tilted past 30° at least once per hour, 

and the remaining (“other”) uni-modal participants, some of whom tilted regularly but for 

shorter durations. Kruskal-Wallis testing indicated significant differences for most 

variables of tilt behavior (e.g. typical position, tilt frequency, and PRT frequency) across 

the different behavior categories (Table 5). 

 

 
Figure 13. Four hierarchical categories of tilt behavior were identified in this 

study. 

Tilt-in-Space Use 

Multi-Modal 
(> 20% time in more than one tilt position) 
n = 17 

Uni-modal 
(≥ 80% time in small tilt) 
n = 28 

Minimal Use 
(> 97% time in small tilt) 
n = 10 

Pressure Relieving Tilt 
(≥ 1 PRT / hour) 
n = 3 

Other 
n = 15 
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Table 5. Median tilt behavior differed across categories of behavior. Typical position is 
reported for all groups, but is not meaningful in the multi-modal group. * Kruskal-Wallis 

p<0.001.  
 Uni-modal: 

Minimum Use 
Uni-modal: 
PRT 

Uni-Modal: 
Other 

Multi-Modal 

Occupancy 
(hours) 

12.7 6.6 12.1 13.1 

Typical Position* 
(°) 

6 17 6 15 

Tilt Frequency* 
(tilts/hour) 

0.6 3.8 1.9 4.0 

PRT Frequency* 
(PRTs/hour) 

0.0 1.4 0.2 0.2 

 

Among the ten participants who utilized uni-modal tilt behavior with minimal use 

of the tilt feature, the median tilt frequency was 0.6 times per hour and the median PRT 

frequency was zero. 5 of the 10 participants in this group never performed a PRT during 

the study. Participants in this group sat at a median typical position of 6° (range 0-9°). 

A small group (n = 3) of participants used uni-modal tilt behavior, with most of 

their tilts being pressure relieving tilts. These participants used their tilts predominantly 

for medium (n = 1) and large (n = 2) tilts, performing at least one PRT per hour. These 

three participants also spent less than 9 hours per day in their wheelchairs, considerably 

less than other participants. Two of these participants had a current pressure ulcer and 

were told by their doctors to limit their seating time. The typical positions of the three 

participants were varied (3°, 17° and 26°). 

The remaining group of participants utilizing uni-modal tilt behavior sat at a 

typical position of 6° (range 0°-17°) and had a median tilt frequency of 1.9 tilts per hour 

and 0.2 PRTs per hour. 

Finally, the group of participants who used multi-modal behavior moved 

continuously, performing tilts 4.0 times per hour and pressure relieving tilts every 4 hours 

on average. Based on self-reported purposes of use, researcher observations, and previous 
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research, it is fair to deduce that the participants in this group were moving for purposes 

of comfort or discomfort.  

Overall, the majority of participants in the current study (77%), and studies by 

Ding, et al. (100%) and Lacoste, et al. (70%) reported using their tilt feature for comfort, 

discomfort and/or pain (Lacoste, Weiss-Lambrou et al. 2003; Ding, Leister et al. 2008). 

Seated comfort and discomfort are complex constructs involving many objective and 

subjective factors, including those related to the person, seat, and environment (de Looze, 

Kuijt-Evers et al. 2003). However, despite the complexity, extensive research has been 

performed and much is known about seated comfort in ergonomic applications. Long-

term, static sitting is generally associated with discomfort and pain (e.g., Udo, Fujimura 

et al. 1999), and therefore ergonomic design has long included dynamic components in 

most task seating, such as office chairs and truck seats. Adjustable and dynamic seats 

affect both comfort and discomfort by allowing a variety of comfortable seated postures 

and by providing users with a means to address discomfort. Decades of literature have 

shown that increased body movements while sitting occur as a response to discomfort 

(reviewed in: Zacharkow 1988). Among the participants who used multi-modal tilt 

behavior, 14 of the 16 participants who were asked reported comfort/discomfort/pain as a 

purpose for use. Considering current knowledge about seating in the able-bodied 

population, it is not surprising that some wheelchair users (i.e. the multi-modal group) 

would use their tilt-in-space systems dynamically, more comparable to the use of a 

dynamic office chair, rather than solely as a device to perform scheduled pressure reliefs. 

Further evidence supporting the use of tilt for comfort comes from the fact that 
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participants with sensation were more likely to move continuously while participants 

without sensation were more likely to have used uni-modal behavior.  

Providing wheelchair users a means to improve comfort is very important. Survey 

data have shown that seated comfort is a priority for many wheelchair users (reviewed in: 

Hobson and Crane 2001). Additionally, people have been found to be more productive 

when their discomfort is minimized (Zacharkow 1988). If wheelchair users can spend 

more time out of bed and in their wheelchair, then their opportunities for participation are 

greatly increased. Although comfort is generally associated with persons with sensation 

(Hobson and Crane 2001), 11 of the 17 participants who reported having no sensation 

still reported using their tilt for comfort/discomfort/pain. Therefore, the issue of 

perceived comfort clearly extends beyond perceived sensation at the buttocks. This is 

consistent with the fact that some studies have failed to identify a relationship between 

interface pressure and comfort (reviewed in: de Looze, Kuijt-Evers et al. 2003). Given 

the aforementioned benefit of increasing seated comfort for wheelchair users, the limited 

use of TIS for pressure relief, and the tentative relationship between pressure and 

comfort, comfort should be an important design criterion for powered TIS systems in 

addition to pressure relief. However, because funding of power TIS wheelchairs requires 

medical necessity, and comfort is not defined medically, TIS wheelchairs have been 

designed for pressure relief rather than comfort. Future research should focus on 

evaluating the medical benefits of increased comfort. 

Insufficient Pressure Relieving Tilts 

The finding that participants did not perform pressure relieving tilts with their 

prescribed frequency (Hypothesis Two) is certainly one of the more important results of 
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this study. The prescribed frequency tested in this study was one per hour, which is the 

minimum guideline suggested in the Clinical Practice Guidelines (2000). Many seating 

clinics, including the clinic from which most participants were recruited, recommend 

performing more frequent pressure reliefs (i.e., every 15-30 minutes). Clearly the 

participants in this study did not meet the more frequent guidelines. Large and extreme 

tilts come with a number of limitations and several wheelchair users readily proclaimed 

their unease with large and extreme tilts. Additionally, 22 participants did report 

performing other types of pressure reliefs, such as forwards or side leans, in place of or in 

addition to tilts. Yet the participants who reported performing other pressure reliefs also 

performed significantly more PRTs than those who did not perform other pressure reliefs, 

so it is doubtful that the ability to perform other pressure reliefs limited their use of the 

tilt feature for pressure relief. 

Four potential explanations for the lack of use of tilt are: 1) that large and extreme 

tilts were uncomfortable and unstable, 2) that the perception of tilt angle may be 

misconceived, 3) that large and extreme angles of tilt result in a non-functional posture, 

necessitating the interruption of activities, and 4) that wheelchair users fail to pay 

attention to the need for regular pressure reliefs (Sonenblum, Sprigle et al. 2009). The 

issues of discomfort and instability are encountered regularly when talking with persons 

who use TIS wheelchairs. Although no specific questions about disuse were asked, many 

participants responded to questions about why they used their tilt by explaining why they 

did not. Six participants mentioned that they felt a full tilt was unstable, even if they 

knew they would not actually tip over. Another participant had concerns about bladder 

drainage at a full tilt. In terms of perception of tilt angle, the data suggested that this is 
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not a primary concern. To investigate knowledge and perception of tilt angle, 41 

participants were asked how far they needed to tilt for a pressure relief. 21 participants 

responded that they should tilt all the way back, two cited positions between 45°and 50° 

and 12 said that they did not know. 16 of the 21 who said “all the way back” were asked 

to demonstrate that position and only two of them were off by more than 5°. Overall, it 

seems that the perception of tilt position was not to blame for the failure to perform 

PRTs. The concern of a non-functional posture is debatable. At least one participant did 

not like that the driving feature of his wheelchair locked out at a larger tilt. However, 

most participants who used tilted positions simply switched to a more upright posture for 

activities requiring one, such as driving, eating, using the computer or sitting at a table. 

Whether participants paid attention to the need for pressure reliefs is a difficult question 

to answer. 29 participants (23 from above plus 6 with assorted other answers) believed 

they knew the answer to the question of how far they should tilt for pressure relief, 

suggesting they were aware of the need. 

Improved training and education should address many of the concerns outlined 

above. Tilting through the range of small, medium and large tilts with a clinician present 

might be important to instill comfort and confidence in participants about performing 

such tilts. However, that requires the clinician to be present when the wheelchair is 

received. A full 11 out of the 39 participants asked said that no therapist was present 

when they received their TIS wheelchair. Although wheelchair delivery practices vary 

across clinics, there may be value in requiring a clinician to be present when the product 

is delivered or providing a follow-up appointment after delivery. For many power 

wheelchair users who do not have easy access to transportation, however, such a follow-
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up appointment might be problematic. Pressure relief compliance is an issue across all 

wheelchair users and should also be addressed with thorough training and education. 

Follow-up training based on evaluation of tilt behavior might allow for more appropriate 

training goals and approaches. For example, participants using the wheelchair with 

minimal use or other uni-modal behavior (and not regular PRTs) may need to learn and 

experience the variety of benefits of the tilt feature and be educated on pressure reliefs. It 

would help for the clinician to identify and address their reasons for disuse of the feature. 

In contrast, participants using multi-modal behavior without frequent PRTs are well 

aware of their feature’s capabilities but may need more targeted pressure relief training 

and education. A better answer to the question of “how far of a tilt is needed to perform 

an acceptable pressure relief” is needed, work that is the focus of Specific Aim 2. 

Additional work to identify the correct frequency is also needed, but it is important to 

remember that the answers to both of these questions are likely to be highly 

individualized.  
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CHAPTER III 

THE IMPACT OF TILTING ON BLOOD FLOW AND LOCALIZED 

TISSUE LOADING 

 

Laser Doppler flowmetry and interface pressure measurement were employed to 

measure the increase in blood flow and decrease in loading with increased tilt angle on a 

subset of subjects from Specific Aim 1. The overall relationship between tilt and blood 

flow and loading was described. Additionally, this relationship was used to define a 

minimum “pressure relieving tilt.” Although the efficacy of such a tilt in preventing 

pressure ulcers could not be defined within the scope of this study, a more justified 

definition of “pressure relieving tilt,” with which to analyze tilt feature use was 

developed. 

Hypotheses 

H1. The minimum tilt position required to increase blood flow was less than 45°. 

H2. There was a significant decrease in loading at the minimum tilt required for 

increased blood flow. 

H3. Small magnitude tilts (Δ = 15°) from upright resulted in increased blood flow 

and decreased pressure. 

H4. Small magnitude tilts (Δ = 15°), when starting from a tilted position (15°), 

resulted in increased blood flow and decreased pressure. 
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Methods 

Participants 

11 participants were recruited from the pool of subjects who participated in 

another research study on tilt-in-space wheelchairs (i.e., Specific Aim 1). People with 

spinal cord injuries who had current pressure ulcers on the ischial tuberosities were 

excluded, as were persons unable to tolerate sitting in an upright position. Additionally, 

subjects would have been excluded if they had latex allergies or sensitivities to medical 

adhesive; however, this situation did not arise. 

Instrumentation 

Doppler. The use of Laser Doppler Flowmetry (LDF) is not new to the world of 

PU research. It has been used to look at the efficacy of alternating pressure support 

surfaces (Rithalia 2004; Stockton and Rithalia 2007), as well as to monitor the viability 

of free flaps following surgery (Yuen and Feng 2000). The principle of LDF is similar to 

that of the siren of a passing ambulance – the pitch or frequency of the siren changes as 

the vehicle approaches and passes. Similarly, LDF uses a laser light focused at the skin. 

A sensor measures the frequency shift of the reflected light, which is proportional to the 

skin blood perfusion in a small region. 
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Other blood flow and perfusion measurement techniques are available, such as 

transcutaneous oxygen (TcPO2) monitoring, tissue reflectance spectroscopy, and isotope 

clearance. The requirements of this study included measurement under load while seated. 

Therefore, the sensor and technique used must be compatible with this environment and 

precludes the use of most technologies. For that reason, the PeriFlux 5010 LDPM (Laser 

Doppler Perfusion Monitor) and a custom probe (Figure 14, Perimed AB, Sweden) were 

used. The laser works at 780 nm and the probe can be sat upon because it is sufficiently 

small, low profile (12.5 x 9.5 x 2.3 mm), and durable. This is the same probe design used 

by Rithalia (2004) to measure loaded blood flow of subjects in bed.  

LDPM probes were calibrated prior to each data collection session using 

calibration solution supplied through Perimed. Doppler blood flow measurements are 

relative and are expressed in arbitrary units. Measurements collected at the tilted 

positions were normalized by blood flow in the preceding upright postures to permit 

comparison across participants.  

  
Figure 14. LDPM probe can be sat upon. 
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Interface Pressure Sensor. To monitor the localized loading surrounding the 

LDFM probe, a custom sensor from FSA (Vista Medical, Winnipeg, Canada) was 

utilized. The custom sensor includes six separate, trapezoidal, resistive elements (i.e., 

sensels), covering a diameter of approximately six centimeters (Figure 15). The sensels 

are secured in an elastic substrate to accommodate the variety of buttock surfaces that 

will be encountered. A 1.5 cm diameter hole at the center accommodates the LDPM 

probe. 

The interface pressure sensor was calibrated from 0 – 250 mmHg before each data 

collection session. A six-step FSA calibration was performed, according to the calibration 

wizard in FSA 4.0.  

Protocol 

This protocol was approved by the Institutional Review Boards at Georgia Tech 

and Shepherd Center. In advance of the study, participants were provided with a pair of 

stretchy boxer shorts to simplify access to the ischial region. Participants were asked to 

 
Figure 15. Interface pressure sensor. 
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arrive wearing these shorts as their undergarment. Once participants had discussed the 

study with researchers, had questions addressed, and provided consent, subjects were 

assisted with removing any layers of clothing over the boxer shorts and were lifted in a 

Guldmann net to provide access to the ischial region. The Guldmann net was set up to 

maintain a relatively upright, seated posture (Figure 16). With the subject lifted using a 

Guldmann ceiling mounted hoist system, the apex of the ischial tuberosity was palpated 

and marked with a small sticker. The interface pressure sensor was attached with the 

opening at the marked location. The sticker was removed and the LDPM probe was then 

attached directly to the skin at the apex of the ischial tuberosity (Figure 17). Medical 

grade, double-sided adhesive (In Vivo Metric, Healdsburg, CA) was used to attach both 

sensors. Subjects were lowered back into their personal wheelchair and positioned in 

their typical seated posture so that they were comfortable and felt they could maintain 

that position for the duration of the study. The location of the LDPM probe was palpated 

to confirm its position beneath the ischial tuberosity. The net was left in place and 

participants were asked not to move for the duration of the study. 



 

  66   

 

 
Figure 16. Subject lifted in Guldmann net before attaching probe. 
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The data collection protocol involved three trials of sequences that alternated tilt 

with upright sitting. All seated positions were held for two minutes. Although two 

minutes is generally shorter than typical sitting times, it was found that for some persons 

with SCI, loading for as long as three to five minutes may result in a hyperaemic 

response lasting at least half as long as the loading. While the hyperaemic response is of 

interest, the measurement of steady state blood flow at the different positions was the 

main goal. Therefore, two minutes of loading was used to minimize the development and 

duration of any hyperaemic response while permitting at least one minute over which 

steady state blood flow could be monitored. LDFM was sampled at 32 Hz and the 

interface pressure sensor was sampled at 1 Hz throughout the duration of the above 

testing.  

 
Figure 17. Sensor placement beneath the apex of the ischial tuberosity illustrated 

with a buttocks model containing a pelvic skeleton. 
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Tilt Sequences. Each trial was separated by five minutes of unloaded sitting 

(lifted in the Guldmann net, Figure 16) to allow for complete reperfusion. The sequence 

of tilts in each trial was randomized separately. Sequences are presented below with 

notations of the hypotheses to which they are associated. All positions following upright 

were utilized to model the overall effect of tilt on blood flow and localized loading. 

Upright refers to the minimum tilt possible on the participant’s wheelchair, while “max 

tilt” refers to the maximum tilt possible on the participant’s wheelchair. Upright and max 

tilt values were recorded. Actual tilt position was recorded continuously by an 

accelerometer attached to the wheelchair seat. Acceleration was sampled at 1 Hz and 

synchronized with the interface pressure and LDPM data in Matlab. 

 
 

Table 6. Tilt sequences. 
Sequence Hypotheses 
Upright  15°  30° H1, H2, H3, H4 
Upright  30° H1, H2 
Upright  45° H1, H2 
Upright  max tilt H1, H2 

 

Data Analysis 

All data analysis was performed with Matlab R2008a (Mathworks Inc, Natick, 

MA). Acceleration was converted to a tilt angle of the seat pan relative to the horizontal 

by taking the arcsine of the stationary acceleration values. Blood flow was filtered at 0.05 

Hz using a second order low pass Butterworth filter to remove movement artifacts. 

Additionally, to avoid data being influenced by hyperaemic response, average blood flow 

was calculated as the average reading over the final minute at each tilt position. To 

facilitate analysis across subjects, given the arbitrary units in which flow is measured, 
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blood flow at each tilted position was normalized by blood flow at the preceding upright 

position. Pressures were analyzed according to the average of the six sensels, as well as 

the peak pressure among the sensels.  

All statistical comparisons were computed with paired, one sided t-tests. Absolute 

pressures were compared in a paired t-test because the values, in units of pressure, have 

clinical significance. The alternative hypothesis used was that tilted pressure is less than 

upright pressure. In contrast, blood flow was measured in arbitrary units, making the 

absolute differences less interpretable within and across subjects. Therefore, normalized 

blood flow (i.e., a ratio of tilted blood flow to upright blood flow) was compared to a 

mean of 1 (alternative hypothesis: normalized blood flow is greater than one). P-values of 

less than 0.05 were considered significant. 

H1. The normalized blood flow at positions less than 45° of tilt (i.e., 15°, 30°) 

were compared to 1 to identify the smallest tilt to result in a statistically significant 

increase in normalized blood flow across subjects.  

H2. The peak and average pressures measured at the tilt position identified in H1 

were compared with the peak and average pressures computed in the upright position 

immediately preceding the tilt.  

H3. Normalized blood flow and peak and average pressures in upright sitting 

were compared to those at 15° of tilt.  

H4. Normalized blood flow and peak and average pressures were compared 

between 15° and 30° of tilt.  

Finally, models of tilt angle versus blood flow and pressure were created using 

data recorded at all positions following upright (i.e., excluding data at 30° following 
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15° of tilt). Although an initial linear regression was attempted and used for modeling 

pressure, an exponential model was more appropriate for blood flow. Additional details 

pertaining to the modeling are presented in the results. From the models and the 

hypothesis results, guidelines for performing pressure relieving tilts were defined. 

Results 

Research Participants 

Eleven subjects with cervical spinal cord injuries who had participated in a 

concurrent research study (monitoring of tilt-in-space use) were enrolled in the blood 

flow study (Table 7). Subjects included 9 men and 2 women with mean (SD) height 

1.79m (0.04m) and weight 80kg (14kg). Seven subjects were African-American, 3 were 

Caucasian, and 1 self-identified as biracial. Research participants had been using a 

wheelchair for a mean (SD) of 9.4 (5.7) years, with a minimum of 9 months and a 

maximum of 18 years. Ten participants used chairs with a tilt-in-space feature and no 

recline. On the one wheelchair that also had the ability to recline, a constant seat-to-back 

angle, consistent with his typical seated position, was maintained during testing. 

Wheelchair configurations were not modified for this study. The upright position 

in all chairs was less than or equal to 5° (mean (SD) = 2.1° (1.8°)). Seat to back angles 

ranged from 90° – 110°, with a mean (SD) of 101° (6°). 
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Table 7. Subject characteristics and wheelchair information 

Subject Age Gender 
Height 
(m) 

Weight 
(kg) Race 

Level of 
Injury Complete 

Years 
in WC Wheelchair Cushion 

Seat to 
Back 
Angle 

1 47 M 1.78 73 Caucasian C3-4 Incomplete 2.5 Invacare  Roho  98 
2 33 M 1.83 77 African-American C5-6 Complete 18 Invacare  Roho  97 
3 32 M 1.80 95 African-American C5 Incomplete 10 Quickie Jay 2 101 
4 58 F 1.78 88 African-American C6 Incomplete 10 Invacare  Roho 90 

5 78 M 1.85 100 Caucasian C6-7 Complete 12 
Invacare 
(+RECLINE) Roho  110 

6 44 F 1.75 86 African-American C4-5 Incomplete 7 Invacare  Jay 2 100 
7 31 M 1.83 52 Caucasian C3-4 Complete 14.5 Invacare  Roho 106 
8 42 M 1.75 73 African-American C5-6 Complete 12 Invacare  Roho 100 
9 67 M 1.70 82 African-American C7 Incomplete 2 Invacare  Jay 2 110 
10 22 M 1.80 79 Biracial C5-6 Complete 0.75 Permobil Roho  105 
11 47 M 1.83 71 African-American C5 Incomplete 15 Invacare  Roho  100 
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Description of Data 

Data from a single trial of one participant (Subject 5) are shown in Figure 18. The 

high frequency blood flow signal (grey) is presented as well as the low pass filtered 

signal (black). Although the tilt and pressure time series look relatively similar across 

subjects, there was no ‘typical’ participant when it came to blood flow. As anticipated, 

blood flow during the second minute of loading was steady state. The one minute 

duration is presented as the red line in Figure 18B. The slope of the flow during that 

minute was indistinguishable from zero (p = 0.287). 
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Figure 18. Sample data from a single trial of one subject (subject 5). Tilt order was randomized and three trials were 

conducted with 5 minutes of unloading between trials (not shown). BF = blood flow, AU = arbitrary units. Average BF in red 
represents the second minute spent at the tilt position. A) Tilt position. B) Blood flow. C) Mean interface pressure. 



 

  74   

Peak pressures in the region surrounding the ischial tuberosity in upright sitting 

varied across participants from 27 to 176 mmHg, while mean pressures varied from 22 to 

141 mmHg (Table 8). Normalized blood flow at all tilt positions varied across subjects 

from 0.71 to 16.5 (Table 9). 

 
 

Table 8. Absolute pressure at each position. Statistics were computed on 
tilted pressures paired with upright. Mean (SD). † p<0.001, NS p>0.05. Note 

that fewer subjects were studied at 55°. 
Tilt Position # Subjects Peak Pressure (mmHg) Mean Pressure (mmHg) 
Upright 11 91 (32) 74 (27) 
15° 11 87 (30) NS 71 (25) † 
30° 11 77 (28) † 62 (24) † 
45° 11 63 (25) † 50 (21) † 
55° 6 68 (27) † 53 (23) † 

 
 
 

Table 9. Normalized pressure and blood flow values (normalized by preceding 
upright values). Statistics were computed for normalized blood flow compared with a 

ratio of 1. 
Tilt Position # Subjects Peak Pressure  Mean Pressure  Mean Blood Flow  
15° 11 0.98 (0.09) 0.98 (0.09)  1.08 (0.19), p = 0.016 
30° 11 0.85 (0.11) 0.84 (0.10) 1.24 (0.48), p = 0.003 
45° 11 0.72 (0.12) 0.69 (0.12) 1.84 (1.84), p = 0.007 
55° 6 0.68 (0.12) 0.64 (0.12) 3.34 (5.09), p = 0.034 

 

Hypotheses 

In response to Hypothesis One, small tilts (15°) resulted in a significant increase 

in blood flow (p = 0.016, Table 9). The magnitude of the increase (1.08 ± 0.19), however, 

was relatively small and highly varied. Conversely, Hypothesis Two was not supported. 

The increase in blood flow at 15° did not correspond with a decrease in loading at 15°, as 

compared with upright (p = 0.085 for peak and p = 0.131 for mean pressure, Table 8).  
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In response to Hypothesis Three (and as mentioned previously), 15° of tilt from 

upright resulted in a significant increase in blood flow, but no significant decrease in 

pressure. However, the data supported only the pressure component of Hypothesis Four. 

Peak and mean pressures at 30° were significantly different than those at the preceding 

15° tilt (p<0.001). However, blood flow did not increase further when participants tilted 

from 15° to 30° (p = 0.118). Additionally, pressures and blood flow at 30° following 

15° of tilt were not statistically different from pressures and blood flow achieved when 

tilting directly to 30° from upright sitting (Table 8, Table 9, Table 10).  

 
 

Table 10. Pressures and blood flow values at 
consecutive 15° and 30° tilts. Mean (SD). 

Variable 15° 30° 
Absolute Peak Pressure 
(mmHg) 87 (30) 75 (27) 

Absolute Mean Pressure 
(mmHg) 71 (25) 61 (22) 

Normalized Mean Blood 
Flow  1.08 (0.19) 1.15 (0.41) 

 

To confirm that blood flow at 30° was still greater than that at upright, another 

one sided t-test was run and it was confirmed with p = 0.023 that blood flow at 30° of tilt 

from 15° of tilt was still greater than upright blood flow. 

Modeling Tilt Amplitude vs. Pressure and Blood Flow 

Interface pressures in the upright position varied widely across subjects (Table 8). 

This large variation in initial (upright) pressure suggested the need to consider initial 

pressure when modeling tilt amplitude versus pressure, which can be done in multiple 

ways. The normalized pressure (i.e., the ratio of pressure at the tilted position to the 

preceding upright pressure) can be modeled as a function of angle. However, this is less 
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intuitive as it removes the units from analysis. Second, a multivariate regression can be 

used. In this case, the upright pressure and the tilt position were used to predict the tilted 

pressure. In the models for peak and average pressure (Equation 1, Equation 2), all 

coefficients (the constant, tilt position or “angle,” and upright pressure) were significantly 

different than zero (p < 0.001). It is evident in the models that the peak and mean 

pressures had the same relationship with tilt. That relationship is illustrated for three 

different upright loads in Figure 19. 

 

Equation 1. 
 

PeakPressureTilted = 25.6 – 0.718*Angle + 0.809*PeakPressureUpright (R2 = 88.1) 

 

Equation 2. 
 

MeanPressureTilted = 22.2 – 0.679*Angle + 0.820*MeanPressureUpright (R2 = 89.7) 
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The large variation in blood flow response made modeling with only 11 subjects 

more challenging. For instance, only five subjects demonstrated a monotonic blood flow 

increase with tilt angle. Two subjects had limited or no increase in flow with tilts up to 

45° but had considerable blood flow increases thereafter, at maximum tilt. To justify 

proceeding with a model, correlations were computed between normalized blood flow 

and tilt position, absolute pressures, and normalized pressures. The correlations between 

normalized blood flow and absolute pressures were not significant, but the correlations 

between normalized blood flow and normalized pressures were significant (Pearson’s r = 

-0.3 for both peak and mean normalized pressure, p = 0.001). Similarly, tilt position was 

significantly correlated with normalized blood flow (Pearson’s r = -0.3, p = 0.003). 

Despite the variability in the blood flow response, this provided sufficient 

motivation to proceed with a model. Because tilt angle and normalized pressures were 

 
Figure 19 . Illustration of changes in peak pressure with tilt angle across three 

different upright loading conditions. Changes in mean pressure are similar. 
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strongly correlated (Pearson’s r = -0.7 for peak pressure, -0.8 for mean pressure), only tilt 

angle was included in the model. Tilt angle was selected because of the results to 

Hypothesis Two, in which a change in tilt angle resulted in an increase in blood flow 

without a corresponding decrease in pressure. Further testing revealed that inclusion of 

both normalized pressure and angle did not improve the model considerably. Plots of 

normalized blood flow and residual plots from initial, linear models supported modeling 

blood flow exponentially. In the regression between the tilt angle and the logarithm of the 

normalized blood flow (Equation 3), the coefficient for the tilt position was significantly 

different from zero (p < 0.001), but explained only a small percentage of the variation (R2 

= 7.9). 

 

Equation 3. 
 

BloodFlowNorm(Tilted/Upright) = exp(-0.149 + 0.0118 * Angle) (R2 = 7.9) 

 

Discussion 

The results confirmed the first hypothesis, that the minimum tilt position required 

to increase blood flow is less than 45°. In fact, a tilt of only 15° had a small (8%) but 

significant increase in superficial blood flow. Pressure did not significantly decrease at 

15° of tilt; in some subjects, the pressure actually increased slightly. But, pressures were 

reduced by all tilts greater than 15°. This suggests that the mechanism of increased blood 

flow at 15° of tilt is not solely due to a change in pressure at the ischial region. As a 

secondary analysis, it was considered that the location of the center of pressure might 



 

  79   

have changed, contributing to a different pressure at the precise location of the LDF 

probe (Figure 20). A paired t-test between the medial/lateral positions of the center of 

pressure was not significant between a 15° tilt and upright. The center of pressure did 

move significantly in the posterior direction (p < 0.001) but the magnitude of the change 

was only approximately 0.5 mm. This value is small compared with the 19mm of 

displacement of the center of pressure that occurred with 25° of tilt in work by van 

Geffen (van Geffen, Reenalda et al. 2008). However, it is important to remember that the 

center of pressure in this study represents the center of pressure in a small region below 

the ischial tuberosity (Figure 17), not the entire seated center of pressure as in the study 

by van Geffen, et al. With a cushion that successfully distributes pressure in the ischial 

region, as all the tested cushions claim to, limited movement of the center of pressure 

within this region can be expected. 

Figure 20. Illustration of center of pressure (CoP) locations (red and white circles). 
For this subject, CoP moves posteriorly by 3.8 mm with a 50° tilt. 
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The third and fourth hypotheses address small (Δ ≈ 15°) changes in tilt position. 

As discussed above, a small change from upright to 15° of tilt results in a significant 

increase in blood flow, but not a significant decrease in pressure. The actual change in tilt 

angle (variable due to the differences in “upright” position) was 13° ± 2°. A further 

change of 15° (from 15° to 30° of tilt) does not further increase the blood flow, despite a 

decrease in pressure. This lends more support to a different mechanism of increased 

blood flow.  

The results of the hypotheses, in combination with the weak correlation between 

tilt position and blood flow response, suggest that there are other mechanisms affecting 

blood flow besides the change in normal loading. One possibility is the change in 

location of the ischial region relative to the heart with tilt. Blood flow to an unloaded 

reference point on the anterior thigh, midway between the greater trochanter and femoral 

condyle also increased significantly with tilt, supporting a possible gravitational 

influence. However, the influence of gravity would be reflected by the tilt angle, so this 

cannot account for much of the additional variation. Another possible explanation could 

be postural changes that might occur with tilt. In able-bodied participants, 25° of tilt 

resulted in approximately 5° of pelvic rotation (van Geffen, Molier et al. 2008). However, 

the same author found that manipulating pelvic posture did not influence subcutaneous 

blood flow or oxygenation in persons with SCI (van Geffen 2009). This suggests that the 

small postural changes that might be induced by tilt are unlikely to affect blood flow. 

Another possibility that was not addressed in this study is the effect of shearing. 

Although tilt does not induce as much shearing as recline, research has shown that 
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significant changes to the global shear forces occur throughout the range of tilt positions 

studied. Specifically, Hobson (1992) showed that a 20° tilt reduces the global shearing 

forces by 85%. Presumably, at larger tilts, the shearing force is reduced by 100%, at 

which point it changes orientation and begins to increase again. While such shear forces 

are typically not reflected by interface pressure measurements, they may affect blood 

flow. When the global shear forces are translated to the tissue, they can result in localized 

shear strain. Shear strain at the blood vessels could affect the actual blood flow, while 

shear strain at the skin - LDPM sensor interface could change the apparent measurement 

region; both of these would add unexplained variability to the measurements. Shear is 

also an important factor because it is well known that localized shearing contributes 

significantly to the formation of pressure ulcers (Bennett, Kavner et al. 1979). An 

interesting result presented in the work of Mayrovitz and Smith (1999) suggests that 

alternating loading with unloading results in increased baseline blood flow, even at 

complete loading. In a study of elderly women on a dynamic mattress, the loading 

conditions were changed on a four minute cycle and resulted in an overall increase in 

blood flow throughout the hour long test duration. The testing in this study changed 

pressures every 2 minutes for 14-18 minutes between complete unloading. Yet, loaded 

blood flow did not increase with each sequence, except for in one participant. 

Predictive modeling of the biomechanical response to tilt is very difficult, given 

the individual nature of the response. Variability in pressure can be explained as a 

function of tilt position, provided the upright pressure is included in the model. Upright 

pressure accounts for some of the variability across participants. According to the 

models, a 24° tilt was needed for a participant with the median upright pressure to 
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achieve a 10% reduction in upright pressure. Because interpretation of a multivariate 

model can be confusing, Figure 19 illustrates the percent of upright loading for different 

upright pressures, and Table 11 presents some examples of what the model would mean 

at tilts of 35°, 45°, and 55° for people with different upright pressures. A 55° tilt may 

decrease the pressure under the ischial tuberosities somewhere between 30 and 50 

percent. A recent study that measured the change in seated forces with tilt found a greater 

decrease in force than this study found in pressure (approximately 55% at 55° tilt; 

Sprigle, Maurer et al. in press). Because the change in load is distributed beneath the 

entire buttocks and thighs, the decrease in load is not necessarily evenly distributed. In 

fact, van Geffen, et al. suggested that most of the pressure change with tilt occurred 

underneath the thighs (van Geffen, Reenalda et al. 2008). Also, the study by Sprigle, et 

al. utilized a foam cushion rather than an air inflation (Roho) or fluid (Jay 2) cushion as 

used by participants in this study. Otherwise, the results of this study are reasonably 

consistent with previous research, such as the 27-33% decreases at 45° of tilt found by 

Aissaoui, et al. (2001)and Burns and Betz (1999). Considering the different methods, 

equipment and participants, the similarity in results across studies is reassuring. The 

inclusion of initial pressure in the model may also help to explain some of the differences 

between studies.  

 
 

Table 11. Estimated peak pressures based on Equations 1 and 2. Estimated mean 
pressures are nearly identical. 

 35° Tilt  45° Tilt 55° Tilt 
Upright Pressure (mmHg) mmHg % mmHg % mmHg % 
50 41 82 34 67 27 53 
100 81 81 74 74 66 66 
150 122 81 115 76 107 72 

 



 

  83   

The model for blood flow as a response to tilt explained little variance. This is not 

surprising, as previous literature has addressed the individual nature of blood flow 

response (Bader 1990; Mayrovitz, Macdonald et al. 1999; van Geffen 2009). Bader first 

suggested the idea of a “non-responder” in his 1990 paper. In the study, he observed 

persons with disabilities (predominantly multiple sclerosis and SCI) who experienced 

decreased blood flow with loading, but no increase in flow with partial unloading. He 

suggested that this might reflect a person who is more at risk for tissue breakdown (Bader 

1990). Van Geffen extended the concept of “non-responders” as he identified able-bodied 

persons who also did not experience an increase in blood flow with unloading. Unlike 

Bader’s assessment, however, he hypothesized that some participants might have 

sufficient blood flow in the loaded position (i.e., no occlusion) such that there is no need 

for increased blood flow with unloading. Interestingly, of the 11 participants in this study, 

nine had an increase in blood flow of more than 13% during at least one tilt. Of the 

remaining two (Subjects 4 and 8), Subject 8 demonstrated a significant hyperaemic 

response to complete unloading in between trials (data not reported), suggesting that he 

has the potential to respond. He also had sensation at the buttocks and no history of 

pressure ulcers. Subject 4 had considerable scar tissue under the ischial tuberosity that 

might have influenced her blood flow response or measurement. Her absolute blood flow 

was also much higher than all other participants and it increased throughout the test 

session, independent of tilt position. Thus, only these two participants might be classified 

as “non-responders” according to the work of Bader and van Geffen. Subject 8’s blood 

flow response was consistent with a non-responder as defined by Bader (1990): having 

no blood flow response to partial unloading, but responding to complete unloading. 
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However, given his lack of previous pressure ulcers, it calls into question whether the 

lack of response puts him at additional risk. Subject 4 is more consistent with the able-

bodied non-responders seen in the study by van Geffen (2009), as her blood flow was 

significantly higher than other participants in the upright seated position.  

Previous research has suggested that additional individual factors should be 

addressed when studying blood flow. These include physical measurements such as the 

initial thickness of the tissue, the deformation associated with loading, and the geometry 

of the ischial tuberosities (Sacks 1989; Gefen 2007). Additionally, demographic and 

physiological measurements such as skin color, age, blood pressure, and smoking history 

could also be important.  

With only 11 participants, it is difficult to classify what characteristics might have 

resulted in the different responses to tilt. Participants with the greatest blood flow 

responses spanned race, gender, level of injury, and completeness of injury. Similarly, 

participants with the least blood flow response, even at 45° of tilt, were highly varied. 

Nine of the 11 participants showed a considerable increase in blood flow (≥ 13%) during 

the maximum tilt allowable on their wheelchair. However, only 4 of 11 participants had 

an increase in blood flow of ≥ 10% at 30° tilt. 

Based on these results, some preliminary guidelines for pressure relieving tilts can 

be proposed. First, a tilt for pressure relief should tilt as far as the seating system permits. 

Additionally, until more research is conducted, the potential impact of small tilts should 

not be neglected. As described previously, small tilts produce a statistically significant, 

albeit small, increase in blood flow that cannot be attributed entirely to a decrease in 

pressure. Therefore, it is unknown whether these small tilts might provide a different 
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benefit as compared with pressure reliefs from a maximum tilt. As described previously 

(Sonenblum, Sprigle et al. 2009), small tilts have many functional benefits over large tilts 

and might be a helpful option in between large tilts, rather than as a replacement for large 

tilts. Finally, it is important to remember that the response to tilt is individualistic and 

affected by many factors. In particular, the upright pressure will influence the amount of 

pressure relief achieved at a given tilt, and thus should not be neglected. 

Limitations  

Defining a “pressure relieving tilt” based on these results must be done 

cautiously. With only 11 participants, most of whom were sitting on a Roho air inflation 

cushion, it is unclear whether the results will generalize to a larger population and other 

wheelchair cushions. In Stockton and Rithalia’s blood flow work, they found that forward 

leans on a Roho cushion resulted in a smaller pressure reduction and blood flow increase 

than a gel cushion, suggesting that the pressure relief benefits of tilting might vary with 

wheelchair cushion design (Stockton and Rithalia 2007). However, the recommendation 

put forth in this study does err on the side of caution. Future research may suggest that 

some people will not need to tilt as far as this paper recommends. Additionally, the blood 

flow analyzed in this study included only steady state flow in vessels in the most 

superficial one millimeter of tissue. It is possible that changes to deeper vasculature were 

different than those presented here. Hyperaemic responses, which were not considered in 

this study, might also contribute to the efficacy of a pressure relief. Based on 

observations of the data, hyperaemic responses were not typically seen with tilts, but 

movement artifacts could have masked hyperaemic responses of short durations. 

Preliminary studies suggested that two minutes was sufficient to cause occlusion. 
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Additionally, complete unloading of the tissue following each trial produced a 

hyperaemic response in some participants, indicative of previous occlusion. But it is 

possible that after durations of loading more consistent with daily use, i.e., approximately 

30 minutes between position changes, the transient blood flow response to a tilt might be 

different than seen in this study.  

Blood flow is only one component of pressure ulcer prevention. Research has 

shown that cell deformation in the presence of sufficient oxygen may also cause cell 

death (Gawlitta, Li et al. 2007). This study did not measure tissue compression or shear; 

both factors that should be considered in future research. 

Future Work 

Although 11 subjects were sufficient for testing some of these hypotheses and 

laying out some general tilt guidelines, more work is needed to determine how well these 

results will generalize across different populations, diagnoses, and seating systems. To 

that end, additional study is needed with a larger, more heterogeneous population. In a 

future study, it would be beneficial to test participants on different types of wheelchair 

cushions in order to determine the impact of wheelchair cushions on participants’ 

biomechanical responses to tilt.  

Future research should also aim to explain additional variability in the blood flow 

response and determine the mechanism of blood flow changes. Later studies should 

consider more demographic and physiologic factors to help explain more of the variation. 

The use of seated MRI to capture tissue properties and deformation would help both to 

explain variability in individual responses and identify the tissue properties’ contribution 

to blood flow changes. Similarly, measurements of shear forces would be helpful. 
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Finally, some more controlled protocols can be created to isolate independent factors 

contributing to blood flow. For example, participants can be tilted and then provided with 

a weighted vest to compensate for the decrease in pressure resulting from tilt. Remaining 

changes to the blood flow could be assumed to be caused by non-pressure related 

mechanisms. 

Conclusion 

This study found that biomechanical responses to tilt are highly variable across 

the homogenous population studied. Pressure reduction at the ischial tuberosity can be 

explained by the tilt position as well as the upright pressure. However, most of the 

variability in the blood flow response could not be explained by tilt and pressure, the 

factors considered in this study. Thus, much remains to be understood about the 

mechanism of blood flow changes in response to tilt. Based on the results of this study, 

tilting for pressure reliefs as far as the seating system permits is recommended to 

maximize the potential for significant pressure relief and increased blood flow. The use 

of interim small tilts is also supported, as they also provide some benefit.  
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CHAPTER IV 

THE APPLICATION OF BIOMECHANICAL RESPONSES TO 

EVERYDAY TILT USE IN PARTICIPANTS WITH SCI 

 

The relationships between tilt angle and blood flow and loading, as well as the 

definition of pressure relieving tilt defined in the laboratory-based study (i.e., Specific 

Aim 2), were used to evaluate the tilt use measured in Specific Aim 1. From this, the 

amount of biomechanical benefit participants received from their tilt use was determined.  

Hypotheses 

H1. Pressure relieving tilts (according to the definition from Specific Aim 2) were 

not used with prescribed frequency. 

H2. Participants did not decrease loading or increase blood flow at regular 

intervals. 

Methods 

The data for Specific Aim 3 were analyzed in two sections: the individualized 

analysis and the group analysis. The biomechanical responses to tilt, measured in 

Specific Aim 2, provided two approaches to analyzing everyday tilt use. For the 

individualized analysis, the individual biomechanical responses measured in Specific 

Aim 2 were applied to those individuals’ tilt use. This analysis provided greater accuracy; 

but with only ten participants, generalization was limited. For the group analysis, the 

average responses computed in Specific Aim 2 were applied to all 30 participants with 

SCI whose tilt use was measured in Specific Aim 1. Although applying an average model 
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is less accurate due to the individual nature of biomechanical responses, this provides a 

more generalizable picture of the benefits of tilt use. No new data were collected for 

Specific Aim 3. 

Both the individual and group analyses utilized the filtered position data from 

Specific Aim 1. Tilt position was collected with a uniaxial accelerometer, sampled at 1 

Hz and then filtered according to the following algorithm:  Position was defined as 

constant until the following conditions were met, at which point a new position was 

defined: 1) the tilt angle changed by at least 5°; and 2) the change was maintained (within 

±2°) for 20 seconds. Because the accelerometer measures changes resulting from factors 

other than tilting (i.e., wheeling, bumpy ground, etc.), this algorithm was necessary to 

eliminate transient events and focus on changes in tilt angle only. A minimum change of 

5° was selected because it exceeds the sensitivity of the accelerometer and is based upon 

the belief that position differences of less than 5° may not be reliably differentiated by 

persons in wheelchairs. The 20 second threshold was selected to eliminate the transient 

events previously mentioned.   

Metrics of tilt behavior unrelated to their biomechanical effects were described 

for participants of both the individualized and group analyses, including wheelchair 

occupancy time (hours per day that subjects occupied their wheelchairs), typical position 

(position at which the subject spent the most time), percent or absolute amount of total 

occupancy time spent at small (0-14°), medium (15-29°), large (30-44°) and extreme 

(≥45°) tilt angles, and tilt frequency (number of position changes, ≥ 5° lasting at least 20 

seconds, per hour of wheelchair occupancy). Additionally, participants were categorized 

based on their tilt behavior. As defined in Specific Aim 1, the uni-modal category 
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included participants staying at a single position more than 80% of the time, while the 

multi-modal category included participants staying at a single position less than 80% of 

the time.  

Individualized Analysis 

In the individualized analysis, real world tilt use by ten participants from Specific 

Aim 2 was analyzed. One participant from Specific Aim 2, whose wheelchair had the 

ability to recline, was excluded because the biomechanical responses to recline were not 

studied.  

Hypothesis One, that pressure relieving tilts (PRTs) were not used with prescribed 

frequency, was based on the results of Specific Aim 2. The data collected in Specific Aim 

2 resulted in preliminary guidelines which stated that a tilt for pressure relief should tilt 

as far as the seating system permits. To simplify analyses measuring whether people 

followed these guidelines, the frequency of tilts to a position greater than 40° lasting 

longer than one minute were analyzed. Forty degrees was chosen for a number of 

reasons: 1) each participant had a different maximum tilt position ranging from 

approximately 45° to 60° and the position was not known for all participants; 2) some 

amount of error is expected from the sensor and 40° included tilts within a few degrees of 

the maximum position; 3) results from Specific Aim 1 indicated that few participants 

performed tilts past 30°. Therefore, the details of the PRT definition would not be likely 

to change the overall result.  

Hypothesis Two required defining “decreased loading” and “increased blood 

flow.” For the purpose of this hypothesis, small changes in loading and blood flow were 

considered. Specifically, a 10% decrease in loading was selected because that is generally 
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believed to be outside of the range of measurement error. For the individualized analysis, 

an increase in blood flow of 5% was selected because of the generally smaller changes in 

blood flow over the entire range in tilt. A regular interval was defined as at least once 

every 30 minutes (i.e., a tilt frequency of 2 tilts per hour). 

For the individualized analysis, Hypothesis Two was tested with participants’ 

personal biomechanical responses to tilt. To calculate these responses, individuals’ 

median normalized blood flow and pressures at tested positions were linearly interpolated 

to identify the biomechanical responses corresponding with each tilt position. In addition 

to testing the tilt frequencies, the amounts of time spent with increased blood flow (i.e., > 

105% of upright blood flow) and decreased pressure (i.e., < 90% of upright pressure) 

were also described. 

Group Analysis 

The group analysis utilized the 30 participants from Specific Aim 1 with SCI. 

Research has demonstrated differences in blood flow response based on diagnosis (Bader 

1990; Thorfinn, Sjoberg et al. 2002; Li, Leung et al. 2006; Thorfinn, Sjoberg et al. 2006). 

Therefore, it would not be appropriate to apply the biomechanical responses achieved in 

persons with SCI to those with other diagnoses.  

Hypothesis One, that PRTs were not used with prescribed frequency, was tested 

by comparing the frequency of tilts past 40° to one tilt of this magnitude per hour, the 

same approach used in the individualized analysis. 

Hypothesis Two consisted of two separate tests: the frequency of tilts that reduce 

pressure and the frequency of tilts that increase blood flow compared with a regular 

interval of every 30 minutes (i.e., 2 tilts per hour). The amount of pressure reduction 
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considered in this test was 10%, the same as was used in the individualized analysis. To 

determine the pressure reduction, the models of peak (Equation 4) and mean (Equation 5) 

pressure created in Specific Aim 2 were applied to participants’ tilt positions. The upright 

pressure values used in the model were the median values from Specific Aim 2: 72 

mmHg for mean pressure and 89 mmHg for peak pressure. Normalized pressures (i.e., 

tilted pressures divided by the upright pressures of 72 and 89 mmHg) were analyzed 

because the hypotheses relate to percent changes in pressure relative to upright. 

According to both peak and mean pressure models, any tilt angle greater than 24° would 

reduce pressure by 10% or more, relative to pressures when sitting upright. Therefore, the 

tilt frequencies and percent of occupancy time with decreased pressures were identical for 

both the peak and mean pressures and are only presented once. 

 
 

Equation 4. 
 

PeakPressureNorm(Tilted/Upright) = (25.6 – 0.718*Angle) / PeakPressureUpright  + 0.809 

 
 

Equation 5. 
 

MeanPressureNorm(Tilted/Upright) = (22.2 – 0.679*Angle) / MeanPressureUpright  + 0.820  

 

Unlike the calculations of decreased pressure, the model for blood flow was not 

used to identify tilts that increased blood flow. The blood flow model failed to explain 

sufficient variance, and interpretation of its application would be unclear. Instead, the 

minimum tilt angle found to increase blood flow (15°) was applied to test Hypothesis 

Two. Specifically, the frequency of tilts from less than 15° to more than 15° was 
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compared with 2 tilts per hour. In addition to testing the tilt frequencies, the amount of 

time spent with increased blood flow (i.e., tilted past 15°) and decreased pressure (i.e., < 

90% of upright pressure) was also described. 

Statistics 

The frequency of tilts past 40° was compared with one tilt per hour using a one 

sided, one sample Wilcoxon test. Non-parametric analysis was utilized because of the 

small sample size in the individualized analysis and the non-normal distributions of all 

tilt variables. For the second hypothesis, a one sided one sample Wilcoxon test was used 

to compare the frequency of tilts yielding a 10% decrease in pressure or an increase in 

blood flow with two tilts per hour. Finally, comparisons of tilt use across categories of tilt 

behavior were performed using Kruskal-Wallis tests. 

Results 

Individualized Analysis 

As described in Specific Aim 1, use of tilt is highly varied and very 

individualistic. Among the ten participants, occupancy time varied from approximately 6 

to 14 hours per day, with typical positions ranging from 6°-26° (Table 12, Figure 21). 

Most participants tilted regularly throughout the day (i.e., tilt frequencies greater than two 

tilts per hour). As highlighted in Figure 21, every participant in this smaller subset 

utilized his/her tilt features on the average day, sitting at multiple different positions 

daily. The subset of participants included in Specific Aim 2 was comparable to the 

overall population, in terms of tilt behavior and wheelchair use. 
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From Table 12, it is evident that participants did not perform PRTs with 

prescribed frequency. Specifically, PRTs past 40° were performed 0.3 times per hour, 

significantly less than once per hour (p = 0.007). Tilts reducing the pressure by at least 

10% were performed a median (range) of 0.7 (0.0 – 3.1) times per hour for peak pressure 

and 0.5 (0.0 – 3.9) for mean pressure. In response to Hypothesis Two, tilt frequencies for 

reducing peak pressure were significantly less than twice per hour (p = 0.016), while tilt 

frequencies for reducing mean pressure were not significantly less than twice per hour (p 

= 0.063), but only 3 of 10 participants performed such tilts more than two tilts per hour 

(Figure 22). In terms of blood flow, participants tilted with increased blood flow a 

median (range) of 0.0 (0.0 – 1.0) times per hour, significantly less than two tilts per hour 

(p = 0.003). 

Figure 21. Breakdown of time at tilt angle for each subject from Specific Aim 2.
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Table 12. Median (range) of tilt use for participants from Specific Aim 2. 
Subject Occupancy Time Typical 

Position Tilt Frequency PRT > 40° 
Frequency 

Tilt Behavior 
Category 

1 12.4 (7.4 – 14.7) 6.5 (5 – 11) 0.5 (0.2 – 0.9) 0.0 (0.0 – 0.1) Uni-Modal 
2 9.3 (7.2 – 12.2) 17 (14 – 18) 0.4 (0.1 – 0.8) 0.0 (0.0 – 0.1) Uni-Modal 
3 14.6 (8.4 – 17.3) 17.5 (10 – 25) 2.3 (1.4 – 3.2) 0.2 (0.1 – 0.4) Multi-Modal 
4 10.2 (9.7 – 10.5) 6 (3 – 9) 7.0 (5.4 – 9.8) 0.0 (0.0 – 0.0) Uni-Modal 
6 7.4 (5.8 – 10.3) 8 (4 – 13) 5.6 (4.3 – 8.8) 0.3 (0.2 – 0.4) Multi-Modal 
7 6.6 (5.5 – 7.4) 26 (23 – 29) 3.8 (2.6 – 4.2) 1.2 (0.9 – 1.5) Uni-Modal 
8 13.5 (11.1 – 15.1) 11 (6 – 29) 6.5 (5.7 – 12.7) 0.2 (0.1 – 0.5) Multi-Modal 
9 15.7 (6.0 – 16.1)  9 (2 – 19) 1.1 (0.6 – 1.7) 0.0 (0.0 – 0.3) Uni-Modal 
10 11.9 (2.3  - 12.9) 13 (8 – 17) 2.2 (1.7 – 2.7) 0.2 (0.1 – 0.4) Uni-Modal 
11 6.5 (5.0 – 8.1) 17 (17 – 18) 5.1 (3.9 – 6.9) 1.5 (0.6 – 2.0) Uni-Modal 
 

It is also important to consider the time spent at positions with increased blood 

flow and decreased pressure by individual participants (Figure 23). Half of the 

 
Figure 22. Tilt frequencies for tilts that decrease pressure. 
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participants spent more than 25% of their time at positions giving themselves more than 

5% more blood flow, but fewer participants spent that much time with a pressure 

reduction of more than 10% from upright (Figure 23). 

Group Analysis 

The participants with SCI from Specific Aim 1 had varied tilt behavior, 

comparable to the larger population described in Specific Aim 1 (Table 13). Overall, 

participants’ behaviors could be categorized into uni-modal (n=19) or multi-modal 

(n=11) types of tilt behavior. 

 
Figure 23. Percent of occupancy time spent at positions with pressure less than 

90% of upright or blood flow more than 105% of upright. Values determined by 
analysis of individual biomechanical responses. 
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Table 13 . Tilt behavior by participants with SCI. 
Variable Median (Range) 
 Occupancy Time (hours) 12.0 (6.5 – 16.4) 
Typical Position (°) 9 (0 – 47) 
Tilt Frequency (tilts / occupancy hour) 2.7 (0.4 – 16.6) 
PRT > 40° Frequency (tilts / occupancy hour) 0.1 (0.0 – 1.5) 
% Time 0°-14° 82 (0 – 99) 
% Time 15°-29° 14 (0 – 92) 
% Time 30° - 44° 1 (0 – 29) 
% Time ≥ 45° 0 (0 – 71) 

 
 
 

In response to Hypothesis One, the median participant tilted past 40° 0.1 times per 

hour, significantly less than the once per hour that is recommended (p = 0.000). Tilts that 

decreased pressure were more frequent, at a median (range) of 0.5 (0.0 – 7.6) times per 

hour, still significantly less than two tilts per hour (p = 0.000). Tilts that increased blood 

flow occurred at the same frequency, 0.5 (0.0 – 7.0) times per hour, also less than two 

tilts per hour (p = 0.000). Participants spent a median (range) of 7% (0% - 100%) of their 

time at pressures less than 90% of upright and 18% (0% - 100%) tilted to positions 

greater than or equal to 15°.  

As with other metrics of tilt behavior, tilt use that resulted in decreased pressure 

and increased blood flow varied based on category of tilt behavior (Table 14). 

Participants in both groups (uni-modal and multi-modal), performed significantly less 

than one PRT past 40° per hour (p ≤ 0.002). In terms of Hypothesis Two, although 

participants in the multi-modal group reduced pressure and increased blood flow more 

frequently than participants in the uni-modal groups, it was still typically less often than 

twice per hour (p =0.06 and p = 0.08 respectively), with only three multi-modal and two 

uni-modal participants tilting regularly with increased blood flow and decreased pressure.  
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Table 14. Median tilt frequencies (per hour of occupancy) and percent time at positions 
with increased blood flow and decreased pressure, split by uni-modal and multi-modal 

behavior. P-value in response to Kruskal-Wallis testing. 
 All Participants 

(n= 30) 
Uni-modal 
(n=19) 

Multi-Modal 
(n = 11) 

p-value 

PRT > 40° (tilts/hour) 0.1 0.1 0.1 0.846 
Decreased Pressure      
Tilt Frequency (tilts/hour) 0.5 0.3 1.0 0.015 
Percent Time (%) 7 0 29 0.003 
Increased Blood Flow     
Tilt Frequency (tilts/hour) 0.5 0.5 1.1 0.05 
Percent Time (%) 18 12 59 0.001 
 
 

Discussion 

On the whole, the application of biomechanical responses to actual tilt behavior 

suggests that participants did not use their tilt-in-space wheelchairs to perform regular 

pressure relieving tilts. This conclusion was independent of the details of the PRT 

definition (30° or 40°). Interestingly, the few participants in the uni-modal group who 

regularly performed pressure reliefs performed most of those tilts past 40°, while 

participants in the multi-modal group who performed regular PRTs tilted to positions 

between 30° and 40°, suggesting a different approach to PRTs. PRTs performed by 

participants in the multi-modal group may not have been intended as a PRT; rather, the 

pressure relieving benefits may have been secondary to use for another purpose. 

The use of the tilt feature to achieve minimal offloading or increased blood flow 

was more common than PRTs, as participants achieved minimal offloading or increased 

blood flow every 2 hours. Even minimal biomechanical changes, however, were not 

performed regularly (defined as twice per hour). The group of participants with multi-

modal tilt behavior performed more frequent tilts with biomechanical impact. More 

significant than the frequency of tilts to beneficial positions was the time spent with 
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improved pressure and blood flow as compared with upright sitting. Participants spent 1-

2 hours per day at positions with increased blood flow and decreased pressure. This 

suggests a considerable benefit over an upright power wheelchair. 

Although the physiological benefit of small increases in blood flow and decreases 

in pressure is not known, it is worthy of additional research. In the meantime, it is 

reasonable to assume that any improvement in blood flow or pressure is just that - an 

improvement. Linder-Ganz, et al. (2007) demonstrated, through an MRI study, that small 

changes in load on the buttocks could have considerable effects on internal stresses and 

strains. The small tilts would also be beneficial if the small increase in blood flow 

experienced over 1-2 hours even slightly increased the acceptable amount of sitting time. 

Perhaps wheelchair users who do not remember to perform pressure reliefs could be 

encouraged to spend more time at positions in a small or medium tilt to reduce the 

necessary frequency of pressure relief. 

Limitations 

It is important to remember that the decrease in pressure across the entire 

population was determined based on median interface pressures. Because the model of 

pressure change with tilt was dependent on the initial pressure, participants with 

pressures initially lower than the median would have experienced greater benefit than 

participants with pressures initially higher than the median, although this is not reflected 

in the data. 

The accuracy of the pressure model is illustrated in Figure 22. Of course, these 

data are only available for the participants from whom the model was defined. Still, it is 
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reassuring to see that when applying the model based on average upright pressures, the 

results are comparable to those from the individualized analysis. 
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CHAPTER V 

CONCLUSIONS 

 

The overall goal of this research was to improve the use of seated tilt to increase 

function, health and quality of life for people using power wheelchairs. Specifically, the 

objective of this project was to evaluate the biomechanical responses to seated full body 

tilt and their relationships to the actual use of tilt-in-space wheelchairs.  

For this project, researchers remotely monitored how people used their tilt-in-

space systems and also evaluated the biomechanical responses to tilt in a laboratory 

setting. A descriptive analysis of the remote monitoring included participants’ typical 

sitting positions, the magnitude and frequency of tilt maneuvers performed throughout 

the day, and the time spent at different tilt angles. In the laboratory, interface pressure 

measurement and laser Doppler flowmetry were used to study changes in localized 

loading and superficial blood flow at the ischial tuberosities across different amounts of 

tilt. Finally, tilt use was analyzed based on the outcomes of the laboratory testing. 

To accomplish the goal of improving the use of seated tilt to increase function, 

health and quality of life requires several steps. First, the potential impacts of tilt-in-space 

seating systems and the mechanisms by which they occur must be understood. Second, 

the benefits people did and did not receive from their TIS wheelchairs should be 

evaluated. Finally, the application of this knowledge to improve function, health and 

quality of life for people using power wheelchairs can be addressed. 

Rearward tilt systems maintain a constant seat-to-back angle while both the seat 

and back rotate. Load on the buttocks is reduced by transferring greater load to the 
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backrest. This change in load translates to a number of changes on the surface of the 

buttocks and internally within the soft tissues of the buttocks. At a full tilt (45°-60°), 

there is a 30-50% reduction in peak and mean interface pressure at the ischial 

tuberosities, a small posterior displacement in the center of pressure, and a significant 

increase in blood flow compared with upright. There may also be a small shift in the 

pelvic angle and a change to the strain on the soft tissue. At a large or extreme tilt, shear 

forces work to keep the person in the chair, and the vertical distance between the heart 

and the buttocks is reduced. The large or extreme tilt position is typically accompanied 

by reduced visibility due to the change in line of sight and a feeling of unease often due 

to fear, a sensation of instability, or the lack of mobility (given the inability to drive the 

wheelchair from this position). 

Small changes in tilt position from upright had a different impact than large or 

extreme tilts. Blood flow increased but pressure did not decrease during a 15° tilt from 

upright. Small tilts may decrease global shear forces, resulting in increased stability. In 

contrast, small changes in tilt position starting from a small tilt (i.e. 15°) reduced 

interface pressure but did not result in a further increase in blood flow. According to the 

work of Hobson (1992), shear forces are minimized at 25°, meaning shear forces might 

play a smaller role across position changes within the 15° to 30° range. 

According to the results of the tilt monitoring study, participants benefited from 

having a tilt feature. Participants achieved at least occasional increases in blood flow and 

decreases in pressure. Participants also experienced long durations with increased blood 

flow (2.2 hours per day) and decreased pressure (51 minutes) compared with upright. It is 

possible that participants also experienced changes in internal compression and shear 
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strain due to the displaced center of pressure, reduced interface pressure and slight pelvic 

shift. Participants regularly benefited from sitting at a small tilted position with reduced 

global shear, potentially resulting in improved posture and stability. Posture may also 

have been improved for many participants through the single large tilt they performed 

following transfers. It is often easier for caregivers to position their clients with the 

wheelchair positioned in a large tilt. Having a better seated posture has functional and 

medical implications as it is associated with improved pressure distributions, greater 

reach (Sprigle, Wootten et al. 2003) and an improved ability to perform mobility related 

activities of daily living. The ability to sit at multiple positions throughout the day helped 

the subjects in this study to participate in multiple activities, each activity benefiting from 

a different position. Self-reported purposes of use suggested a few typical examples of 

how the tilt might have been used in different activities: participants might have tilted 

back a small amount for eating, to keep objects better balanced on their lap tray during 

use, or for improved reach and stability. They might have tilted farther to assist in 

transferring and positioning, or to control dizziness or swelling. Participants might have 

switched to a more upright posture to sit at a desk or table or to enter or drive a vehicle. 

Because some of these activities only occur intermittently throughout the day, they are 

not well reflected by the tilt frequency. In fact, many participants with lower tilt 

frequencies reported these uses of their tilt feature. Finally, participants achieved greater 

comfort as a result of their tilt feature. Whether they accomplished this by dramatically 

changing their position occasionally (i.e., a large tilt) or by sitting dynamically 

throughout the day, most participants enjoyed the ability to respond to discomfort and 

proactively achieve comfort more comparably to their able-bodied experience. 
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Some potential benefits of TIS were not achieved by participants in this study. 

Participants did not experience regular, large decreases in pressure or increases in blood 

flow. This was both a result of limited efficacy of the tilt feature at reducing pressure in a 

full tilt and of participants’ limited use of large and extreme tilts. 

The use and disuse of tilt-in-space has implications for clinical practice, policy, 

and design. In terms of clinical practice, the use and disuse of TIS may influence the 

prescription process, delivery of the wheelchair, and follow-up care. When a tilt-in-space 

system seems appropriate for a client, it is worth addressing the client’s concerns and 

factors that might limit its use (e.g., transportation, environment, and comfort in a tilted 

position). When selecting a seating system for that client, the differences in maximum tilt 

position lauded by the manufacturers may not be an important selection criterion. That is 

because currently it can be assumed that few participants will regularly utilize the 

maximum range of the wheelchair, regardless of whether it can tilt to 45° or 55°. For 

some clients, clinicians might want to consider alternative approaches to pressure relief 

such as combined tilt-recline systems or standing wheelchairs. Although blood flow has 

not been evaluated in either of these variable position seating system, both are effective at 

unloading the buttocks. Standing wheelchairs have the additional benefit that they 

provide a more functional and potentially more stable terminal position, addressing some 

of the concerns raised by participants about TIS. Standing also provides greater load 

reduction at intermediate positions (Sprigle, Maurer et al. in press). Finally, clinicians 

might want to consider prescribing TIS for clients who would not have traditionally 

received a tilt feature. For example, a client might not need the pressure relieving benefits 
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of tilt, but may be able to take advantage of the various functional, postural and comfort 

benefits. Of course, funding would dictate the feasibility of this prescription.  

Following prescription, wheelchair delivery and client training may be affected by 

the results of this study. Although delivery practices vary across clinics, there may be 

value in requiring a clinician to be present when the product is delivered, or providing a 

follow-up appointment after delivery. Pressure relief compliance should also be 

addressed with thorough training and education. Initial training should include tilting 

through the range of small, medium and large tilts with a clinician present to instill 

comfort and confidence in clients with regards to performing tilts. Pressure mapping the 

participant while they tilt might provide helpful biofeedback regarding how far to tilt, 

although this can be time consuming and the benefit has not yet been tested. Further 

training efforts might be put towards teaching clients the additional benefits of their tilt 

feature. Demonstrating how tilting might help in transfer or postural adjustments, reach, 

wheeling on a ramp or on rough terrain might give the client new opportunities for 

greater participation. The clinician might also suggest dynamic use of the wheelchair to 

simulate how able-bodied persons sit throughout the day, in an effort to provide improved 

comfort. Finally, follow-up is exceedingly important. Speaking with clients to make sure 

the system still works for them after delivery, including asking about reasons of disuse 

could be very informative and allow simple problems to be addressed. Additionally, 

follow-up training based on evaluation of tilt behavior might allow for more appropriate 

training goals and approaches. For example, participants using the wheelchair with 

minimal tilt use or other uni-modal behavior (and not regular PRTs) may need to learn 

and experience the variety of benefits of the tilt feature and be educated on pressure 
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reliefs. It would help for the clinician to identify and address their reasons for disuse of 

the feature. In contrast, participants using multi-modal behavior without frequent PRTs 

are well aware of their feature’s capabilities but may need more targeted pressure relief 

training and education. 

The policy and design implications of the results are also significant and highly 

related. First, participants spent more than 12 hours per day in their wheelchair, more 

than most task seating. Across twelve hours, the wheelchair serves many functions, both 

medical and non-medical, and ideally the varied functions should be reflected in the 

design and funding. There are some potential medical benefits of improving posture and 

providing the ability for dynamic sitting, including reduced pressure ulcer incidence and 

decreased pain. Outcomes studies would help to evaluate the medical benefits and the 

cost effectiveness of providing a tilt system, but such studies are very difficult to perform. 

In addition to considering the duration of sitting in the design, designers should consider 

the main reasons for disuse, the lack of stability and non-functional position in a full tilt, 

in future designs. Finally, there may be benefit to adding a more limited, less expensive 

tilt feature (0-15° or 5-20°) on upright power wheelchairs, as it might provide improved 

function and quality of life for users who do not qualify for a tilt-in-space wheelchair.  

In conclusion, this dissertation evaluated the biomechanical responses to seated 

full body tilt and their relationships to the actual use of tilt-in-space wheelchairs. From 

the results, a number of research studies, clinical interventions and design changes are 

implicated that might help to accomplish the overall goal of improved function, health 

and quality of life for people using power wheelchairs. 

 



 

  107   

APPENDIX A: TILT MONITORING SURVEY 

 

Mounting date: ___________  Dismount date: ___________ 

Mounting time: ___________  Dismount time: ___________ 

 

Wheelchair 

 Wheelchair Make and Model: ___________________________________ 

 Cushion Make and Model: ______________________________________ 

Wheelchair Features: 

� Tilt 

� Elevate 

� Elevating Leg Rest 

� Other 

� Recline 

� Stand 

 Tilt Range 
Minimum Tilt Position Maximum Tilt Position 
Seat Angle (to horizontal) _____________ Seat Angle (to horizontal) _____________ 
Back Angle (to horizontal) _____________ Back Angle (to horizontal) _____________ 
Seat to Back Angle _______________________ 

 

Any comments about mounting, subject, etc. 

__________________________________________________________________

__________________________________________________________________ 

Demographics & Other Personal Information 

Demographics  

DATE OF BIRTH: __________________ 

GENDER:  Male  Female 

HEIGHT _________________   WEIGHT __________________ 
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HIGHEST LEVEL OF EDUCATION COMPLETED:  

(Select single best option)  

� Some or No high school 

� High school diploma or GED  

� Associates degree  

� Bachelor’s degree  

� Graduate degree  

� Other (please specify): 

___________________________________________________ 

CURRENT OCCUPATION: (Select single best option) 

� Paid employment 

� Non-paid work, such as volunteer/charity 

� Student 

� Keeping House/ Home Maker  

� Retired   

� Unemployed (health reasons)  

� Unemployed (other reasons)  

� Other (please specify) _________________________________ 

RACE OR ETHNICITY: (You may select more than one option) 

� Asian American  

� American Indian / Alaskan Native  

� Black / African American  

� Native Hawaiian / Other Pacific Islander  

� White  

� Hispanic or Latino  
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� Other (please specify): 

___________________________________________________ 

LIVING SITUATION: (You may select more than one option) 

� Lives alone  

� Spouse  

� Other Family  

� Friend  

� Caregiver support 

� Other (please 

specify):___________________________________________________ 

 

Disability-Specific 

• Diagnosis: _______________________________________________________ 

If SCI:  Level of Injury _____________________________ 

 � Complete  � Incomplete 

• Years using a wheelchair: ___________ 

• Years using a tilt in space wheelchair: __________ 

• Years using current tilt in space wheelchair: _________ 

• Do you have any sensation below the waist?  

� Yes  � No 

If Yes, Can you feel your buttocks? � Yes  � No 

 � Light touch 

 � Deep pressure 

 � Pain 

• Do you have any controlled movement below the waist?  

� Yes  � No 

If Yes, How much? __________________________ 

� Can you march your legs up and down in sitting 

� can you kick your foot out 

� can you squeeze your buttocks? 

• Do you experience spasticity? 
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� Yes  � No 

Functional status  

TRANSFERS: (Select single best option) 

� Independent   

� Independent with sliding board  

� Sliding board with assist     

� Mechanical lift     

� Person assist  

Skin History 

• Before you began using your first tilt-in-space wheelchair, did you have any 

pressure ulcers? 

� Yes  � No 

If Yes, in what locations __________________________ 

If Yes, how frequently (per location) __________________________ 

• Since you started using a chair with power tilt, have you had any pressure ulcers? 

� Yes  � No 

If Yes, in what locations __________________________ 

If Yes, how frequently (per location)__________________________ 

• Do you currently have any pressure sores? 

� Yes  � No 

If Yes, in what locations __________________________ 

Pressure Relief Knowledge 

• How far are you supposed to tilt for a pressure relief? _________ 

• Have subject demonstrate a pressure relief and measure angle: _________ 

• Has subject ever had a pressure ulcer scare (situation where they or someone they 

know was seriously inconvenienced / quality of life affected by a pressure sore)? 

� Yes  � No 

Tilt system 

• Where were you prescribed your tilt system?  

� Shepherd 

� Other: _______________________ 
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• Was tilt prescribed because of a problem with pressure ulcers? 

� Yes  � No 

If No, Why was it prescribed? _______________ 

• Who was present when you received tilt (current chair)? (check all that apply) 

� Therapist 

� Supplier / vendor 

� family member 

� care giver 

� other _____________________ 

• Did you receive any training about how to use your tilt system? 

� Yes  � No 

Tilt System Use 

• For which of the following purposes do you use your tilt system? (Follow up with 

asking them to demonstrate tilt. Measure angle) 

� comfort/discomfort/pain (Angle: ________) 

� rest/relaxation (Angle: ________) 

� posture (Angle: ________) 

� functional independence (Angle: ________) 

� pressure reliefs / weight shifts (Angle: ________) 

� physiological functions other than pressure relief (e.g. bowel 

and bladder, spasticity, etc) (Angle: ________) 

� other: _______________________ (Angle: ________) 

Wheelchair use 

• In a typical day, for what activities do you get out of the chair? 

□ to sit in a different chair (i.e. couch/recliner) 

□ Bowel and bladder routines 

□ Vehicle travel,  

□ To use other wheelchairs 

□ Ambulation. 

□ Sleep 

□ Shower 
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□ Other: ___________________ 

• About how long do you sit in your chair each day: ____________________ 

• How often do you tilt to perform pressure reliefs? _______________ 

• How long do you stay tilted when tilting for pressure reliefs? ________________ 

• Do you perform pressure reliefs in other ways besides tilting?  

� Yes  � No 

 If Yes, How? 

___________________________________________ 

• Do you move/squirm in your chair without tilting (if yes, measure pressures under 

trochanter)? 

� Yes  � No 

• If you are uncomfortable in your chair, what can you do to fix it? 

______________________________________________________ 
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