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Wardi, and Professor Xingxing Yu for serving in my dissertation committee. Their broad

perspectives and suggestions helped me a lot in refining this dissertation.

I would also like to thank Professor Zhisheng Niu at Tsinghua University for initializing

my interest in wireless communications and shaping my research capabilities.

I am thankful for all my labmates at the Information Transmission and Processing Lab-

oratory and all friends at Centergy building for inspiring discussions and helps. I thank

all friends at Georgia Institute of Technology. You make this place vivid, warm, and more

attractive.

Finally, I would like to thank my parents and my wife. I could not have completed the

PhD work without the love and support of Mom and Dad. Dad always educates me to do

better, whatever I am working on. I have known from early childhood that there’s no best,

only better. My wife, Ting Ren, always stands behind me and encourages me to pursue my

goal. This dissertation is dedicated to them.

This work was supported by Intel Corporation and the U.S. Army Research Laboratory

iv



under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-

01-20-0011.

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Cross-Layer Optimization for Spectral-Efficient Communications . 3
1.2.2 Cross-Layer Optimization for Energy-Efficient Communications . 6

1.3 Our Approaches and Thesis Outline . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 DECENTRALIZED OPTIMIZATION FOR MULTICHANNEL
RANDOM ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 MAC Layer Analysis . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Physical Layer Analysis . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Criterion for Cross-Layer Design . . . . . . . . . . . . . . . . . . 20

2.3 Decentralized Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 MAC Layer Transmission Control . . . . . . . . . . . . . . . . . 23
2.3.2 Physical Layer Optimization with Channel Inversion . . . . . . . 25
2.3.3 Physical Layer Optimization with Adaptive Modulation and Power

Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Network Performance Improvement . . . . . . . . . . . . . . . . 30
2.4.2 Suboptimality Gap . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 COCHANNEL INTERFERENCE AVOIDANCE MAC . . . . . 36
3.1 Network with CIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Principle of CIA-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Trigger for CIA-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Trigger Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 An Alternate Trigger Mechanism Using Location Knowledge . . . 44

3.4 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Relationship of Trigger and SNR . . . . . . . . . . . . . . . . . . 47
3.4.2 Effect of the Trigger . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Network Performance Improvement . . . . . . . . . . . . . . . . 49

vi



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

CHAPTER 4 CHANNEL AWARE DISTRIBUTED MEDIUM ACCESS CON-
TROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Channel-Aware Medium Access Control . . . . . . . . . . . . . . . . . . 58
4.3 Access Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 CRS 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 CRS k, k > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 5 ENERGY-EFFICIENT LINK ADAPTATION IN FREQUENCY-
SELECTIVE CHANNELS . . . . . . . . . . . . . . . . . . . . . 75

5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Principles of Energy-Efficient Link Adaptation . . . . . . . . . . . . . . . 78

5.2.1 Conditions of Optimality . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 A Special Case: When the Channel is Flat Fading . . . . . . . . . 80

5.3 Constrained Energy-Efficient Link Adaptation . . . . . . . . . . . . . . . 82
5.4 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Gradient Assisted Binary Search . . . . . . . . . . . . . . . . . . 83
5.4.2 Binary Search Assisted Ascent . . . . . . . . . . . . . . . . . . . 85
5.4.3 The Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Simulation Results for OFDM . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Modeling of OFDM with Subchannelization . . . . . . . . . . . . 87
5.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CHAPTER 6 LOW-COMPLEXITY ENERGY-EFFICIENT SCHEDULING FOR
UPLINK OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Energy-Efficient Link Adaptation . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Energy-Efficient Resource Allocation . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Max Arithmetic Mean Energy-Efficient Scheduler . . . . . . . . . 100
6.3.2 Max Geometric Mean Energy-Efficient Scheduler . . . . . . . . . 102

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CHAPTER 7 INTERFERENCE-AWARE ENERGY-EFFICIENT POWER OP-
TIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Cooperative Two-User Case . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Circuit Power Dominated Regime . . . . . . . . . . . . . . . . . 109
7.2.2 Transmit Power Dominated Regime . . . . . . . . . . . . . . . . 110

vii



7.2.3 Noise Dominated Regime . . . . . . . . . . . . . . . . . . . . . . 110
7.2.4 Interference Dominated Regime . . . . . . . . . . . . . . . . . . 110
7.2.5 Spectral Efficiency and Energy Efficiency Tradeoff with Cooper-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Noncooperative Energy-Efficient Communications . . . . . . . . . . . . . 113

7.3.1 Noncooperative Energy-Efficient Power Optimization Game . . . 114
7.3.2 Existence of Equilibrium . . . . . . . . . . . . . . . . . . . . . . 115
7.3.3 Uniqueness of Equilibrium in Flat Fading Channels . . . . . . . . 116
7.3.4 Uniqueness of Equilibrium in Frequency-Selective Channels . . . 118
7.3.5 SE and EE Tradeoff without Cooperation . . . . . . . . . . . . . . 121
7.3.6 Implementation of Noncooperative Energy-Efficient Power Opti-

mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

APPENDIX A PROOFS FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . . 131
A.1 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

APPENDIX B PROOFS FOR CHAPTER 4 . . . . . . . . . . . . . . . . . . . . 135
B.1 Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.2 Proof of Theorem 4.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.3 Proof of Theorem 4.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

APPENDIX C PROOFS FOR CHAPTER 5 . . . . . . . . . . . . . . . . . . . . 140
C.1 Proof of Lemma 5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C.2 Proof of the Upperbound in Theorem 5.2.4 . . . . . . . . . . . . . . . . . 141
C.3 Proof of Propositions 5.2.5, 5.2.6, and 5.2.7 . . . . . . . . . . . . . . . . 141
C.4 Proof of Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

APPENDIX D PROOFS FOR CHAPTER 7 . . . . . . . . . . . . . . . . . . . . 143
D.1 Proof for Transmit-Power-Dominated Regime . . . . . . . . . . . . . . . 143
D.2 Proof for Interference-Dominated Regime . . . . . . . . . . . . . . . . . 143
D.3 Proof of Lemma 7.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.4 Proof of Theorem 7.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
D.5 Proof of Proposition 7.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 145
D.6 Proof of An Equilibrium Form . . . . . . . . . . . . . . . . . . . . . . . 146
D.7 Proof of Theorem 7.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

viii



LIST OF TABLES

Table 4.1 Contention process for a set of channel states in Figure 4.1 . . . . . . 72

Table 5.1 Gradient assisted binary search . . . . . . . . . . . . . . . . . . . . . 84

Table 5.2 Binary search assisted ascent . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.3 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 7.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 7.2 Scheduling and power control . . . . . . . . . . . . . . . . . . . . . . 125

ix



LIST OF FIGURES

Figure 1.1 Relationship between energy consumption and symbol duration . . . 8

Figure 2.1 Network architecture example . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 Capability limited water-filling over time . . . . . . . . . . . . . . . . 27

Figure 2.3 Random network topology. . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.4 Network aggregate utility comparison. Pm = 50 dBm, Pa = 43 dBm,
W = 100Hz, and No = 0.001W/Hz. . . . . . . . . . . . . . . . . . . 31

Figure 2.5 Five channel network aggregate utility comparison. Pm = 50dBm, Pa =

43dBm, W = 100Hz, No = 0.001W/Hz. . . . . . . . . . . . . . . . . 32

Figure 2.6 A simple network topology . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.7 Aggregate utility gap to the global optimum. Pm = 50dBm, Pa =

43dBm, W = 100Hz, No = 0.001W/Hz. . . . . . . . . . . . . . . . . 33

Figure 3.1 Cochannel interference in cellular networks with a reuse factor of one . 37

Figure 3.2 MAC transmission and frame structure . . . . . . . . . . . . . . . . . 39

Figure 3.3 CIA-MAC flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.4 Trigger of severe cochannel interferer . . . . . . . . . . . . . . . . . . 43

Figure 3.5 Trigger effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.6 Cellular networks with fractional frequency reuse . . . . . . . . . . . 49

Figure 3.7 Cumulative distribution function of SINR. . . . . . . . . . . . . . . . 50

Figure 3.8 Throughput comparison . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.9 Throughput comparison (SNR=9 dB) . . . . . . . . . . . . . . . . . . 52

Figure 4.1 A network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.2 Traffic, energy, and channel aware medium access. . . . . . . . . . . . 59

Figure 4.3 Flowcharts of typical access contention. . . . . . . . . . . . . . . . . 60

Figure 4.4 A network in which all interfere with others. . . . . . . . . . . . . . . 68

Figure 4.5 Probability density function of the number of CRSs necessary for
complete contention resolution. . . . . . . . . . . . . . . . . . . . . . 73

x



Figure 4.6 Throughput comparison of CAD-MAC and DOMRA. . . . . . . . . . 74

Figure 5.1 Convergence rate of BSAA. . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.2 Frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.3 OFDM subchannelization (K subchannels, each with c subcarriers) . . 90

Figure 5.4 Performance comparison for contiguous subchannelization. . . . . . . 91

Figure 5.5 Performance comparison for fixed-interval subchannelization. . . . . . 91

Figure 6.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 6.2 Low-complexity energy-efficient water-filling power allocation . . . . 99

Figure 6.3 Normalized energy efficiency of one link . . . . . . . . . . . . . . . . 104

Figure 6.4 Normalized average energy efficiency of a three-user network . . . . . 105

Figure 7.1 Sum energy efficiency and transmit powers in interference dominated
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 7.2 Comparison of cooperative EE and SE. . . . . . . . . . . . . . . . . . 112

Figure 7.3 Tradeoff of EE and SE with different interfering scenarios (pc = 1, g =

1, σ2 = 0.01,N = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 7.4 Noncooperative energy-efficient power optimization in the equilibrium(Pc =

1, g = 1, σ2 = 0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 7.5 Performance comparison of different schemes. . . . . . . . . . . . . . 126

Figure 7.6 Comparison of different schemes. . . . . . . . . . . . . . . . . . . . 127

xi



SUMMARY

The future success of communication networks hinges on the ability to overcome the

mismatch between requested quality of service (QoS) and limited network resources. Spec-

trum is a natural resource that cannot be replenished and therefore must be used efficiently.

On the other hand, energy efficiency (EE) is also becoming increasingly important as bat-

tery technology has not kept up with the growing requirements stemming from ubiquitous

multimedia applications. This thesis focuses on improving both spectral and energy effi-

ciency from different perspectives. Specifically, because of fading, the qualities of wireless

channels vary with both time and user. We use channel state information (CSI) to dynami-

cally assign wireless resources to users to improve spectral and energy efficiency.

We first investigate a series of general treatments of exploiting CSI in a distributed way

to control the medium access to maximize spectral efficiency for networks with arbitrary

topologies and traffic distributions. As the first step, we propose decentralized optimization

for multichannel random access (DOMRA), which uses local CSI and two-hop static neigh-

borhood information to improve slotted Aloha. DOMRA adapts to the inhomogeneous

spatial traffic distribution and achieves performance comparable with the global optimum,

which can only be obtained using complete network knowledge. The generic framework

developed in DOMRA proved to be very useful in improving cellular networks as well.

We develop cochannel interference avoidance (CIA) medium access control (MAC), which

is optimized by DOMRA, to mitigate the downlink severe cochannel interference that is

usually experienced by cell-edge users. Aloha-based schemes have low channel utilization

efficiency because of the collision of entire data frames. Hence we further develop channel-

aware distributed MAC (CAD-MAC), which avoids collision through signaling negotiation

ahead of data transmission. With CAD-MAC, users with better channel states are scheduled

in a distributed way. This scheme completely resolves contention of networks with arbi-

trary topologies. Besides, it achieves throughput close to that using centralized schedulers

xii



and is robust to any channel uncertainty.

Then we address energy-efficient wireless communications while emphasizing orthog-

onal frequency multiple access (OFDMA) systems. We first discover the global optimal

energy-efficient link adaptation in frequency-selective channels using the strict quasicon-

cavity of energy efficiency functions. This link adaptation optimally balances the power

consumption of electronic circuits and that of data transmission on each subchannel. The

global optimal energy-efficient transmission can be obtained using iterative operations,

which may be complex to be implemented in a practical system. Besides, running iterative

algorithms consumes additional energy. Hence, using a locally linear approximation, we

further develop a closed-form link adaptation scheme, which performs close to the global

optimum. Besides, since subchannel allocation in OFDMA systems determines the energy

efficiency of all users, we develop closed-form resource allocation approaches that achieve

near-optimal performance too. In an interference-free environment, a tradeoff between EE

and spectral efficiency (SE) exists, as increasing transmit power always improves SE but not

necessarily EE. We continue the investigation in interference-limited scenarios and show

that since increased transmit power also brings higher interference to the network, SE is

not necessarily higher and the tradeoff is reduced. Especially, in interference-dominated

regimes, e.g., local area networks, both spectral- and energy-efficient communications de-

sire optimized time-division protocols and the proposed DOMRA, CIA-MAC, and CAD-

MAC can be used to improve both spectral and energy efficiency.

xiii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Wireless communication systems have experienced tremendous growth, which continues

unabated worldwide. The future success of wireless networks hinges on the ability to

overcome the mismatch between the requested quality of service (QoS) and limited network

resources. Spectrum is a natural resource that cannot be replenished and therefore must

be used efficiently; that is where the significance of spectral efficiency (SE) lies. On the

other hand, energy efficiency (EE) is also becoming increasingly important for small form

factor mobile devices, as battery technology has not kept up with the growing requirements

stemming from ubiquitous multimedia applications [1].

Spectral and energy efficiency is affected by all layers of system design, ranging from

silicon to applications. The traditional layer-wise approach leads to independent design of

different layers and results in high design margins. Cross-layer approaches exploit inter-

actions between different layers and can significantly improve system performance as well

as adaptability to service, traffic, and environment dynamics. Cross-layer optimization for

throughput improvement has been a popular research theme [2, 3, 4]. Recent efforts have

also been undertaken to tackle energy consumption at all layers of communication systems,

from architectures [5, 6, 7] to algorithms [8, 9, 10].

The physical (PHY) layer plays a very important role in wireless communications due

to the challenging nature of the communication medium. The PHY layer deals with data

transmission over wireless channels and consists of radio frequency (RF) circuits, modu-

lation, power control, channel coding units, etc. Traditional wireless systems are built to

operate on a fixed set of operating points [11], e.g., no power adaptation. This results in

excessive energy consumption or pessimistic data rate for peak channel conditions. Hence,

a set of PHY parameters should be adjusted to adapt the actual user requirements (e.g.,

1



throughput and delay) and environments (such as shadowing and frequency selectivity) to

trade off energy efficiency and spectral efficiency. As wireless is a shared medium, com-

munication performance and energy consumption are affected not only by the layers com-

prising the point-to-point communication link, but also by the interaction between the links

in the entire network. Hence, a system approach is required. The medium access control

(MAC) layer ensures that wireless resources are efficiently allocated to maximize network-

wide performance metrics while maintaining user QoS requirements. Here, pessimistic

medium access strategies that allocate wireless resources to assure worst-case QoS may

hurt network spectral and energy efficiency. In distributed access schemes, MAC should

be improved to reduce the number of wasted transmissions that are corrupted by interfer-

ence from other users, while in centralized access schemes, efficient scheduling algorithms

should exploit the variations across users to maximize the overall network performance.

The MAC layer manages wireless resources for the PHY layer and they both directly impact

overall network performance and energy consumption. We focus on cross-layer optimiza-

tion across the PHY and MAC layers to improve wireless spectral and energy efficiency.

Furthermore, orthogonal frequency division multiplexing (OFDM) becomes a key mod-

ulation scheme for next-generation broadband wireless standards [12, 13]. OFDM-based

systems are traditionally used for combating frequency-selective fading. From a resource

allocation perspective, multiple channels in OFDM systems have the potential for more ef-

ficient MAC design since subcarriers can be assigned to different users [14]. Furthermore,

adaptive power allocation on each subcarrier can be applied for further improvement [15].

Hence, we will emphasize the cross-layer design for OFDM systems to enhance spectral

and energy efficiency.

1.2 Literature Review

In this section, we review state-of-the-art techniques for cross-layer optimizations of wire-

less networks to improve spectral and energy efficiency, including channel-aware medium

2



access control, energy-efficient link adaptation, energy-efficient resource allocation, and

interference-aware energy-efficient communications.

1.2.1 Cross-Layer Optimization for Spectral-Efficient Communications

Because of fading, the quality of a wireless channel varies with both time and user. Wire-

less is a shared medium and communication performance is affected not only by indi-

vidual communication links but also by the interaction among the links in the entire net-

work. To fully exploit network resources, channel-aware medium access schemes have

been proposed to adaptively transmit data and dynamically assign wireless resources based

on CSI. The key idea of channel-aware medium access control is to schedule a user with

favorable channel conditions to transmit with optimized link adaptation according to CSI

[16, 14, 15, 17]. By exploiting the channel variations across users, channel-aware medium

access control substantially improves network performance through multiuser diversity,

whose gain increases with the number of users [17, 16].

1.2.1.1 Channel-Aware Random Access

Medium access can be either centralized or distributed. With a central controller, the best

performance is obtained by scheduling the user with the best channel state [14, 15, 18].

However, CSI feedback incurs huge overhead, especially for networks with a large number

of users at high mobility, which results in poor network scalability. To reduce CSI feedback,

distributed approaches are preferred.

Random access algorithms provide the means to share network resources among users

under distributed control. Traditional contention based random access methods include

pure, slotted, and reservation Aloha schemes, carrier sense multiple access (CSMA) and

CSMA with collision avoidance schemes, multiple access with collision avoidance for

wireless (MACAW) schemes, and so on [19, 20]. These MAC approaches do not use CSI.

Hence, when MAC decides to transmit a frame, the channel may be in a deep fade. On

the other hand, MAC may not transmit even though the channel is in a good state, which
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wastes channel resources. Recently, opportunistic random access schemes have been stud-

ied in [21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and the references therein to use CSI for perfor-

mance improvement. With opportunistic random access, each user exploits its own CSI to

decide the contention behavior and users with better channel states have higher contention

probabilities. A channel-aware Aloha is proposed in [21] to improve the uplink access

contention for cellular type networks; users transmit data whenever their channel gains are

above pre-determined thresholds. Since the channel state is random, the transmission is

randomized. This scheme is then further studied in [22, 23, 24, 25] in different scenarios.

In [26], users and the base station (BS) negotiate through mini time slots before the data

transmission period such that the user with the best channel condition always wins the con-

tention and transmits data. A channel-aware multicarrier random access scheme has been

proposed in [23], where each user selects some subchannels with the best channel power

gains for data transmission. Inspired by [21], it is proposed in [27] that each user in a cellu-

lar network sends request packets when the channel fading level exceeds a predetermined

threshold, after which the BS processes downlink transmissions. Although the thresholds

in [27] are chosen to optimize downlink throughput, the proposed scheme actually reduces

uplink request collisions and hence also deals with random access. In [28], based on decen-

tralized CSI, a general expression for the transmission probability that may depend on the

channel and the physical layer implementation is given, and the transmission probability

is optimized to achieve maximum stable throughput in the MAC layer. Through slotted

Aloha, a reservation-based MAC scheme is found in [29] to maximize the overall through-

put. The capacity of slotted Aloha is analyzed and the optimal transmission probabilities

are obtained for a multi-packet reception MAC model [30]. One observation is that all

these opportunistic random access schemes are for wireless networks where users trans-

mit to a common receiver, e.g., a BS. However, this scenario does not fit many wireless

communication environments, such as sensor [31], ad hoc [32], and mesh networks [33].
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1.2.1.2 Cochannel Interference

Cellular networks are becoming increasingly interference limited as more users need to

share the same spectrum to achieve high-rate multimedia communication. In typical cel-

lular systems, cochannel interference (CCI) is one of the major factors limiting system

spectral efficiency, especially as these systems move toward aggressive frequency reuse

scenarios [12, 34]. While the overall system spectral efficiency may improve with aggres-

sive frequency reuse, the performance of cell-edge users degrades substantially.

A commonly used method to avoid CCI is to assign different sets of channels to neigh-

boring cells [35,36] and a good summary of channel assignment can be found in [37]. One

recent popular approach to reducing interference for cell-edge users is through fractional

frequency reuse (FFR) [38, 12, 39, 40, 41]. With FFR, a lower frequency reuse is specified

for users at cell edges, while full frequency reuse is applied for those at cell centers. This

improves the throughput of cell-edge users since they experience lower levels of interfer-

ence. To further improve frequency reuse efficiency, CCI can be mitigated by advanced

digital signal processing techniques [42,43,44,45]. For example, in [45], various multiuser

detection and CCI suppression schemes have been studied when mobile terminals (MTs)

are equipped with multiple antennas. However, these techniques have high complexity and

therefore result in high costs for MTs. For downlink transmission, CCI can be mitigated

by joint pre-processing and encoding techniques among BSs [46], [47], or avoided by us-

ing cooperative scheduling among BSs [48], both of which require a lot of instantaneous

information exchange. Recently, contention-based schemes have also been developed for

CCI avoidance in addition to an intracellular centralized MAC protocol. In [49], each MT

or BS keeps on broadcasting busy-tone signals located at the mini-slot of every data frame

to prevent potential interferers from transmitting, and every BS or MT must listen to the

mini-slots before transmission. This scheme effectively avoids CCI without considering

fairness among users, and a group of greedy users may keep on broadcasting busy-tone

signals, which always prevent others from transmitting.
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1.2.2 Cross-Layer Optimization for Energy-Efficient Communications

As wireless is a shared medium, device energy efficiency is affected not only by the layers

composing the point-to-point communication link, but also by the interaction between the

links in the entire network. Hence, a systematic approach, including both transmission and

multi-user resource management, is required for energy-efficient wireless communications.

1.2.2.1 Energy-Efficient Transmission

The quality of wireless channel varies with time and frequency. Therefore, link adaptation

can be used to improve transmission performance. With link adaptation, modulation order,

coding rate, and transmit power can be selected according to CSI.

Earlier research on link adaptation focuses on power allocation to improve channel

capacity. Optimal power allocation for frequency-selective channels has been implied [50].

Here, the highest data rate on a bandlimited channel is achieved when the total received

signal power at each frequency, consisting of channel noise and desired signal component,

is a constant. Power allocation and bit-loading algorithms for OFDM are summarized in

Chapter 3 of [51]. The terminology, adaptive modulation, was first used in [52] even though

work on adaptive modulation had been reported before in [53].

In addition to spectral efficiency improvement, energy efficiency is becoming increas-

ingly important for mobile communications due to the slow progress of battery technol-

ogy [1] and the growing requirements of anytime and anywhere multimedia applications.

With sufficient battery power, link adaptation can be geared toward peak performance de-

livery. However, with limited battery capacity, link adaptation could be adapted toward

energy conservation to minimize battery drain. Energy-efficient communication also has

the desirable benefit of reducing interference to other co-channel users as well as lessening

environmental impacts, e.g., heat dissipation and electronic pollution.

Information theorists have studied energy-efficient transmission for at least two decades

[54, 55]. The work in [54] defines reliable communication under a finite energy constraint

in terms of the capacity per unit energy, which is the maximum number of bits that can be
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transmitted per unit energy. This definition ensures that for any transmission rates below

the capacity per unit energy, error probability decreases exponentially with the total energy.

It is also shown that the capacity per unit energy is achieved using an unlimited number of

degrees of freedom per information bit, e.g., with infinite bandwidth [56] or long-duration

regime communications [57]. For example, the lowest order modulation should always

be used while accommodating the delay constraint [57] to minimize energy consumption.

The information-theoretic results derived in [56, 57] focus only on transmit power when

considering energy consumption during transmission. Typically, a device will incur addi-

tional circuit power during transmission, which is relatively independent of the transmis-

sion rate [58, 59, 60]. Thus, a fixed cost of transmission is incurred that must be accounted

for in optimizing energy consumption. Figure 1.1 shows the transmit and circuit energy

consumptions when different time durations are used for transmitting one bit. The method

to transmit with the longest duration is no longer the best since circuit energy consumption

increases with transmission duration. Considering the impact of circuit power, the focus

will shift toward using optimization theory framework for determining energy-optimal link

settings.

The energy dissipation consisting of both transmitter electronics and RF output is stud-

ied in [58], and several energy-minimization techniques, including modulation and multiple

access protocols, are derived for short-range asymmetric micro-sensor systems. It is shown

that a high order modulation may enable energy savings compared with binary modulation

for some short-range applications by decreasing the transmission time. In [59], these ideas

are extended to a detailed energy consumption analysis specifically for both uncoded and

coded M-ary quadrature amplitude modulation (M-QAM) and multiple frequency shift key-

ing (MFSK) in additive white Gaussian channels. Therefore, energy-efficient transmission

is formulated to find a trade-off among transmission energy, circuit energy, and transmis-

sion time. Similarly, a steepest descent gradient algorithm is designed in [61] to search

the optimal rate that minimizes the average power consumption subject to a constraint on
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Figure 1.1. Relationship between energy consumption and symbol duration

average throughput.

1.2.2.2 Energy-Efficient Resource Management

Due to limited wireless resources, intricate performance trade-offs exist between an in-

dividual user and the whole network. The exploitation of diversity across all users will

further reduce overall network energy consumption. Wireless resources can be managed in

different domains to improve network energy efficiency.

In the time domain, e.g., in a time-division multiple access (TDMA) network, the chan-

nel medium is shared through time division. Each user tends to extend its transmission time

to save energy and contradicts the intention of energy savings of other users. Thus the allo-

cation of time duration among all users is critical in determining network energy efficiency.

As the modulation order determines data rate and thus the time for transmitting a certain

amount of information, finding the optimal slot length for each user is thus equivalent to

determining its corresponding constellation size [62]. A centralized resource allocation
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scheme is considered in [63]. The scheme assigns time slots to all users and specifies the

transmission parameters of each user for energy-efficient communications. To make the

resource management scheme applicable, the scheduling is partitioned into a design phase

and a run-time phase. In the design-time phase, energy-performance representation can be

derived for each user to capture the relevant energy and performance trade-offs. In the run-

time phase, a fast greedy algorithm is used to tune the operating points to further improve

energy efficiency.

Since wireless is broadcast, the transmission of one user interferes with neighboring

users and reduces their energy efficiency. However, users can gain in energy efficiency if

cooperation among neighboring users is allowed. Hence, spatial-domain resource manage-

ment is important to manage the behaviors of users at different spatial locations. On the

other hand, cooperation requires signalling overhead and consumes additional energy. Co-

operation can also cause transmission delay that may impact throughput adversely and thus

hurt energy efficiency. However, delay can be exploited for energy-efficient link adaptation,

as extending transmission duration may improve energy efficiency. It has been observed

that significant energy savings can be achieved and the savings grow almost linearly with

distance when either transmitter or receiver cooperation is allowed [64]. Furthermore, it is

also observed that cooperation can even reduce delay within a certain transmission ranges

since cooperation enables higher order modulation and increases data rate [64]. Similarly,

receiver cooperation is exploited in [65] and significant energy savings can be observed.

Besides transmitter and receiver cooperation, relay cooperation is also effective in improv-

ing network energy efficiency. Since the energy for reliable data transmission grows expo-

nentially with distance [37], it is more energy efficient to send data using several shorter

intermediate hops than using a long hop if the energy to compute the route is negligi-

ble [66]. However, relay incurs delay and energy consumption of relay nodes. Therefore,

in some scenarios, it is advantageous to use longer hops [67]. Hence, the optimal selection

of relay nodes is a trade-off between source-node performance and relay cost to enhance

9



overall network energy efficiency.

While extensive efforts have been undertaken to improve energy-efficient resource man-

agement in both the spatial and time domains, little effort has been devoted to frequency

domains. In the frequency domain, while increasing transmission bandwidth improves en-

ergy efficiency, the entire system bandwidth can not be allocated exclusively to one user

in a multi-user system since this may hurt the energy efficiency of other users as well as

that of the overall network. Hence, frequency-domain resource management is critical in

determining overall network energy efficiency. Frequency selectivity of wideband wireless

channels further accentuates this necessity.

1.2.2.3 Interference-Aware Energy-Efficient Communications

As more users need to share the same spectrum for wideband multimedia communica-

tions and cellular networks move toward aggressive full-frequency reuse scenarios [12],

the performance of wireless cellular networks is heavily impaired by interference. This

motivates the use of multi-cell power control optimization for interference management

[12, 68, 69, 70]. Meanwhile, power optimization is also important for extending the battery

life of mobile devices. Although power optimization plays a pivotal role in both interfer-

ence management and energy utilization, little research has addressed their joint interac-

tion. An implicit discussion can be found in [71], which summarizes existing approaches

that address either throughput or energy efficiency separately in the context of power con-

trol for CDMA networks. In our work, we will address this joint limitation and investigate

energy-efficient power optimization for OFDM communications in interference-limited en-

vironments.

1.3 Our Approaches and Thesis Outline

The major goal of this research is to investigate novel cross-layer transmission and re-

source management algorithms to significantly improve user experience, system spectral

efficiency, and energy efficiency. By exploiting CSI of different users, this research leads
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to integrated algorithms to utilize the spectrum and energy resources fairly and efficiently.

As the first step, we study an optimal channel-aware slotted Aloha in Chapter 2. A user

transmits a packet when its channel gain is above a threshold and the threshold controls the

contention probability. In this way, users with better channel states have higher probabili-

ties of contention success. We provide a methodology guiding the selection of the threshold

and link transmission to maximize the network throughput while assuring proportional fair-

ness among all users. Using this methodology, we design decentralized optimization for

multichannel random access (DOMRA). DOMRA uses local CSI and two-hop static neigh-

borhood information to adapt to the inhomogeneous spatial distribution of traffic flows. It

achieves performance comparable with the global optimum, which can only be obtained

using complete network knowledge.

The generic framework developed for medium access control in DOMRA proved to be

very useful in improving cellular networks as well. We developed cochannel interference

avoidance MAC (CIA-MAC) in Chapter 3 to deal with the downlink severe cochannel

interference that is usually experienced by cell-edge users. Here BSs producing severe

interference transmit randomly and the randomization is optimized by DOMRA. One major

issue is the detection of severe interference. We design two simple detectors for different

implementation requirements and both distinguish severe interferers effectively. CIA-MAC

requires only minor changes of existing cellular protocols to earn significant performance

gain.

Aloha-based schemes have low channel utilization efficiency because of the collision

of entire data frames. To further improve performance, in Chapter 4, we develop channel-

aware distributed MAC (CAD-MAC), which avoids collision through signaling negotiation

ahead of data transmission. We notice that the backoff-after-collision approach in tradi-

tional multiple access schemes like CSMA/CA ignore channel variations and deferring

transmission without considering the variations might result in data transmission in deep
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fades. Hence, in our design, each frame is divided into contention and transmission pe-

riods and conflicts are optimally resolved in the Aloha-based contention period using the

methodology of DOMRA. With this design, users with better channel states have higher

probabilities of contention success and the data transmission experiences better channels.

Further proof shows that this scheme completely resolves the contention of networks with

arbitrary topologies. Besides, it achieves throughput close to that using centralized sched-

ulers and is robust to any channel uncertainty.

Shannon theory indicates that it is desirable to transmit a packet over a longer period

of time to save transmit energy. However, when circuit energy, the one consumed by elec-

tronic components except amplifiers, is considered, this is no longer the case since the cir-

cuit energy increases with transmitting duration. Hence, an optimal transmitting duration,

determined by the selected modulation order and power allocation, needs to be found to

balance the transmit and circuit energy consumption. The frequency selectively in OFDM

systems further complicates the problem since different modulation orders and amounts of

power can be applied on different subcarriers. In Chapter 5, we show that there exists a

unique global optimal energy-efficient OFDM link adaptation because of the strict quasi-

concavity of energy efficiency function. A subcarrier is used only if it improves the overall

energy efficiency. Using first order information, the optimal power allocation is found to be

a dynamic water-filling scheme that adjusts both the overall transmit power and its alloca-

tion according to the circuit power and the states of all subchannels to minimize the overall

energy consumption.

The approaches in Chapter 5 require iterative operations to obtain the global optimal

link adaptation. They may be complex to be implemented in a practical system. Besides,

running iterative algorithms consumes additional energy. We notice that if the energy effi-

ciency function can be linearized, the solution would be simpler. Hence, in Chapter 6, we

measure energy efficiency as a function of average user throughput and power consump-

tion rather than as a function of instantaneous rates and power. Then using a locally linear

12



approximation, we develop an instantaneous link adaptation scheme in a closed form that

performs close to the global optimum. Besides, since subcarrier allocation in an orthogonal

frequency division multiple access (OFDMA) system determines the energy efficiency of

all users, we further develop closed-form resource allocation approaches that also achieve

near-optimal performance.

In Chapter 5, we have also observed that in an interference-free environment, a tradeoff

between energy efficiency (EE) and spectral efficiency (SE) exists, as increasing transmit

power always improves SE but not necessarily EE. What will happen in a multi-user envi-

ronment where each user interferers with all others? In Chapter 7, we continue the inves-

tigation in interference-limited scenarios and design both cooperative and noncooperative

energy-efficient power optimizations. According to our study, since increased transmit

power also brings higher interference to the network, SE is not necessarily higher and the

tradeoff is reduced. Especially, in interference-dominated regimes, e.g., local area net-

works, both spectral- and energy-efficient communications desire optimized time-division

protocols and the proposed DOMRA, CIA-MAC, and CAD-MAC can be used to improve

both spectral and energy efficiency.
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CHAPTER 2

DECENTRALIZED OPTIMIZATION FOR MULTICHANNEL
RANDOM ACCESS

In this chapter, we consider schemes for decentralized cross-layer optimization of mul-

tichannel random access by exploiting local channel state and traffic information. In the

network we are considering, users are not necessarily within the transmission ranges of all

others; therefore, when a user is transmitting, it may only interfere with some users, which

is different from most existing channel aware Aloha schemes. Besides, we also consider

complicated traffic distribution, e.g. each user may choose to send packets to or receive

packets from different users simultaneously. We develop decentralized optimization for

multichannel random access (DOMRA). DOMRA consists of three steps: neighborhood

information collection, transmission control of the MAC layer based on the instantaneous

channel state information, and power allocation for each traffic flow on each subchannel.

First we introduce the physical and MAC layers of the system in Section 4.1. In Section

2.2, we describe the transmission policy and formulate the problem. Then in Section 2.3,

we decompose the cross-layer optimization into two sub-problems and provide suboptimal

solutions. Finally, we demonstrate the performance improvement of the proposed scheme

by computer simulations in Section 3.4 and summarize this chapter in Section 3.5.

2.1 System Description

Consider multichannel wireless networks. The whole band is divided into K subchannels.

All channels between pairs of users are assumed to be reciprocal, i.e. when no interference

exists, User A can receive signal from User B if and only if User B can receive signal from

User A with the same channel gain. However, the interference environments at Users A and

B may be different since they are at different locations. Each user has knowledge of its own

CSI and makes independent transmission control decisions, including whether to transmit
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given the CSI, what data rate to use and where to transmit, etc. Each user applies the same

transmission control policy. In order to avoid onerous signalling burden, no communication

pair has instantaneous cooperation, such as exchange of CSI, transmit power, or subchannel

selections.

U 1

U 2

U 3

U 4 U 5

U 6 U 7

U 8

U 9

Figure 2.1. Network architecture example

All users are not necessarily within the transmission ranges of the others, which means

that some users may not be able to receive packets from others due to weak received signal

power. For simplicity, we assume those that can communicate with each other experience

isotropic channels, i.e. channel power gains of different links are independent and iden-

tically distributed with probability density function, f (h), and distribution function, F(h).

No capture is assumed for signal reception, i.e., the receiver cannot receive any signal suc-

cessfully if any of its interfering neighbors, which are within the transmission range of the

receiver, is transmitting simultaneously. A user can not transmit and receive simultaneously

on the same subchannel; however, it may transmit on a set of subchannels and receive on

a different set of subchannels at the same time. Each user may choose to send packets to

or receive packets from different users on different channels, and we assume that the links

that carry traffic are backlogged, i.e., they always have packets to transmit.

During transmission, each user is subject to both average and instantaneous power con-

straints [72]. The average power constraint is due to heat accumulation and overall power

consumption, while the instantaneous power constraint comes from the limited linear range
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of amplifiers. Two power allocation policies will be considered. In the first one, called

channel inversion, each user transmits with just sufficient power to keep the received power

constant so that the signal can be reliably detected. In the second, called adaptive mod-

ulation and power allocation, each user can vary both the modulation and transmit power

during each transmission time slot to maximize throughput.

2.2 Problem Formulation

In this section, we describe our wireless network model, and propose a channel aware

multi-channel random access scheme. The characteristics of the proposed scheme are ana-

lyzed, after which a criterion for cross-layer design is provided.

Denote the wireless network as a directed graph G(V,E,L), whereV, E, and L are the

set of active users, the set of all links over all K subchannels, and the set of links available

for communication. We denote Ni as the interfering neighbor set of User i. Each user may

choose to send packets to or receive packets from several users, and Ti denotes the set of

users receiving packets from i and S j the set of users sending packets to j.

Figure 2.1 shows an example topology of a wireless network. The users are on a grid

with unit spacing, and the transmission range is
√

2. The set of links available for com-

munication is L = {(1, 3), (1, 2), (1, 4), (2, 3), (2, 6), (3, 4), (3, 5), (3, 6), (4, 6), (4, 5), (5, 6),

(5, 7), (5, 8), (6, 7), (6, 8), (7, 8), (7, 9), (8, 9)}. The arrows show the traffic flows in the

network. For example, since (4, 6) ∈ L, any transmission by Users 4 or 6 will be received

by the other though they may not have packets to send to each other. So Users 4 and 6

constitute an interfering pair and they interferer packet reception of each other. Observing

User 3, it is easy to see that T3 = {4, 6}, S3 = {1, 2}, while N3 = {1, 2, 4, 5, 6}.
Slotted Aloha is a typical random access scheme. In slotted Aloha, the MAC layer

makes transmission decisions based on the buffer occupancy and QoS requirement, and

does not utilize the knowledge of the physical layer at all. Hence, when the MAC decides

to transmit a frame, the channel may be in deep fade, but the physical layer still carries
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out the transmission, and causes a waste of power. On the other hand, the MAC layer

may decide not to transmit even though the channel power gain is high, because it does

not have this information from the PHY layer; this leads to wasted opportunity. With

channel knowledge, the sender will transmit only when the channel power gain is above

a certain threshold 1. Therefore, we propose the following decentralized optimization for

multichannel random access (DOMRA).

DOMRA: User i (i ∈ V) decides to send packets to User j on subchannel k when

the following conditions are satisfied: 1). User i has packets to send to j, j ∈ Ti; 2). on

subchannel k, link (i, j) has the best channel power gain, h(i, j)k = maxl∈Ti{h(i,l)k}; 3). the

channel power gain is above a threshold, h(i, j)k ≥ H(i, j)k , where H(i, j)k is predetermined

for link (i, j)k. The transmission is then optimized according to H(i, j)k , CSI and capability

constraints.

In DOMRA, each user transmits on the link with the best channel power gain provided

that the gain is above a predetermined threshold. Proper choice of thresholds {H(i, j)k |(i, j)k ∈
E} and data transmission rates of all traffic flows, i.e. power allocation, will be determined

in the following paragraphs so that overall network performance is optimized from certain

perspectives.

As pointed out before, while many existing channel aware schemes such as [21, 26, 22,

23], assume that each user has only one traffic flow to send and is within the transmission

range of all other users, the DOMRA will provide solutions to networks in which users are

not necessarily within the transmission ranges of all other users, and each user could send

packets to or receive packets from different users simultaneously on different subchannels.

1Channel gains may be inferred either due to CSI feedback or via channel reciprocity.
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2.2.1 MAC Layer Analysis

According to the above transmission policy and the homogeneity assumption, the proba-

bility of a transmission on link (i, j)k ∈ E is given by

p(i, j)k =
1
|Ti|

(
1 − F |Ti |(H(i, j)k)

)
(2.1)

where | · | denotes the number of elements in the respective set. The proof of (2.1) is given

in Appendix A.1.

The probability that User i transmits on subchannel k is

pik =
∑

j∈Ti

p(i, j)k =
∑

j∈Ti

1
|Ti|

(
1 − F |Ti |(H(i, j)k)

)
. (2.2)

Hence, the throughput on link (i, j)k is

T(i, j)k = R(i, j)k p(i, j)k(1 − p jk)
∏

a∈N j,a,i

(1 − pak), (2.3)

where R(i, j)k is the average data rate given that the user has decided to transmit on link (i, j)k,

and depends on the modulation and power allocation policy. (1 − p jk)
∏

a∈N j,a,i(1 − pak) is

the probability that neither user j nor its neighboring users except user i will transmit on

subchannel k, which means successful transmission on link (i, j)k.

For example, in Figure 2.1, the transmission from User 3 to User 6 on subchannel

k succeeds only when neither User 6 nor his neighbors excluding User 3, i.e., users in

N6\{3} = {2, 4, 5, 7, 8}, transmit. Hence, the throughput from User 3 to 6 on subchannel k

is T(3,6)k = p(3,6)k(1 − p6k)(1 − p2k)(1 − p4k)(1 − p5k)(1 − p7k)(1 − p8k)R(i, j)k .

2.2.2 Physical Layer Analysis

The average transmit power on link (i, j)k is the average of transmit power over all time

slots, whether or not transmission happens on this link. According to the ergodicity of the

channel, it is the average of transmit power over all channel states. Hence, we have

E{P(i, j)k} =

∫ ∞

0
Pr{H(i, j)k = h, and User i transmits on (i, j)k}P(i, j)k(h)dh
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=

∫ ∞

0
Pr{H(i, j)k= h}Pr{ User i transmits on (i, j)k|H(i, j)k= h}P(i, j)k(h)dh

=

∫ ∞

H(i, j)k

f (h)F |Ti |−1(h)P(i, j)k(h)dh =
1
|Ti|

∫ ∞

H(i, j)k

P(i, j)k(h)dF |Ti |(h), (2.4)

where E{} denotes expectation, P(i, j)k(h) is the transmit power on link (i, j)k when the chan-

nel has power gain h and it depends on modulation and power allocation policy. For ex-

ample, in order to achieve a constant signal-to-noise ratio (SNR) at the receiver, P(i, j)k(h) is

allocated such that P(i, j)k(h) = Pr
h , where Pr is the received power level satisfying the SNR

requirement. According to the average power constraint, we have

∑

j∈Ti,k=1,...,K

E{P(i, j)k} ≤ Pa, ∀i, j ∈ V. (2.5)

In existing channel access protocols, there are usually several subchannels to be selected

for utilization. For example, the IEEE 802.11b physical layer [73] has 14 subchannels, 5

MHz apart in frequency, all of which have the same transmission capability. However,

typically there is only one single RF chain, and the peak constraint on the instantaneous

transmit power has to be satisfied for the total combined transmission. We have the instan-

taneous power constraint

∑

k

(
max

h, j
P(i, j)k(h)

)
≤ Pm, ∀i, j ∈ V. (2.6)

Given power allocation P(i, j)k(h), the achieved average data rate given that a user has

decided to transmit on link (i, j)k is

R(i, j)k =E
{
R(η(h))|User i transmits on (i, j)k

}

=

∫ ∞

H(i, j)k

R(η(h))Pr{H(i, j)k = h|User i transmits on (i, j)k}dh

=

∫ ∞

H(i, j)k

R(η(h))
A
B

dh,

(2.7)

where

A =Pr{H(i, j)k = h,User i transmits on (i, j)k} = f (h)F |Ti |−1(h), (2.8)
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and

B =Pr{User i transmits on (i, j)k}

=

∫ ∞

H(i, j)k

Pr{H(i, j)k = g,User i transmits on (i, j)k}dg

=1 − F |Ti |(H(i, j)k).

(2.9)

Hence,

R(i, j)k =

∫ ∞
H(i, j)k

R(η(h))dF |Ti |(h)

1 − F |Ti |(H(i, j)k)
, (2.10)

where η(h) =
hP(i, j)k (h)
NoW/K is the received SNR, No is noise spectral density, W is the total system

bandwidth, and R(η) is the instantaneous data rate when channel has SNR η.

If channel capacity is achieved in additive white Gaussian noise (AWGN) channels 2,

R(η) = W log2(1 + η). Assuming continuous-rate M-QAM and given the bit-error rate

(BER) requirement, R(η) can be expressed as R(η) = W log2(1 +
3η

−2 ln(5BER) ) according to

[74]. It is easy to see that in both cases, R(η) is strictly concave in η. In general, we assume

that R(η) is continuously differentiable with first order derivative R
′
(η) positive and strictly

decreasing in η.

2.2.3 Criterion for Cross-Layer Design

When optimizing multi-user networks, we have to take both overall network throughput

and fairness into consideration. A very commonly discussed fairness criterion is max-min

fairness [75]. When max-min fairness is achieved, the throughput of a certain link can

not be increased without simultaneously decreasing the throughput of another link which

already has smaller throughput. Usually, max-min fairness just implies to equal sharing of

channel resources on each link, which compromises the overall throughput of the wireless

network a lot since different links usually have different transmission conditions. Hence,

we consider proportional fairness, the objective of which is to maximize the product of

2In slow fading channels, channel varies slightly within each packet. With sufficiently long packet length,
ideal coding can be applied to achieve channel capacity
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throughput of all links, or the geometric average [76]. As pointed out in [77], a vector of

throughputs T = (T1,T2, · · · ,Tn) is proportionally fair if it satisfies required constraints,

and for any other feasible vector T , the aggregate of proportional changes is non-positive,

i.e.
∑n

i=1
T i−Ti

Ti
≤ 0. Some analysis has been given in [76] from a game-theoretic standpoint

and it is shown that a strategy achieving proportional fairness satisfies certain axioms of

fairness and is a Nash arbitration strategy [78]. With proportional fairness, the network

will be operated at a Pareto equilibrium, which corresponds to the situation where no user

can improve its throughput without affecting at least one user adversely.

Denote transmission control of the whole network as C = {H ,P}, whereH is the set of

predetermined channel power gain thresholds and P is the set of power allocation policies.

With the constraints in (2.5) and (2.6), the optimal configuration of the whole network,

C∗ = {H∗,P∗}, that achieves proportional fairness among all subchannels carrying traffic

flows will be

C∗ = arg max
{H ,P}

∑

(i, j)k∈E, j∈Ti

ln(T(i, j)k), (2.11a)

subject to
∑

j∈Ti,k=1,...,K

1
|Ti|

∫ ∞

H(i, j)k

P(i, j)k(h)dF |Ti |(h) ≤ Pa, (2.11b)

and

∑

k

(
max

h, j
P(i, j)k(h)

)
≤ Pm, (2.11c)

where throughput T(i, j)k is given by (2.3). Denote utility U(i, j)k = ln(T(i, j)k). Problem (2.11)

aims to maximize overall network utility subject to individual power limits.

2.3 Decentralized Optimization

In the previous section, we have discussed a criterion for cross-layer design. The opti-

mization of (2.11) depends on the threshold configuration, H , power allocation, P, and

modulation policy. The global optimization of the problem is difficult and computation-

ally expensive, and requires complete network knowledge for each user. Therefore, in
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this section, we find a suboptimal solution, which only needs decentralized neighborhood

information.

From (2.11), we have

C∗ = arg max
{H ,P}

∑

(i, j)k∈E, j∈Ti

(
ln

(
p(i, j)k(1 − p jk)

∏

a∈N j,a,i

(1 − pak)
)

+ ln
(
R(i, j)k

))
. (2.12)

(2.12) reveals two ways to improve the overall system performance. One way is to reduce

the probability of collisions in the whole network, whose effect is captured by the term

p(i, j)k(1− p jk)
∏

a∈N j,a,i(1− pak). The other is to allocate power properly so that the achieved

data rate of each individual user can be maximized. Hence, we decompose it into two

related problems, and find a suboptimal transmission control policy. The solution to find

optimal MAC layer transmission control H∗ to resolve collisions in the whole network

while guaranteeing proportional fairness can be formulated by

H∗ = arg max
H

∑

(i, j)k∈E, j∈Ti

(
ln

(
p(i, j)k(1 − p jk)

∏

a∈N j,a,i

(1 − pak)
))
. (2.13)

Given MAC transmission decision, in order to maximize the mean physical layer through-

put within power capability, the optimal power allocation P∗i of User i is formulated by

P∗i = arg max
Pi

∑

j∈Ti,k

R(i, j)k , (2.14a)

subject to (2.11b)

∑

j∈Ti,k=1,...,K

1
|Ti|

∫ ∞

H
∗
(i, j)k

P(i, j)k(h)dF |Ti |(h) ≤ Pa, (2.14b)

and (2.11c)

∑

k

(
max

h, j
P(i, j)k(h)

)
≤ Pm, (2.14c)

where {H∗(i, j)k
} is the solution of (2.13) and R(i, j)k is given by (2.10). Although problem (2.11)

has been decomposed into (2.13) and (2.14) to resolve network collisions and improve

individual transmission capability respectively, these two problems are closely coupled

throughH∗.
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2.3.1 MAC Layer Transmission Control

When optimizing the network with proportional fairness in (2.13), all users are assumed

to transmit at the same data rate once the channel power gain is above a certain threshold.

Problem (2.13) turns out to be similar with the problem of finding distributed access control

strategy to achieve proportional fairness in traditional Aloha networks [79] and [80]. By

applying techniques used in [79] and [80], the optimal transmission probability is readily

achieved,

p∗(i, j)k
=

1
|Si| + ∑

m∈Ni
|Sm| . (2.15)

Combining (2.1) and (2.15), Theorem 2.3.1 follows immediately, and the proof is omitted.

Theorem 2.3.1 The optimal predetermined channel power gain threshold for any link

(i, j)k ∈ E where j ∈ Ti, H
∗
(i, j)k

, as defined in (2.13), is given by

H
∗
(i, j)k

= F−1
[
(1 − |Ti|

|Si| + ∑
m∈Ni
|Sm| )

1
|Ti |

]
. (2.16)

From threshold (2.16), the optimal threshold of User i is independent of the receiver j

but depends on the neighborhood information of User i itself, including the number of users

receiving packets from User i, |Ti|, the number of users sending packets to User i, |Si|, and

the total number of users sending packets to the interfering neighbors of User i,
∑

m∈Ni
|Sm|.

The first two are local information while |Sm|′s,m ∈ Ni, is information about interfering

neighbors. The number of flows each interfering neighbor receives, i.e. |Sm| for all m ∈ Ni,

can be obtained through broadcasting of the interfering neighbor whenever this numbers

changes. Since this knowledge needs to be broadcast to notify the interfering neighbors, we

call it two-hop knowledge. The broadcasting of this two-hop knowledge incurs only trivial

signalling overhead since only when either a traffic session or the network topology varies

will this broadcasting be triggered. Besides, some form of two-hop knowledge is typical

in many protocols, like routing information discovery in mobile ad hoc networks [81, 82].

Hence, it can be easily obtained.
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Consider User 7 in Figure 2.1. It is easy to see that |T7| = 3, |S7| = 1, and the two-hop

knowledge of interfering neighbors |S5| = 1, |S6| = 2, |S8| = 2, and |S9| = 2. Hence, for

all j ∈ T7 and k = 1, · · · ,K, H
∗
(7, j)k

= F−1
[
(1 − 3

1+7 )1/3
]

= F−1 (0.855). If the channel is

Rayleigh with average power gain ha, H
∗
(7, j)k

= 1.931ha. Hence, since there are many traffic

flows in the neighborhood of User 7, it transmits only when the channel has very good

condition.

As we can see above, the optimal threshold can be obtained through two-hop knowl-

edge. In the following, we consider two special applications.

1. Transmission Control with One-Hop Knowledge

To avoid signalling broadcast, assume no user has two-hop knowledge, and it needs to

be estimated to get approximation of the optimal thresholds. Since the transmission

of each interfering neighbor j ∈ Ni can be detected by User i, |T j| is available. User

i can approximate |Si| + ∑
m∈Ni
|Sm|, the total number of received traffic flows within

the interfering range of User i, to be |Ti|+∑
m∈Ni
|Tm|, the total number of transmitted

traffic flows User i can detect. Hence, instead of (2.16), the transmission threshold

with one-hop knowledge, i.e. local knowledge, is

H
∗
(i, j)k

= F−1
[
(1 − |Ti|

|Ti| + ∑
j∈Ni
|T j| )

1
|Ti |

]
. (2.17)

Since the approximation in (2.17) is not always accurate, there might be some per-

formance degradation. Approximation error happens when there exists undetectable

traffic flows that are sent either into or out of the interfering range of User i.

2. Transmission Control for One-Hop Networks

Assume that all users are within the transmission range of each other, i.e., this is a

one-hop network. A simple example is the uplink transmissions of different users

to the access point in wireless local-area network (WLAN), and at most one traffic

flow within the network can succeed in transmission in one transmission slot on one
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subchannel. Denote n = |Si| + ∑
m∈Ni
|Sm| for any User i, then n is the same for all

users and represents the total number of traffic flows in the network. During any time

slot on each subchannel, at most one traffic flow within the network can send data

successfully. The transmission threshold is given by

H
∗
(i, j)k

= F−1
[
(1 − |Ti|

n
)

1
|Ti |

]
. (2.18)

If each user has only one traffic flow to send, i.e. |Ti| = 1, the transmission threshold

is

H
∗
(i, j)k

= F−1
[
(1 − 1

n
)
]
, (2.19)

which is the same as the transmission control in [21]. [21] has demonstrated that the

total throughput for such a system achieves a fraction, (1 − 1
n )n−1, of its counterpart’s

throughput with an optimum centralized scheduler. The throughput reduction is due

to the inherent contention in random access.

2.3.2 Physical Layer Optimization with Channel Inversion

Consider a simple transmitter adaptation technique, channel inversion [83], which main-

tains a constant received power level so that the signals can be reliably received during

each traffic session. Once the MAC decides to transmit with channel power gain h, the

transmit power is directly given by Pt = Pr/h, where Pr is the received power level. Dif-

ferent traffic flows may have different received power levels, Pr, according to the power

allocation strategy. The reliable transmission data rate is given by R(Pr). According to the

assumption in Section 2.2.2, R(Pr) is strictly concave in Pr since the average noise power

is constant on each subchannel.

From (2.4), the average transmit power on link (i, j)k is

E{P(i, j)k} =
1
|Ti|

∫ ∞

H(i, j)k

Pr(i, j)k

h
dF |Ti |(h). (2.20)

Hence, the instantaneous received power is

Pr(i, j)k = |Ti|E{P(i, j)k}

∫ ∞

H(i, j)k

dF |Ti |(h)
h


−1

. (2.21)
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Denote by Pri = {Pr(i, j)k |(i, j)k ∈ E, j ∈ Ti} the set of the received power configuration

of User i. According to (2.10), the average data rate is R(i, j)k = E {R(η(h))} = R(Pr(i, j)k). The

problem in (2.14) is equivalent to

P∗ri = arg max
Pri

∑

j∈Ti,k

R(Pr(i, j)k), (2.22a)

subject to

∑

j∈Ti,k

1
|Ti|

∫ ∞

H
∗
(i, j)k

Pr(i, j)k

h
dF |Ti |(h) ≤ Pa, (2.22b)

and

∑

k

max
j

Pr(i, j)k

H
∗
(i, j)k

 ≤ Pm. (2.22c)

The above power allocation problem is solved by Theorem 2.3.2, which is proved in Ap-

pendix A.2.

Theorem 2.3.2 Assuming the strict concavity of the data rate function R(Pr), (2.22) has

unique globally optimal reception power levels P∗r(i, j)k
on any link (i, j)k ∈ E where j ∈ Ti

P∗r(i, j)k
= min

(Pa

K
( ∫ ∞

H
∗
(i, j)k

1
h

dF |Ti |(h)
)−1
,

PmH
∗
(i, j)k

K

)
, (2.23)

in which H
∗
(i, j)k

is determined by Theorem 2.3.1.

Whenever MAC decides to transmit, the physical layer always execute the transmis-

sion. However, when H
∗
(i, j)k

is very small, (3.4) turns out to be very small and the physical

layer has extremely low throughput due to the penalty of allowing transmission on deeply

faded channels. Hence, H
∗
(i, j)k

should be further modified by the physical layer to avoid

transmitting on deeply faded channels. Observing (2.15), p∗(i, j)k
can be 1, 1

2 ,
1
3 , etc.. As-

suming Rayleigh channel with average power gain ha and one traffic flow is carried, the

corresponding thresholds are 0, 0.69ha, 1.10ha, etc.. Hence, transmission on deeply faded

channels is possible only when p∗(i, j)k
= 1. Thus, define Ho as

Ho = arg max
H

R(
Pa

K
∫ ∞

H
1
h f (h)dh

)(1 − F(H)), (2.24)
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 Figure 2.2. Capability limited water-filling over time

which leads to the maximum physical layer throughput when the physical layer is required

to transmit under any channel conditions. If H
∗
(i, j)k

determined by Theorem 2.3.1 is less

than Ho, then substitute it with Ho. This lowers p(i, j)k slightly since the channel is not

deeply faded most of the time. The revision effectively improves link performance but

impacts trivially overall network performance, and we do not need to further improve the

thresholds of other users to adapt to this change for the sake of optimality in (2.13), which

otherwise incurs additional signalling overhead.

With channel inversion, the instantaneous transmit power allocation P∗ is:

P∗(i, j)k
(h) =



P∗r(i, j)k
h h ≥ H

∗
(i, j)k

0 otherwise
. (2.25)

2.3.3 Physical Layer Optimization with Adaptive Modulation and Power Allocation

Consider ideal physical layer transmissions. Each user can vary both the transmit power

and rate to achieve the best transmission performance. According to (2.10) and (2.14), the

power allocation strategy can be formulated by

P∗i = arg max
Pi

∑

j∈Ti,k

∫ ∞
H
∗
(i, j)k

R(η(h))dFTi(h)

(1 − FTi(H
∗
(i, j)k

))
(2.26a)
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subject to (2.11b)
∑

j∈Ti,k

1
|Ti|

∫ ∞

H
∗
(i, j)k

P(i, j)k(h)dF |Ti |(h) ≤ Pa, (2.26b)

and (2.11c)
∑

k

(
max

h, j
P(i, j)k(h)

)
≤ Pm. (2.26c)

The optimal solution of (2.26) is given in Theorem 2.3.3, which is proved in Appendix A.3.

Theorem 2.3.3 Assume the data rate function R(η) to be continuously differentiable and

the first order derivative R
′
(η) is positive and strictly decreasing. For any link (i, j)k ∈ E

where j ∈ Ti, (2.26) has a unique globally optimal power allocation given by: if Pm <

Pa

1−F |Ti |(H
∗
(i, j)k

)
, P∗(i, j)k

(h) = Pm
K for h ≥ H

∗
(i, j)k

; otherwise,

P∗(i, j)k
(h) =



Pm
K ν∗ < R

′ ( hPm
noW

)
hK

noW ,

0 ν∗ ≥ R
′
(0) hK

noW ,

R
′−1

(
ν∗noW

hK

)
noW
Kh otherwise,

(2.27)

for h ≥ H
∗
(i, j)k

. R
′−1() is the inverse function of R

′
(). ν∗ ≥ 0 is uniquely determined by

∫ ∞

H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h) =

Pa

K
, (2.28)

where H
∗
(i, j)k

is given by Theorem 2.3.1.

Observing (2.27), when ν∗ ≥R
′
(0) hK

noW , the channel is deeply faded and although the

MAC layer decides to transmit, the physical layer further optimizes the transmission and

decides not to transmit.

For example, assume the data rate function to be R(η) = W
K ln(1 + η). The power

allocation when Pm ≥ Pa

1−F |Ti |(H
∗
(i, j)k

)
is given by

P∗(i, j)k
(h) =



Pm
K

1
ν∗ − noW

Kh > Pm
K

0 1
h ≥ K

ν∗noW

1
ν∗ − noW

Kh otherwise

(2.29)
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for h ≥ H
∗
(i, j)k

, which is similar to the well-known water-filling power allocation scheme

[84, 85, 86]. Since the proposed power allocation scheme has maximum instantaneous

power constraint, we call it capability-limited water filling.
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Figure 2.3. Random network topology.

According to (2.27), power will be optimally distributed over both time and all sub-

channels. Figure 2.2 illustrates the capability-limited power allocation of a user that is

transmitting data to User 1 and 2 on a subchannel by using (2.29), and the striped parts in

the figure represent the amount of power allocated. The power allocation during 100 trans-

mission time slots is shown. We assume that ν∗noW
K > H

∗
(i, j)k

here. According to the trans-

mission policy, the user always selects the destination with better channel power gains. As

indicated by “Period 1” in Figure 2.2 there are no transmissions when subchannels of both

User 1 and 2 are deeply faded. In “Period 2” in Figure 2.2, although the channel conditions

are so good that higher data rates can be achieved, the actual data rate is limited by the

instantaneous transmission capability Pm.
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When ν∗noW
K < H

∗
(i, j)k

, since the MAC decides to transmit only when h > H
∗
(i, j)k

, the

physical layer will always transmit when the MAC wants to transmit according to (2.29).

Assuming large Pm, the power allocation is always 1
ν∗ − noW

Kh . Then according to (2.28), the

water level is

1
ν∗

=

noW
K

∫ ∞
H
∗
(i, j)k

1
hdF |Ti |(h) + Pa

K

1 − F |Ti |(H
∗
(i, j)k

)
. (2.30)

We can always use (2.30) to approximate the water level since with large probability,

most transmissions will fall within the normal working ranges of the transmitter.

2.4 Simulation Results

In this section, we first demonstrate DOMRA performance in a network with random

topologies. Then we further show how closely DOMRA performs to the globally optimum

solution.

2.4.1 Network Performance Improvement

Consider a network with random topologies and compare the average performance of all

simulation trials. In each simulation trial, users are randomly dropped and uniformly dis-

tributed in a square area with side length one hundred meters. Each user has a transmission

range of forty meters and selects neighboring users randomly for data transmission. Fig-

ure 2.3 illustrates a network topology in one trial, where arrows indicate traffic flows and

circles transmission ranges of different users. Different schemes will be implemented to

provide detailed performance comparisons.

2.4.1.1 Single-channel network

Assume that the network operates with one channel. For simplicity, assume Rayleigh fad-

ing channel and R(P) = W ln(1 + hP
WN0

). We will compare the performance of the pro-

posed cross-layer transmission policy with the channel-aware Aloha in [21], and the op-

timal traditional Aloha in [79], which does not consider cross-layer optimizations. For
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Figure 2.4. Network aggregate utility comparison. Pm = 50 dBm, Pa = 43 dBm, W = 100Hz, and
No = 0.001W/Hz.

traditional Aloha transmissions, in order to make the comparison meaningful, the same av-

erage power constraint and instantaneous power constraint are enforced. Since there is no

cooperation between MAC and the physical layer, the physical layer assumes that it keeps

on transmitting except when the channel is deeply faded. In order to satisfy power con-

straints, the transmission threshold is chosen so that the average data rate is maximized, i.e.

H = arg maxH(1 − F(H))R(Pr) subject to the instantaneous power constraint (2.6), and Pr

is given by (2.21). The threshold is found through linear search.

Figure 2.4 shows the aggregate utility comparison of the whole network when the

channel has different average channel gains. The “TwoHop” curve represents the result

of DOMRA when each user has two-hop information of the neighboring users while the

“OneHop” curve represents the result when each user has only one-hop information. As

we can see, with only one-hop knowledge, the system has slight performance degradation

as compared with the transmissions when two-hop knowledge is available. Curve “QIN”

shows the performance of [21], which assumes that each user has the knowledge of how

many users there are in the whole network. Curve “Traditional” shows the result using
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the traditional optimal Aloha. As shown in Figure 2.4, with the advantage of cross layer

design, the proposed scheme outperforms traditional optimal Aloha greatly. In addition,

by exploiting the neighborhood information of each user, the proposed method also out-

performs the existing channel-aware Aloha in [21]. This is due to the consideration of

the inhomogeneous traffic spatial distribution in the proposed scheme and the channels are

better utilized.
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Figure 2.5. Five channel network aggregate utility comparison. Pm = 50dBm, Pa = 43dBm, W = 100Hz,
No = 0.001W/Hz.

2.4.1.2 Multichannel network

Consider the same wireless network configurations as those in the single-channel network

scenario except that there are five subchannels. Besides implementing schemes in the

single-channel network scenario for multichannel environment, we also run the CAMCRA

proposed in [23]. During each each transmission slot, CAMCRA chooses c subchannels

with the c most significant gains, where c = max
(
1, b subchannel number

user number c
)
. Then the method

in ( [21]) is applied on each subchannel given that each user knows how many users are

using the subchannel. Since the number of users in each subchannel is a random variable,
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it is proposed in [23] to use max
(
1, user number

subchannel number

)
as an estimate. As shown in Figure 2.5,

the CAMCRA in [23] has slight performance improvement as compared with the channel-

aware Aloha in [21] because of exploitation of multichannel diversity. However, these two

schemes do not perform good when the network has arbitrary spatial traffic distribution.

Our proposed DOMRA with either two-hop or one-hop information significantly outper-

forms these existing schemes due to exploitation of multiuser diversity and proper adaptive

transmission settings and power allocation according to inhomogeneous traffic spatial dis-

tribution in the network.

U 1 U 2 U 3

U 31

U 3n

Figure 2.6. A simple network topology
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2.4.2 Suboptimality Gap

Problem (2.11) is decomposed into subproblems (2.13) and (2.14) to obtain feasible subop-

timal control policy. In order to show the suboptimality gap, we exhaustively search for the

global optimum in (2.11), and run a simple network topology to reduce search complexity.

As shown in Figure 2.6, arrows indicate traffic flows. User 3 is sending traffic to n receivers,

who are all out of the transmission ranges of Users 1 and 2. User 1 can communicate with

2, but not 3, while User 2 can communicate with both. When n is zero, the traffic distribu-

tion is symmetric in the network. The larger the number n, the more asymmetric the traffic

distribution is. We call n traffic asymmetry, and vary it from 0 to 8. Figure 2.7 compares

network aggregate utility and shows the suboptimality gap. While the global optimum

can only be obtained through floods of broadcast of complete network knowledge, our de-

composition technique yields a feasible suboptimal decentralized solution, which requires

limited (two-hop knowledge case), or no (one-hop knowledge case) signalling overhead.

Besides, the proposed scheme performs closely to the global optimum, and even reaches

the global optimum when the traffic is symmetric.

2.5 Summary

We have proposed a joint physical-MAC layer optimization policy for multichannel Aloha

random access in wireless networks in which all users are not necessarily within the trans-

mission range of each other and each user may have packets to send to or receiver from

different users. The joint physical-MAC layer optimization policy exploits decentralized

CSI, and achieves multi-user diversity through cross-layer design. System performance is

optimized while proportional fairness is obtained with the consideration of the inhomo-

geneous characteristics of the traffic spatial distribution. Simulation results show that the

proposed scheme significantly outperforms existing channel aware Aloha schemes. The

generality of the design in this chapter will allow its applications in different types of wire-

less networks to fully exploit the system capacity. The scheme presented here is simple but
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gives guidelines for decentralized cross-layer optimization in practical wireless networks.

The methodology provided can be easily adapted to improve the performance of different

wireless networks. For example, in networks based on 802.11 standards, besides using the

backoff window technology, the transmission of RTS to compete for channel access can

also be designed according to the proposed DOMRA to further decrease the collision prob-

ability and allow larger successful probability of users with better channel power gain. In

the following two Chapters, we will show the application of DOMRA.
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CHAPTER 3

COCHANNEL INTERFERENCE AVOIDANCE MAC

Severe cochannel interference in wireless cellular networks significantly affects users

at cell edges. In this chapter, we develop a cost-effective cochannel interference avoidance

MAC (CIA-MAC) to deal with the downlink transmission experiencing severe CCI, espe-

cially for the users at cell edges. The proposed CIA-MAC scheme maintains backward

compatibility and requires only minor changes to existing BSs, while no improvement is

necessary for MTs. Low overhead is added as the scheme requires only limited signaling

coordination among BSs at a semi-static level. Only occasional cooperation is required

when the network topology is changed and the instantaneous coordination at the packet

level is not required. The proposed scheme is novel in its use of randomization by a BS for

controlling the level of interference and it provides fair transmission opportunities for the

users affected by severe CCI. Although the use of randomization for collision avoidance is

used extensively for uplink random access channels and WLAN systems, we are first using

the principle for automatically controlling the level of downlink interference per link in

cellular networks. In the following, the system will be briefly described in Section 6.1. In

Section 3.2, we present CIA-MAC with details. In Section 3.3, we address the conditions

for triggering CIA-MAC and obtain two simple trigger mechanisms. The performance im-

provement is demonstrated through the simulation in Section 3.4. Finally, the conclusion

and future work are given in Section 3.5.

3.1 Network with CIA

We only consider downlink transmission since complicated multiuser detection and CCI

cancelation algorithms can be implemented at the BS for uplink CCI mitigation. The MTs

at cell edges not only face the weakest signals but also suffer the largest amount of interfer-

ence from neighboring cells. The CIA-MAC scheme targets the performance improvement
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Figure 3.1. Cochannel interference in cellular networks with a reuse factor of one

of these users. In general, users are categorized into two classes: those experiencing no

or slight CCI and those suffering from severe CCI. The first class will be scheduled by the

traditional centralized MAC and the second will be first accepted by the traditional call

admission control policies and then scheduled by the proposed CIA-MAC.

Each MT measures the average interference-to-carrier ratio (ICR) of neighboring BS

k, which is defined to be

ICRk =
E(hkPk)
E(hP)

, (3.1)

where h and P are the channel power gain and the transmit power of the desired link while

hk and Pk correspond to these of the interfering link from BS k. E() is the average over a

sliding window of the past data and tracks slow fading, i.e. it is a local mean and averages

the effect of fast fading [37]. This definition of average will also apply in the following

paragraphs.

Severe Interferer: If the ICR from neighboring BS k satisfies ICRk ≥ Γm, the trans-

mission of BS k always causes the failure of packet reception, where Γm, called trigger, is a

predetermined severe interference threshold. BS k is called a severe cochannel interferer.

In Section 3.3, we will discuss the trigger selection and present examples.

If all BSs causing severe interference keep on transmitting, the packet receptions of the

interfered MTs always fail. If BSs can collaborate, the interfering BSs may transmit in turn.
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However, this incurs huge signaling overhead. If there is no collaboration among BSs, we

let BSs transmit randomly when identified as severe interferers. Their transmission should

be managed such that the overall network performance as well as the fairness among all

users are jointly optimized. Hence, besides traditional MAC, a complementary MAC is

used for optimizing the randomized transmission of the severe interferers. The new com-

plementary MAC aims at improving cellular throughput through cochannel interference

avoidance, and is, therefore, called CIA-MAC.

In the following, we only consider BSs and MTs controlled by CIA-MAC and CIA-

MAC will be optimized by cross-layer design to fully exploit the system capacity and

multiuser diversity while maintaining fairness.

The following definitions will be used in the subsequent discussion:

• B = {1, 2, · · · ,M}: set of BSs.

• M = {1, 2, · · · ,N} =
⋃

i∈BMi: set of MTs. Mi is the set of MTs in the cell of BS i.

Obviously,Mi
⋃M j = ∅,∀i , j.

• E = {(i, j)|i ∈ B, j ∈ Mi}: set of transmission links; (i, j) denotes the link from BS i

to MT j.

• Nm = {(i, j)|∀(i, j) ∈ E, transmission at link (i, j) causes severe interference to MT

m}: set of links whose transmission will bring severe interference to MT m;

• T(i, j) = {m|∀m ∈ M, MT m is severely interfered by the transmission at link (i, j)}:
set of MTs severely interfered by transmission at link (i, j).

Figure 3.1 demonstrates an example. The solid lines represent data transmission links

and the dashed ones links from severe interferers. We have B = {1, 2, · · · , 7}, M =

{1, 3, 5, 7, 8, 9, 10}, and E = {(1, 1), (2, 5), (3, 3), (6, 8), (7, 7)}. The transmission from BS

1 to MT 1 on channel 1 is severely interfered by transmission from BS 2 to MT 5. Mean-

while, BS 1 also causes severe CCI to MTs 3, 7, and 8. Hence, N1 = {(2, 5), (3, 3)} and
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Figure 3.2. MAC transmission and frame structure

T(1,1) = {3, 7, 8}.

3.2 Principle of CIA-MAC

In this section, we describe the principle of CIA-MAC. Figure 3.2 shows the MAC trans-

mission and the frame structure. Transmission time is divided into slots with length S .

The MAC layer of each link independently sends a MAC frame at the beginning of each

slot with probability p. Complete channel state information (CSI) is known and used to

determine the MAC contention and the PHY link adaptation. To obtain CSI at a transmit-

ter [87], the CSI can be estimated through pilots at the receiver and sent to the transmitter

or CSI is already available at the transmitter whenever the channel is reciprocal, such as in

a time-division duplex system. Incomplete CSI results in some performance loss and the

study on its impact is out of the scope of this chapter. Furthermore, assume ideal cyclic

redundancy check (CRC). Any error inside a frame will result in the drop of the frame. Er-

rors are uniformly and independently distributed. Each frame has L f symbols, of which Ld

symbols carry data. Once the MAC layer makes a decision to transmit a frame, the frame

will be continuously transmitted by the physical (PHY) layer until the frame is sent out.

In a traditional network, MAC makes transmission decision based on buffer status and

quality of service (QoS) requirements and does not use PHY knowledge at all. When MAC

decides to transmit, the physical channel may be in a deep fade, which wastes bandwidth

and power resources. Alternatively, MAC may decide on no transmission while the channel

is experiencing high gain. With cross-layer design, MAC decides whether to transmit or

not according to channel information. We assume a block fading channel [88], that is, the
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channel state remains constant during each MAC frame. If the channel power gain at a time

slot, h, is above a predetermined threshold H, MAC sends a frame. As wireless channels

are inherently random, the MAC transmission is also randomized and the threshold H de-

termines the transmission probability. The thresholds H and the PHY transmission should

be jointly optimized for all BSs subject to their power constraints. Each BS maximizes its

throughput with both average power constraint Pa and instantaneous power constraint Pm

while assuring fairness to the users in other cells.

DOMRA will be used to optimize the operations of this network. Denote the probability

cumulative distribution function of channel power gain as F(h) and the cardinality of T(i, j)

as |T(i, j)|. From Theorem 2.3.1, the optimal channel gain threshold for any link (i, j) ∈ E,

H
∗
(i, j), that also assures proportional fairness among all CIA-MAC links, is

H
∗
(i, j) = F−1

( |T(i, j)|
1 + |T(i, j)|

)
, (3.2)

and the corresponding transmission probability is

p∗(i, j) =
1

|T(i, j)| + 1
, (3.3)

where F−1(·) denotes the inverse function of F(·). From (3.2), the optimal threshold of link

(i, j) depends only on |T(i, j)|, the number of MTs severely interfered by transmission at link

(i, j). This knowledge can be shared by the BSs of neighboring cells. |T(i, j)| changes only

when the severely-interfered MTs have large status variations that result in the obvious

changes of the ICR in (3.1) to go across the trigger. For example, an existing traffic session

ends, a new one starts, or the movements of MTs make either a new MT severely interfered

or an existing MT no longer severely interfered. These variations will trigger the update of

|T(i, j)|.
In the PHY layer, consider channel inversion [83] and each BS allocates transmit power

to maintain a constant received power level so that signals can be reliably detected. Once

MAC decides to transmit, the transmit power is given by P(i, j)(h) = Pr/h, where Pr is the
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power level for reliable receiver detection. Given H∗ in (3.2), the received power level is

optimized by Theorem (2.3.2)

P∗r(i, j) = min
( Pa∫ ∞

H
∗
(i, j)

1
h f (h)dh

, PmH
∗
(i, j)

)
. (3.4)

MT identifies the list of severe interferers BS randomizes MAC transmissionBS optimizes PHY transmissionImproved QoSReport list to home BS CIA-MACBSs exchange knowledge of severe interferers BS determines transmission threshold
Figure 3.3. CIA-MAC flowchart

Figure 3.3 illustrates the flowchart of CIA-MAC. Each MT identifies the list of neigh-

boring BSs causing severe interference by comparing their ICRs with the trigger Γm and

reports the list to its home BS. The home BS communicates the list to other BSs and each

BS knows the links on which it needs to randomize transmission. Then each BS determines

a channel threshold H(i, j) per CIA-MAC link (i, j) based on the number of links affected by

the transmission on that particular link. A BS transmits on a CIA-MAC link only when the

channel gain on the link exceeds its channel threshold and thus randomizes the transmis-

sion. The transmission power and modulation are optimized on each link separately. As

shown in Figure 3.3, the operations of CIA-MAC are classified into two parts. The opera-

tions in the rectangles are semi-static and take place only when the severely-interfered MTs

have large status variation. With this trivial cost, the operations in the ovals automatically

improve the QoS of all MTs experiencing severe interference.

3.3 Trigger for CIA-MAC

In this section, we discuss the selection of the trigger.
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3.3.1 Trigger Selection

Each MT measures the ICR of each neighboring BS and CIA-MAC is used at that BS when

the corresponding ICR is above the trigger, Γm. Hence, the trigger determines severe inter-

ferers and relates to the performance of CIA-MAC. We will choose the trigger to maximize

the throughput of the whole network rather than that of any individual link.

From (2.3), the throughput of link (i, j) can be expressed as

T(i, j) = p(i, j)

∏

l∈N j

(1 − pl)
RLd

S
· (1 − pF) (3.5)

where pl is the transmission probability on link l,
∏

l∈N j
(1 − pl) is the probability that none

of the severe interferers of MT j transmit, R is the average transmitted bits per symbol

when the MAC of BS i decides to transmit at link (i, j) and depends on the modulation and

power allocation policy, and pF is the frame-error rate (FER) when no severe interferers

transmit.

Optimum triggers are different for MTs with different interference scenarios. Figure 3.1

illustrates an example. MT 3 wants to judge BS 1. If BS 1 is judged to be a severe interferer,

it will transmit with lower probability according to Equation (3.3). However, the impact

of this variation to the packet receptions of MTs 1, 7, and 8 is unknown to MT 3. Hence,

it is difficult for each MT to evaluate the variation of the overall network throughput that

results from the judgement of severe interferers. Even assume that these knowledge can

be shared, different MTs have different interfering scenarios, and judging severe interferers

and exchanging signaling would be daunting tasks across the whole network.

We will get one trigger for all to simplify the calculations. Consider a network in which

each MT is severely interfered by K neighboring BSs on average. The BS of each MT also

brings severe CCI to K MTs in the neighboring cells on average. Empirical values can be

assigned to K, e.g. K = 3 is a good choice based on our simulation observations for a reuse

one network. From equation (3.3), the transmission probability of each BS is 1
1+K and the
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throughput is

T =
1

1 + K
(1 − 1

1 + K
)K RLd

S
(1 − pF) =

KK

(1 + K)K+1 (1 − pb)RLd
RLd

S
, (3.6)

where the frame error rate is approximated by pF = 1−(1 − pb)LdR according to the assump-

tion of uniform and independent error distribution in Section 3.2. The BER is approximated

by pb = Pe(η), where η is the average SNR and the BER function Pe() depends on the mod-

ulation and coding. For example, the BER for coherently detected M-QAM with Gray

mapping over an additive white Gaussian noise channel can be well approximated by [89]

Pe(η) ≈ 0.2 exp
(
−1.5Gcη

M − 1

)
, (3.7)

where Gc is the coding gain and M is the modulation order.
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Figure 3.4. Trigger of severe cochannel interferer

With the traditional MAC, all BSs keep on transmitting. Each link has throughput

T̂ =
LdR̂
S
· (1 − p̂F) =

LdR̂
S
· (1 − p̂b)LdR̂, (3.8)

where p̂F and p̂b are the average frame and bit error rates, and R̂ is the average number of

bits transmitted per symbol in this mode. p̂b, p̂F , and R̂ are different from those in (3.6)

since BSs have different transmission durations and signal receptions are with different in-

terference scenarios, which result in different power and modulation allocation approaches.
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CIA-MAC is triggered when it achieves better throughput, i.e. T > T̂ , or

KK

(1 + K)K+1 (1 − pb)LdR LdR
S

> (1 − p̂b)LdR̂ LdR̂
S
, (3.9)

Then we have

p̂b > 1 −
(

KK

(1 + K)K+1 (1 − pb)LdR R

R̂

) 1
LdR̂

. (3.10)

Since p̂b = Pe(̂η), where η̂ is the average signal-to-interference-plus-noise ratio (SINR),

η̂ < P−1
e

1 −
(

KK

(1 + K)K+1 (1 − pb)LdR R

R̂

) 1
LdR̂

 . (3.11)

S INR and ICR follow the relationship

ICR =
1
η̂
− 1
η
. (3.12)

The trigger Γm follows immediately

Γm =
1

P−1
e

[
1 −

(
KK

(1+K)K+1 (1 − Pe(η))LdR R
R̂

) 1
LdR̂

] − 1
η
. (3.13)

Γm depends on S NR and BER function, both of which are known to each MT. Hence, Γm

can be easily calculated for judgement of severe interferers.

For fixed modulation, R = R̂. The trigger is

Γm =
1

P−1
e

[
1 −

(
KK

(1+K)K+1

) 1
LdR (1 − Pe(η))

] − 1
η
. (3.14)

For normal data transmission, S NR is high and Pe(η) � 1, thus (3.14) is further simplified

to be

Γm =
1

P−1
e

[
1 −

(
KK

(1+K)K+1

) 1
LdR

] − 1
η
. (3.15)

3.3.2 An Alternate Trigger Mechanism Using Location Knowledge

In the flowchart of Figure 3.3, each MT determines the list of severe interferers and reports

the list to the home BS, which requires additional improvement of MTs. In the following,
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we show how to enable BSs to determine the severe interferers to avoid the necessity of

MT improvement.

We assume that BSs have the position knowledge of MTs in both the home cells and

the neighboring cells. Note that a large quantities of positioning techniques have been

proposed in cellular networks [90, 91, 92, 93]. Hence, it is practical to obtain the position

knowledge of each MT and this knowledge can be shared among neighboring BSs. Besides,

assume that each BS knows the average received signal power at a desired MT, which can

be obtained through feedback or observation of link power control. This knowledge will

also be shared among neighboring BSs.

We have shown that the optimal threshold (3.2) for each BS depends on the number

of MTs severely interfered by its transmission. This number can be obtained through co-

operation among BSs. A BS located at coordinate (xb, yb) needs to determine whether it

brings severe interference to the neighboring-cell MT at coordinate (xm, ym). The distance

between them is

dI =
√

(xb − xm)2 + (yb − ym)2, (3.16)

which results in path loss L(dI). The average received signal power at the MT is Ps while

the interfering BS has the average transmit power PI . According to (3.1), the average

interference to carrier ratio is

ICR =
PIhI

Ps
, (3.17)

where hI is the average channel power gain of this interfering link. However, hI is unknown

to the interfering BS and needs to be estimated. Radio propagation is characterized by three

nearly independent phenomena: path loss variation with distance, slow log-normal shad-

owing, and fast multipath fading [37]. Similar to the ICR in (3.1), hI tracks slow fading,

i.e. it is a local mean and averages the effect of fast multipath fading. Hence, we consider

only the path loss and shadowing. Shadow represents the error between the actual and

estimated path loss [37]. While the estimated path loss is determined by the radio path

distance d, the shadowing/estimation error has been observed to be nearly independent of
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d and we assume the independence. Hence, we model the estimated average interference

channel gain by two parts: the estimated path loss determined by path loss model L(d)

and the estimation error determined by the shadowing model. Shadows are generally mod-

eled as being log-normally distributed and 10 log10(hI) has normal distribution with mean

−10 log10(L(d)) and standard deviation σ, where σ is independent of the radio path length

d and typically ranges from 5 to 12 dB [37]. To ensure a detection probability β of severe

interferers, the BS determines that the MT is severely interfered when the probability of

severe interference is above β, i.e.

Prob[severe interference] = Prob [ICR ≥ Γm] ≥ β, (3.18)

which is equivalent to

Prob
[
10 log10(hI) ≥ 10 log10

(
ΓmPs

PI

)]
≥ β. (3.19)

Solving (3.19) yields the detector of severe interference as follows

PI

L(dI)Ps
≥ Γm10−

σQ−1(β)
10 , Γb, (3.20)

where Q(x) is the right-tail probability of the standard normal distribution, that is

Q(x) =

∫ ∞

x

1√
2π

e−
t2
2 dt. (3.21)

With (3.20), each BS can detect how many MTs are severely interfered and determine its

transmission probability (3.3) as well as the threshold (3.2). In this case, no MT improve-

ment is necessary for the functioning of CIA-MAC. Note that the selection of β determines

how pessimistically or optimistically a severe interferer is judged.

3.4 Numerical and Simulation Results

In this section, we show the relationship between the trigger and SNR, verify the effective-

ness of the trigger, and demonstrate the performance of CIA-MAC in a cellular network

through comparison with the traditional MAC and a static FFR approach.
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Figure 3.5. Trigger effect.

In the cellular system simulated, the radius of each cell is 2 km and no sectoring is used.

The thermal noise power is −104 dBm over the whole bandwidth. The carrier frequency

is 900 MHz. BSs are 100 meters high with 8.2 dB antenna gain while MTs have height

1.5 meters with 2.2 dB antenna gain. Path loss is given by the urban-area Hata-Okumura

model. Log-normal shadowing and Rayleigh fading are applied. Each MAC frame consists

of 1000 symbols, in which 900 carry payload.

3.4.1 Relationship of Trigger and SNR

Considering uncoded 4-QAM modulation, the relationship between the trigger Γm and S NR

when Ld has different values is illustrated by Figure 3.4. The amount of bits transmitted per

MAC frame varies and is usually very large to fully exploit link capacity. For example, in

802.16e [12], each frame has a maximum length of 2048 bytes of payload followed by one

CRC verification, i.e. 16384 bits of payload per frame. In high-speed downlink packet ac-

cess (HSDPA) transmission of universal mobile telecommunications system (UMTS) [34],

the size of a transport block followed by one CRC verification ranges widely from 15890

bits to 204000 bits. In general, we assume large LdR and illustrate the cases when Ld

is 500, 1000, and 2000 respectively. The curves without markers are calculated through

(3.14) while those with markers through (3.15). Figure 3.4 clearly shows that (3.15) is a
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good approximation of the threshold for high SNR. In the high-SNR region, the receiver

can bear higher interference when signal power increases, yielding increasing trend of the

curve. In the low-SNR region, when SNR goes lower, that is, noise power goes higher,

interference needs to have stronger power to impact more on frame reception than noise.

This indicates the increasing trend of the curve as SNR goes lower in the low-SNR region.

This also indicates that in the noise-dominated region, it is better to ignore interference, as

suppressing it will not provide much advantage.

3.4.2 Effect of the Trigger

Consider a simplified cellular network. Each BS serves one user on a channel. Compare

the performance of CIA-MAC and the traditional MAC that keeps on transmitting. All

MTs are located at the same distance away from their corresponding home BSs and the

distance goes from 0 to the cell radius. Each MT is severely interfered by one neighboring

BS and each BS causes severe CCI to a MT in a neighboring cell. Assume uncoded 4-QAM

modulation and a transmit power of 43 dBm. Figure 3.5(a) shows the relationship between

the ICR and the trigger when the network has a reuse factor of either one or three. Figure

3.5(b) shows the throughput of both CIA-MAC and the traditional MAC. Since the trigger

depends on signal and noise powers but not interference, it is independent of the network

reuse type, which determines interference environment. As a MT moves closer to a cell

edge, the trigger decreases because of decreasing signal power while the ICR increases

because of growing interference power. From Figure 3.5, CIA-MAC is triggered when the

ICR is above the trigger and achieves better throughput than the traditional MAC through

interference avoidance. The network performance is improved for MTs experiencing severe

interference without equipping them with the ability to mitigate interference. We also see

that the performance improvement of CIA-MAC is low when the reuse factor is three and

will be even more trivial with higher reuse factors. This is because a higher reuse factor

results in less severe interference and interference avoidance is less desired. Therefore,

CIA-MAC is good for networks with low reuse factors. Note that network deployment
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with lower frequency reuse factors is a popular trend in the next-generation communication

systems [12,34] for achieving higher spectrum efficiency and reducing network deployment

cost.

3.4.3 Network Performance Improvement
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Figure 3.6. Cellular networks with fractional frequency reuse

In this section, we demonstrate the performance of CIA-MAC in a nineteen-cell cellular

network. Each BS serves one user on a channel. Users are randomly dropped and uniformly

distributed in each cell for each simulation trial.

CIA-MAC is implemented either with or without cross-layer design. The one with

cross-layer design follows what we have discussed in this chapter and transmission hap-

pens only when channel power gain is above the threshold in Equation (3.2). For CIA-MAC

without cross-layer design, each BS transmits randomly with probability given by Equa-

tion (3.3) and independently of channel states. We implement both trigger mechanisms and

in the second one, the detection probability is set to be 0.9. We compare CIA-MAC with

the traditional MAC and a static FFR and the overall system bandwidth is the same for
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Figure 3.7. Cumulative distribution function of SINR.

all of them. The network has a reuse factor of one for both CIA-MAC and the traditional

MAC. The traditional MAC keeps all BSs transmitting and users experience interference

from all neighboring BSs. The static FFR reduces cell-edge interference through low fre-

quency reuse at cell edges [38, 12, 39, 40, 41]. Figure 3.6 illustrates the network frequency

deployment of FFR in our simulation. The radius of each cell is r1 = 2 km and the cell-

center users, located within r2 = 2r1/3 from the BS, will transmit over the whole frequency

band. For cell-edge communications, the whole frequency band is equally divided into

three subbands, f1, f2, and f3, and users at cell edges are assigned one of them according

to the frequency deployment in Figure 3.6. There are two interfering circumstances for

FFR users. Cell-center users experience interference from all neighboring BSs. Neigh-

boring BSs that use only one of the three subbands produce 1/3 interference power since

interference power distributes only in 1/3 of the whole signal bandwidth. Cell-edge users

experience interference from both the first-tier cells that are using the whole bandwidth and

the second-tier cells that are using the same frequency subband as the center cell.

Note that the interference in Cell 1 that comes from the first-tier cells dominates the

interference power and determines the performance of both the traditional MAC and FFR.

Furthermore, the performance of CIA-MAC depends on the interference environments in

50



0 5 10 15 20 25 30
0

5

10

15

20

25

SNR (dB)

 

 

CIA−MAC w/ cl,G
c
=0dB

CIA−MAC w/o cl,G
c
=0dB

CIA−MAC
b
 w/ cl,G

c
=0dB

Trad MAC,G
c
=0dB

FFR,G
c
=0dB

CIA−MAC w/ cl,G
c
=8dB

CIA−MAC w/o cl,G
c
=8dB

CIA−MAC
b
 w/ cl,G

c
=8dB

Trad MAC,G
c
=8dB

FFR,G
c
=8dB

Figure 3.8. Throughput comparison

both the first-tier and second-tier cells according to Equations (3.2) and (3.5). Hence, the

performances of CIA-MAC, traditional MAC, and FFR in Cell 1 are representative for

their corresponding per-cell performance in general multi-cell cellular networks and we

focus on the performance of cell 1. In Figures 3.7, 3.8, and 3.9, we compare the SINR

and throughput of different schemes in Cell 1. Either uncoded 4-QAM or coded 4-QAM

with different coding gains is used. The coding gain can be obtained through exploitation

of receiver diversity or channel coding. In each trial, all BSs allocate the transmit power to

maintain a constant received signal power level, i.e. keep a fixed SNR.

In Figure 3.7, we fix the SNR to be 12 dB and compare the cumulative distribution

functions (CDFs) of average SINR of each trial. It includes statistics over 50, 000 trials.

SINR is the equivalent value after decoding when coded 4-QAM is used. For reference,

the relationship between FER and SINR is also plotted with a bold curve. Observing the

FER curve, when SINR is lower than 10 dB, most decoded frames have at least one bit in

error and do not pass CRC, resulting in transmission outage. In Figure 3.7, we compare

the schemes with either uncoded 4-QAM or coded 4-QAM that has 8 dB coding gain. For

CIA-MAC, only SINRs when no severe interferes transmit are averaged to produce the
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CDF curves. Curves with legend CIA − MACb correspond to the performance of CIA-

MAC when severe interferers are determined by the BSs according to (3.20). We can see

that CIA − MACb performs closely to CIA − MAC in both cases and while significantly

reducing the improvement cost, BS judgement is effective in detecting severe interferers

using position knowledge. Without coding, the traditional MAC suffers strong interference

and the average SINRs of all simulation trials falls far below 10 dB. In this case, the net-

work is completely in outage. With FFR, the average SINRs of all trials are significantly

improved. However, interference from neighboring cells still affects the SINRs and most

SINRs are less than 10 dB since the target SNR is only 12 dB. Amazingly, CIA-MAC has

better SINR distribution than FFR, even the one without cross-layer design. This is because

we only average SINRs when no severe interferes transmit, i.e. when transmission succeeds

in CIA-MAC. Furthermore, CIA-MAC with cross-layer design achieves very high average

SINR. This is because the BS in Cell 1 also brings severe interference to many MTs in the

neighboring cells, e.g. an average of 3.52 MTs in the simulation, resulting in a very high

threshold in (3.2) and thus high average SINR. Now observe the performance of schemes

with coded 4-QAM that has 8 dB coding gain. We can see that the SINR performance of
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both FFR and the traditional MAC are improved by around 8 dB. Since MTs can mitigate

a large amount of interference with coding, CIA-MAC judges much less severe interferers,

e.g. 0.2 on average in our simulation. Hence, CIA-MAC finds no severe interferers in most

cases and BSs simply keep on transmitting, as what the traditional MAC does. However,

CIA-MAC still outperforms the traditional MAC because of avoidance of severe inter-

ference whenever it exists. Note that with high coding gain, CIA-MAC with cross-layer

design has lower average SINR as compared with uncoded cases. This is because with 8

dB coding gain, only few severely interfered MTs are judged in the most trials and the BS

is allowed to transmit in most channel conditions rather than very good ones. However,

SINR performance does not solely determine the network performance, which also relate

to spectral reuse efficiency, transmission probability, and so on. For example, compare the

performance of CIA-MAC with cross-layer design when either coded or uncoded 4-QAM

is used. The SINR performance with uncoded 4-QAM even outperforms the coded one

with 8 dB coding gain. However, it is at the price of extremely low probability to transmit

with only peak channel conditions. With high coding gain, BSs produce interference bear-

able to neighboring-cell MTs and are allowed to transmit at high probability. Both SINR

and transmission probability impact the throughput, which is the performance we desire to

improve. In the following, we further compare the network throughput.

In Figure 3.8, we compare the average throughput when the target SNR has different

values. For each SNR, the throughput is the average over 50, 000 trials. From the fig-

ure, for a system with uncoded 4-QAM, the traditional MAC has almost no throughput

improvement when SNR is increased. This is because with increased SNR, transmit pow-

ers of neighboring BSs also increase, resulting in stronger interference and trivial SINR

improvement. This indicates the necessity of tackling CCI for this highly aggressive fre-

quency reuse scenario. Through frequency reuse at cell edges, FFR successfully reduces

interference. With FFR, the average SINR improves as SNR increases and thus higher

throughput is obtained. However, in the low-SNR region, interference significantly affects
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frame reception due to weak signal power and even with frequency reuse at cell edges, FFR

still suffers from neighboring-cell interference. We can see that CIA-MAC schemes signif-

icantly outperforms all other schemes. This is due to the intelligent interference avoidance

and full frequency reuse in CIA-MAC. With cross-layer design, transmission happens only

with high channel power gain, which further improves throughput as compared with the

one without cross-layer design. Note that the CIA-MAC with BS determining severe in-

terferers performs closely to the one with MT, indicating good detection capability of BSs.

Similar to the traditional MAC, CIA-MAC also suffers a saturation effect in the high-SNR

region, i.e. increasing transmit power does not necessarily result in improved throughput

because of proportionally increased interference power. With 8 dB coding gain, mobiles

can mitigate a large portion of interference and all schemes have significant performance

enhancement. We note that our proposed schemes, both with and without cross-layer de-

sign, still outperform the traditional MAC comprehensively due to the intelligent recogni-

tion of severe interferers for interference avoidance. The throughput of FFR increases with

SNR in the low-SNR region due to increased SINR. In the high-SNR region, FFR through-

put does no improve with SNR since all frames have been correctly received. However, in

the high-SNR region, FFR performs not as well as the proposed CIA-MAC due to its low

spectrum reuse efficiency at cell edges. Figure 3.9 further demonstrates this point. In Fig-

ure 3.9, each BS allocates power to maintain a 9 dB received SNR and the coding gains of

all MTs are increased from 0 dB to 15 dB. We observe that CIA-MAC always outperforms

the traditional MAC. With higher and higher coding gain, interference has less and less

impact on frame reception and thus fewer and fewer severe interferers are judged. Hence,

with high coding gain, the performance of CIA-MAC and traditional MAC tend to be the

same. The static FFR suffers performance loss for low frequency-reuse efficiency at cell

edges in the high-coding-gain region. Dynamic FFR schemes [39, 40, 41] can be used to

further improve frequency-reuse efficiency at the cost of higher network deployment com-

plexity. However, we should note that CIA-MAC improves the network performance in the
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most cost-effective way and even the static FFR implemented here requires much higher

deployment cost than CIA-MAC.

3.5 Summary

This chapter provides a low-cost solution to improve the performance for cell-edge MTs

that are experiencing severe CCI in wireless cellular networks. The proposed CIA-MAC

requires semi-static information exchange among BSs and automatically randomizes trans-

mission to improve QoS for severely interfered MTs. The principle for triggering CIA-

MAC is investigated and two simple trigger mechanisms are described. The proposed

scheme significantly improves communication performance for MTs experiencing severe

CCI because of intelligent recognition of severe interferers and the corresponding interfer-

ence avoidance.
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CHAPTER 4

CHANNEL AWARE DISTRIBUTED MEDIUM ACCESS CONTROL

Both DOMRA and CIA-MAC are Aloha based and once a collision happens, the entire

data frame has to be dropped. The performance can be further improved through scheduling

users in a distributed way to avoid the collision of data transmission. Hence, in this chapter,

we continue investigating channel-aware distributed medium access control (CAD-MAC)

for wireless networks with arbitrary topologies and traffic distributions, where users can

receive traffic from or send traffic to different users and different communication links may

interfere with each other. We consider heterogeneous channels, where the random channel

gains of different links may have different distributions. To resolve the network contention

in a distributed way, each frame is divided into contention and transmission periods. The

contention period is used to resolve conflicts while the transmission period is used to send

payload in collision-free scenarios. We design a channel-aware Aloha scheme for the con-

tention period to enable users with relatively better channel states to have higher probability

of contention success while assuring fairness among all users. With this approach users are

scheduled in a distributed way. We show analytically that the proposed scheme completely

resolves network contention and achieves throughput close to that using centralized sched-

ulers. Besides, this scheme is also robust to any channel uncertainty. Simulation results

demonstrate that the proposed scheme significantly improves network performance. Same

as DOMRA, the proposed random access approach can be applied to different wireless net-

works, such as cellular, sensor, and mobile ad hoc networks, to improve quality of service.

The rest of this chapter is organized as follows. First we describe the system in Section

4.1. In Section 4.2, we design the channel aware distributed medium access scheme. Then

in Section 4.3, we optimize the operation of CAD-MAC. The robustness of CAD-MAC

is analyzed in Section 4.4. Finally, we demonstrate the performance improvement with

simulations in Section 4.5 and conclude this chapter in Section 4.6.
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Figure 4.1. A network example.

4.1 System Description

Consider a network where users are not necessarily within the transmission ranges of all

others, that is, some users may not be able to receive packets from others due to weak

received signal power. All channels are assumed to be reciprocal when there is no interfer-

ence. Each user has knowledge of its own CSI and makes an independent decision on its

transmission. A receiver cannot decode any packet successfully if the channel is simulta-

neously used by another user within the transmission range of the receiver, i.e., a collision
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happens. Each user may choose to send packets to or receive packets from different users.

An example is illustrated in Figure 4.1, where arrows indicate traffic flows and dashed cir-

cles, marked by italic numbers, denote the transmission ranges of the corresponding users1.

The process of the proposed channel-aware random access is illustrated in Figure 4.2.

Each user has a queue with an infinite length for each traffic flow that needs to be sent and

we assume the queue always has packets to be delivered. A dequeue controller fetches a

desired amount of data and send it to the transmitter following the order of the medium

access controller. The medium access controller collects information on channel states and

decides when and how to transmit.

The backoff-after-collision approach in traditional CSMA can resolve contention. How-

ever, it ignores channel and multiuser diversity in wireless communications and deferring

transmission without considering channel variations may result in data communications in

deep fades. To fully exploit network diversity, the contention should be designed such that

users with favorable channel conditions have higher probability of accessing the channels

and the transmission should follow immediately after the contention resolution as other-

wise the channel may change to an unfavorable state. Considering this, we design a new

distributed random access scheme in the following sections. Since this novel scheme uses

channel knowledge to improve network performance, we call it channel-aware distributed

medium access control (CAD-MAC).

4.2 Channel-Aware Medium Access Control

As shown in Figure 4.2, the channel access time is divided into frame slots of length,

T f , and each slot consists of both contention and transmission periods. Block fading is

assumed [88], that is, the channel state remains constant within each frame slot and is

independent from one to another. The contention period is further divided into a maximum

of K̂ contention resolution slots (CRSs) of length Tc, each for one contention resolution.

1Without loss of generality, we assume that the transmission and interference ranges are identical.
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Figure 4.2. Traffic, energy, and channel aware medium access.

Users failing in all CRSs will be idle in the current frame slot. Users that succeed in any

CRS will send data in that frame slot with optimized link adaptation. The actual number of

CRSs may vary from frame to frame, depending on the contention results. The objective of

the contention design is to select users with relatively better channel conditions for payload

transmission and the selection should also assure fairness among all users. In this way, the

network diversity can be exploited sufficiently. We use CSI to control the access contention

and the contention is randomized because wireless channels are inherently random. In the

following, let hi j be the channel gain of Link (i, j), the one from User i to j, with probability

density function fi j(h) and distribution function Fi j(h). Both fi j(h) and Fi j(h) are assumed

to be continuous to facilitate our discussion. Here we assume that the channel gains of

different links are independent but not necessarily identically distributed.

There are two types of contention. We denote Type-I and Type-II to be those among

links with the same transmitter and with different transmitters, respectively. For example,

the contention between Links (2, 4), (2, 8), and (2, 10) in Figure 4.1 is Type-I and the con-

tention between Links (2, 4) and (4, 3) is Type-II. Here we do not consider the case that two

users are sending traffic to each other since the reciprocal channel between them is always

the same for their transmission and they can negotiate easily to share the channel, e.g. in a

time division fashion.
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Figure 4.3. Flowcharts of typical access contention.

The Type-I contention can be easily resolved by the transmitter as it has CSI of all links

and choosing the one with the best CSI will result in the best system performance while

assuring fairness, i.e., User i chooses Link (i, j) that satisfies

j = arg max
l

Fil(hil). (4.1)

Note that Fil(hil) is the probability that the channel gain of Link (i, l) is worse than hil.

The link with the highest Fil(hil) is the one with the best instantaneous channel condition

relatively and criterion (4.1) effectively exploits the instantaneous multiuser diversity. Fur-

thermore, Fil(hil) is uniformly distributed between 0 and 1 for all (i, l). Hence, these links

have the same probability of being scheduled and the scheme is fair.

We focus on resolving Type-II contention. Random access is needed and a link with a
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better channel state should have a higher probability of success. The contention period is

used to resolve this type of contention. The basic idea is to resolve the contention from one

CRS to another and in each CRS, links with higher gains are selected in a distributed way to

continue the following contention. Finally, only one link is selected within each local area

and all interferers are informed that they should not send any data in the current frame slot.

To facilitate the discussion of Type-II contention, REQUEST, BUSY, SUCCESS, IDLE,

and OCCUPIED signals are defined as follows.

• REQUEST: sent by a transmitter to request access;

• BUSY: sent by a receiver to deny access;

• SUCCESS: sent by a receiver to allow access;

• IDLE: sent by a receiver to petition for access;

• OCCUPIED: sent by a transmitter to prevent neighbors from data reception.

Each CRS consists of the following three steps.

1. Transmitters send REQUEST: If User i has neither received a BUSY signal from j

nor detected a SUCCESS signal destined to others, and

hi j > Ĥi j[k], (4.2)

where Ĥi j[k] is a predetermined threshold that is adjusted CRS-by-CRS, then it sends

REQUEST to User j.

2. Receivers notify BUSY, SUCCESS, IDLE:

• BUSY: User j responds BUSY if it receives REQUEST correctly and has re-

ceived OCCUPIED in the previous CRSs.

• SUCCESS: User j responds SUCCESS if the REQUEST is received correctly

and no OCCUPIED signals received in the previous CRSs.
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• IDLE: User j broadcasts IDLE to all users that want to send traffic to User j if

no OCCUPIED signals received in the previous CRSs and no signals detected

at Step 1.

Note that the BUSY or SUCCESS feedback is sent only when there is no collision,

i.e., the contention succeeds.

3. Transmitters broadcast OCCUPIED and start sending data: If User i has received

SUCCESS, it goes to the win state and broadcasts OCCUPIED to notify those within

its transmission range that they should not receive data in this frame slot.

Five typical contention processes have been illustrated in Figure 4.3, where the solid

arrows indicate signals between the observed pair of users and the empty arrows indicate

signals sent from or detected by the interfering neighbors. As an example, observe the

contention among only Links (6, 10), (10, 5), and (8, 9) in Figure 4.1. If all the three links

have good channel gains and send REQUEST in CRS 1, only User 9 receives REQUEST

without collision and it sends back SUCCESS to User 8 at the second step while Users 5

and 10 remain silent. At the third step, User 8 broadcasts OCCUPIED. Then CRS 2 starts.

Users 6 and 10 may still send REQUEST, depending on the adjusted threshold. Suppose

both send and only User 5 receives a collision-free REQUEST. At the second step, User

5 responds BUSY to User 10. Nothing happens at Step 3. In CRS 3, only User 6 may

still send REQUEST and User 10 will respond BUSY to prevent subsequent contention

behaviors.

Remark 1: At Step 2, the BUSY or SUCCESS signals can always be received by User

i correctly. This can be justified as follows. Suppose Links (i1, j1) and (i2, j2) succeed in

their contention and Users j1 and j2 are sending BUSY or SUCCESS signals to i1 and i2

respectively. User i1 does not interfere with j2 and hence it can not receive any signal from

j2 since the channel is assumed to be reciprocal. Hence, User i1 can receive the BUSY or

SUCCESS signal without interference from j2. Similarly User i2 also receives the BUSY

62



or SUCCESS signals correctly. On the other hand, The IDLE signals from different links

may collide. Since only IDLE signals may collide at Step 2, users can detect them if they

are neither BUSY nor SUCCESS signals. In the following, we assume the IDLE signals

are received correctly.

Remark 2: At Step 3, the OCCUPIED signals may collide. However, as only the OC-

CUPIED signals are broadcasted and if any signal is detected, it will be the OCCUPIED

signal.

4.3 Access Optimization

In this section, we optimize the access parameters. The following notations are used. All

links carrying traffic are denoted by set L[1] = {(i, j)}. Denote the interfering neighbor set

of User i by Ni. Each user may choose to send packets to or receive packets from several

users, with Ti the set of users receiving packets from i and S j the set of users sending

packets to j. For example, N4 = {2, 3, 10}, T4 = {3, 10}, and S4 = {2} in Figure 4.1.

We desire to optimize the throughputs of all users in the network. The arithmetic-mean

metric leads to the design for sum throughput maximization, but assures no fairness since

some users may have zero throughput. The geometric-mean metric takes both throughput

and fairness among all users [94] into consideration. Therefore, we will find the thresholds

in (4.2) to maximize the geometric mean of the throughputs of all links, i.e.,

{Ĥ∗i j[k]}=argmax
{Ĥi j[k]}

∏

(i, j)

Ti j =argmax
{Ĥi j[k]}

∑

(i, j)

log(Ti j), (4.3)

where Ti j is the average throughput of Link (i, j).

It is not feasible to globally optimize (4.3) because after the contention in each CRS,

new local knowledge is collected according to receiver feedback and the detection of sig-

nals broadcasted from neighboring users. This knowledge is generally different from one

CRS to another and can not be obtained in advance. To fully exploit this knowledge, the

contention will be optimized sequentially, i.e., in a CRS-by-CRS way, and use newly col-

lected knowledge to improve the contention behaviors afterward.
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In the following, denote the probability that User i sends a REQUEST to User j in CRS

k by pi j[k]. The overall probability that User i sends REQUESTs to other users in CRS k is

pi[k] =
∑

j∈Ti

pi j[k]. (4.4)

4.3.1 CRS 1

We first optimize CRS 1. The throughput on Link (i, j) out of CRS 1 is

Ti j[1] = Ri j pi j[1](1 − p j[1])
∏

m∈N j,m,i

(1 − pm[1]), (4.5)

where Ri j is the average data rate of payload transmission; (1− p j[1])
∏

m∈N j,m,i(1− pm[1])

is the probability that neither user j nor its neighboring users except user i transmits, which

means the successful contention of Link (i, j) in CRS 1. In Figure 4.1, the transmission

from User 2 to User 4 succeeds only when neither User 4 nor its neighbors excluding User

2, i.e., users in N4\{2} = {3, 10}, transmit. Hence, T2,4[1] = R2,4 p2,4[1](1 − p4[1])(1 −
p3[1])(1 − p10[1]).

The contention probability for CRS 1 is given by

{p∗i j[1]} = arg max
{pi j[1]}

∑

(i, j)∈L[1]

log(Ti j[1]). (4.6)

Both log(pi j[1]) and log
(
1− pi[1]

)
= log

(
1−∑

j∈Ti
pi j[1]

)
are strictly concave functions of

pi j[1]. Hence
∑

(i, j)∈L[1] log(Ti j[1]) is strictly concave in {pi j[1]} and a unique global optimal

{p∗i j[1]} can be determined by setting the first-order derivative of the objective function to be

zero. The optimal contention probability can be readily obtained after some mathematical

manipulations and

p∗i j[1] =
1

|Si| + ∑
m∈Ni
|Sm| , (4.7)

which is the inverse of the total number of received traffic flows within the interference

range of User i. Intuitively, p∗i j[1] says that as the interference footprint (number of affected

users) increases, the contention probability of User i should decrease.
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The threshold should be chosen to satisfy the contention probability in (4.7). According

to Section 4.2, the contention probability of Link (i, j) is

pi j[1] = Pr{(i, j)is chosen; hi j > Ĥi j[1]}

=

∫ ∞

Ĥi j[1]
fi j(h)Pr( j = arg max

l∈Ti
Fil(hil))dh

=

∫ ∞

Ĥi j[1]
Pr(Fil(hil) < Fi j(hi j) : l , j)dFi j(h)

=
1
|Ti|

(
1 − F |Ti |

i j (Ĥi j[1])
)
,

(4.8)

where | · | denotes the number of elements in the set.

From (4.8) and (4.7), the optimal threshold is

Ĥ∗i j[1] = F−1
i j


(
1 − |Ti|
|Si| + ∑

m∈Ni
|Sm|

) 1
|Ti |

 . (4.9)

The optimal threshold (4.9) depends on the number of users receiving packets from User

i, |Ti|, the number of users sending packets to User i, |Si|, and the total number of users

sending packets to the interfering neighbors of User i,
∑

m∈Ni
|Sm|. The first two require

only local knowledge while the third can be obtained through signalling exchange. This

exchange incurs only trivial signalling overhead since it will be triggered only when either a

traffic session or the network topology changes sufficiently. Besides, this type of knowledge

is typical in many protocols, such as routing discovery in mobile ad hoc networks [81,82].

Hence, it can be readily obtained. Consider User 4 in Figure 4.1. |T4| = 2, |S4| = 1,

|S2| = 0, |S3| = 1, and |S10| = 4. Hence, Ĥ∗4,3[1] = F−1
4,3

[
(1 − 2

1+1+4 )1/2
]

= F−1
4,5 (0.667). If

Link (4, 3) experiences Rayleigh fading with average gain ha, Ĥ∗4,5[1] = 1.1ha.

4.3.2 CRS k, k > 1

In the following CRSs, links whose transmitters have not been notified SUCCESS or BUSY

continue the contention. The new threshold is chosen such that the contention probability

is pi j[k]. There are three possibilities adjusting the threshold.

• Adjustment (AD) I: If in the previous CRS, User i sent a REQUEST and no feedback

is received, indicating a collision, all links involved in this collision should increase
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their thresholds to reduce the probability of collision. From previous knowledge,

hi j > Ĥ∗i j[k−1] and hi j < ĤM
i j , where ĤM

i j is the minimum threshold in all the previous

CRSs such that hi j < ĤM
i j and initially ĤM

i j = ∞. The new threshold satisfies

Pr

(
hi j> Ĥ∗i j[k]

∣∣∣∣ hi j> Ĥ∗i j[k − 1],hi j< ĤM
i j

)
= pi j[k]. (4.10)

Solving Equation (4.10) for Ĥ∗i j[k], we have

Ĥ∗i j[k] =F−1
i j

(
(1 − pi j[k])Fi j(ĤM

i j )

+pi j[k] · Fi j(Ĥ∗i j[k − 1])
)
.

(4.11)

• AD II: If User i applied AD I or II, did not send REQUEST, and received IDLE from

j in the previous CRS, indicating User i is still contending and all other contending

users, if any, have channel states below their thresholds, User i should decrease the

threshold. Similar to the first case, the new threshold satisfies

Pr

(
hi j > Ĥ∗i j[k]

∣∣∣∣ hi j< Ĥ∗i j[k−1]; hi j> Ĥm
i j

)
= pi j[k], (4.12)

where Ĥm
i j is the maximum threshold in all the previous CRSs such that hi j > Ĥm

i j and

initially Ĥm
i j = 0. Solving equation (4.12), we have

Ĥ∗i j[k] = F−1
i j

(
pi j[k] · Fi j(Ĥm

i j)

+(1 − pi j[k])Fi j(Ĥ∗i j[k − 1])
)
.

(4.13)

• AD III: In other cases, the threshold is kept the same, i.e.,

Ĥ∗i j[k] = Ĥ∗i j[k − 1]. (4.14)

This usually happens when no REQUEST was sent and no IDLE was received in a

previous CRS and User i temporarily quits the contention. In this case, User i would

contend again only if it receives IDLE in the future CRSs.

Denote all the competing links in CRS k by L[k]. With the same approach as in CRS

1, the optimal contention probability for (i, j) ∈ L[k] is

p∗i j[k] =
1

|Si[k]| + ∑
m∈Ni[k] |Sm[k]| , (4.15)

66



where Sn[k] andNn[k] are users that can contend in CRS k. A user may contend if and only

if its threshold will be changed as in ADs I or II. However, who will adjust their thresholds

is unknown to others and p∗i j[k] cannot be determined locally. Instead, we give a suboptimal

approach as follows

pi j[k] =



1
2 , AD I,

pi j[k − 1], AD II.
(4.16)

Here we assign one half for AD I because after the selection in CRS 1, it is most likely that

only one other link is contending with Link (i, j) if a collision happens. For AD II, an IDLE

signal most likely indicates that the contention scenario is not changed and pi j[k] keeps the

same.

4.4 Robustness Analysis

In this section, we analyze the robustness of CAD-MAC. We say a link wins the contention

if it transmits data in the transmission period in the following.

The complete resolution of network contention is defined as follows.

Definition 4.4.1 The contention of a network is completely resolved if

1. all links that have won the contention can transmit without collision;

2. if any additional link that has not won the contention transmits, it will collide with at

least one link that has won the contention.

Thus, complete resolution results are states in which the network capacity is fully ex-

ploited. The following theorem states that CAD-MAC can completely resolve the network

contention and is proved in Appendix B.1.

Theorem 4.4.2 With probability one, the contention of networks with any topology can be

completely resolved by CAD-MAC if sufficient CRSs are allowed.
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One example that CAD-MAC fails to resolve the contention is shown in Figure 4.4

where the two channels are independent and identically distributed (i.i.d.). When h12 = h34,

Users 1 and 3 have the same update of the thresholds and their REQUESTs always collide.

However, the probability that h12 = h34 is zero because the two channels are independently

fading with continuous probability distribution function Fi j(h).

1 2

3 434h

12h

Figure 4.4. A network in which all interfere with others.

Theorem 4.4.2 indicates that CAD-MAC achieves performance comparable to that of a

centralized scheduler. Compared to the centralized scheduler, CAD-MAC loses throughput

due to the CRSs used for resolving network contention. Denote the throughputs of CAD-

MAC and the centralized scheduler by TCAD−MAC and TCentralized, respectively. Then we

define the efficiency, γ, of CAD-MAC as follows,

γ =
TCAD−MAC

TCentralized
= 1 − KTc

T f
, (4.17)

where K is the average number of CRSs necessary for completely resolving the network

contention. In the following, we show that K is bounded regardless of the network type and

size. To simplify the analysis, we assume in the following that a link contends again only

if all neighbors of the receiver have resolved their contention and the receiver sends IDLE

to the receiver since it can still receive data. Besides, assume sufficient CRSs.

First, consider the case that each link interferes with all others and only one link wins

the contention in each frame slot, such as in a network where all users send traffic to a com-

mon receiver or a small-scale ad hoc network where each user is within the transmission

range of all others. For a network with N traffic flows, each interfering with all others, an

upper bound of KN is given by the following theorem, which is proved in Appendix B.2.
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Theorem 4.4.3 For a network with N links, each interfering with all others, the average

number of CRSs necessary to completely resolve the network contention satisfies

KN ≤ M̂N

1 − (1 − 1
N )N

+
(1 − 1

N )N

(1 − (1 − 1
N )N)2

, (4.18)

where M̂N =
∑N

n=1

(
N
n

)
( 1

N )n(1 − 1
N )N−n(log2(n) + 1). Furthermore,

KN < K∞ ≤ 2.43. (4.19)

Based on Theorem 4.4.3, the following theorem gives a general upper bound of K for

any type of networks and is proved in Appendix B.3.

Theorem 4.4.4 For any type and size of network, the average number of CRSs necessary

to completely resolve the contention satisfies

K <
2.43 · L

β
, (4.20)

where the transmission coexistence factor, L, is the average number of links that win the

contention in one frame slot and the contention coexistence factor, β, is the average number

of simultaneous resolutions in each CRS.

Remark 1: In Theorem 4.4.4, the contention coexistence factor β indicates how many

simultaneous resolutions occur in each CRS. Here one resolution is the process that all

links, among whom only one link will win, adjust their thresholds using ADs I or II. Since

multiple links may win in one frame slot, the resolutions that lead to the win of these

links may happen in the same CRS, and β characterizes this overlap. Readers are referred

to Appendix B.3 for the strict definition of β. Obviously, both L and β depend on the

distribution density and transmission range of all users.

For example, if each user interferes with all others and only one link wins, then L = 1,

β = 1, and K < 2.425 as in Theorem 4.4.3. If a network consists of 2 groups of users and

the communication within different groups does not interfere with each other, then these

two groups can resolve their contention within themselves to produce the two winners.
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Consequently, L = 2. For example, denote the CRSs for a two-cell cellular network using

different frequency sets in the two cells to resolve the contention to be K1 = {1, 2, · · · , k1}
and K2 = {1, 2, · · · , k2}, respectively, where k1 and k2 are random and vary from one frame

to another. Then the resolution overlaps from CRSs 1 to min{k1, k2} and there is only one

resolution from CRSs min{k1, k2} + 1 to max{k1, k2}. Consequently, according to Appendix

B.3,

β =
E(k1 + k2)

E(max{k1, k2}) . (4.21)

and

K <
4.86 · E(max{k1, k2})

E(k1 + k2)
. (4.22)

From Theorems 4.4.2 and 4.4.4, we have the following proposition.

Proposition 4.4.5 The efficiency of CAD-MAC satisfies

γ > 1 − 2.43 · LTc

βT f
. (4.23)

For a network where each user interferer with all others, the efficiency is

γ > 1 − 2.43 · Tc

T f
. (4.24)

Tc and T f are determined by the round-trip time of signal propagation and the channel

coherence time respectively. If T f � Tc as in slow-fading channels, CAD-MAC performs

almost the same as the centralized scheduler, which is generally impractical because of

poor scalability and the huge overhead of CSI collection. For example, it is shown in [95]

that the round trip time for 802.11 WLAN is within 10 µs and for cellular networks, with

6 km radius, is within 50µs. On the other hand, the channel coherence time is hundreds

of milliseconds in indoor office or home environment and tens of milliseconds in cellular

networks with 900 MHz carrier frequency and user speed 72 km/h [96]. Hence in both

WLAN and cellular networks, the efficiency of CAD-MAC is close to unity.

Now suppose that that all users have imperfect channel state information {̃hi j} and {F̃i j()}
and control the medium access. From the proofs of Theorems 4.4.2, 4.4.3, and 4.4.4, we
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see that they are independent of the channel distribution of any user. Hence, they also

hold for the operations of CAD-MAC based on {̃hi j} and {F̃i j()}. Besides, suppose the

centralized scheduler compared in (4.17) has the same imperfect channel knowledge. Then

the efficiency of CAD-MAC is still given by (4.17). Therefore we have the following

theorem about the robustness of CAD-MAC.

Theorem 4.4.6 The conclusions in Theorems 4.4.2, 4.4.3, and 4.4.4 and Proposition 4.4.5

hold when all users have imperfect channel knowledge and CAD-MAC is robust to any

channel uncertainty.

4.5 Simulation Experiments

In this section, we demonstrate the performance of CAD-MAC in a network with ran-

dom topologies. First we illustrate how CAD-MAC operates given a network instance.

Then we show the cumulative distribution function of the number of CRSs that are used to

completely resolve the network contention. Finally we compare the performance of CAD-

MAC with the Aloha-based decentralized optimization for multichannel random access

(DOMRA) scheme in [97], which also uses channel gains to optimize the access contention

while assuring proportional fairness for the type of networks considered in this paper.

In each simulation trial, users are randomly dropped and uniformly distributed in a

square area with side length of 100 meters. Each user has a transmission range of 40 meters

and selects neighboring users randomly for data transmission. The number of selected

receivers is uniformly distributed between 1 and half of the number of neighboring users.

A network topology in one trial has been illustrated in Figure 4.1. Rayleigh block fading

channel with the average fading level, ho, is assumed. Hence, F(h) = 1 − e−
h

ho . The data

rate in each frame is given by R(h) = W ln(1 + hP
No

), where W = 100 KHz, is the system

bandwidth, P = 0.01 watt, is the transmit power, and No = 0.0001 watt, is the noise

power. The channel gains are independent with either the same or different averages. For

homogeneous channels, ho = 1 and for heterogeneous ones, ho is uniformly distributed
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between 0.5 and 1.5. The length of each frame slot is 20 ms and the CRS is 0.2 ms each.

First, consider the network topology given in Figure 4.1 and let ho = 1. The contention

process for a set of channel states in a frame slot is illustrated by Table 4.1, where blanks

indicate no values or no actions. Each user chooses a receiver with the best channel gain,

e.g., User 2 selects User 4. In the first CRS, Links (4, 3) gets access. Users 2, 3, and 10

detect SUCCESS and decide to stop contention since some neighboring users will receive

data in this frame slot. In the second CRS, only Users 1, 5, 7, and 8 contend but none

send REQUEST even their thresholds are lowered. In the third CRS, only User 7 sends

REQUEST and wins the contention. Hence, three CRSs completely resolve the Type-II

contention and Links (4, 3) and (7, 8) will send data in this frame slot. Note that this result

also fully exploits the network capacity as transmission of any other users will produce

interference and reduce the network throughput.

Table 4.1. Contention process for a set of channel states in Figure 4.1

.

User i 1 2 3 4 5 6 7 8 9 10
Receivers 8 4;8;10 10 3;10 8 10 8 9 5

Channel gains h 0.66 1.36;0.63;0.61 0.91 2.98;1.36 0.49 1.33 0.94 0.23 0.11
Selected receiver j 8 4 10 3 8 10 8 9 5

CRS 1

Hi j[1] 1.61 2.30 1.79 1.70 2.20 1.39 1.61 1.79 1.95
Step 1 REQ
Step 2 IDL TKN TKN SUC IDL IDL IDL TKN
Step 3 OCP

CRS 2

Hi j[2] 1.02 1.56 1.39 1.02 1.19
Step 1
Step 2 IDL IDL IDL IDL
Step 3

CRS 3

Hi j[3] 0.72 1.21 1.39 0.72 0.86
Step 1 REQ
Step 2 TKN TKN SUC TKN
Step 3 OCP

TKN: detect SUCCESS of others and stop contention; REQ: send REQUEST; SUC: feed back SUCCESS;
OCP: broadcast OCCUPIED; IDL: send IDLE to transmitter; BSY: feed back BUSY.

Figure 4.5 shows the probability density function of the number of CRSs for completely

resolving contention. To verify the impact of network load, we run simulations with 5, 10,

15, or 20 randomly distributed users, respectively. For each case, we run 1000 trials, each

of which contains transmission of 5000 frame slots. We can see that heavier network load

requires only slightly more CRSs. The average numbers of CRSs in these four cases are

2.35, 3.74, 4.92, and 6.00, while the corresponding standard deviations are 1.66, 2.39, 3.11,
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and 4.00, respectively.
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Figure 4.5. Probability density function of the number of CRSs necessary for complete contention
resolution.

Figure 4.6 compares the throughput of the proposed CAD-MAC scheme and the DOMRA

scheme in [97] when there are different numbers of active users. Again for each number of

users, we run 1000 trials of simulation, each of which contains transmission of 5000 frame

slots. Significant performance improvement can be observed. When there are 15 active

users, the throughput of CAD-MAC outperforms DOMRA by approximately 50% because

of the separate design of signalling contention and data transmission.

4.6 Conclusion and Future Work

We have designed a distributed channel-aware random access scheme without making any

assumption on network topology and traffic distribution. In the proposed scheme, each

frame is divided into contention and transmission periods. The contention period is used

to resolve the conflicts of all users while the transmission period is used to send payload in

collision-free scenarios. The proposed scheme can completely resolve network contention

at a trivial signaling cost and performs closely to the centralized scheduler. Besides, it
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Figure 4.6. Throughput comparison of CAD-MAC and DOMRA.

is also robust to any channel uncertainty. Simulation results have demonstrated that the

proposed scheme significantly improves network performance as compared with existing

schemes. The generality of the design allows its application in different types of wireless

networks, such as cellular networks, sensor networks, and mobile ad hoc networks.

In this research, we have not considered traffic characteristics, which influence MAC

buffer status and thus its transmission probability. Hence, the contention needs to be im-

proved to incorporate traffic characteristics in our future research. Furthermore, multichan-

nel extensions of CAD-MAC are also desirable to exploit the diversity among different

subchannels.
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CHAPTER 5

ENERGY-EFFICIENT LINK ADAPTATION IN
FREQUENCY-SELECTIVE CHANNELS

Energy efficiency is becoming increasingly important for small form factor mobile de-

vices, as battery technology has not kept up with the growing requirements stemming from

ubiquitous multimedia applications. This chapter addresses link adaptive transmission for

maximizing energy efficiency, as measured by the “throughput per Joule” metric. In con-

trast to the existing water-filling power allocation schemes that maximize throughput sub-

ject to a fixed overall transmit power constraint, our scheme maximizes energy efficiency

by adapting both overall transmit power and its allocation, according to the channel states

and the circuit power consumed. We demonstrate the existence of a unique globally op-

timal link adaptation solution and develop iterative algorithms to obtain it. We further

consider the special case of flat-fading channels to develop an upper bound on energy ef-

ficiency and to characterize its variation with bandwidth, channel gain, and circuit power.

Our results for OFDM systems demonstrate improved energy savings with energy optimal

link adaptation as well as illustrate the fundamental tradeoff between energy-efficient and

spectrum-efficient transmission.

The rest of the chapter is organized as follows. In Section 5.2, we investigate optimal

conditions for energy-efficient transmission and develop algorithms to obtain the globally

optimal solution. In Section 5.2.2, we consider a special case when the channel is with

flat fading. We also consider energy-efficient link adaptation when the user has either data

rate requirement or peak power limit in Section 5.3. As an example of energy-efficient

link adaptation, we apply the energy-efficient scheme in OFDM systems and provide sim-

ulation results to demonstrate energy efficiency improvement in Section 5.5. Finally, we

summarize in Section 5.6.
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5.1 Problem Formulation

In this section, we formulate the problem of energy-efficient link adaptation.

Assume that K subchannels are used for transmission, each with a different channel

gain. An example of this scenario is OFDM transmission over frequency-selective chan-

nels. Assume block fading [88, 98], that is, the channel state remains constant during each

data frame and is independent from one to another. Denote the data rate on Subchannel i

as ri and the data rate vector on all subchannels as

R = [r1, r2, · · · , rK]T , (5.1)

where []T is the transpose of a vector. The data rate vector, R, depends on the channel state,

coding, and power allocation. Correspondingly, the overall data rate is

R =

K∑

i=1

ri. (5.2)

For a given channel state, the transmit power on each subchannel is determined by the

requirement of reliable data transmission. If we denote W as the subchannel bandwidth,

No the power spectral density, gi the power gain, and PTi the allocated transmit power on

Subchannel i, the channel output SNR will be

ηi =
PTigi

NoW
(5.3)

and the achievable data transmission rate ri is determined by [99]

ri = W log(1 +
ηi

Γ
), (5.4)

where Γ is the SNR gap that defines the gap between the channel capacity and a practical

coding and modulation scheme. The SNR gap depends on the coding and modulation

scheme used and on the target probability of error. For a coded quadrature amplitude

modulation (QAM) system, the gap is given by [99]

Γ = 9.8 + γm − γc (dB), (5.5)
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where γm is the system design margin and γc is the coding gain. For Shannon capacity

[100], Γ = 0 dB. Denote the overall transmit power as PT (R) and

PT (R) =

∑K
i=1 PTi

ζ
=

K∑

i=1

(e
ri
W − 1)

NoWΓ

giζ
, (5.6)

where ζ ∈ [0, 1] is the power amplifier efficiency and depends on the design and implemen-

tation of the transmitter. PT (R) is strictly convex and monotonically increasing in R. In

fact, the developed theory and approaches can be used for any PT (R) that is strictly convex

and monotonically increasing in R with PT (0) = 0, where 0 = [0, 0, · · · , 0]T .

In addition to transmit power, mobile devices also incur additional circuit power during

transmissions which is relatively independent of the transmission rate [58, 64]. While the

transmit power models all the power used for reliable data transmission, we let the circuit

power represents the average energy consumption of device electronics, such as mixers,

filters, and digital-to-analog converters, and this portion of energy consumption excludes

that of the power amplifier and is independent of the transmission state. If we denote the

circuit power as PC, the overall power consumption given a data rate vector will be

P(R) = PC + PT (R). (5.7)

For energy-efficient communications, it is desirable to maximize the amount of data

sent with a given amount of energy. Hence, given any amount of energy 4e consumed in

a duration, 4t, i.e. 4e = 4t(PC + PT (R)), the mobile wants to send a maximum amount of

data by choosing the data rate vector to maximize

R 4 t
4e

, (5.8)

which is equivalent to maximizing

U(R) =
R

4e/ 4 t
=

R
PC + PT (R)

. (5.9)

U(R) is called energy efficiency. The unit of the energy efficiency is bits per Joule, which

has been frequently used in literature for energy-efficient communications [54, 56, 68, 101,
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57]. The optimal energy-efficient link adaptation achieves maximum energy efficiency, i.e.

R∗ = arg max
R

U(R) = arg max
R

R
PC + PT (R)

. (5.10)

Note that if we fix the overall transmit power, the objective of Equation (5.10) is equiv-

alent to maximizing the overall throughput and the existing water-filling power allocation

approach [50] gives the solution. However, besides adapting the power distributions on all

subchannels, the overall transmit power can also be adapted according to the states of all

subchannels to maximize the energy efficiency. Hence, the solution to Equation (5.10) is

in general different from existing power allocation schemes that maximize throughput with

power constraints.

5.2 Principles of Energy-Efficient Link Adaptation

In the following, we demonstrate that a unique globally optimal data rate vector always

exists and give the necessary and sufficient conditions for a data rate vector to be globally

optimal.

5.2.1 Conditions of Optimality

The concept of quasiconcavity will be used in our discussion and is defined as [102].

Definition 5.2.1 A function f , which maps from a convex set of real n-dimensional vectors,

D, to a real number, is called strictly quasiconcave if for any x1, x2 ∈ D and x1 , x2,

f (λx1 + (1 − λ)x2) > min{ f (x1), f (x2)}, (5.11)

for any 0 < λ < 1.

Any strictly monotonic function is quasiconcave. Besides, any strictly concave func-

tion is also strictly quasiconcave but the reverse is not generally true. An example is the

Gaussian function, which is strictly quasiconcave but not concave.

It is proved in Appendix D.3 that U(R) has the following properties.
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Lemma 5.2.2 If PT (R) is strictly convex in R, U(R) is strictly quasiconcave. Furthermore,

U(R) is either strictly decreasing or first strictly increasing and then strictly decreasing in

any ri of R, i.e. the local maximum of U(R) for each ri exists at either 0 or a positive finite

value.

For strictly quasiconcave functions, if a local maximum exists, it is also globally opti-

mal [102]. Hence, a unique globally optimal transmission rate vector always exists and its

characteristics are summarized in Theorem 5.2.3 according to the proofs in Appendix D.3.

Theorem 5.2.3 If PT (R) is strictly convex, there exists a unique globally optimal transmis-

sion data rate vector R∗ = [r∗1, r
∗
2, · · · , r∗K]T for (5.10), where r∗i is given by

1. when PC+PT (R(0)
i )

R(0)
i

≥ ∂PT (R)
∂ri

∣∣∣∣
R=R(0)

i

, ∂U(R)
∂ri

∣∣∣∣
R=R∗

= 0, i.e. 1
∂PT (R∗)
∂r∗i

= R∗
PC+PT (R∗) = U(R∗);

2. when PC+PT (R(0)
i )

R(0)
i

< ∂PT (R)
∂ri

∣∣∣∣
R=R(0)

i

, r∗i = 0,

where R(0)
i = [r∗1, r

∗
2, · · · , r∗i−1, 0, r

∗
i+1, · · · , r∗K] and R(0)

i =
∑

j,i r∗j , i.e. the overall data rate on

all other subchannels except i.

Theorem 5.2.3 has clear physical insights. PC + PT (R(0)
i ) is the power consumption

of both circuit and all other subchannels when Subchannel i is not used. PC+PT (R(0)
i )

R(0)
i

is the

per-bit energy consumption when Subchannel i is not used and the overall per-bit energy

consumption needs to be minimized for energy-efficient communications. ∂PT (R)
∂ri

∣∣∣∣
R=R(0)

i

is

the per-bit energy consumption transmitting infinitely small data rate on Subchannel i con-

ditioned on the optimal status of all other subchannels. Hence, Subchannel i should not

transmit anything when PC+PT (R(0)
i )

R(0)
i

< ∂PT (R)
∂ri

∣∣∣∣
R=R(0)

i

. Otherwise, there should be a tradeoff

between the desired data rate on Subchannel i and the incurred power consumption. The

tradeoff closely depends on the power consumption of both circuits and transmission on

all other subchannels and can be found through the unique zero derivative of U(R) with

respect to ri.
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To further understand Theorem 5.2.3, we consider an example when each subchannel

achieves the Shannon capacity and the transmit power on each subchannel is given in (5.6)

with Γ = 0 dB and ζ = 1. The overall transmit power is

PT (R) =

K∑

k=1

(e
rk
W − 1)

NoW
gk

. (5.12)

According to Condition (i) of Theorem 5.2.3, when rk > 0, we have

1
∂PT (R)
∂rk

=
1

e
rk
W

No
gk

= U(R∗). (5.13)

Hence, the transmit power on Subchannel k is

PTn = (e
rk
W − 1)

NoW
gk

=
W

U(R∗)
− NoW

gk
, (5.14)

which is a water-filling to level W
U(R∗) . Since the water level is determined by the optimal

energy efficiency, we refer to our scheme as dynamic energy-efficient water-filling. Note

that while the absolute value of power allocation is determined by the maximum energy

efficiency U(R∗), which relies on both the circuit power and channel state, the relative

differences of power allocation on different subchannels depend only on the channel gains

on those subchannels.

5.2.2 A Special Case: When the Channel is Flat Fading

To facilitate the understanding of the fundamental dependence of energy efficiency on the

channel gain, circuit power, and bandwidth, we consider a special case that the channel is

experiencing flat fading in this section. Hence, all subchannels are with the same channel

gain and the same link adaptation is applied on all subchannels. The overall data rate is

R = Kr. (5.15)

According to Theorem 5.2.3, the optimal transmission data rate follows immediately and

is summarized by Theorem 5.2.4, where the upper bound is proved in Appendix C.2.
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Theorem 5.2.4 If PT (R) is monotonically increasing and strictly convex in R, there exists a

unique globally optimal transmission data rate to maximize energy efficiency and is given

by

R∗ =
PC + PT (R∗)

P′T (R∗)
, (5.16)

where P
′
T (·) is the first order derivative of function PT (·). Besides, energy efficiency is upper

bounded by 1
P′T (0)

.

When Shannon capacity is achieved in AWGN channels, the upper bound is g
No

.

In the following, we investigate some basic properties of energy-efficient link adapta-

tion. Propositions 5.2.5, 5.2.6, and 5.2.7 summarize the impact of channel gain, circuit

power, and the number of subchannels on the optimal energy-efficient transmission, and

are proved in Appendix C.3.

Proposition 5.2.5 Both the data rate and energy efficiency increase with channel gain.

Proposition 5.2.6 The data rate increases with circuit power, while the energy efficiency

decreases with it. With zero circuit power, the highest energy efficiency, 1
P′T (0)

, is obtained

by transmitting with infinite small data rate.

From Proposition 5.2.6, when circuit power dominates power consumption, which is

usually true with short-range communication, the highest data rate should be used to fin-

ish transmission as soon as possible, which has been commonly assumed by most MAC

layer energy-efficient optimization schemes as describe in the introduction of this chap-

ter. However, when the circuit power is negligible, which is usually true with long-range

communication like satellite communications, the lowest data rate should be used, which

coincides with the results in [57] and [103].

Proposition 5.2.7 The data rate on each subchannel decreases with increasing number of

subchannels while the energy efficiency increases with it. With infinite number of subchan-

nels, the highest energy efficiency, 1
P′T (0)

, is obtained by transmitting with infinite small data

rate.
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Propositions 5.2.5, 5.2.6, and 5.2.7 discover three ways to improve energy efficiency:

increasing channel power gain, reducing circuit power, and allocating more subchannels.

The energy-efficiency upper bound is achieved by transmitting with infinite small data rate

when either circuit power is zero or infinite number of subchannels is assigned.

5.3 Constrained Energy-Efficient Link Adaptation

In this section, we study energy-efficient link adaptation when user has either a data rate

requirement or a peak power limit.

With a data rate requirement Γ, the energy-efficient link adaptation is given by

R̂∗ = arg max
R

R
PC + PT (R)

, (5.17a)

subject to

R ≥ Γ. (5.17b)

If the optimal data rate vector without constraint in (5.10) satisfies R∗ ≥ Γ, it is also the

solution to Problem (5.17), i.e. R̂∗ = R∗. Otherwise, Problem (5.17) is equivalent to

R̂∗ = arg max
Γ

Γ

PC + PT (R)
= arg min

R
PT (R), (5.18a)

subject to

R = Γ. (5.18b)

Since PT (R) is strictly convex, a unique globally optimal R̂∗ exists. Denote

fk(rk) =
∂PT (R)
∂rk

(5.19)

and its inverse function to be f −1
k (). Then R̂∗ can be easily obtained via the Lagrangian

technique [104] and is

r̂∗k = max
{
f −1
k (λ), 0

}
(5.20)

for k = 1, · · · ,K, where λ is determined by

K∑

k=1

r̂∗k = Γ. (5.21)
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When the channel capacity is achieved on each subchannel, the corresponding optimal

power allocation is a water-filling allocation, which achieves the sum channel capacity Γ.

Similarly, with a maximum transmit power constraint, the problem is to find

R̃∗ = arg max
R

R
PC + PT (R)

, (5.22a)

subject to

PT (R) ≤ Pm. (5.22b)

If the optimal data rate vector without constraint in (5.10) satisfies PT (R∗) ≤ Pm, it is also

the solution to Problem (5.22), i.e. R̃∗ = R∗. Otherwise, via the the Lagrangian technique

again, we have the unique optimal solution as follows

r̃∗k = max
{
f −1
k (λ), 0

}
, k = 1, · · · ,K, (5.23)

where λ is determined by

PT (R̃∗) = Pm. (5.24)

When channel capacity is achieved on each subchannel, the power allocation is the classical

water-filling where the water level is determined by Pm [50].

5.4 Algorithm Design

Theorem 5.2.3 provides the necessary and sufficient conditions for a rate vector to be the

unique and globally optimum one. However, it is usually difficult to directly solve the joint

nonlinear equations according to Theorem 5.2.3 to obtain the optimal vector R∗. Therefore,

we develop iterative methods to search the optimal R for maximizing U(R). The global

optimality of the proposed methods is guaranteed by the strict quasiconcavity of U(R). In

the following, we describe our low-complexity iterative algorithms.

5.4.1 Gradient Assisted Binary Search

When there is only one subchannel, Lemma 5.2.2 shows that function U(r) has a unique

r∗ such that for any r < r∗, dU(r)
dr > 0, and for any r > r∗, dU(r)

dr < 0. Hence, we have the

following lemma to seek two points r1 and r2 such that r1 ≤ r∗ ≤ r2.
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Proposition 5.4.1 Let the initial setting r[0] > 0 and set α > 1. For any i ≥ 0, let

r[i+1] =



r[i]

α
dU(r)

dr

∣∣∣
r[0] < 0

αr[i] otherwise
. (5.25)

Repeat (5.25) until r[I] such that dU(r)
dr

∣∣∣
r[I] has a different sign from dU(r)

dr

∣∣∣
r[0] . Then r∗ must be

between r[I] and r[I−1].

To locate r∗ between r1 and r2, let r̂ = r1+r2
2 . If dU(r)

dr

∣∣∣̂
r

= 0, r∗ is found. If dU(r)
dr

∣∣∣̂
r
< 0,

r1 < r∗ < r̂ and replace r2 with r̂; otherwise, replace r1 with r̂. This leads to the gradient

assisted binary search (GABS) for maximizing U(r), which is summarized in Table 5.1.

Table 5.1. Gradient assisted binary search

Algorithm GABS(ro)
(∗ algorithm for single-subchannel transmission. ∗)
Input: initial guess: ro > 0
Output: optimal transmission rate: r∗

1. r1 = ro, h1 ← dU(r)
dr

∣∣∣
r1

, initialize α > 1 (e.g.10)
2. if h1 < 0

(∗ seek r1 and r2 such that r1 < r∗ < r2 ∗)
3. then r2 ←r1, r1 ← r1

α
, and h1 ← dU(r)

dr

∣∣∣
r1

4. while h1 < 0
5. do r2 ←r1, r1 ← r1

α
, and h1 ← dU(r)

dr

∣∣∣
r1

6. else r2 ←r1 ∗ α and h2 ← dU(r)
dr

∣∣∣
r2

7. while h2 > 0
8. do r1 ←r2, r2 ←r2 ∗ α, and h2 ← dU(r)

dr

∣∣∣
r2

9. while no convergence
(∗ seek r∗ between r1 and r2 ∗)

10. do r̂← r2+r1
2 ; ĥ← dU(r)

dr

∣∣∣̂
r

11. if ĥ > 0
12. then r1 = r̂;
13. else r2 = r̂
14. return r̂
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5.4.2 Binary Search Assisted Ascent

To find the optimal data rate vector for the multiple subchannel case, we design a gradient

ascent method to produce a maximizing sequence R[i], n = 0, 1, · · · , and

R[i+1] =
[
R[i] + µ∇U(R[i])

]+
, (5.26)

where [R]+ sets the negative part of the vector R to be zero, µ > 0 is the search step size,

and ∇U(R[i]) is the gradient at iteration i. With sufficiently small step size, U(R[i+1]) will

be always bigger than U(R[i]) except when ∇U(R[i]) = 0 that indicates the optimality of

R[i] [104]. However, small step size leads to slow convergence. Besides, each element

of the gradient depends on the corresponding subchannel power gain, which potentially

differs from each other by orders of magnitude. Hence, a line search of the optimal step

size needs to cover a large range to assure global convergence on all subchannels, which is

computationally expensive. Therefore, at each R[i], an efficient algorithm is needed to find

the optimal step size. Denote

fi(µ) = U(
[
R[i] + µ∇U(R[i])

]+
). (5.27)

Similar to the proof of Lemma 5.2.2, it is easy to show that gi(µ) is also strictly quasicon-

cave in µ and has a unique globally maximum µ∗ such that for any µ < µ∗, d fi(µ)
dµ > 0, and

for any µ > µ∗, d fi(µ)
dµ < 0. Let ∇U(R[i]) = [̂g1, ĝ2, · · · , ĝK]. Replace dU(r)

dr in GABS to be

d fi(µ)
dµ

= [∇U(R[i+1])]T G̃[i], (5.28)

where G̃[i] =
d[R[i]+µ∇U(R[i])]+

dµ = [̃g1, g̃2, · · · , g̃K], in which g̃k = ĝk if the kth component

of R[i] + µ∇U(R[i]) is positive and g̃k = 0 otherwise. Then GABS can be used for quick

location of the optimal step size. This leads to the binary search assisted ascent (BSAA)

algorithm in Table 5.2.

5.4.3 The Rate of Convergence

While the global convergence of both GABS and BSAA is guaranteed by the strict quasi-

concavity of U(R) [105], we further study the convergence rate in this section.
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Table 5.2. Binary search assisted ascent

Algorithm BSAA(Ro)
(∗ algorithm for multi-subchannel transmission. ∗)
Input: initial guess: Ro(default transmission rate can be used)
Output: optimal transmission rate vector: R∗
1. R = Ro,
2. while no convergence
3. do use GABS to find the optimal step size µ∗;
4. R =

[
R + µ∗∇U(R)

]+

5. return R

Theorem 5.4.2 characterizes the convergence of GABS and is proved in Appendix C.4.

Theorem 5.4.2 GABS converges to the globally optimal transmission data rate r∗. A rate

r, which satisfies |r − r∗| ≤ ε, can be found within at most M iterations, where M is the

minimum integer such that M ≥ log2( (α−1)r∗
ε
− 1).

It is difficult to theoretically analyze the global convergence rate of BSAA because of

the nonconcavity of U(R). Instead, we run numerical simulations and observe the con-

vergence. Figure 5.1(a) illustrates the improvement of energy efficiency with iterations.

Here we assume the channel gain of each subchannel has Rayleigh distribution with a unit

average. The circuit power is 5. The noise power on each subchannel is 0.01. The trans-

mit power is given by Equation (5.6) with Γ = 0 dB. The energy efficiency is normalized

by the optimal value and the curves are the ensemble averages of 5000 channel instances.

Figure 5.1(b) shows the corresponding probability distribution functions of the numbers of

iterations necessary for convergence. In both figures, we vary the number of subchannels

to verify its impact on the convergence rate. We can see that BSAA converges very fast to

the global optimum, even with 1024 subchannels.

5.5 Simulation Results for OFDM

The proposed energy-efficient link adaptation is general and can be applied to different

kinds of OFDM, MIMO, and MIMO-OFDM systems. To apply it, we only need to find the
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Figure 5.1. Convergence rate of BSAA.

transmit power relationship PT (R) of those systems. In this section, we discuss the optimal

energy-efficient link adaptation for OFDM with subchannelization as an example.

5.5.1 Modeling of OFDM with Subchannelization

In OFDM systems with subchannelization, subcarriers are grouped into subchannels and

the subcarriers forming one subchannel may, but not necessarily be adjacent, such as the

contiguous and distributed subchannelization schemes in 802.16e [12]. Each subchannel

is treated to be flat fading and the effective channel power gain, g, rather than physical

channel power gain of each subcarrier, is used as a metric. For simplicity, g is the average

of channel power gains of all subcarriers within the subchannel. Note that classical OFDM

is a special case when each subchannel has one subcarrier. The frame structure is shown in

Figure 5.2. Each transmission slot consists of a data interval, Ts, and a signalling interval,

τ. In each data interval, l symbols are transmitted. We use uncoded M-QAM. The transmit

power on each subchannel needs to be determined.

Consider Subchannel i that consists of ci subcarriers. The number of bits transmitted

per symbols on each subcarrier is bi =
ri
c (Ts+τ)

l . Hence, the modulation order M is given by

Mi = 2bi = 2Biri , where Bi =
(Ts+τ)

cil
. The BER for coherently detected M-QAM with Gray
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Figure 5.2. Frame structure

mapping over an AWGN channel is approximated by [74]

Pe(γ) ≈ 0.2 exp
(
− 1.5γ

M − 1

)
, (5.29)

where γ is the SNR. For a BER target, Pe, the required SNR on Subchannel i is

γi =
2
3

(1 − Mi) ln(5Pe) =
2
3

(1 − 2Biri) ln(5Pe). (5.30)

Hence, the overall transmit power on Subchannel i is

PTi(ri) =
γiciNoW

gi
= Ai(1 − 2Biri), (5.31)

where W is the signal bandwidth of each subcarrier and

Ai =
2ci ln(5Pe)NoW

3gi
. (5.32)

Assuming no coupling between transmit powers among subchannels, the overall transmit

power will be the cumulative of the transmit powers of all subchannels, that is,

PT (R) =

K∑

i=1

PTi(ri), (5.33)

which is monotonically increasing and strictly convex in R. The energy-efficient link adap-

tation immediately follows from Section 5.2.
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Table 5.3. System parameters
Carrier frequency 1.5 GHz
Subcarrier number 256

Subcarrier bandwidth 10 kHz
BER requirement 10−3

Symbol number of data interval, l 100
Time duration of data interval, Ts 0.01s

Time duration of signalling interval, τ 0.001s
Thermal noise power, No -141 dBW/MHz

User antenna height 1.6 m
BS antenna height 40 m

Environment Macro cell in urban area
Circuit power, PC 100 mW

Modulation Uncoded M-QAM
Subchannelization Fixed-interval and contiguous
Propagation Model Okumura-Hata model

Shadowing Log-normal with standard
deviation of 10 dB

Frequency-selective fading ITU pedestrian channel B
User speed 3 km/h

5.5.2 Performance Comparison

In this section, we compare the performance of energy-efficient OFDM transmission with

that of traditional transmission schemes. The system parameters are listed in Table 7.1. The

International Telecommunication Union (ITU) pedestrian channel model B [106] is used to

implement the multipath frequency-selective fading. We implement two subchannelization

schemes as in Figure 5.3, fixed-interval and contiguous, both of which group 10 subcarriers

into a subchannel. In the fixed-interval subchannelization, one draws subcarriers out of all

subcarriers with a fixed interval to form a subchannel, while in the contiguous one, each

subchannel consists of a block of contiguous subcarriers.

Figures 5.4(a) and 5.4(b) and Figures 5.5(a) and 5.5(b) compare energy efficiency and

throughput of different transmission schemes with contiguous subchannelization and with

fixed-interval subchannelization respectively. Two energy-efficient OFDM transmission

schemes are implemented: FS EE, that is the optimal energy-efficient transmission devel-

oped in this chapter, and flat EE, that treats the channel as flat fading. Transmissions with
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Subcarrier index

Contiguous Subchannelization Subchannel 1 Subchannel 2
1 2 C+1

Subcarrier index

Fixed-interval Subchannelization Subchannel 1 Subchannel 2
1 2 K+1 K+2

C C+2
Figure 5.3. OFDM subchannelization (K subchannels, each with c subcarriers)

both fixed and adaptive QAM modulations are also implemented for comparison. For fixed

modulation, the transmit power is adapted to meet BER requirement while not exceeding

15 dBm maximum power constraint. For adaptive modulation, transmit power is equally

distributed over all subchannels and the modulation is adapted to meet BER requirement.

From Figures 5.4(a) and 5.4(b), fixed and adaptive modulations perform closely to each

other, especially when far away from BS, for both energy efficiency and throughput, when

the maximum transmit power is 15 dBm. By increasing the transmit power from 15 dBm to

25 dBm, the throughput of adaptive modulation increases, however, the energy efficiency

first increased and then decreases. Due to the global optimality, the proposed energy-

efficient transmission for frequency-selective channels always achieves the highest energy

efficiency, and outperforms the others by at least 15%. However, the throughput is not nec-

essarily maximum; the other schemes, especially the adaptive QAM modulation with 25

dBm transmit power, sacrifice power to obtain higher throughput. Similar results can also

be observed in Figures 5.5(a) and 5.5(b). Furthermore, we note that when fixed-interval

subchannelization is used, different subchannels have trivial differences in average channel

gain and the energy-efficient transmission treating the channel to be flat fading performs the

same as the one considering the difference of different subchannels. This indicates energy-

efficient link adaptation treating channels to be flat fading is sufficient for performance
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Figure 5.4. Performance comparison for contiguous subchannelization.
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Figure 5.5. Performance comparison for fixed-interval subchannelization.

optimization.

5.6 Conclusion

In this chapter, we have investigated the energy-efficient link adaptation. While the use-

fulness of the proposed technique is illustrated using frequency-selective OFDM as an ex-

ample, the solution developed is applicable to more general transmission scenarios where

transmission occurs over resources experiencing different channel conditions. Joint circuit

and transmit power consumptions are taken into account to maximize energy efficiency
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rather than throughput. We demonstrate the existence of a unique globally optimal link

adaptation solution and provide iterative algorithms to obtain this optimum. The optimal

power allocation is shown to be a dynamic water-filling where the water level is determined

by the maximum energy efficiency. We further consider a special case when the channel

is experiencing flat fading and show the upper bound of energy efficiency as well as two

ways to achieve this bound. We explicitly demonstrate that energy efficiency is improved

by increasing channel power gain, bandwidth, and by reducing circuit power consumption.

From the simulation results, we observed at least 15% improvement in energy utilization

when frequency selectivity is exploited and the improvement depends on how much fre-

quency diversity exists within the channels.
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CHAPTER 6

LOW-COMPLEXITY ENERGY-EFFICIENT SCHEDULING FOR
UPLINK OFDMA

The work in Chapter 5 uses iterative approaches to maximize the instantaneous bits-per-

Joule energy efficiency. Iterative approaches may be complex to be implemented in practi-

cal systems and running iterative algorithms consumes additional power. In this chapter, we

use a time-averaged bits-per-Joule metric to develop low-complexity schemes. Specifically,

we obtain closed-form solutions for energy-efficient link adaptation in frequency-selective

channels. On the other hand, in an OFDMA cellular network, the BS determines sub-

channel assignment to optimize the overall network performance. As indicated previously,

while increasing subchannels always improves energy efficiency, the entire system band-

width can not be allocated exclusively to one user in a multi-user system since this may hurt

the energy efficiency of other users as well as that of the overall network. Hence, resource

management in OFDMA is critical in determining the overall network energy efficiency

and we also derive closed-form approaches for the maximum arithmetic and geometric

mean energy-efficient schedulers.

In the following, we describe the system model and design objectives in Section 6.1.

Then we develop energy-efficient link adaptation in Section 6.2 and resource allocation

schemes in Section 6.3. Simulation results are provided in Section 7.4. Finally, we con-

clude the chapter in Section 6.5.

6.1 System Description

We focus on the uplink OFDMA system shown in Figure 6.1, as the radio frequency (RF)

transmit power for a user dominates the limited power budget of a battery-constrained

mobile device. The BS assigns subchannels for each user to optimize the overall network

energy efficiency. Channels are assumed to be frequency-selective and with block fading,
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User 1
User NReceiverUser 2 User 3

User 4
Energy efficient resource allocation

Energy efficient transmission
Figure 6.1. Network architecture

i.e. the channel state is constant within each frame [88]. Accurate channel state information

is available to both BS and mobile users to optimize energy-efficient communications. The

link adaptation and resource allocation settings are allowed to vary from one frame to

another according to the channel state information.

Consider a network with N users and K subchannels. Denote the index set of all sub-

channels as K = {1, 2, · · · ,K}. Denote the index set of subchannels assigned to User n at

Frame t to be Cn[t]. Each subchannel is only assigned to one user during a frame. Then,

Ci[t]
⋂
C j[t] = ∅,∀i , j

⋃

i

Ci[t] ⊆ K ,
(6.1)

where ∅ is an empty set. The data rate of User n is

rn[t] =
∑

k∈Cn[t]

rnk[t], (6.2)

where rnk[t] is the data rate of User n at subchannel k. The average throughput of User n at

Frame t, Tn[t], is obtained using an exponentially weighted low-pass filter,

Tn[t] = (1 − 1
w

)Tn[t − 1] +
1
w

rn[t], (6.3)

where w � 1.
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Denote the SNR for reliable reception of rnk[t] to be

ηnk = S (rnk[t]). (6.4)

Similar to the argument in [60], function S (r) is assumed to be strictly convex in r and

S (0) = 0. Denote the signal power attenuation of User n at Subchannel k at Frame t to be

gnk[t], then required power to transmit at a rate of rnk[t] will be

pnk[t] =
ηnkσ

2

gnk[t]
=

S (rnk[t])σ2

gnk[t]
, (6.5)

where σ2 is the noise power on each subchannel.

The overall transmit power of User n is

pn[t] =
∑

k∈Cn[t]

pnk[t]. (6.6)

As indicated in [60,107], circuit power, pc, in addition to the transmit power, also plays

an important role in energy-efficient communications. While transmit power is used for

reliable data transmission, circuit power represents energy consumption of device electron-

ics. The overall average power consumption, Pn[t], is also obtained using an exponentially

weighted moving average low-pass filter, that is,

Pn[t] = (1 − 1
w

)Pn[t − 1] +
1
w

(pn[t] + pcn[t]). (6.7)

The circuit power, pcn[t], is user and time dependent. pcn[t] is measured at Frame t by each

mobile.

For energy-efficient communications, users want to send as much data as possible with

a given amount of energy. Hence, with energy 4e consumed in a duration 4t, User n wants

to send a maximum amount of data by choosing rnk[t], k ∈ Cn[t], to maximize

Tn[t] 4 t
4e

, (6.8)

which is equivalent to maximize

un[t] =
Tn[t]
4e/ 4 t

=
Tn[t]
Pn[t]

. (6.9)
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un is called average energy efficiency of User n. Adapting transmission rate and power to

optimize equation (7.6) is referred to as energy-efficient link adaptation.

If we fix the overall transmit power, the objective of Equation (7.6) is equivalent to

maximizing the overall throughput and existing water-filling power allocation approaches

[50,51] can be used. However, besides adapting the power distributions on all subchannels,

the overall transmit power can also be adapted according to the states of all subchannels and

the history of data transmission and power consumption to maximize the average energy

efficiency. Hence, the solution to Equation (7.6) is different from existing power allocation

schemes that maximize throughput with power constraints.

The BS determines subchannel assignment to optimize the overall network perfor-

mance. We consider two multi-user performance metrics, arithmetic and geometric means.

The resource management is optimized to maximize the arithmetic or geometric average

of the performances of all users with arithmetic- or geometric-mean metric. Considering

these performance metrics in the context of spectral efficiency, we note that the arithmetic-

mean metric leads to power allocation for sum throughput maximization, which assures no

fairness since some users may have zero throughput. However, the geometric-mean metric

leads to a solution for throughput product maximization and assures proportional fairness

among all users [76, 16]. Analogously, we call energy efficiency optimization schemes us-

ing geometric- or arithmetic-mean metrics to be energy-efficient schedulers with or without

fairness.

When using the arithmetic-mean metric, the subchannels are allocated to maximize the

arithmetic average of the energy efficiency of all users, i.e. to maximize

U[t] =

N∑

n=1

un[t]. (6.10)

When using the geometric-mean metric, the subchannels are allocated to maximize the

geometric average of the energy efficiency of all users, i.e. to maximize

V[t] =

N∑

n=1

log(un[t]). (6.11)
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For the above optimization, consider a special case that the circuit power dominates the

power consumption, i.e.

pcn[t] � pn[t], ∀t. (6.12)

This is usually true for short-range communications as low transmit power is needed to

compensate for path loss. In this case, maximizing energy efficiency (7.6) is equivalent

to maximizing throughput Tn[t] as Pn[t] is almost independent of power allocation and

rate adaptation. Correspondingly, (6.10) is equivalent to maximizing the sum of through-

put weighted by the inverse of circuit power and (6.11) equals maximizing the product of

throughput. The dependence of the optimization on circuit power will be further demon-

strated later.

In the following, we develop link adaptation and resource allocation strategies in closed-

forms, based on optimizing the energy efficient metrics discussed in this section.

6.2 Energy-Efficient Link Adaptation

In this section, we investigate energy-efficient link adaptation for a user with a given chan-

nel assignment. Therefore, user index n is dropped in the subsequent discussion in this

section.

We need to determine the data rates at all subchannels to maximize

u[t] =
T [t]
P[t]

=
(1 − 1

w )T [t − 1] + 1
w

∑
k rk[t]

(1 − 1
w )P[t − 1] + 1

w (
∑

k pk[t] + pc[t])
,

(6.13)

where pk[t + 1] is given by (6.5).

Denote c = |C[t]|, which is the number of elements in C[t] and C[t] = {ki|k1 < k2 <

· · · < kc} ⊆ K . Denote the data rate vector to be r[t] = [rk1[t], rk2[t], · · · , rkc[t]]. Then u[t]

is a function of r[t]. It is easy to see that the sublevel sets

S α = {r[t]
∣∣∣u[t] ≥ α} for any real α, (6.14)
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are strictly convex. Hence, u[t] is a strictly quasi-concave function optimized on a convex

set r[t] [102] and a unique globally optimal rate vector, r∗[t], exists and every element in

r∗[t] satisfies
∂u[t]
∂rk[t]

= 0 (6.15)

if rk[t] > 0. Solving (6.15) yields the following optimal rate condition

∂pk[t]
∂rk[t]

=
P[t]
T [t]

=
1

u[t]
,∀k. (6.16)

Since w � 1, P[t] ≈ P[t − 1], and T [t] ≈ T [t − 1],

∂pk[t]
∂rk[t]

=
P[t − 1]
T [t − 1]

=
1

u[t − 1]
,∀k. (6.17)

Together with (6.5), we have

S
′
(rk[t]) =

1
u[t − 1]

gk[t]
σ2 ,∀k. (6.18)

where S
′
(·) is the first-order derivative of the function S (·). Consequently, the optimal data

rate follows immediately,

r∗k[t]= max
(
S
′−1( 1

u[t − 1]
gk[t]
σ2

)
, 0

)
∀k ∈ C[t]. (6.19)

where S
′−1() is the inverse function of S

′
. The corresponding optimal power allocation is

p∗k[t] =
S (r∗k[t])σ2

gk[t]
,∀k ∈ C[t]. (6.20)

If the Shannon capacity [50] is achieved on each subchannel, S (r) = 2
r
B − 1, where B is

the subchannel bandwidth. The optimal data rate is

r∗k[t]= max
(
B log2

(
Bgk[t]

u[t − 1]σ2 log 2

)
, 0

)
∀k ∈ C[t]. (6.21)

The corresponding optimal power allocation is

p∗k[t] = max
(

B
u[t − 1] log 2

− σ2

gk[t]
, 0

)
∀k ∈ C[t], (6.22)
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which is a water-filling power allocation with a water level of B
u[t−1] log 2 . We can see that

the energy-efficient link adaptation in (6.19), (6.20), (6.21), and (6.22) is determined by

u[t − 1] and gk[t], and is expressed in closed form. This significantly reduces the complex-

ity associated with the iterative solutions developed earlier in [60]. The low-complexity

energy-efficient water-filling power allocation in (6.22) can be illustrated in Figure 6.2, in

which every shadowed part corresponds to the power allocated on each subchannel.

][

2

tg k

σ1 2 3 4 K-2 K-1 K

Power

Subchannel

2log]1[ −tu

B

5 K-3k
Figure 6.2. Low-complexity energy-efficient water-filling power allocation

6.3 Energy-Efficient Resource Allocation

In this section we will consider low-complexity energy-efficient resource allocation. We

will be using the index n to refer to a particular user in this multi-user case. Schedulers

based on both the arithmetic and the geometric mean will be considered.
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6.3.1 Max Arithmetic Mean Energy-Efficient Scheduler

In this section, the subchannels are assigned such that the sum energy efficiency U[t] is

maximized. Since U[t − 1] is fixed, it is equivalent to maximize

4U = U[t] − U[t − 1]

=

N∑

n=1

un[t] −
N∑

n=1

un[t − 1]

=

N∑

n=1

(un[t] − un[t − 1]).

(6.23)

We can see that

un[t] − un[t − 1] =
Tn[t]
Pn[t]

− Tn[t − 1]
Pn[t − 1]

=
Tn[t]Pn[t − 1] − Pn[t]Tn[t − 1]

Pn[t]Pn[t − 1]
.

(6.24)

Substituting Equations (6.3) and (6.7) into (6.24), we have

un[t] − un[t − 1]

=

Pn[t − 1]
∑

k∈Cn[t]

rnk[t]− Tn[t − 1](
∑

k∈Cn[t]

pnk[t]+pcn[t])

/(wPn[t]Pn[t − 1])

=
∑

k∈Cn[t]

Pn[t − 1]rnk[t] − Tn[t − 1]pnk[t]
wPn[t]Pn[t − 1]

− Tn[t − 1]pcn[t]
wPn[t]Pn[t − 1]

=

K∑

k=1

Ik(Cn[t])
Pn[t]rnk[t] − Tn[t − 1]pnk[t]

wPn[t]Pn[t − 1]
− Tn[t − 1]pcn[t]

wPn[t]Pn[t − 1]
,

where indicator function Ik(Cn) is defined as

Ik(Cn) =



1 k ∈ Cn,

0 otherwise.
(6.25)

Hence, the subchannel assignment is to maximize

4U=

N∑

n=1

(un[t] − un[t − 1])

=

N∑

n=1

K∑

k=1

Ik(Cn[t])
Pn[t − 1]rnk[t]−Tn[t − 1]pnk[t]

wPn[t]Pn[t − 1]
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−
N∑

n=1

Tn[t − 1]pcn[t]
wPn[t]Pn[t − 1]

=

K∑

k=1

N∑

n=1

Ik(Cn[t])
Pn[t − 1]rnk[t]−Tn[t − 1]pnk[t]

wPn[t]Pn[t − 1]

−
N∑

n=1

Tn[t − 1]pcn[t]
wPn[t]Pn[t − 1]

.

Denote the allocation metric to be

J(n, k) =
Pn[t − 1]rnk[t] − Tn[t − 1]pnk[t]

Pn[t]Pn[t − 1]

≈ Pn[t − 1]rnk[t] − Tn[t − 1]pnk[t]
P2

n[t − 1]

=
rnk[t]

Pn[t − 1]
− un[t − 1]

pnk[t]
Pn[t − 1]

,

(6.26)

where rnk[t] is given by (6.19) and pnk[t] (6.20).

It is easy to see that 4U is maximized by assigning subchannel k to the user with

the highest allocation metric J(n, k) on that subchannel, that is, the optimal subchannel

assignment is

C∗n = {k|J(n, k) > J(m, k),∀m , n},∀n. (6.27)

When the circuit power dominates the power consumption, the allocation metric is

Jt(n, k) ≈ rnk[t]
Pn[t − 1]

. (6.28)

Assume all users consume the same circuit power and Pn[t − 1] is the same for all users.

Since the user with the maximum rnk[t] is the same as the one with the maximum SINR

on that subchannel, the energy-efficient scheduler is equivalent to applying the traditional

max-SINR scheduler on each subchannel to achieve the highest spectral efficiency [14],

which is,

C∗n = {k|rn,k > rm,k,∀m , n},∀n. (6.29)
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6.3.2 Max Geometric Mean Energy-Efficient Scheduler

In order to maximize the geometric mean of the energy efficiency of all users, the subchan-

nels are assigned to maximize

V[t] =

N∑

n=1

log(un[t]), (6.30)

which is equivalent to maximize

4V = V[t] − V[t − 1]

=

N∑

n=1

log(un[t])−
N∑

n=1

log(un[t − 1])

=

N∑

n=1

(
log

(
Tn[t]

Tn[t − 1]

)
− log

(
Pn[t]

Pn[t − 1]

))
.

(6.31)

Using the Taylor series expansion and the fact that w � 1, we can express

log
(

Tn[t]
Tn[t − 1]

)
= log

1− 1
w

+

1
w

∑
k∈Cn

rnk[t]
Tn[t − 1]



≈ log(1 − 1
w

) +

∑
k∈Cn

rnk[t]
Tn[t − 1](w − 1)

.

(6.32)

Similarly, we have

log
(

Pn[t]
Pn[t − 1]

)

≈ log(1 − 1
w

) +

∑
k∈Cn

pnk[t] + pcn[t]
Pn[t − 1](w − 1)

.

(6.33)

Hence, 4V can be expressed by

4V =

N∑

n=1

( ∑
k∈Cn[t] rnk[t]

Tn[t − 1](w − 1)

−
∑

k∈Cn[t] pnk[t] + pcn[t]
Pn[t − 1](w − 1)

)

=

N∑

n=1

K∑

k=1

(
Ik(Cn[t])

( rnk[t]
Tn[t − 1](w − 1)

− pnk[t]
Pn[t − 1](w − 1)

)) −
N∑

n=1

pcn[t]
Pn[t − 1](w − 1)

=

K∑

k=1

N∑

n=1

(
Ik(Cn[t])

( rnk[t]
Tn[t − 1]
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− pnk[t]
Pn[t − 1]

)
/(w − 1)

)
−

N∑

n=1

pcn[t]
Pn[t − 1](w − 1)

.

Denote the allocation metric to be

J f (n, k) =
rnk[t]

Tn[t − 1]
− pnk[t]

Pn[t − 1]
, (6.34)

where rnk[t] is given by (6.19) and pnk[t] (6.20).

4V is maximized by assigning subchannel k to the user with the highest allocation

metric J f (n, k) on that subchannel, that is, the optimal subchannel assignment achieving

proportional fairness is

C∗n = {k|J f (n, k) > J f (m, k),∀m , n},∀n. (6.35)

When the circuit power dominates the power consumption, the allocation metric is

Jt f (n, k) ≈ rnk[t]
Tn[t − 1]

, (6.36)

and the energy-efficient scheduler is equivalent to applying the traditional proportional-fair

scheduler [76, 16] on each subchannel, that is,

C∗n = {k|Jt f (n, k) > Jt f (m, k),∀m , n},∀n. (6.37)

6.4 Simulation Results

In the previous sections, we have obtained closed-form and approximate expressions for

energy efficient link adaptation and resource allocation, using the average energy efficiency

metric. In this section, we compare the proposed schemes with the global optima to evalu-

ate the suboptimality gap. The global optima are obtained by exhaustive search. Since the

weight of the exponentially weighted low-pass filter determines approximation accuracy,

we focus on its impact on the system performance.

We consider a system with 8 subchannels to reduce complexity of exhaustive search.

The subchannels are experiencing independent and identically-distributed Rayleigh fading
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with unit average power gain. Capacity approaching coding is assumed. Figure 6.3 shows

the suboptimality gap of energy-efficient link adaptation. The energy efficiency of the pro-

posed link adaptation is normalized by the energy efficiency of the global optimal solution.

We show the normalized energy efficiency when different weights, ws, are used. We also

change the average transmit power to circuit power ratio, ε, by varying the circuit power.

We can observe that the proposed link adaptation performs closely to the global optimum,

with a performance loss of less than 2% when w > 10. Similarly, we show the normalized

energy efficiency of different schedulers in Figure 6.4 when there are three users in the

system. The performance loss is within 5% when w > 20 for the proposed schedulers.
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Figure 6.3. Normalized energy efficiency of one link

6.5 Conclusion

We have considered uplink energy-efficient communications in OFDMA systems since mo-

bile stations are battery powered. Time-varying circuit power is accounted for system

design. Based on optimizing a time averaged energy efficiency metric, we first obtain a

closed-form link adaptation scheme for frequency-selective channels. Furthermore, as a
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Figure 6.4. Normalized average energy efficiency of a three-user network

system approach is critical in determining the overall network performance, we also de-

sign maximum-energy-efficiency and proportional fair energy-efficient schedulers, both in

closed forms. Our simulation results show that the proposed low-complexity schemes per-

form close to the optimum that is obtained by exhaustive search.
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CHAPTER 7

INTERFERENCE-AWARE ENERGY-EFFICIENT POWER
OPTIMIZATION

In Chapter 5, we have observed that in an interference free environment, a tradeoff

between energy efficiency (EE) and spectral efficiency (SE) exists, as increasing transmit

power always improves throughput but not necessarily EE. In this chapter, we consider

multi-cell interference-limited scenarios and develop power optimization and resource al-

location schemes to improve EE. We note that the general power optimization problem in

the presence of interference is intractable even when ideal user cooperation is assumed. We

first study this problem for a simple two-user network with ideal user cooperation. Then we

develop a noncooperative game for energy-efficient power optimization. We show that the

equilibrium always exists. Furthermore, when there is only one subchannel or the channel

experiences flat fading, there will be a unique equilibrium. However, in frequency-selective

channels, this is not true in general as demonstrated by a counter example. We reveal a suf-

ficient condition that assures the uniqueness. Then we investigate the tradeoff between EE

and SE. We show that in interference-limited scenarios, since increased transmit power also

brings higher interference to the network, SE is not necessarily increased. Energy-efficient

power optimization not only improves system EE but also improves the tradeoff between

EE and SE due to the conservative nature of power allocation, which effectively controls

interference from other cells to improve network throughput. Later, we also design an

implementation of the noncooperative power optimization game.

The rest of the chapter is organized as follows. We first formulate the interference aware

power control problem in Section 7.1. In Section 7.2, a two-user network with ideal user

cooperation is discussed to gain insights into energy-efficient power control. Noncooper-

ative energy-efficient power optimization is discussed in Section 7.3 and the performance
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improvement is demonstrated by simulations in Section 7.4. Finally, we conclude the chap-

ter in Section 7.5.

7.1 Problem Description

We introduce interference-aware energy-efficient power optimization in this section.

Consider a system with K subchannels. Each of them experiences independent and flat

fading and AWGN. There are N users, each consisting of a pair of transmitter and receiver

and operating on these subchannels. All users interfere with each other. Accurate channel

state information is available to any pair of transmitter and receiver. Denote the signal

power attenuation of User i at Subchannel k to be g(k)
ii and the interference power gain from

the transmitter of User i to the receiver of User j at Subchannel k to be g(k)
i j . The noise

power on each subchannel is σ2. The power allocation of User n on all subchannels is

denoted by vector pn = [p(1)
n p(2)

n · · · p(K)
n ]T , where T is the transpose. The interference on all

subchannels of User n is denoted by vector In = [I(1)
n I(2)

n · · · I(K)
n ]T , where

I(k)
n =

N∑

i=1,i,n

p(k)
i g(k)

in . (7.1)

Consequently, the signal-to-interference-plus-noise ratio (SINR), η(k)
n , of User n at Sub-

channel k can be expressed as

η(k)
n =

p(k)
n g(k)

nn∑N
i=1,i,n p(k)

i g(k)
in + σ2

. (7.2)

The data rate at Subchannel k of User n, r(k)
n , is assumed to be a function of ηn and can

be expressed as

r(k)
n = R(η(k)

n ), (7.3)

where R() depends on the modulation and coding and is assumed to be strictly concave and

increasing with R(0) = 0. For capacity approaching coding [50], r(k)
n = w log(1 + η(k)

n ),

where w is the bandwidth of each subchannel, and the above assumptions are obviously

satisfied.
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Let the data rate vector of User n across the K subchannels be rn = [r(1)
n , r(2)

n , · · · , r(K)
n ]T ,

then the overall data rate is

rn =

K∑

k=1

r(k)
n . (7.4)

The total transmit power is

pn =

K∑

k=1

p(k)
n . (7.5)

Note that as in [60, 107], both transmit power and circuit power, pc, are important for

energy-efficient communications. While transmit power is used for reliable data trans-

mission, circuit power represents average energy consumption of device electronics. As

in [107], we optimize the energy efficiency, which can be expressed as

un =
rn

4e/ 4 t
=

rn

pn + pc
, (7.6)

where rn is given by (7.4) and pn by (7.5). un is called EE of User n.

Note that if we fix the overall transmit power, the objective of Equation (7.6) is equiv-

alent to maximizing the overall throughput of all subchannels and existing water-filling

power allocation approach [50] gives the solution. However, besides power distributions

on all subchannels, the overall transmit power needs to be adapted according to the states

of all subchannels to maximize energy efficiency. Hence, the solution to Equation (7.6) is

in general different from existing power allocation schemes that maximize throughput with

power constraints. The power control in a multi-cell setting to optimize the overall network

energy efficiency is also different from traditional power control schemes that emphasize

throughput improvement.

We define EE of the overall network to be

u =

N∑

n=1

un, (7.7)

which is a function of p(k)
n for all n and k. This definition is based on summation of EE of all

users rather than the ratio of sum network throughput to sum network power consumption

because powers of different users can not be shared and so are their throughput and EE.
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We now need to determine power allocation of all users to optimize overall network EE

subject to the interference scenario.

7.2 Cooperative Two-User Case

Note that the solution maximizing sum network EE is difficult to obtain as the objective

function, in general, is non-concave in p(k)
n . To gain some insight, we investigate the case

where two users transmit simultaneously on a single channel in this section. We assume

both users have complete network knowledge and cooperate to maximize the sum energy

efficiency,

u(p1, p2) =
r1

p1 + pc
+

r2

p2 + pc
, (7.8)

where

r1 = w log(1 +
p1g1

p2g21 + σ2 ) and r2 = w log(1 +
p2g2

p1g12 + σ2 ). (7.9)

As u is non-concave in p1 and p2, finding the global maximum is intractable. However, we

can get some effective approaches by restricting our attention to some special regimes.

7.2.1 Circuit Power Dominated Regime

In this regime, circuit power dominates power consumption, i.e. pc � pn for n = 1, 2.

This is usually true for short-range communications as small transmit power is needed to

compensate for path loss. In this case, we have

u(p1, p2)≈ w
pc

(
log(1+

p1g1

p2g21+σ2 )+log(1+
p2g2

p1g12+σ2 )
)
. (7.10)

Hence, maximizing EE is equivalent to maximizing sum network capacity, which has been

discussed in literature [70, 69]. The optimal solution takes on the form of binary power

control where each user either shuts down or transmits with full power [70]. Whether two

users transmit simultaneously or exclusively depends on interference strength.
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7.2.2 Transmit Power Dominated Regime

When the circuit power is negligible, e.g. in extremely long distance communications

where transmit power should be strong enough to compensate for large path loss,

u(p1, p2)≈
w log(1+

p1g1
p2g21+σ2 )

p1
+

w log(1+
p2g2

p1g12+σ2 )

p2
. (7.11)

By examining derivatives of u(p1, p2) in Appendix D.1, we can see that u(p1, p2) is strictly

decreasing with both p1 and p2. Hence, the optimal solution is to allocate as low power as

possible. However, the above conclusion holds only when the circuit power is negligible.

When the transmit power is comparable to the circuit power, other approaches are needed

to determine the optimal power.

7.2.3 Noise Dominated Regime

Now we look at the problem from a different perspective. When noise is much stronger

than interference, we have

u(p1, p2) ≈ w log(1 +
p1g1
σ2 )

p1 + pc
+

w log(1 +
p2g2
σ2 )

p2 + pc
. (7.12)

Hence, the problem is decoupled and the sum network EE is maximized when each user

selects power to maximize their own EE, which has already been given in [107, 60].

7.2.4 Interference Dominated Regime

In the interference dominated regime, interference is much stronger than noise, i.e. p1g12 �
σ2 and p2g21 � σ2 for any feasible p1 and p2 that support reliable transmission. To be

specific, we require that p1g12 � σ2 and p2g21 � σ2 are significant enough that the

interference-to-noise ratio (INR) and SINR of each user satisfies

INR > 1 + S INR. (7.13)

Note that Equation (7.13) does hold when the interference is strong engough since INR in-

creases with interference power while SINR decreases with it. The interference dominated
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Figure 7.1. Sum energy efficiency and transmit powers in interference dominated regime.

regime exists when different transmissions are close to each other, e.g. closely coupled.

Hence,

u(p1, p2) ≈
w log(1 +

p1g1
p2g21

)

p1 + pc
+

w log(1 +
p2g2
p1g12

)

p2 + pc
. (7.14)

In Appendix D.2, we show that u(p1, p2) is maximized by an ON-OFF approach, i.e. letting

the user with higher channel gain to transmit with energy-efficient power selection and

shutting down the other. Figure 7.1 illustrates an example when the average interference-

to-noise ratio is 20 dB. In Figure 7.1, the sum energy-efficiency is maximized by shutting

down User 2 and choosing power for User 1 to maximize its EE. In this regime, the design

of time-division protocols determines network spectral efficiency. Our work on DOMRA,

CIA-MAC, and CAD-MAC in Chapters 2, 3, and 4 focus on optimizing the time division

in this regime and can be used to improve energy efficiency as well. With these schemes,

energy-efficient link adaptation should be used when a user accesses the channel if energy

efficiency is the primary concern.
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Figure 7.2. Comparison of cooperative EE and SE.

7.2.5 Spectral Efficiency and Energy Efficiency Tradeoff with Cooperation

Our previous research [60] has shown that maximizing EE and maximizing SE usually

disagree. Therefore, tradeoff between them exists. To examine the impact of interference

on this tradeoff when ideal cooperation exists, we consider a symmetric two-user network

and compare energy-efficient schemes with spectral-efficient ones. Both users experience

Rayleigh fading. Different power optimizations result in different interference scenarios.

To characterize interference level, we need to use a metric that is independent of transmit

powers. Hence, define network coupling factor α,

α =
average interference channel gain

average signal channel gain
. (7.15)

α characterizes what level different transmissions interfere with each other and higher α

represents heavier interfering scenario.

Consider two network performance metrics, arithmetic and geometric means. The

power is optimized to maximize the arithmetic- or geometric-mean metric. It has been

indicated in [94] that optimization based on the arithmetic average of SE leads to power
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allocation for sum throughput maximization that considers no fairness since some users

may have zero throughput, and optimization based on the geometric average also assures

proportional fairness among all users. Optimization based on the arithmetic and geometric

averages of EE has similar characteristics and we call arithmetic- or geometric-mean met-

rics for EE optimization to be energy-efficient power optimization schemes without or with

fairness.

In Figure 7.2, the EEs and throughputs of four schemes are compared when α has dif-

ferent values. The schemes are the energy-efficient and spectral-efficient power allocation

either with or without proportional fairness. A peak power constraint is applied in the

power allocation. The schemes without fairness allocate power to maximize the sum of

either EE (energy-efficient) or throughput (spectral-efficient) while those with proportional

fairness maximize the product. From Figure 7.2, we can see that the tradeoff between SE

and EE depends on the network coupling.

7.3 Noncooperative Energy-Efficient Communications

The above section discusses energy-efficient power optimization with ideal cooperation in

a two-user network. Extension to special regimes for a multi-user network is straightfor-

ward and omitted. However, in general, it is difficult to determine the globally optimal

power allocation due to the nonconcavity of sum energy-efficiency functions. More users

and subchannels will result in more local maximums and searching the globally optimal

power allocation would be a daunting task. Even if the globally optimal solution can be

found, it is still impractical since it requires complete network knowledge, including inter-

ference channel gains. In this section, we consider a more practical case and assume no

cooperation among users. To assure fairness, all users apply the same policy using local

information. In the following, we first model the noncooperative energy-efficient control

from a game-theory perspective and then discuss the existence and uniqueness of its equi-

librium. Then we investigate SE and EE tradeoff assuming symmetric channel condition
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to obtain insights. After that, we further develop a noncooperative energy-efficient power

control scheme to facilitate implementation.

7.3.1 Noncooperative Energy-Efficient Power Optimization Game

Since the network energy efficiency depends on the behaviors of two or more users, we

model the power control to be a noncooperative game in game theory [108]. Rooted in

economics, game theory has been broadly applied in wireless communications for random

access and power control optimizations [68, 69].

In a noncooperative game, each user optimizes power allocation to maximize its energy

efficiency. Consider the power allocation of User n and denote the power vectors of other

users to be vector

p−n = (pT
1 ,p

T
2 , · · · ,pT

n−1,p
T
n+1, · · · ,pT

N)T . (7.16)

Given p−n, the best response of the power allocation of User n is

po
n = fn(p−n) = arg max

pn
un(pn,p−n), (7.17)

where un is given by (7.6) and is a function of both pn and p−n. fn(p−n) is called the best

response function of User n. The existence and uniqueness of po
n, i.e. the best response, is

assured by Theorem I in our previous work [107].

Note that noncooperative power control is not efficient in terms of SE optimization

since users tend to act selfishly by increasing their transmit power beyond what is rea-

sonable [68]. Hence, pricing mechanisms are introduced to regulate the aggressive power

transmission by individuals to produce more socially beneficial outcome towards improv-

ing sum throughput of all users [69]. Different from SE optimal power control, energy-

efficient power optimization desires a power setting that is greedy in EE but chary of power.

Furthermore, Problem (7.17) is equivalent to

po
n = arg max

pn
log(un(pn,p−n))

= arg max
pn

(
log(rn) − log(pn + pc)

)
,

(7.18)
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which implies that energy-efficient power control can be regarded as a variation of tradi-

tional spectral-efficient one with power pricing [69]. Since this power-conservative expres-

sion is socially favorable in interference-limited scenarios, energy-efficient power control

is desirable to reduce interference and improve throughput in a noncooperative setting.

Each user optimizes their power independently. The variation of power allocation of

one user impacts those of all others. Equilibrium is the condition of a network in which

competing influences are balanced assuming invariant channel conditions. Its properties

are important to network performance. Hence, we characterize the equilibrium of nonco-

operative energy-efficient power optimization in the following three sections.

7.3.2 Existence of Equilibrium

In a noncooperative game, a set of strategies is said to be at Nash equilibrium, referred

as equilibrium in the following, if no user can gain individually by unilaterally altering its

own strategy. Denote the equilibrium as

p∗ = (p∗1,p
∗
2, · · · ,p∗N). (7.19)

Nash equilibrium can be described by the following definition.

Definition 7.3.1 In an energy-efficient noncooperative game, an equilibrium is a set of

power allocation that no user can unilaterally improve its energy efficiency by choosing a

different set of power allocation, i.e.

p∗ = f (p∗) = ( f1(p∗−1), f2(p∗−2), · · · , fN(p∗−N)), (7.20)

where f (p) is the network response function.

The network response relies on energy efficiency of all users. In the following, we first

give the properties of energy efficiency function and then study the existence of equilibrium.

To facilitate our discussion, we first introduce the concept of quasiconcavity.
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Definition 7.3.2 As defined in [102], a function z, which maps from a convex set of real n-

dimensional vectors,D, to a real number, is called strictly quasiconcave if for any x1, x2 ∈
D and x1 , x2,

z(λx1 + (1 − λ)x2) > min{z(x1), z(x2)}, (7.21)

for any 0 < λ < 1.

Lemma 7.3.3 characterizes the energy efficiency function and is proved in Appendix

D.3.

Lemma 7.3.3 un(pn,p−n) is strictly quasiconcave in pn.

Based on Lemma 7.3.3, the existence of equilibrium p∗ is given by Theorem 7.3.4. A

necessary and sufficient condition for a set of power allocation to be an equilibrium is also

summarized in Theorem 7.3.4. The proof can be found in Appendix D.4.

Theorem 7.3.4 (Existence) There exists at least one equilibrium p∗ in the noncooperative

energy-efficient power optimization game defined by (7.17). A set of power allocation of

all users, p∗ = (p∗1,p
∗
2, · · · ,p∗N), is an equilibrium if and only if it satisfies that, for any

Subchannel i of any User n,

1. if
∑

j,i r( j)∗
n

pc+
∑

j,i p( j)∗
n
≤ R

′
(0)γ(i)∗

n , ∂un(pn,p∗−n)
∂p(i)

n

∣∣∣∣
pn=p∗n

= 0, i.e. R
′
(γ(i)∗

n p(i)∗
n )γ(i)∗

n = u(p∗n,p∗−n);

2. otherwise, p(i)∗
n = 0,

where γ(i)∗
n =

g(i)
nn∑N

j=1, j,n p(i)∗
j g(i)

jn+σ2 .

7.3.3 Uniqueness of Equilibrium in Flat Fading Channels

In this section, we discuss the uniqueness of the equilibrium. First, we consider a special

case when there is a single subchannel in a network and

po
n = fn(p−n) = arg max

pn
un(pn,p−n). (7.22)

Proposition 7.3.5 shows the properties of the response functions and is proved in Appendix

D.5.
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Proposition 7.3.5 When there is only one subchannel, the power allocation, i.e. the re-

sponse functions, of all users satisfy

• Concavity: fn(p−n) is strictly concave in p−n;

• Positivity: fn(p−n) > 0;

• Monotonicity: If p−n � q−n, fn(p−n) > fn(q−n);

• Scalability: For all α > 1, α fn(p−n) > fn(αp−n),

where � denotes vector inequality and each element of the vector satisfies the inequality.

Note that the monotonicity indicates that increasing interference results in increasing

transmit power while the scalability indicates that variation of transmit power is always

smaller than that of the interference power. These assure the convergence to a unique

equilibrium.

The properties in Proposition 7.3.5 can be extended to networks with multiple subchan-

nels where all subchannels experience the same channel gain, i.e. flat-fading channels. This

can be done by defining fn(p−n) to be the optimal total transmit power on all subchannels

and the four properties can be easily verified by the approaches in Appendix D.5.

Theorem 7.3.6 (Uniqueness) When the channel experiences flat fading, there exists one

and only one equilibrium p∗ in the noncooperative energy-efficient power optimization

game defined by (7.17).

Proof It has been shown in [109] that a noncooperative power control with positivity,

monotonicity, and scalability has a unique fixed point p = f (p). Hence, we have the

above theorem.
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7.3.4 Uniqueness of Equilibrium in Frequency-Selective Channels

When there are multiple subchannels which experience frequency-selective fading, whether

there is a unique equilibrium depends on channel conditions.

Consider a network with two users as an example. Let pc = 1,w = 1, σ2 = 1, g(1)
11 =

g(2)
11 = g(1)

22 = g(2)
22 = 1, g(1)

12 = g(1)
21 = 1e−10, g(2)

12 = g(2)
21 = 1e10. We show in Appendix D.6 that

one of the equilibrium has the form p∗1 = [pa pb] and p∗2 = [pc 0], where pa, pb, and pc are

positive. Due to the symmetry of network conditions, p1 = [pc 0] and p2 = [pa pb] also

form an equilibrium. Hence, the network has at least two equilibria. When there are more

users and subchannels, more equilibria will exist in general. However, in the following,

we will show that when the interfering channels satisfy a certain condition, there will be a

unique equilibrium.

We consider a general noncooperative power control over multiple subchannels where

each user selfishly chooses power allocation to maximize its own utility in an interference-

limited environment. The utility, denoted by Un(pn, In(p−n)), is assumed to be quasiconcave

in pn given In, interferences on all subchannels. In is a function of p−n and is determined

by (7.1). The best response of power allocation of User n is denoted to be

po
n = Fn(p−n) = F̃n(In(p−n)) = arg max

pn
Un(pn, In(p−n)). (7.23)

The noncooperative energy-efficient power optimization in (7.17) is an example of (7.23).

Denote the Jacobian matrix of F̃n at In to be ∂F̃n
∂In

and the Jacobian matrix of In at p−n to

be ∂In
∂p−n

. Then

∂F̃n

∂In
=



∂p(1)o
n

∂I(1)
n
· · · ∂p(K)o

n

∂I(1)
n

...
. . .

...

∂p(1)o
n

∂I(K)
n
· · · ∂p(K)o

n

∂I(K)
n


(7.24)
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and

∂In

∂p−n
=



g(1)
1n 0

. . .

0 g(K)
1n

...

g(1)
(n−1)n 0

. . .

0 g(K)
(n−1)n

g(1)
(n+1)n 0

. . .

0 g(K)
(n+1)n

...

g(1)
Nn 0

. . .

0 g(K)
Nn



. (7.25)

Denote ||A|| to be the Frobenius norm of matrix A = (ai j), i.e. ||A|| =
√∑

i, j a2
i j. We

know that when a contraction mapping has a fixed point, the fixed point is unique [110].

Readily, we have the following sufficient condition, which comes from [111], that assures

a unique equilibrium.

Theorem 7.3.7 (Uniqueness) In frequency selective channels, if for any User n, ||Fn(p−n)−
Fn(p̌−n)|| < ||p−n − p̌−n|| for any different p−n and p̌−n, there exists one and only one equilib-

rium p∗ in the noncooperative power control game defined by (7.23).

Intuitively, Theorem 7.3.7 says that if other users change their transmit powers by some

amount, the best power allocation of the user is altered by a lesser amount, then the equilib-

rium is unique. Note that the transmit powers of other users and the best response Fn(p−n) in

(7.23) are related through interference channel gains, which therefore determines the vari-

ation of the best response and whether the sufficient condition can be guaranteed. Stronger
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interference channel gains result in higher correlation and vice versa. The above two-user

network illustrates an example where one subchannel has extremely strong interference

channel gains. In this case, the sufficient condition is violated and there are multiple equi-

libria.

Based on Theorem 7.3.7, Theorem 7.3.8 explicitly shows the impact of interference

channel gains on the number of equilibria and is proved in Appendix D.7.

Theorem 7.3.8 (Uniqueness) In frequency selective channels, if for any User n,
∣∣∣∣∣
∣∣∣∣∣
∂In

∂p−n

∣∣∣∣∣
∣∣∣∣∣ <

1

supIn

∣∣∣∣
∣∣∣∣∂F̃n
∂In

∣∣∣∣
∣∣∣∣
, (7.26)

where supIn
is the supremum on all feasible In, there exists one and only one equilibrium

p∗ in the noncooperative power control game defined by (7.23).

After examining the Jacobian matrices, we see that the left hand side of (7.26) depends

on interference channel gains only, while the right hand side is independent of interference

channel gains. Hence, interference channel gains directly impacts the number of equilibria.

Consider an example where different users are sufficiently far away and all interference

channel gains are close to zero. It is easy to see that transmit powers of other users have

almost no effect on the best response of the user and there is a unique equilibrium.

Note that while a sufficient condition of a unique equilibrium for distributed power

control over a single channel is given in [109], we provide sufficient conditions of a unique

equilibrium for distributed multichannel power controls in Theorems 7.3.7 and 7.3.8, which

can be applied to different kinds of distributed multiple input multiple output (MIMO) and

orthogonal frequency-division multiplexing (OFDM) systems.

Given Theorems 7.3.7 and 7.3.8, a sufficient condition to assure a unique equilibrium

of the noncooperative energy-efficient power optimization follows immediately.

Theorem 7.3.9 (Uniqueness) In frequency selective channels, the noncooperative energy-

efficient power optimization game defined by (7.17) has a unique equilibrium if for any User

n, || fn(p−n) − fn(p̌−n)|| < ||p−n − p̌−n|| for any different p−n and p̌−n or
∣∣∣∣
∣∣∣∣ ∂In
∂p−n

∣∣∣∣
∣∣∣∣ < 1

supIn

∣∣∣∣
∣∣∣∣ ∂ fn
∂In

∣∣∣∣
∣∣∣∣
.
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Note that the above theorem only gives sufficient conditions of uniqueness that may not

be necessary ones. For example for a single-channel network, due to the strict concavity of

fn(p−n), supIn

∣∣∣∣
∣∣∣∣∂ fn
∂In

∣∣∣∣
∣∣∣∣ =

∂ fn
∂In

∣∣∣∣
In=0

. However, for all interference channel gains, there is always

a unique equilibrium, as shown in Theorem 7.3.6.

7.3.5 SE and EE Tradeoff without Cooperation

In this section, we investigate the tradeoff between noncooperative energy-efficient power

optimization and noncooperative spectral-efficient power control schemes. Here, no peak

power constraint is assumed to investigate performance limit.

Consider a symmetric single-channel network to simplify analysis and to get insights.

There are N users, all experiencing the same channel power gain g. All interference chan-

nels have the same power gain g̃. The network coupling factor is

α =
g̃
g
. (7.27)

Consider the equilibrium, which is unique according to Theorem 7.3.6. Due to the as-

sumption of network symmetry, all users transmit with the same power in the equilibrium.

Denote the transmit power of all users to be p.

The overall network EE is

u(p) =

N∑

n=1

w log
(
1 +

pg∑
i,i,n pg̃+σ2

)

p + pc
=

Nw log
(
1 +

p

(N−1)αp+σ2
g

)

p + pc
,

(7.28)

and the network SE is

r(p) = N log

1 +
p

(N − 1)αp + σ2

g

 . (7.29)

With noncooperative spectral-efficient power control, every user allocates power to self-

ishly maximize its SE. Without power limit, the transmit power tends to infinity in the

equilibrium. Besides, we can see that r(p) is strictly increasing in p. Hence, the maximum

network SE is obtained in the equilibrium and the upperbound is

rS E = lim
p→∞

r(p) = N log(1 +
1

(N − 1)α
) (7.30)
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Figure 7.3. Tradeoff of EE and SE with different interfering scenarios (pc = 1, g = 1, σ2 = 0.01,N = 2).

with the corresponding EE uS E = limp→∞ u(p) = 0, which is completely energy inefficient

and noncooperative SE optimal power control is not desired for energy efficiency.

With noncooperative energy-efficient power optimization, the network energy efficiency

at the equilibrium is uEE = u(p∗) with the corresponding SE rEE = r(p∗). Hence, the SE

penalty of energy-efficient power optimization is

rtr = rS E − rEE = N log(1 +
1

(N − 1)α
) − r(p∗). (7.31)

In an interference-free scenario, i.e. N = 1 or α = 0, the penalty is infinite. Otherwise,

whenever interference exists, it is bounded.

To further understand the tradeoff, Figure 7.3 illustrates a case when two users transmit

with the same power and interfere with each other. Curves with markers draw the rela-

tionship between transmit power and SE when the network has different couplings while

those without markers draw the corresponding energy efficiency. When α = 0, arbitrary SE

can be obtained by choosing enough transmit power. When α > 0, regions beyond the SE

upperbound is not achievable. Furthermore, EE is much more sensitive to power selection

than SE. In interference-limited scenarios, increasing transmit power beyond the optimal
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Figure 7.4. Noncooperative energy-efficient power optimization in the
equilibrium(Pc = 1, g = 1, σ2 = 0.01).

power for EE has little SE improvement but significantly hurts EE. Furthermore, power

optimization to achieve the highest energy efficiency will also have reduced SE tradeoff

with the increase of α. Figure 7.4 shows the transmit power in the equilibrium when the

network has different couplings and numbers of users. The equilibrium power decreases

with either user number or α and automatically alleviates network interference.

7.3.6 Implementation of Noncooperative Energy-Efficient Power Optimization

In the previous section we know that energy-efficient power optimization is advantageous

in interference-limited scenarios due to its conservative power allocation nature. In this

section, we will develop practical approaches for noncooperative energy-efficient power

optimization.

In (7.17), the best response of User n depends on the transmit power vectors of all other

users, p−n, which can not be obtained in a noncooperative setting. Instead, we observe

that p−n affects the best response in the form of interference, which thus contains sufficient
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information of p−n to determine the best response and can be acquired locally. Hence, we

let each user measure interferences on all subchannels to determine the power optimization.

At time t−1, the measured interference powers on all subchannels of User n are denoted

by In[t − 1] = [I(1)
n [t − 1], I(2)

n [t − 1], · · · , I(K)
n [t − 1]]T . Denote the predicted SINR to be

η̂(k)
n [t] =

p(k)
n [t]g(k)

nn

Î(k)
n [t − 1] + σ2

=
p(k)

n [t]g(k)
nn

I(k)
n [t − 1] + σ2

. (7.32)

Hence, the predicted EE is

ûn[t](pn[t]) =
r̂n[t]

pn[t] + pc
=

∑
k R(̂η(k)

n [t])∑
k p(k)

n [t] + pc

. (7.33)

The best response at time t of User n is

po
n[t] = arg max

pn[t]
ûn[t](pn[t]). (7.34)

Due to the strictly quasi-concavity of ûn[t], numerical methods like gradient ascent al-

gorithms can be used to find the optimal power allocation at each time slot. A Binary

Search Assisted Ascent algorithm has been developed in [107]. However, if we obtain the

optimal power allocation at each time slot, it requires intensive computations. Instead, we

introduce a temporal iterative binary search (TIBS) algorithm to track channel temporal

variation and search for the optimal power allocation with reduced complexity.

The basic idea of TIBS is to search a better power allocation along the gradient at each

time slot and enable iterative search along time. The power at t is updated by

pn[t] = pn[t − 1] + µ(∇ûn[t])pn[t−1], (7.35)

where (∇ûn[t])pn[t−1] is the gradient of ûn[t] at pn[t − 1] and µ is a small step size. Fixing

channel states and transmit powers of all other users, the EE at t will always be bigger than

that at t − 1 with sufficiently small step size except when the gradient is zero, i.e. pn[t − 1]

is already optimal [104]. However, small step size leads to slow convergence and channel

tracking capability. Denote

g(µ) = ûn[t](pn[t − 1] + µ(∇ûn[t])pn[t−1]). (7.36)
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It is easy to show that g(µ) is also strictly quasi-concave in µ and binary search can be used

for rapid location of the optimal step size µ∗ [107]. TIBS is summarized in the following

algorithm.

Algorithm Temporal Iterative Binary Search (TIBS)

(∗ noncooperative energy-efficient power optimization ∗)
Input: p[t − 1], I[t − 1]

Output: p[t]

1. use Gradient Assisted Binary Search( [107]) to find the optimal step size µ∗;

2. p[t] = p[t − 1] + µ∗(∇û[t])p[t−1],

3. return p[t]

Table 7.1. System parameters
Carrier frequency 1.5 GHz

Number of subchannels 96
Subchannel bandwidth 10 kHz

Target BER 10−3

Thermal noise power, No -141 dBW/MHz
Circuit power, PC 100 mW

Maximum transmit power 33 dBm
Propagation model Okumura-Hata model

Shadowing Log-normal
Modulation Uncoded M-QAM

7.4 Simulation Results

Table 7.2. Scheduling and power control
Legend Scheduler Power control
OptEE Energy-efficient TIBS

scheduler w/o fairness
PropEE Energy-efficient scheduler TIBS

w/ proportional fairness
Trad-Prop Traditional proportional fair Fixed power

S-Pwr Traditional proportional fair Traditional power control

In this section we present simulation results for an interference-limited uplink OFDMA

cellular network with reuse one. The network consists of seven hexagonal cells and the
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Figure 7.5. Performance comparison of different schemes.

center cell is surrounded by the other six. Users are uniformly dropped into each cell at

each simulation trial. The system parameters are listed in Table 7.1. The BS schedules

subchannels to maximize different network performance metrics. All schedulers and cor-

responding power control schemes are listed in Table 7.2. The energy-efficient schedulers

in [60] are used. The traditional proportional fair scheduler assigns subchannels to the user

with the highest r
T , where r is the instantaneous data rate on that subchannel and T the

average total throughput [16]. While energy-efficient schedulers assign subchannels to dif-

ferent users to maximize EE either with or without fairness, the traditional proportional fair

scheduler assigns all subchannels to one user at each time slot due to flat fading. We also

implement a traditional soft power control scheme [112]. In this scheme, parameters are

selected to maximize the throughput of cell-edge users while not hurting the throughput of

other users too much.

Figure 7.5 compares the average sum network EE and the corresponding throughput

performance respectively. For fixed-power transmission, the transmit powers are shown

in the legend. To see performance loss due to interference, the energy-efficient sched-

uler without fairness and the traditional proportional scheduler with the maximum transmit
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power is also simulated in a single cell network. We can see that transmitting with the

highest power brings the highest interference and causes significant throughput loss for the

traditional scheduler. In contrast, energy-efficient power control effectively reduces net-

work interference and has much less throughput loss. While our previous results in [60]

show that EE and throughput efficiency do not necessarily agree for an interference-free

single cell scenario, the situation is different for a multi-cell interference-limited network.

Here energy-efficient schemes optimize both throughput and energy utilization and exhibit

an improved SE tradeoff. Figure 7.6 further shows the cumulative distribution functions

(CDFs) of energy efficiency and throughput when there are nine users in the network. Ob-

serve the throughput CDF of the soft power control scheme. Compared with other tra-

ditional schemes, it maximizes cell-edge throughput that is illustrated in low-throughput

range. However, it performs much worse than other traditional schemes in high-throughput

range. From the CDFs, we can see that the proposed EE schemes not only improve the sum

energy efficiency and throughput, but also uniformly improve the performance of all users

in the cell.
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Figure 7.6. Comparison of different schemes.
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7.5 Conclusion

Since power optimization is critical for both interference management and energy utiliza-

tion, we investigate energy-efficient power optimization schemes for interference-limited

communications. The optimal power allocation solution in an interference-limited setting

is intractable due to the non-convexity of the objective function. To gain insight into this

problem, we first study a two-user network with ideal user cooperation and get effective

approaches for specific regimes. Then we develop a noncooperative energy-efficient power

optimization game. We show that the equilibrium always exists. Furthermore, when there

is only one subchannel or the channel experiences flat fading, there will be a unique equi-

librium. However, in frequency-selective channels, this is not true in general. We give a

sufficient condition that assures the uniqueness. We further show that the spectral efficiency

tradeoff of energy-efficient power control is reduced in interference-limited scenarios. Then

we develop a practical approach of the noncooperative power optimization game. Simu-

lation results show that the proposed scheme improves not only energy efficiency but also

spectral efficiency uniformly for all users due to the conservative nature of power allocation

achieved, which reduces other-cell interference to improve the overall network throughput.
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CHAPTER 8

CONCLUSION

In this dissertation, we exploit CSI to improve both spectral and energy efficiency of

wireless communications. The main contribution is summarized as follows.

We have investigated a series of general treatments of exploiting CSI in a distributed

way to control the medium access for networks with arbitrary topologies and traffic distri-

butions. As the first step, we have designed DOMRA, which uses local CSI and two-hop

static neighborhood information to improve slotted Aloha. DOMRA adapts to the inhomo-

geneous spatial traffic distribution and achieves performance comparable with the global

optimum, which can only be obtained using complete network knowledge. The generic

framework developed in DOMRA proved to be very useful in improving cellular networks

as well. We have developed CIA-MAC to deal with the downlink severe cochannel in-

terference that is usually experienced by cell-edge users. CIA-MAC requires only minor

changes of existing protocols to obtain significant performance gain. Aloha-based schemes

have low channel utilization efficiency because of the collision of entire data frames. To fur-

ther improve performance, we have developed a scheme with signaling negotiation ahead

of data transmission to avoid collision. We noticed that the backoff-after-collision approach

in traditional multiple access schemes like CSMA/CA ignored channel variations and de-

ferring transmission without considering the variations might result in data transmission in

deep fades. Hence, in our design, each frame is divided into contention and transmission

periods and conflicts are optimally resolved in the Aloha-based contention period using

the methodology of DOMRA. CAD-MAC completely resolves the contention of networks

with arbitrary topologies. Besides, it achieves throughput close to that using centralized

schedulers and is robust to any channel uncertainty.

We have also addressed energy-efficient communications in this dissertation. We have
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discovered the global optimal energy-efficient OFDM transmission using the strict quasi-

concavity of energy efficiency functions. This transmission optimally balances the power

consumption of electronic circuits and that of data transmission on each subchannel. The

global optimal energy-efficient transmission can be obtained using iterative operations,

which may be complex to be implemented in a practical system. Besides, running iter-

ative algorithms consumes additional energy. Hence, using a locally linear approxima-

tion, we have developed a closed-form link adaptation scheme, which performs close to

the global optimum. Besides, since subchannel allocation in OFDMA systems determines

the energy efficiency of all users, we have further developed closed-form resource alloca-

tion approaches that also achieve near-optimal performance. Later we observed that in an

interference-free environment, a tradeoff between energy efficiency and spectral efficiency

exists, as increasing transmit power always improves spectral efficiency but not necessar-

ily energy efficiency. Hence we have continued the investigation in interference-limited

scenarios and found that since increased transmit power also brings higher interference to

the network, spectral efficiency is not necessarily higher. When interference dominates,

energy-efficient power optimization not only improves energy efficiency but also spectral

efficiency because of the conservative nature of power allocation, which effectively con-

trols interference to the network. Especially, in interference-dominated regimes, e.g., local

area networks, both spectral- and energy-efficient communications desire optimized time-

division protocols and the proposed DOMRA, CIA-MAC, and CAD-MAC can be used to

improve both spectral and energy efficiency.

130



APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3.1

Since in each transmission time slot, User i sends packets to User j on subchannel k only

when this subchannel has the best channel gain among all users in Ti, and the subchannel

power gain is above H(i, j)k , we get the following:

p(i, j)k = Pr
{

h(i, j)k = max
a∈Ti

(h(i,a)k), h(i, j)k ≥ H(i, j)k

}

= Pr
{

h(i, j)k = max
a∈Ti

(h(i,a)k)
}
· Pr

{
h(i, j)k ≥ H(i, j)k

∣∣∣∣∣h(i, j)k = max
a∈Ti

(h(i,a)k)
}

=
1
|Ti| Pr

{
max
a∈Ti

(h(i,a)k) ≥ H(i, j)k

}
=

1
|Ti|

1 −
∏

a∈Ti

Pr
(
h(i,a)k < H(i, j)k

)

=
1
|Ti|

(
1 − F |Ti |(H(i, j)k)

)

A.2 Proof of Theorem 2.3.2

According to (2.16), we can see that H
∗
(i, j)k

is independent of j and k. Hence,the first con-

straint of (2.22) is
∑

j∈Ti,k=1,...,K Pr(i, j)k ≤ Pa|Ti|(
∫ ∞

H
∗
(i, j)k

1
hdF |Ti |(h)

)−1. Since data rate function

R() is assumed to be a strictly concave function,
∑

j∈Ti,k R(Pr(i, j)k) ≤ |Ti|KR(
∑

j∈Ti ,k Pr(i, j)k
K|Ti | ). The

equation holds if and only if Pr(i, j)k is the same value for all j ∈ Ti and k. Hence, for optimal

solution, max j
P∗r(i, j)k

H
∗
(i, j)k

is the same for all k = 1, ...,K, and the second constraint of (2.22) is

equivalent to P∗r(i, j)k
≤ PmH

∗
(i, j)k

K . Then, it is easy to see that when the first constraint in (2.22)

takes effect, the optimal solution is the first term in (3.4), while when the second constraint

takes effect, the optimal solution is the second term in (3.4). Hence, (3.4) satisfies both

constraints, and the objective value will be maximized when one constraint takes effect

while satisfying the other constraint.
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A.3 Proof of Theorem 2.3.3

According to the symmetry of all subchannels, we see that maxh, j P(i, j)k is the same for all

subchannels. Hence, constraint (2.26c) equals maxh, j P(i, j)k(h) ≤ Pm
K , which is the same as

P(i, j)k(h) ≤ Pm
K . According to (2.16), H

∗
(i, j)k

is independent of j and k. Problem (2.26) is

equivalent to:

P∗i = arg min
Pi
−
∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

R
(
hP(i, j)k(h)
noW/K

)
dFTi(h) (A.1a)

subject to

∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

P(i, j)k(h)dF |Ti |(h) − |Ti|Pa ≤ 0, (A.1b)

and

P(i, j)k(h) − Pm

K
≤ 0. (A.1c)

Introducing Lagrange multipliers λ(i, j)k(h), γ(i, j)k(h) and ν ≥ 0 for the three inequalities

respectively, the Lagrange function associated with problem (A.1) is:

L(Pi, λ(i, j)k , γ(i, j)k , ν)

= −
∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

R


ĥP(i, j)k (̂h)
noW/K

 dF |Ti |(̂h) +
∑

j∈Ti,k

λ(i, j)k(h)(−P(i, j)k(h))+
∑

j∈Ti,k

γ(i, j)k(h)(P(i, j)k(h)−Pm

K
)+

ν


∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

P(i, j)k (̂h)dF |Ti |(̂h) − |Ti|Pa



=
∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

L(i, j)k (̂h)dF |Ti |(̂h) −
∑

j∈Ti,k

γ(i, j)k(h)
Pm

K
− ν|Ti|Pa,

where L(i, j)k (̂h) = −R
(

ĥP(i, j)k (̂h)
noW/K

)
+ νP(i, j)k (̂h) − λ(i, j)k(h)P(i, j)k(h)/C + γ(i, j)k(h)(P(i, j)k(h))/C, in

which C = 1 − F |Ti |(H
∗
(i, j)k

). According to [104], we obtain the following Karush-Kuhn-

Tucker (KKT) conditions for optimal power allocation when h ≥ H
∗
(i, j)k

:

∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h) − |Ti|Pa ≤ 0, (A.2)

P∗(i, j)k
(h) − Pm

K
≤ 0, (A.3)
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λ∗(i, j)k
(h) ≥ 0, γ∗(i, j)k

(h) ≥ 0, and ν∗ ≥ 0, (A.4)

λ∗(i, j)k
(h)P∗(i, j)k

(h) = 0, (A.5)

γ∗(i, j)k
(h)

(
P∗(i, j)k

(h) − Pm

K

)
= 0, (A.6)

ν∗

∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h)−|Ti|Pa

= 0, (A.7)

and

∂L(i, j)k(h)
∂P(i, j)k(h)

∣∣∣∣∣∣∣
P∗(i, j)k (h)

= −R
′(hP(i, j)k(h)

noW/K
) hK
noW

+ ν∗ − λ∗(i, j)k
(h)/C + γ∗(i, j)k

(h)/C = 0. (A.8)

1◦. When
∑

j∈Ti,k

∫ ∞

H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h)<|Ti|Pa, (A.9)

according to (A.7), ν∗ = 0. From (A.8), γ∗(i, j)k
(h) > 0. Hence, P∗(i, j)k

(h) = Pm
K from (A.6).

(A.9) equals Pm <
Pa

1−F |Ti |(H
∗
(i, j)k

)
.

2◦. When
∑

j∈Ti,k

∫ ∞
H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h) = |Ti|Pa, i.e. Pm ≥ Pa

1−F |Ti |(H
∗
(i, j)k

)
,

a). if γ∗(i, j)k
(h) > 0, P∗(i, j)k

(h) = Pm
K from (A.6), and λ∗(i, j)k

(h) = 0 from (A.5). According

to (A.8), ν∗ < R
′ ( hPm

noW

)
hK

noW

b). if γ∗(i, j)k
(h) = 0, from (A.8), ν∗ = R

′
(

hP∗(i, j)k (h)

noW/K

)
hK

noW + λ∗(i, j)k
(h)/C ≥ R

′
(

hP∗(i, j)k (h)

noW/K

)
hK

noW .

According to the strictly decreasing assumption of the first order derivative of R(η), R
′
(

hP∗(i, j)k (h)

noW/K

)
≤

R
′
(0), i.e. ν∗ ≤ R

′
(0) hK

noW + λ∗(i, j)k
(h)/C, and equality holds only when P∗(i, j)k

(h) = 0. Hence,

with (A.4) and (A.5), if ν∗ ≥ R
′
(0) hK

noW , it is easy to see that P∗(i, j)k
(h) = 0. If ν∗ < R

′
(0) hK

noW ,

P∗(i, j)k
(h) > 0, λ∗(i, j)k

(h)=0, and R
′
(

hP∗(i, j)k (h)

noW/K

)
hK

noW = ν∗. Then P∗(i, j)k
(h) = R

′−1
(
ν∗noW

hK

)
noW
Kh .

Hence, when h ≥ H
∗
(i, j)k

, we have

P∗(i, j)k
(h)=



Pm
K ν∗<R

′( hPm
noW

)
hK

noW ,

0 ν∗≥R
′
(0) hK

noW ,

R
′−1

(
ν∗noW

hK

)
noW
Kh otherwise,

(A.10)

Observing that both H
∗
(i, j)k

and P∗(i, j)k
(h) are independent of j and k, substituting (A.10) into
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the condition
∑

j∈Ti,k

∫ ∞
H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h) = |Ti|Pa, we get

∫ ∞

H
∗
(i, j)k

P∗(i, j)k
(h)dF |Ti |(h) =

Pa

K
. (A.11)

Since P∗(i, j)k
(h) is a piecewise-linear decreasing function of ν∗ with breakpoints at R

′
(0) hK

noW

and R
′ ( hPm

noW

)
hK

noW , (A.11) has a unique solution of ν∗.

Theorem 2.3.3 is readily obtained from both 1◦ and 2◦. The solution is globally optimal

since for convex optimizations, KKT conditions are both necessary and sufficient for a local

minimum to be a global minimum. If, in addition, the objective function is strictly convex,

the globally optimal solution is unique. It is easy to see that in (A.1), given that the first

order derivative R
′
(η) is positive and strictly decreasing, the constraints are convex, and the

objective function is strictly convex of P(i, j)k(h), j ∈ Ti, k = 1, · · · ,K, and the unique global

optimality follows.
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APPENDIX B

PROOFS FOR CHAPTER 4

B.1 Proof of Theorem 4.4.2

Proof We prove that the two conditions of the definition hold for CAD-MAC.

1) Suppose two links, (i, j) and (k, l), that have won the contention have collision and

the transmission of User i interferes with the reception of User l. First, (i, j) and (k, l)

should not have won the contention at the same CRS since the REQUESTs of the two links

collide at User l and User l will not acknowledge SUCCESS. If (i, j) receives SUCCESS

first, the OCCUPIED signal of User i will prevent User l from acknowledging SUCCESS.

If (k, l) wins first, the broadcasting of SUCCESS by User l will prevent User i from sending

REQUEST. Hence, Condition 1 always holds.

2) To verify Condition 2, suppose that there exists a link (I, J) that has not won access

and does not collide with any link that has won. Besides, within the interference range of

Link (I, J), no other link could win as otherwise, after that link wins, Link (I, J) should not

contend and the contention is completely resolved. There are two possibilities. (1) User

I does not send any REQUEST all the time or (2) whenever User I sends a REQUEST, it

collides with that of other links. We show in the following that both have zero possibility.

(1) User I does not send any REQUEST all the time. This indicates that hIJ < ĤIJ[k]

for all k > K, where K > 0. Obviously nobody that interferes with User J should send

anything. Hence, User J will keep on sending IDLE signals to User I and ĤIJ[k] will be

lowered successively. It is easy to see that in this case limk→∞ ĤIJ[k] = Ĥm
IJ. Hence, the

probability that hIJ < ĤIJ[k] for all k > K is zero and sooner or later User I will send a

REQUEST and win.

(2) Whenever (I, J) sends a REQUEST, it collides with others. Denote the CRSs that

(I, J) sends REQUESTs by C = {c1, c2, · · · }, where c1 < c2 < · · · . Suppose there are N

links that collide with (I, J). According to (4.16), the contention probability of any link
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using ADs I or II is 1
2 after sending the first REQUEST. If using AD III, the contention

probability is zero. We consider the CRSs after all the interfering links have sent the first

REQUEST and denote Nk ≤ N to be the number of interfering links that contends with

probability 1
2 in CRS k. The probability that (I, J) keeps on contending and never succeeds

is given by

Pr{(I, J) never wins}

= lim
|C|→∞

∏

k∈C
Pr{at least one interferer contends in CRS k}

= lim
|C|→∞

∏

k∈C

(
1 − (1 − 1

2
)Nk

)
(B.1)

≤ lim
|C|→∞

∏

k∈C
(1 − (

1
2

)N) = lim
|C|→∞

(1 − (
1
2

)N)|C| < σ (B.2)

for any σ > 0. Hence, the probability that (I, J) never resolves its contention is zero. That

is, with probability one, (I, J) always wins the contention when none of its neighbors can

win and the network contention within the interference range of (I, J) can always be

resolved.

Theorem 4.4.2 follows immediately.

B.2 Proof of Theorem 4.4.3

Proof Suppose there are N links and in CRS 1, each has the contention probability pi, j[1] =

1
N . According to (4.16), the contention probability in CRS k is

pi j[k] =



1
N , IDLE in all the previous CRSs,

1
2 , otherwise.

(B.3)

Denote by kn the average number of CRSs necessary to resolve the collision involving n

links. From (B.3), these links will contend with probability 1
2 if they still contend in the

following CRSs. Hence,

kn =

(
1
2

)n 
n∑

i=2

(
n
i

)
(ki + 1) +

(
n
0

)
(kn + 1) +

(
n
1

)
1

 , (B.4)
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where
(

1
2

)n (
n
i

)
is the probability that i users have their gains above the thresholds and on

average, ki additional CRSs are needed if i > 1. If i = 0, all users have their gains below the

thresholds and are involved in the following contention. If i = 1, the contention is resolved.

It has been proved in [26] that kn in (B.4) satisfies

log2(n) ≤ kn ≤ log2(n) + 1 (B.5)

for all n. Before a collision happens, all users may have channel gains so low that several

CRSs are necessary for them to lower their thresholds successively until some users are

allowed to send REQUESTs. Hence, the average number of CRSs necessary for completely

resolving the network contention is

KN=

∞∑

i=0

(1−
1
N

)Ni


N∑

n=1

(
N
n

)
(

1
N

)n(1 − 1
N

)N−n(kn + i + 1)


 , (B.6)

where (1 − 1
N )Ni is the probability that all users have their gains below their thresholds in

all the first i CRSs and
(

N
n

)
( 1

N )n(1 − 1
N )N−n is the probability that in the i + 1st CRS, n users

send REQUESTs and collide. Let MN =
∑N

n=1

(
N
n

)
( 1

N )n(1 − 1
N )N−n(kn + 1). Then,

MN ≤
N∑

n=1

(
N
n

)
(

1
N

)n(1 − 1
N

)N−n(log2(n) + 1)

<

N∑

n=1

(
N
n

)
(

1
N

)n(1 − 1
N

)N−n(n + 1)

= 2 − (1 − 1
N

)N . (B.7)

Hence, KN equals

KN = MN

∞∑

i=0

(1− 1
N

)Ni +

∞∑

i=0

i(1− 1
N

)Ni

=
MN

1 − (1 − 1
N )N

+
(1 − 1

N )N

(1 − (1 − 1
N )N)2

<
2 − (1 − 1

N )N

1 − (1 − 1
N )N

+
(1 − 1

N )N

(1 − (1 − 1
N )N)2

= 1 +
1

[1 − (1 − 1
N )N]2
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< 1 + [1 − e−1]−2. (B.8)

Hence, KN is bounded for all N and the right hand side of (B.6) converges. A tighter bound

is

KN ≤ M̂N

1 − (1 − 1
N )N

+
(1 − 1

N )N

(1 − (1 − 1
N )N)2

,

where M̂N =
∑N

n=1

(
N
n

)
( 1

N )n(1 − 1
N )N−n(log2(n) + 1). As N goes to infinity, using computer

calculation, we have

KN < K∞ ≤ 2.43. (B.9)

B.3 Proof of Theorem 4.4.4

Proof Let K be the number of CRSs necessary to completely resolve network contention in

a frame slot and K = {1, 2, · · · ,K} the corresponding set of CRSs. Let L be the number of

links winning the contention andKl, i = 1 · · · , L, the corresponding set of CRSs that the lth

winning link is involved in the contention. Assume that Kl, l = 1, · · · , L are independently

and identically distributed and independent of L. Obviously,

K =
⋃

i

Ki and K = |K| ≤
∑

i

|Ki|, (B.10)

where |X| is the cardinality of set X. Define the contention coexistence factor as

β =
E(

∑
i |Ki|)

E(|K|) . (B.11)

It is easy to see that β is the average number of simultaneous resolutions in each CRS.

For example, if all users interfere with all others, then L = 1 and β = 1, meaning only

one resolution in each CRS. If a network consists of L groups of users and the communi-

cation of any group does not interfere with that of any other group, then these L groups

can resolve the contention within each group to produce L winners. If we further assume

K1,K2, · · · ,KL are independently and identically distributed, then β = L, indicating L

simultaneous resolutions in each CRS on average. Then we have

K = E(K) = E (|K|) =
E(

∑L
i |Ki|)
β

. (B.12)
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Furthermore, L is a stopping time for Ki and according to Wald’s equation [113], we have

K =
E(|Ki|)E(L)

β
. (B.13)

Obviously from Theorem 4.4.3, E(|Ki|) < K∞. Hence,

K <
2.425 · E(L)

β
. (B.14)
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APPENDIX C

PROOFS FOR CHAPTER 5

C.1 Proof of Lemma 5.2.2

Proof Denote the upper contour sets of U(R) as

S α = {R � 0|U(R) ≥ α}, (C.1)

where symbol � denotes vector inequality and R � 0 means each element of R is non-

negative. According to Proposition C.9 of [102], U(R) is strictly quasiconcave if and only

if S α is strictly convex for any real number α. When α < 0, no points exist on the con-

tour U(R) = α. When α = 0, only 0 is on the contour U(0) = α. Hence, S α is strictly

convex when α ≤ 0. Now we investigate the case when α > 0. S α is equivalent to

S α = {R � 0|αPC +αPT (R)−R ≤ 0}. Since PT (R) is strictly convex in R, S α is also strictly

convex. Hence, we have the strict quasiconcavity of U(R).

The partial derivative of U(R) with ri is

∂U(R)
∂ri

=
PC + PT (R) − RP

′
T (R)

(PC + PT (R))2 ,
β(ri)

(PC + PT (R))2 ,
(C.2)

where P
′
T (R) is the first partial derivative of PT (R) with respect to ri. According to Lemma

5.2.2, if r∗i exists such that ∂U(R)
∂ri

∣∣∣∣
ri=r∗i

= 0, it is unique, i.e. if there is a r∗i such that β(r∗i ) = 0,

it is unique. In the following, we investigate the conditions when r∗i exists.

The derivative of β(ri) is

β
′
(ri) = −RP

′′
T (R) < 0, (C.3)

where P
′′
T (R) is the second partial derivative of PT (R) with respect to ri. Hence, β(ri) is

strictly decreasing. According to the L’Hopital’s rule, it is easy to show that

lim
ri−>∞

β(ri) = lim
ri−>∞

(PC + PT (R) − RP
′
T (R)) = lim

ri−>∞

(
PC + PT (R) − RP

′
T (R)

ri
ri

)

= lim
ri−>∞

(
P
′
T (R) − P

′
T (R) − RP

′′
T (R)

1
ri

)
= lim

ri−>∞
−P

′′
T (R)Rri < 0.

(C.4)
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Besides,

lim
ri−>0

β(ri) = lim
ri−>0

(PC + PT (R) − RP
′
T (R))

= PC + PT (R(0)
i ) − R(0)

i P
′
T (R(0)

i ),
(C.5)

where R(0)
i = [r1, r2, · · · , ri−1, 0, ri+1, · · · , rK]T and R(0)

i =
∑

j,i r j.

(1o)When PC + PT (R(0)
i ) − R(0)

i P
′
T (R(0)

i ) ≥ 0, limri−>0 β(ri) ≥ 0. Together with (C.4), we

see that t∗i exists and U(R) is first strictly increasing and then strictly decreasing in ri.

(2o)When PC + PT (R(0)
i ) − R(0)

i P
′
T (R(0)

i ) < 0, limri−>0 β(ri) < 0. Together with (C.3) and

(C.4), t∗i does not exist. However, U(R) is always strictly decreasing in ri. Hence, U(R) is

maximized at ri = 0.

Lemma 5.2.2 is readily obtained.

C.2 Proof of the Upperbound in Theorem 5.2.4

Proof U(R) = R
PC+PT (R) ≤ R

PT (R) . Denote Û(R) = R
PT (R) . Û

′
(R) =

dÛ(R)
dR =

PT (R)−RP
′
T (R)

P2
T (R) .

According to the L’Hopital’s rule, limR→0 Û
′
(R) = limR→0

PT (R)−RP
′
T (R)

P2
T (R) = limR→0

−RP
′′
T (R)

2PT (R)P′T (R)
=

limR→0
−P
′′
T (R)

2(P′T (R))2 ≤ 0. Besides PT (R) − RP
′
T (R) is 0 when R = 0 and has negative derivative

when R > 0. Hence, PT (R)−RP
′
T (R) < 0 when R > 0. Thus, Û

′
(R) is negative when R > 0

and Û(R) is maximized when R approaches zero, i.e. U(R) ≤ limR→0
R

PT (R) = 1
P′T (0)

.

C.3 Proof of Propositions 5.2.5, 5.2.6, and 5.2.7

Proof Denote PR(r) to be the received power on a subchannel for reliable detection when

the data rate on the subchannel is r. We have PT (R) =
KPR(r)

g =
KPR( R

K )
g , where g is the

channel power gain. It is easy to see that PR(r) is monotonically increasing and strictly

convex, and PT (0) = PR(0) = 0. According to Theorem 5.2.4, we have R∗P
′
T (R∗) =

PC + PT (R∗), which is equivalent to R∗P
′
R(R∗

K ) − KPR(R∗
K ) = PCg. By differentiating the

left hand side with respect to R∗,
∂
(
R∗P′R( R∗

K )−cPR( R∗
K )

)

∂R∗ = R∗
K P

′′
R(R∗

K ) > 0. Hence, the left hand

side is strictly increasing in R∗. Therefore, higher data rate should be used when the channel

has higher power gain. Suppose g1 > g2, and the corresponding optimal modulation and
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coding result in data rates R∗1 and R∗2 respectively. Hence, U1(R∗1) > U1(R∗2). Besides,

U1(R∗2) =
R∗2

PC+
KPR(R∗2/K)

g1

>
R∗2

PC+
KPR(R∗2/K)

g2

= U2(R∗2). Hence, the energy efficiency increase with

channel gain.

According to Theorem 5.2.4, R∗P
′
T (R∗) − PT (R∗) = PC. The derivative of the left hand

side is R∗P
′′
T (R∗) > 0. Hence, R∗ increases with PC. The proof that the energy efficiency

decreases with circuit power is similar to the proof that energy efficiency increases with

channel gain. When PC = 0, according to proof in C.2, U(R) is maximized when R ap-

proaches zero, i.e. Umax = limR→0
R

PT (R) = 1
P′T (0)

.

R = Kr and PT (R) = KPT ( R
K ), where PT (r) is the transmit power on each subchannel,

and is monotonically increasing and strictly convex in r. According to Theorem 5.2.4, we

have R∗P
′

T (R∗
K ) = PC +KPT (R∗

K ), which is equivalent to r∗P
′

T (r∗)−PT (r∗) = PC
K . The left hand

side is increasing in r∗ while the right hand side is decreasing in K. Hence, the data rate

on each subchannel should decrease with increasing number of subchannels assigned. The

proof that the energy efficiency increases with the number of subchannels assigned is also

similar to the proof in C.3 and is omitted. The highest energy efficiency is obtained with

infinite number of subchannels, i.e. U(R) = limK→∞ R
PC+PT (R) = r

PT (r)
. Similar to the proof

in C.2, U(R) is maximized when r approaches zero. We have Umax = limr→0
r

PT (r)
= 1

P′T (0)
.

C.4 Proof of Theorem 5.4.2

Proof The global convergence is straightforward from Lemmas 5.2.2. Since r[0]
2 = αr[0]

1

and r[i]
1 ≤ r∗ ≤ r[i]

2 , with induction, we have r[i]
2 − r[i]

1 =
r[0]

2 −r[0]
1

2i ≤ (α−1)r∗
2i . Hence, r̂[i] =

r[i]
1 +r[i]

2
2 ≥ (2r[i]

2 − (α−1)r∗
2i )/2 ≥ r∗ − (α−1)r∗

2i+1 and r̂[i] ≤ r∗ +
(α−1)r∗

2i+1 . Then |̂r[i] − r∗| ≤ (α−1)r∗
2i+1 . Let

(α−1)r∗
2i+1 ≤ ε. We have i ≥ log2( (α−1)r∗

ε
− 1). Theorem 5.4.2 follows immediately.
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APPENDIX D

PROOFS FOR CHAPTER 7

D.1 Proof for Transmit-Power-Dominated Regime

Proof It is obvious that the second term in u(p1, p2) is strictly decreasing in p1. To deter-

mine the first term, we need to verify that F(p) =
log(1+ap)

p ,∀a > 0, is strictly decreasing in

p, i.e.
∂F(p)
∂p

=
ap − log(1 + ap) − ap log(1 + ap)

p2(1 + ap)
< 0 (D.1)

which is equivalent to G(p) = ap − log(1 + ap) − ap log(1 + ap) < 0. G(0) = 0. Besides

∂G(p)
∂p = −a log(1 + ap) < 0. Hence G(p) < 0,∀p > 0. Thus F(p) is strictly decreasing in p.

D.2 Proof for Interference-Dominated Regime

Proof Since we are considering interference dominated regime, whenever Users 1 and

2 are sending data, p1g12 � σ2 and p2g21 � σ2 and INR > 1 + S INR due to close

coupling between these transmissions. In wireless communications, radio links exhibit a

threshold effect where link quality is acceptable where signal-to-noise ratio must exceed

certain thresholds [114]. This indicates that the power allocation should not be too small.

We assume that feasible p1 and p2 satisfies p1 ≥ p̂1 and p2 ≥ p̂2; otherwise, the user is shut

down. Besides, in the interference dominated regime, p̂1g12 � σ2 and p̂2g21 � σ2. We

compare two schemes. The first is to let both users send data simultaneously and the other

is to shut down one user. First, we will show that when both users transmit, for User 1,

2w log(1+
p1g1

p2g21+σ2)

p1 + pc
<

w log(1+
p1g1
σ2 )

p1 + pc
, (D.2)

which is equivalent to show that (1+
p1g1

p2g21+σ2 )2 < 1+
p1g1
σ2 . This inequality equals to

1+
p1g1

p2g21 + σ2 <
p2g21

σ2 . (D.3)
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Since INR > S INR + 1, (D.3) holds and so is (D.2). Similarly we have the same result for

User 2. When both users are sending, the maximum energy efficiency is

max
p1≥p̂1� σ2

g12

p2≥p̂2� σ2
g21


w log(1 +

p1g1
p2g21+σ2 )

p1 + pc
+

w log(1 +
p2g2

p1g12+σ2 )

p2 + pc

 . (D.4)

Assume the above maximum energy efficiency is obtained by p◦1 and p◦2. According to

(D.2),

w log(1 +
p◦1g1

p◦2g21+σ2 )

p◦1 + pc
<

w log(1 +
p◦1g1

σ2 )
2(p◦1 + pc)

≤ 1
2

max
p1

(w log(1 +
p1g1
σ2 )

p1 + pc

)
(D.5)

Similarly,
w log(1+

p◦2g2
p◦1g12+σ2 )

p◦2+pc
< 1

2 maxp2

(
w log(1+

p2g2
σ2 )

p2+pc

)
. Suppose g1 ≥ g2. It is easy to see that

max
p1

(w log(1 +
p1g1
σ2 )

p1 + pc

)
≥ max

p2

(w log(1 +
p2g2
σ2 )

p2 + pc

)
. (D.6)

Comparing the above inequalities, we can see that

max
p1

(w log(1 +
p1g1
σ2 )

p1 + pc

)
>

w log(1 +
p◦2g2

p◦1g12+σ2 )

p◦2 + pc
+

w log(1 +
p◦2g2

p◦1g12+σ2 )

p◦2 + pc
. (D.7)

The conclusion follows immediately. Extension to multi-user case is straightforward.

D.3 Proof of Lemma 7.3.3

Proof Denote the upper contour sets of un(pn,p−n) as S α = {pn � 0|un(pn,p−n) ≥ α}, where

symbol � denotes vector inequality and R � 0 means each element of R is nonnegative.

According to Proposition C.9 of [102], un(pn,p−n) is strictly quasiconcave in pn if and

only if S α is strictly convex for any real number α. It is obvious that when α ≤ 0, S α is

strictly convex when α ≤ 0. Now we investigate the case when α > 0. Since un(pn,p−n) =
∑K

k=1 R( p(k)
n g(k)

nn∑N
i=1,i,n p(k)

i g(k)
in +σ2

)

pc+
∑K

k=1 p(k)
n

≥ α, S α is equivalent to S α = {pn � 0
∣∣∣∣∣
∑K

k=1 R( p(k)
n g(k)

nn∑N
i=1,i,n p(k)

i g(k)
in +σ2 ) − (pc +

∑K
k=1 p(k)

n )α ≥ 0}. Since R() is strictly concave, S α is also strictly convex. Hence, we have

Lemma 5.2.2.
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D.4 Proof of Theorem 7.3.4

Proof In [111], it has been shown a Nash equilibrium exists in a noncooperative game if

for any n, (1) pn is a nonempty, convex, and compact subset of some Euclidean space RL

and (2) un(pn,p−n) is continuous and quasi-concave in pn, both of which are satisfied in

our noncooperative energy-efficient control game. Hence, the existence of the equilibrium

immediately follows. According to our previous work in [107], in a point-to-point energy-

efficient transmission, the necessary and sufficient condition for a data rate vector of User

n, ro
n = [r(1)o

n , r(2)o
n , · · · , r(K)o

n ]T , to be globally optimal is given by, for any Subchannel i,

1. if pc+
∑

j,i p( j)
n∑

j,i r( j)
n
≥ ∂(

∑
j p( j)

n )

∂r(i)
n

∣∣∣∣∣
rn=r(i0)

n

, ∂un(pn,p−n)
∂r(i)

n

∣∣∣∣
rn=ro

n

= 0, i.e. ∂(
∑

j p( j)
n )

∂r(i)
n

∣∣∣∣∣
rn=ro

n

= 1
u(po

n,p−n) ;

2. otherwise, r(i)o
n = 0,

where r(i0)
n = [r(1)o

n , r(2)o
n , · · · , r(i−1)o

n , 0, r(i+1)o
n , · · · , r(K)o

n ].

By transformation of parameters, ∂ f
∂r(i)

n
=

∂ f
∂p(i)

n

/
∂r(i)

n

∂p(i)
n

=
∂ f
∂p(i)

n

1
R′ (η(i)

n )γ(i)
n

, where R
′
() is the first

order derivative of R() and γ(i)
n =

η(i)
n

p(i)
n

=
g(i)

nn∑N
j=1, j,n p(i)

j g(i)
jn+σ2 . Hence, we have the following

equivalent condition for each user. For any Subchannel i,

1. if
∑

j,i r( j)
n

pc+
∑

j,i p( j)
n
≤ R

′
(0)γ(i)

n , ∂un(pn,p−n)
∂p(i)

n

∣∣∣∣
pn=po

n

= 0, i.e.

R
′
(γ(i)

n p(i)o
n )γ(i)

n = u(po
n,p−n); (D.8)

2. otherwise, p(i)o
n = 0.

It is easy to see that the network achieves an equilibrium if and only if the power settings

of all users satisfy the above conditions. Theorem 7.3.4 is readily obtained.

D.5 Proof of Proposition 7.3.5

Proof po
n = fn(p−n) = arg maxpn un(pn,p−n). Since un(0,p−n) = 0 and un(pn,p−n) > 0 for

any pn > 0, fn(p−n) > 0 and we have the positivity. Denote In =
∑N

j=1, j,n p jg jn and γn =

gnn
I+σ2 . According to (D.8), po

n satisfies

R
′
(γn po

n)γn = u(po
n,p−n) =

R(γn po
n)

pc + po
n
. (D.9)
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Substituting R(η) = w log(1 + η) in to (D.9), we have the following equivalent condition,

w(po
n, I) = gnn(pc + po

n) − (po
ngnn + I + σ2) log(1 +

po
ngnn

I + σ2 ) = 0. (D.10)

Hence, ∂po
n

∂I = −∂w
∂I

/
∂w
∂po

n
=

po
nγn−log(1+po

nγn)
gnn log(1+po

nγn) . Since x > log(1 + x) for all x > 0, we have ∂po
n

∂I > 0.

The monotonicity follows immediately. Furthermore,

∂2 po
n

∂I2 =
∂
∂po

n
∂I

∂I
= − po

n(−po
nγn + (1 + po

nγn) log(1 + po
nγn))

(I + σ2)(I + σ2 + po
ngnn) log(1 + po

nγn)2 .
(D.11)

We can easily show that (1 + x) log(1 + x) > x for all x > 0 since (1 + 0) log(1 + 0) = 0 and

(1 + x) log(1 + x) − x has positive first-order derivative when x > 0. Thus, ∂2 po
n

∂I2 < 0. Since

I is a linear combination of p−n, fn(p−n) is strictly concave in p−n. We get the scalability

immediately by letting F(α) = α fn(p−n)− fn(αp−n) and observing that F(1) = 0 and ∂2F(α)
∂α2 <

0.

D.6 Proof of An Equilibrium Form

Proof We need to show that one of the equilibrium has the form p∗1 = [pa pb] and p∗2 =

[pc0], where pa, pb, and pc are positive. We only need to verify that there exist pa, pb, and pc

that satisfy Theorem 7.3.4. Suppose p∗2 = [pc0]. After some calculation, it is easy to see that

σ2 � pcg
(1)
21 and η(1)

1 ≈
pag(1)

11
σ2 . Hence, both subchannels of User 1 have approximately the

same SINR condition. Thus in the equilibrium, the transmit powers on the two subchannels

of User 1 are almost the same. Besides, they cannot be zero. Hence, both are positive

and satisfy the first condition of Theorem 7.3.4. Assume p∗1 = [pa pb]. Now we verify

p∗2. Since User 2 does not transmit on the second subchannel,
∑

j,1 r( j)∗
n

pc+
∑

j,1 p( j)∗
n

= 0 and the

first condition of Theorem 7.3.4 should be satisfied. Hence, a positive power is allocated

on the first subchannel in the equilibrium of User 2. Regarding the second subchannel,

γ(2)∗
n =

g(2)
nn

pbg(2)
12 +σ2 = 1

pb1e10+1 → 0. Hence,
∑

j,2 r( j)∗
2

pc+
∑

j,2 p( j)∗
n

> R
′
(0)γ(2)∗

n → 0 and condition 2

of Theorem 7.3.4 is satisfied. Hence, p∗2 = [pc0]. Numerical methods can be used to

determine the exact values of pa, pb, and pc.
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D.7 Proof of Theorem 7.3.8

Proof For any two power vectors p−n and p̌−n, define the function Fn(θ) = Fn(p̌−n +θ(p−n−
p̌−n)). It is clear that Fn(0) = Fn(p̌−n) and Fn(1) = Fn(p−n); By the chain rule, we know that

∂Fn
∂θ

= (p−n − p̌−n) ∂Fn
∂(p̌−n+θ(p−n−p̌−n)) . Hence, we have

Fn(p−n)−Fn(p̌−n) = Fn(1)−Fn(0) =

∫ 1

0
F
′
n(θ)dθ = (p−n−p̌−n)

∫ 1

0

∂Fn

∂(p̌−n + θ(p−n − p̌−n))
dθ.

Thus, ||Fn(p−n) − Fn(p̌−n)|| =
∣∣∣∣∣∣
∣∣∣∣∣∣(p−n − p̌−n)

∫ 1

0

∂Fn

∂(p̌−n + θ(p−n − p̌−n))
dθ

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||(p−n − p̌−n)||
∣∣∣∣∣∣
∣∣∣∣∣∣
∫ 1

0

∂Fn

∂(p̌−n + θ(p−n − p̌−n))
dθ

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ||(p−n − p̌−n)||

∫ 1

0

∣∣∣∣∣
∣∣∣∣∣

∂Fn

∂(p̌−n + θ(p−n − p̌−n))

∣∣∣∣∣
∣∣∣∣∣ dθ

≤ ||(p−n − p̌−n)||
∫ 1

0

∣∣∣∣∣∣
∣∣∣∣∣∣sup

p−n

∂Fn

∂p−n

∣∣∣∣∣∣
∣∣∣∣∣∣ dθ = ||(p−n − p̌−n)||

∣∣∣∣∣∣
∣∣∣∣∣∣sup

p−n

∂Fn

∂p−n

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Besides, according to the chain rule, ∂Fn
∂p−n

= ∂In
∂p−n

∂F̃n
∂I−n

; Hence, we have

||Fn(p−n) − Fn(p̌−n)||
||p−n − p̌−n|| ≤ sup

p−n

∣∣∣∣∣
∣∣∣∣∣
∂Fn

∂p−n

∣∣∣∣∣
∣∣∣∣∣ = sup

p−n

∣∣∣∣∣∣
∣∣∣∣∣∣
∂In

∂p−n

∂F̃n

∂I−n

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
∂In

∂p−n

∣∣∣∣∣
∣∣∣∣∣ sup

I−n

∣∣∣∣∣∣
∣∣∣∣∣∣
∂F̃n

∂I−n

∣∣∣∣∣∣
∣∣∣∣∣∣ ;

When
∣∣∣∣
∣∣∣∣ ∂In
∂p−n

∣∣∣∣
∣∣∣∣ < 1

supIn

∣∣∣∣
∣∣∣∣ ∂F̃n
∂In

∣∣∣∣
∣∣∣∣
, ||Fn(p−n)−Fn(p̌−n)||

||p−n−p̌−n || < 1. The uniqueness of equilibrium follows imme-

diately from Theorem 7.3.7.
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