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SUMMARY 

 

 The goal of this study is to design and evaluate economic and rapid seismic 

retrofit strategies for relatively small rehabilitation projects for steel structures consistent 

with the tenets of sustainable design.  The need to retrofit existing structures in 

earthquake prone regions may arise directly from the problem of aging and deteriorating 

conditions, recognition of the vulnerability of existing infrastructure, from updates in 

seismic code requirements, or changes in building performance objectives.  Traditional 

approaches to seismic hazard mitigation have focused reducing the failure probabilities, 

consequences from failures, and time to recovery.  Such paradigms had been established 

with little regard to the impact of their rehabilitation measures on the environment and 

disruptions to occupants.  The rapid rehabilitation strategies proposed here have 

sustainability benefits in terms of providing a more resilient building stock for our 

communities as well as minimizing environmental and economical impacts and social 

consequences during the rehabilitation project.     

 To achieve these goals, a unique approach to design supplemental systems using 

tension-only elements is proposed.  In this design approach undesirable global and local 

buckling are eliminated.  Two rapid rehabilitation strategies are presented.  The first is a 

bracing system consisting of cables and a central energy dissipating device (CORE 

Damper).  The second is a shear wall system with the combined use of thin steel plate and 

tension-only bracing.  Analytical studies using both advanced and simplified models and 

proof-of-concept testing were carried out for the two devices.  The results demonstrated 

stable, highly efficient performance of the devices under seismic load.  Preliminary 



 xxi

applications of the CORE damper to the retrofitting of a braced steel frame showed the 

ability of the system to minimize soft story failures.   

 Both techniques can be implemented within a sustainability  framework, as these 

interventions reduce the seismic vulnerability of infrastructure, are low cost, utilize 

materials and fabrication processes widely available throughout the world, can be 

handled by unskilled labor and carried out with minimal disruptions to the environment.  

The approach taken in this study can provide a road map for future development of 

sustainability-based rehabilitation strategies. 
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CHAPTER 1   

INTRODUCTION 

   

1.1  Defining the Problem 

 During the past five decades, natural hazards have caused ever increasing loss of 

human lives, disruptions of economic activity, destruction of civil infrastructure, and 

environmental damage.  The chart in Figure 1.1 presents the overall losses and insured 

losses adjusted to present US dollar values in 2009, where the trend curves illustrate the 

increase in losses from great natural catastrophes since 1950.  In line with the United 

Nations definitions, natural catastrophes are classified as great if the affected region’s 

ability to help itself is clearly overstretched and superregional or international assistance 

is required: when there are thousands of fatalities, when hundreds of thousands of people 

are left homeless, and/or when overall losses considering the economic circumstances of 

the country concerned and/or insured losses are of exceptional proportions [Munich Re, 

2009].  Four catastrophes satisfied this definition in 2008 [Table 1.1]: the winter damage 

in China, the earthquake in Sichuan (China), Cyclone Nargis in Myanmar and Hurricane 

Ike in the Caribbean and the United States.  The escalation of severe disasters around the 

world is tied to population increase, demographic shifts to urban regions, climate change 

and aging infrastructure systems, and threatens the sustainable development of modern 

societies through large direct and indirect impacts [ISDR, 2002].  Specific examples of 

this include: 
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 Least developed countries are more vulnerable to natural hazards.  They are 

subject to the highest rates of population growth, which is projected to double in 

less than 30 years [UN, 2009].  Disaster risk increases if the exposure of people 

and assets to natural hazards increases faster than countries can strengthen their 

risk-reducing capacities by putting policy, institutions, legislation, planning and 

regulatory frameworks in place.  

 Countries with large populations exposed to severe natural hazards account for a 

very large proportion of global disaster risk.  For example, 75% of global flood 

mortality risk is concentrated in only three countries: Bangladesh, China and 

India [UN, 2009].   

 Urbanization is increasing at an unprecedented scale.  Rapid economic and urban 

development can lead to a growing concentration of people and economic assets 

in hazard prone cities.  Half of the world population now lives in cities, and 

within two decades, nearly 60 per cent of the world’s population will be urban 

dwellers [UN-Habitat, 2008]; many of these (e.g. Tokyo, San Francisco, Los 

Angeles, Miami, Houston, Tai Pei, Istanbul, Mexico City, Lisbon, Beijing, Hong 

Kong, Mumbai, Calcutta, San Paulo) are located in zones subjected to 

earthquakes and hurricanes.  

 Climate change is expected to lead to the changes in sea water levels and climate 

patterns.  Currently 10% of the world’s total population (over 600 million people) 

and 13% of its urban population (over 360 million people) live on the 2% of the 

world’s land area that is less than 10 meters above sea level, known as the Low 

Elevation Coastal Zone 11 [Satterthwaite, 2007].  There are clear risks associated 
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with increased flooding and storm surges, exacerbated by sea level rise, and risk 

for increased earthquake damage in these areas due to poor and liquefiable soils. 

 The American Society of Civil Engineers report, America’s infrastructure 2009, 

noted that the average grade for America’s infrastructure is a D and estimated the 

5-year investment needed to bring our infrastructure up to the appropriate 

standard is $2.2 trillion [ASCE, 2009].   

 Indirect economic losses of business interruption and market share following the 

downtime after a disaster are another emerging issue.  Gordon et al. computed 

the business interruption effects from the 1994 Northridge earthquake to be 22-32 

percent of losses from total structural damage [Gordon, 1998].  Toyoda recently 

re-estimated the indirect economic loss of the Kobe earthquake from 1995 to 

2007 as 14 trillion yen (152 billion US dollars), a figure substantially higher than 

the estimated total direct loss of 10 trillion yen (109 billion US dollars) [Toyoda, 

2008].   

 Almost fifteen years after the Kobe earthquake devastated the facilities of one of 

the country’s primary ports, the equipment and harbor facilities have all been 

rebuilt and modernized, yet the market share of the Port of Kobe has dropped 

significantly from pre-earthquake revenues; the volume of container cargo 

handled had only reached 81.8% of the pre-earthquake levels in 2006 and Kobe 

had dropped from the 6th largest container port in the world to the 35th largest one 

[Kobe City, 2008].   

 These examples argue for a much more holistic approach to disaster mitigation. 

One component of this effort, at the core of the research discussed herein, is an emphasis 
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on sustainable seismic retrofits to large stocks of existing infrastructure.  In this context, 

sustainability is defined as interventions that require relatively low economic 

investments, materials and fabrication processes widely available throughout the world, 

can be handled by unskilled labor and carried out with minimal disruptions to the 

environment. 

 

Figure 1.1: Great natural catastrophes 1950-2008, losses with trend [Munich Re, 2008] 

Table 1.1: Great natural catastrophes 2008 

Date 
 

Region 
 

Loss event 
 

Fatalities 
 

Overall losses 
(US$ m) 

Jan. 10-Feb. 13 China Winter damage 129 21,000 

May 2-5 Myanmar Cyclone Nargis 85,000 4,000 

May 12 China Earthquake 70,000 85,000 

Sept. 7-14 Caribbean, USA Hurricane Ike 168 38,000 
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1.2 Seismic Hazard Mitigation 

 Society in disaster-plagued areas is responsible for monitoring the condition of 

their civil infrastructure systems and, if needed, for rebuilding or repairing them for 

continuous usage.  For vulnerable existing buildings, structural collapse poses the 

greatest threat to life in a severe earthquake event, as highlighted by the recent 2005 

Pakistan, 2003 Iran and 2008 China earthquake; The NY Times reported that an official 

figure released by Chinese officials on the number of casualties among children caused 

by the 2008 Sichuan (Wenchuan) earthquake as 5,335 who had been either killed or 

remain missing, while another 546 were left disabled.  Controversy continues over the 

alleged poor construction standards that led to school collapses where many children 

were trapped [NY Times, 2008].  “Schools, hospitals and other critical infrastructure 

need to be systematically upgraded and retrofitted in earthquake prone areas if we want to 

save live.  There are still too many poorly designed and constructed buildings in 

earthquake-prone areas, and too many people dying because of it.” said Salvano Briceño, 

Director of the UN secretariat of the International Strategy for Disaster Reduction, who 

was in Pakistan for the International Conference on School Safety (2008, Islamabad) 

right after the China earthquake [UN/ISDR, 2008].  Vulnerability to earthquakes is still a 

primary cause of death during disasters.  The need to retrofit in earthquake prone regions 

may arise directly from the problem of aging infrastructure, recognition of the 

vulnerability of existing infrastructure, from updates in seismic code requirements, or 

changes in building performance objectives.  Choosing a method of protection against 

structural collapse for a seismically inadequate building requires a number of critical 

decisions by building owners.  The primary decision is whether to replace or upgrade the 
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existing structure.  If replacement of the building is chosen, new construction is carried 

out according to the latest seismic codes.  Otherwise, the structure should be retrofitted 

with the latest applicable standards, such as ASCE 41 [ASCE/SEI 2006].  ASCE 41, 

Seismic Rehabilitation of Existing Buildings, describes the latest generation of 

performance-based seismic rehabilitation methodologies.  An adequate seismic design 

under such methodologies requires that a structure yields and experiences damage 

without collapse under the maximum credible event.  The addition of seismic isolation, 

supplemental bracing, concrete or steel shear walls, and damping devices are among the 

techniques that have been successfully implemented into existing buildings.  A large 

number of supplemental energy-dissipating systems and rehabilitation techniques have 

been proposed for steel structures since the late 1990’s, motivated mainly by the severe 

damage observed in both the 1994 Northridge and 1995 Kobe earthquakes [Bertero et al., 

1994; AIJ Reconnaissance, 1995; FEMA Interim, 1997; Nakashima et al., 1998].   

1.3 Opportunities for Sustainability in Seismic Hazard Mitigation   

 Traditional approaches to seismic hazard mitigation have focused on the 

resilience of infrastructure systems; reduced failure probabilities, reduced consequences 

from failures, and reduced time to recovery [e.g., Bruneau, 2003, 2006].  Engineers in 

urban areas have established such paradigms with seemingly limitless natural resources, 

and with little regard to the impact of their rehabilitation measures on the environment, 

and local disruption.  Davidson et al. noted that the next generation of engineers must be 

able to design with a narrowing and diminishing set of natural resources for a wider 

variety and greater number of end users [Davidson et al., 2007].  For instance, a cost-

benefit assessment based on such traditional approaches may suggest to building owners 
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a complete reconstruction of a vulnerable building as the best approach to reduce the 

vulnerability to seismic hazard.  However, the use of a significant quantity of new 

materials for construction, with their associated energy and gas emission costs, and the 

impact on the heavy construction equipment on the environment and community may, in 

fact, not be the most sustainable solution.  The main reason why the cost for 

rehabilitation can exceeds the cost for rebuilding is the increase in the non-construction 

costs such as architectural demolition and refinishing, engineering fees (for higher level 

analyses), occupants’ relocation and permit, and material testing and legal fees [FEMA 

1994].  For instance, the costs of repairing of pre-Northridge type steel connections, 

which are susceptible to  brittle failure and fail qualification in current seismic guidelines, 

is estimated to exceed $20,000 per connection (the inspection alone might cost $1,500) 

[Mosallam, 1999].  Researchers have developed cost-effective alternative designs to 

reinforce such connections, e.g., reduced beam section, welding haunches, and bolting 

brackets.  The main cost reduction anticipated are related to indirect costs such as tenant  

 

Figure 1.2: Seismic retrofit of the Administration Building, San Francisco State 

University, installation of prefabricated column-joint assembly [Kouyoumdjian, 1999] 
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Figure 1.3: Sustainable infrastructure system [DesRoches, 2009] 

disruption in occupied buildings and in dealing with safety issues: relocation of occupants 

or overnight work fees due to noise and fire safety, or fire usage permit [AISC, 1999].  

Another rehabilitation scheme to reduce disruption is to utilize a structural steel moment- 

resisting frame placed on the exterior of a building, e.g. a case for the Administration 

Building at San Francisco State University [Figure 1.2].  By limiting story drifts to small 

amounts, the costly reinforcing of existing columns and joints was avoided.  This 

approach permitted continued used of the building during construction and required no 

changes to the interior of the building [Newman, 2001].  Such a scheme becomes cost-

effective when the extra land needed to allow for both the placing of scaffolding and use 

of heavy construction equipment is available.  These examples indicate that the 

development of innovative seismic hazard mitigation technology involve due 

consideration of environmental, economic and social impacts could make rehabilitation 

more competitive to rebuilding.  Moreover, the current trend for eco-friendly, green 

engineering is an opportunity for today’s structural engineers to consider the links 
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between vulnerability to disasters and the development of new paradigms for retrofit 

based on system-based, holistic thinking [Figure 1.3].  Some of the key ideas to be 

addressed for the sustainable rehabilitation of infrastructure systems include due 

consideration of environmental impacts, life-cycle costs, resource depletions, and social 

consequences.  

 The development of rehabilitation strategies which are rapid and aimed at 

relatively small rehabilitation projects is proposed in this thesis.  Current rehabilitation 

strategies are intended for general-size rehabilitation projects, mostly multi-story mixed-

use buildings, and are not necessarily optimal for small-size projects.  Rapid 

rehabilitation strategies have sustainability benefits in terms of providing a more resilient 

building stock for the community as well as minimizing environmental and economical 

impacts and social consequences during the rehabilitation project.  Such rapid 

rehabilitation strategies are also suitable for a multi-staged incremental seismic 

rehabilitation strategy proposed by FEMA [Figure 1.4; FEMA, 2002 and 2003], where a 

series of discretized actions can be made to coincide with regularly scheduled building 

repairs, and maintenance or capital improvement so that both investment and losses due 

to business interruptions are minimized. 
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Figure 1.4: Idea of incremental seismic rehabilitation by FEMA (left) option for seismic 

risk reduction (right) schematic integration opportunity [adapted from FEMA 2002] 

1.4 Scope and Objectives 

 A goal of this study is to design and evaluate two innovative, rapid rehabilitation 

strategies for low to mid-rise steel buildings consistent with the following tenets of 

sustainable design.  The systems must:  

 result in robust and resilient buildings, 

 be efficient in the use of materials, with minimal energy requirements and 

emissions, 

 be able to achieve its goals with only minor on-site construction and disruption to 

existing non-structural elements, 

 require minimal modification to existing structural elements, and 

 require little maintenance (low life-cycle cost, easy to replace) 

 To achieve these goals, a unique approach to designing supplemental systems 

using tension-only elements is proposed.  The targets of these strategies are relatively 
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small rehabilitation projects for steel structures where deficiencies arise from a change in 

design load (e.g., update of seismic category, change of usage, climate change), existence 

of non-compact sections, existence of structural irregularities (e.g., structure with a weak 

or soft story, structure with torsional irregularity), or lack of redundancy.  By taking the 

tension-only approach, designers do not need to worry about undesirable global or local 

buckling.  This means that designers do not need to seek compact sections for 

supplemental elements with limited strength demand; the compactness limitation 

sometimes leads to overdesign of supplemental elements.  Since elements can be slender, 

systems constructed with tension-only elements are scalable and adjustable in size.  

Thanks to the ease of installation, supplemental systems become economical.  The key 

benefits of the tension-only design approach are: 

 Elimination of undesirable global and local buckling, 

 Rational implementation of an strict capacity design (over-strength is known or 

capped) 

 Scalable and adaptable to many bay geometries 

 Use of simple connection 

 Rapid and adjustable installation 

 Economical and efficient solution 

 Following the proposed tension-only approach, two rapid rehabilitation strategies 

are presented.  The first is a cable bracing system consisting of tension only cables and a 

central energy dissipating device.  In this device, cables are always in tension and thus 

begin to carry load immediately after a deformation reversal (no slack), resulting in 

stable, bi-linear behavior.  The second is a shear wall system with the combined use of a 
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thin steel plate shear wall and tension-only bracing.  The thin steel plate shear wall resists 

deformation by forming a tension field after an onset of global shear buckling.   

 This dissertation presents the work completed for the development of the 

proposed systems: verification of the concepts by initial analyses, development of design 

procedures, prototype designs, proof-of-concept testing, and design modifications. 

1.5 Dissertation Outline 

 The content of the dissertation is organized into the following chapters: 

 CHAPTER 2 introduces an innovative cable bracing geometry with a Couples 

Resisting Damper (CORE Damper).  The chapter presents the validation of the 

system through static analyses, the prototype design and finite element analyses of 

the CORE Damper, the dynamic behavior of the prototype system, and the 

introduction and static analyses of modified geometry with Nickel-Titanium 

shape memory alloys for the addition of re-centering capability.  

 CHAPTER 3 presents the proof-of-concept testing of the prototype for the cable 

bracing system.  The chapter reports the performance of a full-scale specimen 

under quasi-static cyclic loading. 

 CHAPTER 4 demonstrates the upgrading of seismically deficient steel frames 

using the “Cable Bracing-CORE Damper System”.  The responses of an original 

and upgraded building subjected to near and far field ground motions are 

examined. 
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  CHAPTER 5 introduces a new type of steel shear wall system for seismic 

rehabilitation, referred to as “Narrow Steel Plate Shear Wall with Tension-Only 

Bracing (NPSW-TB)”.  The chapter presents the design approach and design 

flowchart for the NPSW-TB system.  The performance of a prototype as well as 

the scaled system for a proof-of-concept testing is evaluated by static pushover 

analyses.  

 CHAPTER 6 presents the proof-of-concept test results of the NPSW-TB system 

which is a part of research collaboration program with Kyoto University in Japan.  

Two scaled systems, with and without tension-only bracing, were tested to 

evaluate the effect of the bracing on global and local behaviors.  

 CHAPTER 7 provides a summary and conclusion of the research.  Discussion on 

the impacts of the work and suggestions for future research on sustainable seismic 

rehabilitation strategy are also made. 

  



 14

CHAPTER 2  

 
CABLE BRACING-COUPLE RESISTING DAMPER (CORE 

DAMPER) SYSTEM 

 

2.1 Introduction 

 Concentrically Braced Frames (CBFs) have long been recognized as a practical 

and economical solution for the control of lateral deformation [e.g., Constantinou, 1993, 

1998; Tremblay, 2003].  When bracing elements are designed as compact to exhibit 

sufficient compression strength, CBFs provides a stable ductile behavior under severe 

lateral cyclic loading.  This system, known as “Tension-Compression” CBF has been 

favored by building codes based on numbers of analytical and experimental studies [e.g., 

Martinez-Rueda, 2002; Black, 2004].  Compared to this, CBF with non-compact or 

slender bracing elements, known as “Tension-only” CBF exhibits extremely pinched 

hysteresis behavior during strong earthquake, is permitted only in Ordinarily 

Concentrated Brace Frame (OCBF) with x-bracing configuration; but not for K, V, and 

inverted V configurations in the current seismic guideline in U.S. [AISC, 2007]. 

 The retrofit and strengthening of smaller structures can be addressed effectively 

through the addition of structural elements such as cross-braces.  However, for many 

such structures it is not possible to either follow a strict capacity design approach or find 

small members with the required compactness criteria to withstand large cyclic load 

reversals; the compactness limitation sometimes leads to overdesign of supplemental 

elements.  In these situations, a bracing system with tension-only elements such as cables 
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or tension-rods and incorporating an energy dissipater with reliable strength and stiffness 

characteristics is an attractive alternative.  By taking the tension-only approach, designers 

do not need to worry about undesirable global buckling, which means, designers do not 

need to seek compact sections for supplemental elements with limited strength demand.  

Connections on tension-only elements to existing frame are simple, rapid and adjustable 

[see Figure 2.1 for example connections]. 

 

Fig 2.1(a): 

 

Fig 2.1(b): 

Figure 2.1: Example connections of tension-only elements (a) adjustable hanger 

connection with turn buckle (b) temporary support after Loma Prieta earthquake 

[SEAOC, 1989] 

Holes for orthogonal beam 
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Cable Turnbuckle 

Beam 
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 A tension-only system, defined as a system where selected key elements remain 

always in tension under cyclic lateral loading, can provide stable bi-linear hysteresis if 

used in conjunction with an appropriate energy dissipating device [Martinez-Rueda, 

2002].  Such systems are not new.  Pall (1982, 1983) proposed a friction device with a 

slip joint for a cross bracing and an inverted V-bracing [Figure 2.2(a)].  Anagnostides et 

al. (1989) proposed a new type of friction device for a tension-only cross-bracing system 

[Figure 2.2(b)].  Mualla and Bellev (2002) conducted dynamic tests of a scaled steel 

frame with friction damper devices installed in an inverted cable V-bracing system 

[Figure 2.2(c)].  These systems utilize friction-based damper devices where friction force 

is introduced by preloading of steel plates with high strength bolts.  The surface of the 

steel plates is normally coated by special friction lining materials to achieve a good 

hysteretic response where the slipping force is predictable and remains unchanged during 

the required number of cyclic loading.  The design of the friction-based device should 

account for the creep of the surface materials as well as relaxation of high strength bolts 

to minimize the long term degradation of friction force.  Previous tests indicated that 

devices based on rotational friction give more consistent hysteresis loops than those 

based on linear sliding friction where significant damage was observed after the tests on 

the steel plates and friction material as a result of scuffing between the two surfaces 

[Anagnostides, 1989].  Recent application of the friction-based device in real building 

can be found in Chang et al. (2006).   

 An example of previously proposed systems which do not use friction-based 

dampers is a system proposed by Phocas and Pocanschi (2003).  This system utilized the 

energy dissipating mechanism of the bending and yielding of mild steel plates whose 
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performance is independent from the surface condition of materials and remains 

unchanged for years.  In their system, diagonals of the system are fixed at the bottom of 

the columns and are able to move at the top corners of the frame through rotations of the 

connecting eccentric discs [Figure 2.2(d)].  In this geometry, attention should be paid to 

the condition of the top of column which needs to sustain a brace force doubled by the 

pulley mechanism used.  

 The cable cross bracing system developed by the author has a unique geometry 

and provides stable energy dissipation until very large deformations are reached by taking 

advantage of permanent rotations in a central energy dissipating device.  This system 

basically consists of eight eccentrically connected elastic cables and a Couples Resisting 

Damper (CORE Damper).  Similar to previously developed metallic yielding devices 

[Whittaker, 1991; Tsai ,1993; Xia and Hanson, 1992; Fierro and Perry, 1993], the CORE 

Damper developed herein dissipates energy through the bending and yielding of mild 

steel plates and does not require periodical maintenance.  In order to achieve stable 

hysteretic behavior and allow for easy replacement after a major seismic event, the 

connections in regions of anticipated maximum ductility are designed using high strength 

bolted connections to avoid potential brittle weld failures.  

 The concept of the proposed bracing system was first validated in nonlinear static 

cyclic analyses in the OpenSEES platform [Mazzoni et al., 2009].  The analyses provided 

the approximate strength demand, required deformation capacity, and optimal shape for 

the central energy dissipating device (CORE Damper).  The details of the CORE Damper 

were carefully refined through simulations using the general purpose finite element 

analysis program ABAQUS as a design tool.  The dynamic behavior of the proposed 
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system under high strain rates was also examined to see the effect of high speed loading 

on the local and global performance of the system. 

 As a secondary objective, the addition of re-centering capability to the existing 

bracing system was considered.  Here, the re-centering system is specifically intended to 

reduce the residual deformation at critical sections of existing buildings.  The 

fundamentals of the re-centering system are similar to the original system, except that 

cables are connected only in one diagonal rather than in a cross bracing geometry.  By 

simply adding extra cables made of shape memory alloy (NITINOL) to the same 

diagonal in the base system, the system can be upgraded to a re-centering system.  The 

concept of the re-centering system was validated through non-linear static cyclic analyses 

in the OpenSEES platform. 
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Fig 2.2(a): 

 

 

Fig 2.2(b): 
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Fig 2.2(c): 

 

Fig 2.2(d): 

Figure 2.2: Example tension-only cable bracing mechanism proposed in past (a) friction 

device [Pall, 1983] (b) friction device [Anagnostides, 1989] (c) friction device [Mualla 

and Bellev, 2002] (d) hysteretic damper system with eccentric disc [Phocas and 

Pocanschi, 2003] 
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2.2 Geometry of Proposed System 

 The proposed system consists of eight eccentrically connected elastic cables and a 

Couples Resisting Damper (CORE Damper) [Figure 2.3(a)].  The damper consists 

basically of two front and back rigid elements connected by a rotational spring with bi-

linear hysteresis.  When the earthquake load deforms the originally weak moment frame, 

four cables in tension begin to resist the deformation and rotate the front and back rigid 

plates in opposite directions while tied together by a rotational spring [Figure 2.3(b)].  

Note that the other four cables, which connect across the shortened diagonal, are not 

slack when the loading direction changes because of the permanent rotation of the rigid 

elements.  As shown in Figure 2.3(c), the other cables start to resist load when unloading 

curve crosses the zero force threshold, resulting in a system that exhibits bi-linear load 

displacement behavior instead of the typical slip type curve associated with tension-only 

diagonal systems. 

 Figure 2.4 illustrates the two key kinematic characteristics of the proposed 

geometry.  One characteristic is the extension/shortening of the diagonals of the overall 

frame.  The other characteristic is the elongation/shortening of cables caused by the local 

rotation of a rigid element.  The proposed system utilizes the interaction of these two 

phenomena effectively and eliminates the any shortening or slack in cables; the possible 

slack in the cables connecting the shortened diagonal is eliminated by the geometric 

elongation caused by the rotation of the central device. 
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Fig 2.3(a): 
 
 

 

 

 

 

 

 
 

Fig 2.3(b): 
 

 

 

 

 

 

 

Fig 2.3(c): 

Figure 2.3: Concept of cable cross bracing with CORE Damper (a) initial phase; analysis 

model (left), central energy dissipater (right) (b) loading phase (c) unloading phase 
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                Frame deformation                                           Rotation of central device 

Figure 2.4: Kinematic characteristics and resulting deformations in cables 

2.3 Preliminary Analyses 

Analysis Model Description 

 Schematics of an analytical model constructed in OpenSEES [Mazzoni, 2009] are 

shown Figure 2.5(a).  The proposed cable bracing-CORE Damper system is installed into 

a portal frame with four pins assumed at its corners.  The dimension of the portal frame is 

5280mm x 7280mm measured at center of beams and columns, which represents a multi-

purpose testing system at the Structural Laboratory of the Georgia Institute of 

Technology that was used for the full-scale tests [Chapter 3].  Beams and columns are 

modeled using the nonlinearBeamColumn element with nominal material properties 

corresponding to A36 mild steel.  Pin connections are modeled by restricting translational 

degrees-of-freedom in two nodes at the same location using the equalDOF command.  

Cables are modeled as co-rotational elastic truss elements connected to elastic beams and 

rigid elements of the central device.  The elastic stiffness of a cable is taken as 70% of a 
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comparable steel section based on literature data; see, for example, [Costello, 1999].  In 

the central device [Figure 2.5(b)], the rotational spring connecting the center nodes of the 

front and back rigid elements is modeled by coupling the translational DOFs and 

assigning a zerolength element with bi-linear hysteresis for the rotational DOF.  The rigid 

elements are modeled using elasticBeamColumn elements with very large stiffness. 

 

Fig 2.5(a): 

 

Fig 2.5(b): 

Figure 2.5: Analysis model (a) overall system (b) simplified CORE Damper model
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Preliminary Analyses Results 

 Figure 2.6 shows the results from the preliminary non-linear static analysis of the 

proposed system.  In the analysis, an arbitrary bi-linear hysteresis behavior was 

implemented for the rotational spring.  One cycle of 3% story drift amplitude, which is 

1.5 times larger than the required deformation capacity for braced frames in the current 

seismic design guidelines, was applied to the model frame [NEHRP, 2004].  The results 

showed that if the rotational spring could deliver a stable bi-linear curve, then the 

behavior of the entire subassemblage, as characterized by its force vs. story drift curve, 

was also stable and bi-linear.  The deformation of cables in compression was limited even 

under large deformations, thanks to the permanent rotation in the CORE Damper [Figure 

2.6(c)].  As the plots indicate, the cables in either one of two diagonals always carry 

tension force at any points in one loading cycle [Figure 2.6(d)].  
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Fig 2.6(a): 

 

Fig 2.6(b): 
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Fig 2.6(c): 

 

Fig 2.6(d): 

Figure 2.6: Preliminary OpenSEES analysis (a) rotational spring hysteresis (b) system 

base shear (c) cable deformation hysteresis (d) cable force hysteresis 
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Optimal Shape of CORE Damper 

 Using this analysis model, a parametric study was conducted to determine an 

approximate optimal shape for the CORE Damper.  The main parameter studied was the 

aspect ratio of the rigid element to which the cables are connected.  For these studies, the 

diagonal length of the rigid element was fixed.  Figure 2.7(a) shows the maximum 

rotation demands for the damper with various aspect ratios during the cyclic loading at 

3% story drift amplitude.  The rotation demand is smallest when the aspect ratio is 

between 1 and 2 and gradually increases at aspect ratios greater than 2.  The relationship 

between base shear and rotation of the spring was linear [Figure 2.7(b)].  This indicated 

that the stiffness of the system can be controlled by the aspect ratio of the rigid elements.   

 By setting the initial performance goal of the prototype to be a stable and ductile 

behavior under very large story drifts, it is concluded that the best shape for the rigid 

element is either a square or slight oblong in order to limit rotational demand. 
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Fig 2.7(a): 

 

Fig 2.7(b): 

Figure 2.7: Parametric studies to geometry of CORE Damper (a) aspect ratio vs. 

maximum rotation (b) base shear vs. rotation 
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2.4 Design of CORE Damper 

Geometry and Dimension of CORE Damper 

 The Couples Resisting Damper (CORE Damper) for the proposed cable system 

was optimized by using a general purpose finite element analysis program, ABAQUS 

[Dassault Systems 2008].  Figure 2.8 shows the geometry of a prototype with a 

performance goal of achieving a stable hysteresis curve up to 0.3 to 0.4 radians of 

rotation.  The dimension of the prototype is shown in Appendix A.  The prototype CORE 

Damper has dimensions of 152mm x 760mm x 152mm and is compact and is light 

enough (65kg) to be carried by two construction workers with a small wheelbarrow or 

similar moving device.  It is also possible to assemble it on site since all the components 

are connected through high-strength bolts; turnbuckles can be provided in the cables to 

make all necessary geometric adjustments.  The plastic deformation of the device is 

limited only to the steel plate energy absorber (SPEA) which is replaceable after a major 

earthquake event.  The assembly of the CORE Damper proceeds as follows.  First, a 

hollow steel section (HSS) is placed between two SPEAs (Gr. 36 mild steel) and a post 

tensioning force is applied to the outer surface of the SPEAs by high strength rods.  This 

subassembly is then connected to the cover plates (Gr. 50 mild steel) with high strength 

bolts; these bolts are not pre-tensioned.  To prevent the development of undesirable axial 

forces in the SPEA, these bolts are allowed to slip along a long slotted hole. 

 Figure 2.9 illustrates the free-body-diagram of the main components of the 

prototype.  In this figure, the top and bottom cover plates are shown in their deformed 

condition, while the middle subassembly is shown in its undeformed condition.  In the 

schematics, the dotted arrows indicate the forces acting between the bottom cover plate 
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and the middle assembly, while the solid arrows indicate the forces between the top cover 

plate and the middle assembly.  In this device, the torsional moment induced by the 

rotation of the top and bottom rigid steel plates is resisted by the bending moment of two 

lozenge steel plates.  Each end of these plates is transversely connected to the top and 

bottom rigid plates, respectively.  The lozenge shapes of these Steel Plate Energy 

Absorbers (SPEAs) have two objectives.  One is to avoid the SPEAs placed in parallel 

from touching each other even under severe deformations.  The other is to achieve a 

uniformly distributed stress over the length of the plates to avoid developing a severe 

kink at its center connection.  In this respect, its concept is similar to the ADAS and 

TADAS elements [Whittaker 1991; Tsai 1993].  Unlike these common energy dissipating 

plates, the SPEAs in this energy dissipater are free of welds and do not require that 

welding be limited to locations far from the regions with anticipated maximum ductility 

demands.  
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Fig 2.8(a): 

 
 

Fig 2.8(b): 

 

     

Fig 2.8(c): 
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Fig 2.8(d): 

Figure 2.8: Assemblage and components of CORE Damper (a) isometric view with 

cover plates (b) isometric view without cover plate (c) steel plate energy absorber (Gr. 

36) (d) steel cover plate with bolts (Gr. 50) 
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Figure 2.9: Free-body-diagram of CORE Damper 
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FE Analysis Model 

 The analysis model of the CORE Damper consists of two cover plates, two steel 

plate energy absorbers (SPEA) and four rectangular steel plate washers [Figure 2.10].  In 

the analysis, high strength bolts and annular washers are modeled as a part of the cover 

plate.  Instead of modeling a steel HSS and high strength rods, the movements of the 

plate washers placed inside of the SPEAs are fixed and a uniform pressure is applied to 

the outer surface of the plate washers placed outside of the SPEAs.  The cyclic loading is 

applied to two loading points, RP-1 and RP-2, each of which is rigidly constrained to the 

outer surface of top and bottom cover plates.  Eight-node linear brick elements with 

reduced integral (C3D8R) and hourglass control are used for the SPEAs and the middle 

part of the cover plates.  Four-node linear tetrahedron elements (C3D4) and six-node 

linear triangular prism elements (C3D6) are used for the part around the bolted 

connections of the cover plates and bolts.  The material properties of the SPEAs and plate 

washers are bi-linear with yield strength of 269MPa, obtained from tensile coupon tests 

for a proof-of-concept test reported in Chapter 3.  The material properties of the cover 

plates are assumed to be bi-linear with yield strength of 345MPa.  Bolts are assumed to 

be elastic. 

 Slip motion is allowed between high strength bolts and SPEAs and between steel 

plate washers and SPEAs utilizing a contact element feature in ABAQUS.  For the 

contact element, a surface-to-surface discretization method is used since it provides more 

accurate stress and pressure results than node-to-surface discretization when the surface 

geometry is reasonably well represented by the contact surfaces.  The tracking approach 

is a finite-sliding simulation.  The tangent behavior of the contact properties is formulated 
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by a penalty method with the static coefficient of friction assumed as 0.3.  The penalty 

method is a stiff approximation of a hard contact.  In the normal direction, an augmented 

Lagrange method is used with separation allowed after contact.  The augmented 

Lagrange method uses the same kind of stiff approximation as the penalty method, but 

also uses augmentation iterations to improve the accuracy of the approximation [Dassault 

Systems 2008].   

 

Figure 2.10: Finite element analysis model 

FE Analysis Results 

 Typical deformed shapes of the CORE Damper obtained from finite element 

analyses are presented in Figure 2.11.  Two different deformation modes of the CORE 

Damper were defined.  In the outward deformation mode [Figure 2.11(a)], the front cover 

plate rotates clockwise and the SPEAs deform outward.  In the inward deformation mode 

[Figure 2.11(b)], the front cover plate rotates counterclockwise and the SPEAs deform 

inward.  For illustrative purposes, the deformed shape is also shown without cover plates 

Cover plate 

SPEA 

Loading point 

High strength bolts and 
annular washers 

Plate washer preloaded 

Plate washer fixed 
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and HSS.  In these analyses, a cyclic rotation is applied to the top and bottom cover plates 

with the amplitude of 0.18 rad.  The relative rotation between the two plates is 0.36 rad., 

which corresponds to the deformation when a bracing system is subjected to 3% story 

drift in a preliminary OpenSEES analysis.  

 Figure 2.12 shows the overall behavior the CORE Damper during one cycle of 

static loading.  In the hysteresis curve, the solid line corresponds to the moment versus 

rotation curve of the CORE Damper when deformation is applied first to the outward 

direction.  The dotted line corresponds to that when deformation is applied first to the 

inward direction.  In both cases, the CORE Damper yields approximately at 0.6% story 

drift (0.072rad) and shows post-yielding stiffness slightly higher in the outward direction 

as compared to the inward direction, primarily because of the bolt slip at the loading 

point of the SPEA.  The von Mises stress contours for the SPEA [Figure 2.13] shows that 

the stress distributes uniformly in the center part of plate without severe stress 

concentrations.  In the figures, stress is also high in the loading area around the long 

slotted holes.  Under large deformations, the stress exceeds the yield stress of 269MPa at 

the most part of the SPEA.  Figure 2.14 shows the equivalent plastic strain (PEEQ) in 

SPEAs.  A large amount of plastic strain is accumulated in the center part of the SPEAs 

during cyclic loading.  The part subjected to plastic deformation gradually increases as 

the loading proceeds.  The plots also indicated that the plastic strain on the outer surface 

of the SPEAs is larger than that on the inner surface.  
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Fig 2.11(a): 

           

Fig 2.11(b): 

Figure 2.11: Deformed shape of CORE Damper at 3% drift (a) outward deformation 

mode w/t and w/o cover plate (b) inward deformation mode w/t and w/o cover plate 
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Figure 2.12: Hysteresis behavior of CORE Damper 
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Fig 2.13(a): 

 

Fig 2.13(b):  

 

Fig 2.13(c): 

  

Fig 2.13(d): 

Figure 2.13:  Sequence of von Mises stress contour in SPEA during outward to inward 

cyclic loading (a) yielding at 0.072rad, outward (b) max outward deformation at 0.36rad 

(c) max inward deformation at -0.36rad (d) residual stress 

Unit: MPa 
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Fig 2.14(a): 

 

Fig 2.14(b): 

 

Fig 2.14(c): 

  

Fig 2.14(d): 

Figure 2.14:  Sequence of equivalent plastic strain (PEEQ) in SPEA during outward to 

inward cyclic loading (a) yielding at 0.072rad, outward (b) max outward deformation at 

0.36rad (c) max inward deformation at -0.36rad (d) residual strain 
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2.5 Dynamic Behavior of “Cable Bracing-CORE Damper System” 

Introduction 

 In the proposed bracing system, the cables resisting frame deformations switch 

when the direction of loading changes.  When the movement of the CORE Damper starts 

to lag the movement of the framing, some slackness starts to occur in the cables.  The 

effect of this phenomenon on global behavior was investigated by forcing the frame to 

vibrate at a very high speed.  Nonlinear dynamic analyses of the proposed bracing system 

under sinusoidal cyclic loading with various frequencies were carried out.   

  When the cables become slack, they might be subjected to impact type loading 

when the loading reverses.  The effect of impact loading in inelastic tension-only 

concentrically braced steel frames (TOCBF) had been experimentally studied in Canada 

[Tremblay, 1996; Filiatrault, 1998].  The study revealed that the sudden increase of 

tensile force in steel braces in TOCBF is limited by the yield strength of steel and this 

hysteresis effect attenuates the impact forces on the connections and other structural 

elements.  The increase of tensile force is mainly caused by the increase of the yielding 

strength of steel under high strain rate loading.  Although their conclusion is intended 

only for the TOCBF systems, it indicates that, in the proposed system, the yielding of the 

CORE Damper should attenuate the impact loading into cables and their connections to 

the frame.  The selection of the cables should be carefully done since cables are still 

vulnerable against severe impact loading as it can lead to ‘bird-caging’, where outer 

strands separate form a core in a permanent manner [Costello, 1990]. 

 The study presented here deals with the effect of the movement of the CORE 

Damper in the local cable forces and the global behavior of the system but does not 
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directly deal with the issue of the impact loading.  For the study of such issues, carefully 

planned full-scale experiments under dynamic loading or on a large shake table are 

highly recommended.    

Analysis Model 

 The hysteresis curve of the CORE Damper used in FE analysis was implemented 

into the analysis model developed for the preliminary static analyses [Figure 2.5 and 

Figure 2.12].  To account for the dynamic behavior, the real weight of the prototype of 

the damper is divided by the gravitational acceleration and added to the center nodes of 

the damper as nodal mass.  The weights of the cables are negligible and ignored.  The 

sinusoidal displacement history applied to the center of the top beam has a magnitude of 

1% story drift.  The frequency of the sine wave is incremented from 0.1 Hz to 4Hz.  

Numerical damping is not considered for the analyses. 

Analysis Results 

 The effects of dynamic loading become noticeable when the frequency of sine 

wave reaches 1Hz [Figure 2.15(a)].  In the hysteresis curve, the effects of dynamic load, 

which is defined here as a higher mode shaking of the CORE Damper, is seen when 

cables carry a small tension force and/or the speed of loading is high at zero 

displacement.  The shaking of the damper attenuates as cables start to carry higher 

tension force. 

 The effects become severe as the speed of loading increases [Figure 2.15(b)].  

Until the hysteresis force reaches the point where the CORE damper yields, the higher 

frequency force vibrations evident in the hysteresis curve remain at similar amplitudes.  
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In the post yielding range, the vibration attenuates rapidly as the force is limited by the 

yield strength of the damper.  

 Table 2.1 is a summary of the increase in the maximum system force and the 

maximum cable force.  As the hysteresis curve indicates, the increments in forces are 

limited until the frequency of 1Hz and become noticeable for higher frequencies.  In 

general, the effects of dynamic loading are larger in the local cable forces than in the 

global system behavior.   

 The analysis results indicate that the effects of vibration of the central device are 

very limited under very high speed loading since the effect is attenuated by the yielding 

of the CORE Damper which is consistent with the experimental results of tension only 

bracings under impact loading reported by Tremblay [Tremblay, 1996]. 
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       Fig 2.15(a): 

 

Fig 2.15(b): 
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Fig 2.15(c): 

Figure 2.15: Hysteresis under high frequency loading (a) 1Hz sine wave (b) 2Hz sine 

wave (c) 4Hz sine wave 

Table 2.1: Dynamic effect in forces 

Frequency of 
sine wave 

Max. shear 
force of system 

Shear force 
increment 

from 0.001Hz

Max. cable 
force 

Cable force 
increment from 

0.001Hz 

Hz kN % kN % 

0.001 11.40  29.80  

0.5 11.40 0 29.81 0.034 

1.0 11.40 0 29.83 0.101 

2.0 11.41 0.088 29.97 0.570 

4.0 11.56 1.4 30.79 3.32 
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2.6 Re-Centering Bracing System 

Background 

 For a special rehabilitation case where rapid repair/rehabilitation is necessary to 

minimize downtime in a building, an addition of re-centering capability has the benefit of 

reducing residual deformation as well as reducing the repair time for a particular story or 

bay in an existing building.  Figure 2.16 shows the previously proposed re-centering 

systems which utilize post-tensioning forces of steel tendons [Ricles et al., 2002; 

Christopoulos et al., 2008.]  These systems typically have hysteresis curves where the 

unloading curve returns to the origin.  Other types of the re-centering system includes the 

system shown in Figure 2.16 which utilizes the unique pseudoelastic properties of nickel-

titanium-based shape memory alloys (NITINOL) as a source of re-centering force 

[McCormick et al., 2007a and 2007b].  A cable made of numbers of NIINOL wires 

posses a pseudoelastic behavior up to 6% strain without residual strain when load is 

removed. 

 Here, a re-centering system with tension-only elements is considered specifically 

for the reduction of residual deformation at critical sections of existing buildings.  This 

study analytically demonstrates the upgrading of an existing building whose primary 

lateral loading system is a tension-only bracing system with a slip-type hysteresis 

behavior.  The re-centering capability is realized by the simple addition of NITINOL 

cables. The performance of the proposed system is evaluated through a nonlinear static 

analysis in the OpenSEES platform.   
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Fig 2.16(a): 

 

Fig 2.16(b): 

Figure 2.16:  Self-centering systems with post-tensioning force (a) self-centering system 

[Ricles et al., 2002] (b) self-centering energy dissipative bracing [Christopoulos et al., 

2008] 
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Fig 2.17(a): 

  

Fig 2.17(b): 

 Figure 2.17: Self-centering capacity with NITINOL (a) pseudoelastic force-strain 

curve (b) CBSF with NITINOL [McCormick, 2007] 

 

 

 

 



 49

Geometry 

 The proposed system is a variant of the CORE Damper bracing system, with steel 

cables and NITINOL cables placed in parallel.  The geometry of the CORE Damper 

system is adopted for the example study although the approach is widely applicable to 

other type of tension-only bracing systems.  Figure 2.18 shows the system configuration 

and the conceptual system behavior.  The base system is similar to the CORE Damper 

system except that cables are connected only in one diagonal.  Thus, the base system 

shows slip type behavior once the rotational spring yields.  The NITINOL cables generate 

re-centering forces when the damper device exhibits a permanent deformation and the 

resultant system has the combined behavior of these two systems.  The NITINOL cables 

are used in series with steel cables so that the resulting cable has larger stiffness and 

deformation is efficiently concentrated in NITINOL cables.  The location where the 

NITINOL cables are connected in the center device is defined by a preliminary analysis 

as distance between the connections of the NITINOL cables become one third of the 

length of the rigid element.  

 In the system, the total area of NITINOL cables added is less than half of the area 

of steel cables and the strength and stiffness of the system are mainly those of steel 

cables.  The contribution of the NITINOL cables becomes significant when the systems 

experiences large deformations and yielding of the rotational spring.  The NITINOL 

cables contribute to system behavior in two main ways.  One is the re-centering force 

generated from its unique pseudoelastic property and the other is the elastic stiffness 

when the base system loses its initial stiffness because of sagging in the steel cables.  
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Fig 2.18(a) 

 

 

 

 

Fig 2.18(b) 

Figure 2.18: Re-centering cable bracing system (a) geometry (b) conceptual behavior 
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Static Cyclic Analysis 

An incremental quasi-static cyclic analysis was carried out using OpenSEES with 

amplitudes of 1, 2, and 3 % in story drift.  The hysteresis of the CORE Damper obtained 

from the FE analyses is used for the hysteresis of the central rotational spring.  The force-

strain relationship obtained from a cyclic loading test of a NITINOL cable with the area 

of 0.5cm2 is implemented in a SMA material model in OpenSEES [Figure 2.19].  In the 

analysis, the length of the NITINOL cable part is set to 167cm which is one third of the 

length of the steel cables.  As shown in Figure 2.20, the proposed system successfully 

shows the expected re-centering behavior.  The re-centering force of approximately 20kN 

is obtained by adding the four NITINOL cables with the area of 0.5cm2. Note that the 

generated re-centering force is solely controlled by the area of the NITINOL cables. 

 

Figure 2.19: NITINOL cable test result (area of cable = 0.503 cm2) 
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Fig 2.20(a): 

 

Fig 2.20(b): 

Figure 2.20: Analysis results for re-centering system (a) system shear force (b) SMA 

cable force 
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2.7 Summary 

 In this Chapter, the concept and behavior of a cable cross bracing system with 

unique geometry was presented.  The proposed system provides stable energy dissipation 

until very large deformations occur by taking advantage of permanent rotations in a 

central energy dissipating device.  The central device, referred to as the COuples 

REsisting damper (CORE Damper), dissipates energy through the bending and yielding 

of mild steel plates and does not require periodic maintenance. 

 The concept of the proposed bracing system was first validated through nonlinear 

static cyclic analyses.  The analyses provided the approximate strength demand, required 

deformation capacity and optimal shape for the CORE Damper.  The details of the CORE 

Damper were designed carefully by using a general purpose finite element analysis 

program, ABAQUS as a design tool.  The FE analyses showed that the CORE Damper 

could sustain a stable, bi-linear hysteresis curve until the rotation corresponding to the 

story drift much larger than that specified in current design guidelines.   

 The dynamic behavior of the proposed system with the developed CORE Damper 

was examined to see the effect of high-speed loading into on the performance of the 

system.  The increments in local and global forces are limited until the frequency of 1Hz 

and become noticeable for higher frequencies.  In general, the effects of dynamic loading 

were larger in the local cable forces than in the global system behavior, while the effects 

were limited even with very high speed loading because the effects were attenuated by 

the yielding of the damper device. 

 Utilizing the developed CORE Damper, the addition of re-centering capability to 

an existing bracing system is considered.  The re-centering system is specifically for the 
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reduction of residual deformation at critical sections of existing buildings.  By simply 

adding extra cables made of shape memory alloy (NITINOL) to the same diagonal in the 

base system, the system is upgraded as a re-centering system.  The concept of the re-

centering system is validated through non-linear static analyses in the OpenSEES 

platform. 
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CHAPTER 3  

PROOF-OF-CONCEPT TESTING OF “CABLE BRACING-CORE 

DAMPER SYSTEM”  

 

3.1 Introduction 

 The concept of the “Cable Bracing-CORE Damper system” presented in Chapter 

2 was examined through a full scale experiment.  The experiment had been carried out 

using a testing frame newly constructed in the structural laboratory at the Georgia 

Institute of Technology.  The performance of the prototype system was examined under 

quasi-static cyclic loading.  During the test, the displacement of an actuator which 

connected to the top beam of the testing frame was controlled with the loading protocol 

specified in the AISC guideline.  The local and global behavior of the specimen was 

evaluated through digital measurements and visual inspections.  The test was repeated for 

twice by replacing the steel plate energy dissipaters (SPEA) in the CORE damper.  For 

the second test, the boundary condition at the bolt connections in the CORE Damper was 

slightly modified.  Finally, the obtained test results were compared with the results 

predicted in the preliminary analyses.   
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3.2 Experimental Setup 

 A new testing frame constructed at the Georgia Institute of Technology is a portal 

frame with pins at its four corners and is capable of testing sub-assemblages of low-to-

mid rise steel buildings under quasi-static earthquake loads [Figure 3.1(a)].  The 

maximum capacity of the testing frame is 2000kN.  The actuator applies a quasi-static or 

low frequency loading rate (0.05 to 0.2Hz), through the ± 254mm displacement of the 

actuators.  The drift capacity of the testing setup was set to 0.07 radians for positive 

deformation (push) and 0.04 radians for negative deformation (pull) to enable a 

monotonic loading of specimens after a scheduled cyclic loading.  A MTS 407 stand 

alone controller is the primary controller of the system [MTS 2000].  The other main 

components of the frame are 735mm-W36x160 beams, 457mm-W14x150 columns, and 

specially assembled frictionless pin clevises [Figure 3.1(b)].  The bottom beam was post 

tensioned to the strong floor by 24 large diameter DYWIDAG bars.  The top beam was 

braced to the strong wall to constrain out-of-plane deformation of the testing frame.  The 

pin clevises are capable of supporting 1500kN of radial force with minimum friction 

force and its force sensing capability provides accurate boundary information for the test 

system.  The detailed drawing for the main components of the testing setup can be found 

in Appendix A. 
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Fig 3.1(a): 

 

Fig 3.1(b): 

Figure 3.1: Testing setup installed in Georgia Tech structural lab (a) overall 

configuration (b) frictionless pin clevis designed 
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3.3 Specimen and Instrumentation 

 The assembled CORE Damper was installed to the frame through 9/16” (M14) 

6x19 IPS IWRC bright steel wire cables [FED RR-W-410E, 1999], 7/8”-6” (M22-

150mm) jaw-jaw turnbuckle [ASTM F1145-92, 1992] and padeyes.  The dimensions of 

the components of the prototype specimen are shown in Figure 3.3.  In the cover plate, 

the loading part, where SPEAs were connected by high strength bolts, were welded by 

complete penetration welding and holed with a 7/8” (M22) UNC-9 thread tap.  The 

spacers placed between SPEAs were two of 64mm-HSS 2”x3”x1/4”x1/4”.  Two 1” 

(M26) threaded rods were used to apply post-tensioning force on the outer surface of the 

SPEAs.  The cables, turnbuckles and padeyes [Figure 3.4] were designed to remain 

elastic with the safety factors of these elements vary from 1.5 to 2.0 with respect to the 

core damper.  

The rotations of the cover plates of the CORE Damper were evaluated from the 

horizontal displacements measured at the upper and lower ends of the plates 

[potentiometers P1-P4 shown in Figure 3.5(a)].  Two more potentiometers were installed 

to measure the vertical and out-of-plane deformation of the CORE Damper.  Hand-made 

load cells were installed to the ends of lower four diagonal cables [Figure 3.5(b)].  The 

manufacturing of the load cells are described in Appendix A.  Taking advantage of the 

symmetry in the system, the forces in the upper four cables were estimated from those in 

the lower four cables.  These load cells had calibrated in advance the test as their 

sensitivity in the range of interest summarized in Table 3.1.  LVDTs attached to padeyes 

checked the deformation against the testing frame.  Strain gauges were attached on the 

surface of a SPEA to estimate the yielding point of the plate and the axial force along the 
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longitudinal axis.  The data acquisition system consists of National Instrument 

LabViewTM software, a desktop PC platform, a PCI express DAQ, and a SCXI signal 

conditioning [National Instruments, 2003].  

A cyclic test of the prototype system was carried out after installing pre-stressing 

force in the cables by tightening turnbuckles.  The applied pre-stressing force was 

checked using the developed load cells for cables. 

 

 

Figure 3.2: Installed specimen 

  

Padeye 

CORE Damper 

Cable + turnbuckle 



 60

 

 

 

 

Fig 3.3 (a) 
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Fig 3.3 (b) 

 

Fig 3.3 (c) 

Figure 3.3: Dimension of CORE Damper (a) cover plate, Gr.50, thickness=19mm (b) 

SPEA, Gr.36, thickness=19mm (c) steel plate washer, Gr.36, thickness=19mm 
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Fig 3.4(a): 

 

Fig 3.4(b): 

 

Fig 3.4(c): 

Figure 3.4: Dimension of padeye, Gr. 36 (a) side (b) back (c) plan 
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Fig 3.5 (a): 

 

Fig 3.5 (b): 

Figure 3.5: Specimen and location of measurements (a) CORE Damper with 

potentiometers (b) cable load cells and LVDT 
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Table 3.1: Cable load cell calibration 

Load Cell Sensitivity 

 Run1 Run2 Average 

 lb/mV lb/mV lb/mV 

LC1 826.7 822.9 824.8 

LC2 862.5 870.2 866.4 

LC3 829 827.9 828.5 

LC4 835 832.9 834.0 

 
Note: The sensitivities are the averaged values under 3kip to 15kip load with excitation 
voltage as +10V. 
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3.4 Material Properties 

 Table 3.2 shows the coupon test results for a steel plate energy absorber (SPEA) 

in the CORE Damper.  The obtained material properties were pretty standard for A36 

mild steel. 

 A tensile test of the cable was conducted at the Georgia Tech structural laboratory 

using  MTS 810 universal testing system with MTS 647.25 hydraulic wedge grips; the 

maximum static force capacity of 333kN (75kip) and dynamic force capacity of 200kip 

(55kip).  In the test, the end loops which made at the both ends of cable using eight of 

M12 clips and steel sheaves were connected to custom made grips using M26 high 

strength bolts.  Eventually, theses grips were grabbed by the hydraulic wedge grips of the 

testing system.  The primary purpose of the testing was to determine the prestress force 

needed to remove any initial slack of cables; the test was not intended to the calculation 

of the stiffness for the cable.   

 Figure 3.6 shows the relationship between the applied tensile load and the 

displacement of the cross head in the testing machine.  The force require to remove initial 

slackness in the cable was around 9.1kN (2kips).  For further loading the loop of the 

cable started to rotate involving detwisting of the cable in elastic range since the 

boundary conditions at grips were similar to universal joints.  Eventually, the test was 

terminated due to the slippage observed at the end loops. 

 

 

  



 66

Table 3.2: Material properties of SPEA 

Coupon Thickness Yield stress Tensile stress Elongation 

 mm MPa MPa % 

S1 18.80 269.0 405.9 33.3 

S2 18.80 267.7 404.7 31.9 

average 18.80 268.3 405.3 32.6 
 

 

 

Figure 3.6:  Tensile test of cable 

 

  

Initial slackness removed 

Cable started rotate around 
longitudinal axis 

Slippage started at 
end loop 



 67

3.5 Loading Sequence 

The displacement was manually controlled using Ramp function in the function 

generator equipped in the MTS 407 controller [MTS, 2000].  The applied displacement 

was compared with the actual deformation monitored at the top beam.  The loading 

sequence was the one for the testing of beam-column connections specified in the AISC 

provision [Table 3.3; AISC, 2007].  The loading was repeated for 6 cycles until the 

0.0075rad. interstory drift, for 4 cycles with the 0.01rad. interstory drift and 2 cycles for 

the rest.  After the scheduled loading cycles completed, the loading was continued 

monotonically until 0.05rad.  The loading rate was 12.7mm (0.5 in) per minute for the 

small amplitudes, 0.00375 to 0.0075rad., and 25.4mm (1.0in) per minute for the large 

amplitudes, 0.01 to 0.04rad.  For monotonic loading, the loading rate was increased to 

50.8mm (2.0in) per minute. 

 

Table 3.3: Loading sequence 

Run number Interstory drift Number of cycles 

 rad.  

1 0.00375 6 

2 0.005 6 

3 0.0075 6 

4 0.01 4 

5 0.015 2 

6 0.02 2 

7 0.03 2 

8 0.04 2 
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3.6 Typical Test View 

 The first test was used to check the overall system and its behavior; after this test 

minor adjustments were made to the device and the following discussion will focus on 

the behavior of the second specimen, unless otherwise specified. 

 At every target interstory drift level, the behavior of the system was investigated 

through a visual screening and the instrumentation data.  Figure 3.7 shows the typical 

deformed shape of the overall system and the CORE Damper.  The testing view was 

recorded by two video cameras; one was for deformation of the entire system and another 

was for the deformation of the CORE Damper.  The condition of the specimen was 

continuously monitored by the data from measurements and the eye inspection at the end 

of each half loading cycle.  The CORE Damper shifted horizontally with its center 

remained in plane of the bracing system.  The padeyes did not slip through the entire 

loading. 

 Figure 3.8 shows the behavior of the CORE Damper at various loading levels.  As 

the drift level increased, the relative rotation between the front and back cover plates 

increased.  The rotation became notable at the 0.0075rad. cycle when the SPEAs started 

to yield.  The cracking sound of the mill scale on the surface of the SPEAs also started at 

the 0.0075rad. cycle.  The Lüders' bands on the surface of SPEAs became visible at the 

0.01rad. cycle and continued to spread over the entire region of the plates.  The slipping 

of bolts became noticeably audible at the 0.015 rad. cycle and became constant after 0.02 

rad. loading cycles.  A large amount of the mill scale flaked at large deformation cycles. 
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Fig 3.7(a): 

 

Fig 3.7(b): 

Figure 3.7: Test view (a) entire view of testing setup (b) lookup view of CORE Damper 
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Fig 3.8(a): 

 

Fig 3.8(b): 

 

Fig 3.8(c): 

Figure 3.8: CORE Damper in inward and outward deformation mode (a) 0.75% story 

drift (b) 2% story drift (c) 4% story drift 
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3.7 Test Results 

 The test was repeated for twice by replacing the steel plate energy dissipaters 

(SPEA) in the CORE damper.  For the second test, the boundary condition at the bolt 

connections in the CORE Damper was slightly modified.  The evaluation of the global 

hysteresis behavior and local behavior hereafter focuses on the results obtained from the 

second test.  The results of the first test is showed later in this section along with the 

discussion on the effect of the boundary condition.   

Hysteresis Behavior 

 Figure 3.9(a) shows a base shear versus story drift relationship.  The system 

successfully showed a stable bi-linear behavior without any strength deterioration until 

the end of the loading.  Given the same amplitude, the maximum force and minimum 

force at zero displacement at any one cycle were almost same, i.e. no cyclic effect exited 

for the same amplitude.  The post yielding stiffness in the outward deformation mode 

became slightly higher than that in the inward deformation mode when the bolts at the 

connections started to slip with audible sounds at the 0.015rad. cycle.  The post yielding 

stiffness slightly increased after 0.025rad. when the bearing force at the connections 

developed with slippage became significant.  In the outward deformation mode, it was 

also notable that the post yielding stiffness in the second cycle reduced from that in the 

first cycle due to the some release of the bearing force at the connections.   

 Figure 3.9(b) is the enlarged hysteresis curve up to 2% story drift.  The dotted line 

is the monotonic loading curve constructed from the OpenSEES blind analysis 

implementing the CORE Damper hysteresis curve obtained ABAQUS analysis.  The 

analyses were executed for the outward deformation and the inward deformation 
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separately using the material properties of the SPEAs from the tensile coupon tests.  The 

analysis predicted the elastic stiffness for the both deformation directions very well.  The 

yielding strength in the experiment was slightly smaller but close to that predicted in the 

analyses for the both deformation directions.  To obtain a post-yielding stiffness closer to 

that in the experiment, the finite element model should be further improved. 

Deformation in Local Elements 

 The rotation history of front and back cover plates is shown in Figure 3.10(a).  

The rotation of the front cover plate was approximately 25% larger than that of the back 

cover plate due to the nature of the geometry as the cables connected to the front plate 

were shorter than those connected to the back plate.  The difference in stiffness of the 

cables resulted in the difference in cable forces and thus resulted in the overall rotation of 

the CORE Damper [see Figure 2.5(a)].   

 The relative rotation between two cover plates was approximately 0.4rad. at the 

3% story drift.  This result was consistent with the prediction in the preliminary analyses.  

The maximum cable force observed during the specified cyclic loading was 60kN and 

was a half of the capacity defined as the slip critical force at their end loops.  
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Fig 3.9(a): 

 

Fig 3.9(b): 

Figure 3.9: Hysteresis behavior (a) overall behavior (b) system behavior up to 2% story 

drift compared with monotonic curve predicted from blind analysis 

Inward deformation Outward deformation 
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Fig 3.10(a): 

 

Fig 3.10(b): 

Figure 3.10: Local behavior (a) rotation history of cover plates (b) cable force history 

 

Left front
Left back 
Right front 
Right back

Front
Back
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Effect of Condition at Connection  

 Figure 3.11 shows the comparison between the first and second specimens up to 

2% story drift.  In the second specimen, extra circular washers were placed between the 

inner surface of the SPEA and the loading surface of the cover plate to obtain closer 

boundary conditions in the outward and inward deformation modes.  For the first 

specimen washers were only installed between the outer surface of the SPEA and bolt 

heads.  A larger post-tensioning force was applied at the middle part of SPEAs to restrict 

the in-plane rotation of the SPEAs.  The difference between the strength in outward and 

inward deformation modes decreased in the second specimen compared to those in the 

first specimen.  The second specimen showed fatter hysteresis loops in the outward 

deformation mode. 

 

 

Figure 3.11: Effect of boundary condition at loading point 

  



 76

Surface Strain and Axial Load in SPEA  

 The surface strain history of the SPEA is shown in Figure 3.12 until the strain 

exceed the value corresponds to the yielding strain of steel, 2000.  The strain values are 

plotted separately depends on the location of measurements [see Figure A.6].  The gauges 

S1-S7 and S11-S17 were placed on the inner and outer surface of SPEA, respectively.  

The gauge S5 was damaged during the assembly of the CORE Damper and did not work 

properly.  The yielding strain was reached first at the part close to the center washer 

during the 0.0075rad. cycle.  The strain at the intermediate and loading part also reached 

to the yielding value during the 0.015rad. and 0.04rad. cycles, respectively.  The strain 

remained in elastic range at the loading part.  When the values in the two deformation 

mode were compared, the values at the center part were higher in the outward 

deformation mode than in the inward deformation mode [Figure 3.12(a)].  This was 

opposite for the values at the loading part [Figure 3.12(c)]. 

 The sign of the strain values on the same surface, i.e.; S1-S7 or S11-S17, were 

consistent in one deformation mode.  This indicated that the SPEA deformed in single 

curvature rather than in double curvature.  At the loading and intermediate part, the 

absolute strain values were pretty similar on the inner and outer surface, for example, S4 

and S14.  These values differed at the center part due to the existence of slight twisting 

moment.  The axial strain in the SPEA was evaluated at the loading point where no 

twisting moment exists [Figure 3.13].  The strain started to increase after 2% story drift 

mainly due to the bearing force induced at the loading point but successfully remained 

small under large deformation.  It was also notable that the axial strains were only 

developed in tensile (positive) direction. 
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Fig 3.12(a): 

 

Fig 3.12(b): 

 

Fig 3.12(c): 

Figure 3.12: Strain at SPEA surface (a) center part (b) intermediate part (c) loading part 
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Figure 3.13: Axial strain in loading part of SPEA 
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Limit State and After Test Observations 

 The system exhibited stable behavior under large deformation, while the CORE 

Damper remained below the limit state condition, which was defined as contact between 

the two SPEAs in the inward deformation mode [Figure 3.14(a)].  The in-plane rotation 

of the SPEAs started after 0.04rad. in conjunction with the rotation of the post-tensioned 

high strength bolts [Figure 3.14(b)]. 

 After the test had been completed, the CORE Damper was taken out from the 

system by loosening turnbuckles and disassembled in each piece [Figure 3.14(c)].  The 

investigation of the components confirmed that damage was concentrated only in the 

SPEAs.  The damaged SPEAs in the first test were replaced and the system was easily 

reassembled for the second test.  The whole reassembling process should not take more 

than an hour when performed by two construction workers.  This demonstrated the ease 

of replacement of the system after a significant seismic event. 
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Fig 3.14 (a): 

 

Fig 3.14(b): 
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Fig 3.14(c): 

Figure 3.14: Ultimate behavior at 0.04rad. cycle and after test observation (a) inward 

deformation mode (b) side view (c) disassembled specimen 
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3.8 Summary 

 The proof of concept testing for the cable bracing system with a Couples 

Resisting Damper (CORE Damper) was undertaken through the use of the full scale 

testing frame constructed in the structural laboratory at the Georgia Institute of 

Technology.  The system was designed to withstand for the deformation under a 

maximum credible earthquake. 

 The post-tensing force required for the removal of initial slackness in the cables 

was defined using the hysteresis curve obtained from tensile test of a cable beforehand.  

The material properties of the steel used for the SPEAs were pretty standard for A36 steel 

according to preliminary tensile coupon tests.   

  The performance of the system was evaluated at various drift levels under quasi-

static cyclic loading.  The local behavior of the system was carefully monitored using 

digital instrumentations including hand-made load cells made for the cables.  The surface 

strains of the SPEAs were acquired by numbers of uniaxial strain gauges. 

 The proposed system successfully showed stable bi-linear hysteresis, even 

through very large deformations.  As the drift level increased, the relative rotation 

between the front and back cover plates increased.  The rotation became notable at the 

0.0075rad. cycle when the SPEAs started to yield.  The cracking sound of the mill scale 

on the surface of the SPEAs also started at the 0.0075rad. cycle and the most part of the 

surface of the SPEAs were flaked at the end of the loading.  The slipping of bolts became 

noticeably audible at the 0.015 rad. cycle and became constant after 0.02 rad. loading 

cycles.  The post-yielding stiffness of the system increased after the 0.02rad. cycle when 

the bolts at the connections between the SPEAs and the cover plates started to slip along 
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long slotted holes.  The base shear of the system was slightly higher when the Couples 

Resisting Damper (CORE Damper) deformed outward than when it deformed inward.  

This was due to the change of the boundary condition in outward and inward deformation 

modes.  

 The hysteresis curve was compared to that predicted by the preliminary analyses 

in ABAQUS and OpenSEES.  The analyses predicted pretty well the elastic stiffness and 

yielding strength of the system. 

 At the 0.04rad. cycle, the CORE Damper remained below the limit state 

condition, defined as a physical contact between two SPEAs under the inward 

deformation mode.  The out-of-plane deformation of the cover plates was observed after 

the 0.04rad. cycle due to the in-plane rotation of the SPEAs.  The investigation of the 

components after the test confirmed that damage was concentrated only in the SPEAs.  

The process of reassembling the system by replacing the damaged SPEAs was simple and 

rapid.  This demonstrated the ease of replacement after a significant seismic event. 

 

 

  



 84

CHAPTER 4  

ANALYTICAL STUDY OF SESMIC UPGRADING WITH “CABLE 

BRACING-CORE DAMPER SYSTEM” 

 

4.1 Introduction 

 The analytical study presented in this chapter demonstrates the upgrading of 

seismically deficient steel frames using the “Cable Bracing-CORE Damper System” 

proposed and validated in Chapters 2 and 3.  The model building considered for the 

upgrading is a multi-story steel frame originally designed for gravity and wind loads in 

the 1960’s, which now needs to be evaluated for seismic loads due to the update of the 

seismic hazard map.  The main lateral-load-resisting system in the original building is a 

diagonal cross bracing system located at the end bents.  Each element (i.e. girder, column 

and brace member) is designed for the force under gravity load only and under the 

combined gravity and wind loads including P effects.  Only limited plastic deformation 

capacity is available for these elements due to the lack of proper seismic detailing.  In the 

design, the cross bracing is considered to resist only in tension and, as a result, the 

building is not qualified as a concentrically braced frame which requires balanced tension 

and compression brace components [AISC, 2007; Tremblay, 1996].  The bracing 

members are very slender and are susceptible to brittle fracture at midspan where global 

buckling creates a hinge.  An accumulation of inelastic deformation in one direction, 

“racheting” sideways under repetitive cyclic loading is also typical for such brace 

members designed only in tension.  Consequently, the development of a “soft story”, 
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where deformation concentrates at a certain story, becomes a concern under a cyclic 

seismic load. 

 To improve the performance of the building under seismic loads, the replacement 

of the existing diagonal cross bracing with the “Cable Bracing-CORE Damper System” is 

proposed.  This rehabilitation action impacts the performance by: (1) a minimizing the 

possibility for the development of “soft story” by providing stable bi-linear hysteretic 

performance, (2) reducing story drift by enhancing the energy dissipation capacity of the 

building, and  (3) eliminating the concern for brittle failure in brace elements.  The 

performance of the original and upgraded frames under a seismic load is evaluated 

through nonlinear dynamic analyses using recorded and synthetic ground motions. 
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4.2 Model Building Design 

Building Plan and Design Load 

The model building is a five-story steel frame with 5 bays and 2 spans in plan 

[Figure 4.1].  The floor plan of the building resembles a design example of a multistory 

braced frame in a structural engineering textbook written in 1970’s [Disque, 1971].  The 

vertical and lateral load resisting systems in the building are designed for a gravity load 

only and for the combined gravity and wind loads, respectively.  In the north-south 

direction, a diagonal cross bracing is permitted only in column lines 1 and 5 between 

bents A and B, while the structure is assumed to be braced in the east-west direction.  

Hereinafter, the discussion of the seismic performance of the building focuses only in the 

north-south direction.  

The lateral load design is controlled by a drift index defined as the deflections at 

the center of mass at the roof divided by the building height.  The drift index shall be 

0.0025 at working load and 0.004 at the factored loads, i.e., 0.0025 multiplied by a factor 

of 1.3 plus an allowance for additional drift due to P effect.  The total working load on 

the girders is taken to 43.6kN/m (3kips per ft) resulting from the dead load of 2.3kPa 

(48psf) and the live load of 3.45kPa (72psf) on each floor.  The wind load is simply 

assumed to be 0.96kPa (20psf) along the entire height of the building.  The sizes of 

original members meet design guidelines in the 1960’s [AISC, 1963].  
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4.1(a): 

 

 

                                      4.1(b):                                                                             4.1(c):  

Figure 4.1: Building geometry (a) building plan (b) bents 1 and 5 (c) bents 2-4 

  

1                                2                                 3                                 4                                 5  
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Original Building with Diagonal Cross Bracing 

The members in the original building are designed using a plastic design 

procedure.  For gravity loads a global factor of 1.7 was used for both dead and live loads; 

for wind a 1.3 factor was used.  Therefore, the gravity and lateral load resisting systems 

in the building have some reserved strength compared to the systems designed following 

current design guidelines.  The design procedure of the multistory braced frame in plastic 

design can be subdivided into two main parts.  One is the preliminary design of girders, 

columns and brace members under gravity loads (Step 1-3).  This follows the secondary 

design of these members under the combined load of wind and gravity loads (Step 4-6).  

Finally, the drift at the top floor is checked for the requirement of the appropriate drift 

limit of 0.004. 

1. The required plastic moment, Mp, of the girders under a uniform gravity load is 

computed with a safety factor, F=1.7 [Table 4.1]: 

 1.7  4.1 

, where 

w  = working load on the girder 

L  = clear distance between column flanges 

2. The column members under a gravity load are selected so that the plastic moment 

capacity of the columns under axial load Mpc is larger than the required end moment M 

with a safety factor F=1.7. 

 1.18 1  4.2(a) 

  4.2(b) 
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, where 

P = factored axial load on the column section 

Py = yielding axial strength of column sections 

V = factored shear load at the column surface 

d = column depth 

After the member size of columns are selected, the allowable moment considering 

the lateral tensional buckling (LTB) MLTB is checked in Table 4.3 using the column 

design chart in AISC specification [AISC 1969].  The end moment ratio q is taken as 0 

and 1.0 for the first story column and upper story columns, respectively.  In-plane 

bending (IPB) does not govern the moment capacity in this case. 

3. The third step is to determine the area of brace members to stabilize the columns 

under a gravity load with a safety factor F=1.7 [Table 4.3].  The stability of a braced 

frame under a gravity load depends on the stiffness and angle of the brace members.  The 

required area for the brace members Ab are calculated by equating the restraining moment 

provided by the brace members and the overturning moment induced by a P effect as 

follows. It is assumed that the diagonal bracing only works in tension. 

 
∆ ∑ ∆ 

 
∑

 4.3 

, where 

P = factored axial load on braced frame at each floor level 

Lb = length of braced member 

E  = Young’s modulus 
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h = story height 

 = inclined angle of brace member 

Table 4.1: Girder design for gravity load 

Girder Lspan Dcolumn L Mp Zrequired Rp Member Z 

  m m M kN-m cm3 kN   cm3 

A-B 4.6 0.30 4.27 84.4 340 169.4 W10x19 354 

B-C 6.1 0.30 5.79 155.4 626 225.9 W12x27 623 

Table 4.2: Column design for gravity load 

Column P M Mem Py Mp ry P/Py h/ry Mpc M/Mpc MLTB 

  kN 
kN-
m 

  kN 
ft-

kips 
    in 

ft-
kips 

LTB   

A1-A2 847 54.2 W8x40 1890 161 2.04 0.45 26.9 105 0.66 69.1 

q = 0 OK 

A2-A4 678 54.2 W8x35 1650 141 2.03 0.41 27.0 98 1 97.8 

q = 1.0 OK 

A4-A6 339 54.2 W8x24 1130 94 1.61 0.30 34.1 77 0.98 75.9 

q = 1.0 OK 

B1-B2 1977 39.8 W8x67 3154 286 2.12 0.63 25.9 125 0.27 33.8 

q = 0 OK 

B2-B4 1581 39.8 W8x58 2740 243 2.1 0.58 26.1 120 0.57 68.6 

q = 1.0 OK 

B4-B6 791 39.8 W8x35 1650 141 2.03 0.48 27.0 86 0.87 75.1 

q = 1.0 OK 

C1-C2 1130 94.0 W8x58 2740 243 2.1 0.41 26.1 168 0.78 130.9

q = 0 OK 

C2-C4 904 94.0 W8x40 1890 161 2.04 0.48 26.9 99 0.89 88.1 

q = 1.0 OK 

C4-C6 452 94.0 W8x35 1650 141 2.03 0.27 27.0 121 1 120.6

q = 1.0 OK 
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Table 4.3: Brace design for stability under gravity load 

P LB E cos Member SPLB Ab 

kN m Mpa     kN-m cm2 

1160 7.62 200000 0.8 Level 1-2 44300 0.757 
Level 2-3 35400 0.606 
Level 3-4 26600 0.454 
Level 4-5 17700 0.303 
Level 5-6 8860 0.151 

4. The preliminary members of the vertical truss are selected based on a hypothetical 

lateral force which represents the P effects.  The drift index is assumed to be 0.004 and 

a safety factor F=1.3 is used for the factored combined load of gravity and wind loads. 

 ∆ 1.3    4.4 

, where 

P = gravity load at each floor level 

 The axial force in the brace members under the combined wind load, gravity load 

and the hypothetical lateral force are tabulated in Table 4.4.  For the analysis, the brace 

members are treated as pin-ended truss members that resist load only in tension. 

5.  The girders in the bracing system are redesigned under the combined loads with a 

safety factor F=1.3 (Table 4.4).  The following interaction formula for concurrent axial 

loads and bending moments under the combined factored load is used for the design. 

 1.3  4.5(a) 

 1.0 4.5(b) 

, where  

P = applied factored axial load 

Pcr  = 1.7 AFa where Fa is the factored allowable stress for compression members 
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 M  = concurrent permissible moment from factored loads 

 Pe  = 1.92 AFe’ where Fe’ is the allowable Euler stress 

Mm = maximum moment that can be resisted by the member in absence of axial loads 

Cm = 1.0 since rotation is not restrained 

6. The columns in the bracing system are redesigned under the combined lateral and 

gravity loads (Table 4.6).  As with the girders, the axial loads resulted from the previous 

step and the end moment resulted from a gravity load are substituted into the interaction 

formula used in the second step. 

7. The brace members in Table 4.7 are selected for the required area under the 

factored combined gravity and axial loads with a safety factor F=1.3. 

 
.

 4.6 

, where Pb= brace axial force under the factored combined gravity and wind loads from 

Table 4.4 
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Table 4.4: Brace design for combined wind and gravity loads 

w Ltotal F span 
drift 
index HP 

kN/m m       kN 

43.6 10.7 1.3 2.5 0.004 6.05 

Member 
1kN load 
applied at 
6th level 

HP=6.05kN 
Wind load 
from right 

Total Wind 
+ HP from 

right 

Total Wind 
+ HP from 

left 

  kN kN kN kN kN 

RB 3.75 68 813 881 -881 

RC -3.75 -68 -813 -881 881 

B1-B2 -3.75 -68 -813 -881 566 
B2-B3 -3 -46 -520 -566 320 
B3-B4 -2.25 -27 -293 -320 144 
B4-B5 -1.5 -14 -130 -144 37 
B5-B6 -0.75 -5 -33 -37 4 

C1-C2 3 46 520 566 -881 
C2-C3 2.25 27 293 320 -566 
C3-C4 1.5 14 130 144 -320 
C4-C5 0.75 5 33 37 -144 
C5-C6 0 0 4 4 -37 

C1-B2 1.25 38 488 526 526 
B2-C2 -1 -30 -390 -421 -421 
C2-B3 1.25 30 379 410 410 
B3-C3 -1 -24 -304 -328 -328 
C3-B4 1.25 23 271 294 294 
B4-C4 -1 -18 -128 -146 -146 
C4-B5 1.25 15 163 178 178 
B5-C5 -1 -12 -130 -142 -142 
C5-B6 1.25 8 54 62 62 
B6-C6 -1 -6 -43 -49 -49 
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Table 4.5: Brace design for combined gravity and wind loads 

Girder Lspan Dcolumn L M Mem. Py Mp rx A 

  m m m kN-m   kN kN-m   cm2 

B2-C2 6.1 0.026 6.07 130.5 W12x35 1648 208 13.3 66.5 

 
l l/rx Fa F'e Pcr Pe Unity d/t P/Py 

 
cm   Mpa Mpa kN kN         

 
610 45.7 128 466 1450 5947 0.930 42.8 0.26 

OK >40.1 <0.27 

Table 4.6: Column design for combined gravity and wind loads 

Col 
Grav

ity 

Win
d 
+ 

HP 

Tot. M Mem. Py Mp ry   Mpc  M 

 
kN kN kN 

kN-
m  

kN 
kN-
m   

c
m 

kN-
m 

LTB 
kN-
m 

B1-B2 1512 881 2393 30 W14x74 3492 513 2.5 0.69 56 190 0.3 57 

q = 0 OK 

B2-B4 1209 566 1775 30 W12x58 2740 353 2.5 0.65 56 146 0.75 110 

q = 1.0 OK 

B4-B6 605 144 748 30 W12x35 1648 208 1.5 0.45 90 134 0.73 98 

q = 1.0 OK 

C1-C2 864 881 1745 72 W12x58 2740 353 2.5 0.64 56 151 0.5 76 

q = 0 OK 

C2-C4 691 566 1257 72 W12x50 2353 296 2.0 0.53 71 162 0.55 89 

q = 1.0 OK 

C4-C6 346 144 489 72 W12x35 1648 208 1.5 0.30 90 173 0.85 147 

q = 1.0 OK 

Table 4.7: Brace design for combined gravity and wind loads 

Brace P Ab Member 

  kN cm2   

C1-B2 526 24.9 2Ls-5x3x1/4 

C2-B3 410 19.4 2Ls-5x3x1/4 

C3-B4 294 13.9 2Ls-3x2.5x1/4 

C4-B5 178 8.4 2Ls-3x2.5x1/4 

C5-B6 62 2.9 2Ls-3x2.5x1/4 
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8. The drift of the top floor is estimated by computing the elastic deflection of the 

braced frame treated as a pin-ended cantilever truss structure.  The applied loads are the 

wind and the hypothetical P forces.  The deflection of the top floor is determined by the 

virtual work method where dummy unit load is applied to the top of the braced frame.  As 

shown in Table 4.8, the drift coming from each member is calculated separately to see the 

relative contribution of the various members.  The total drift is sufficiently smaller than 

the target drift index of 0.004.  

Table 4.8: Drift calculation 

Column Member Vert Wind+P Total m  
1k at 6th 

level 

L A PL(m)/AE 

    kN kN kN M cm2 cm 

B1-B2 W14x74 
-

1512 
-881 

-
2393 -3.75 

-3 

4.6 141 1.46 

B2-B3 W12x58 
-

1209 
-566 

-
1775 

4.6 110 1.10 

B3-B4 W12x58 -907 -320 
-

1227 
-2.25 4.6 110 0.57 

B4-B5 W12x35 -605 -144 -748 -1.5 4.6 66 0.39 
B5-B6 W12x35 -302 -37 -339 -0.75 4.6 66 0.09 
C1-C2 W12x58 -864 566 -298 3 4.6 110 -0.19 
C2-C3 W12x50 -691 320 -371 2.25 4.6 95 -0.20 
C3-C4 W12x50 -518 144 -375 1.5 4.6 95 -0.14 
C4-C5 W12x35 -346 37 -308 0.75 4.6 66 -0.08 
C5-C6 W12x35 -173 4 -168 0 4.6 66 0.00 

Drift due to columns = 3.01 
Brace Member P L A M PL(m)/AE 

      kN m cm2   cm 
C1-B2 2Ls-5x3x1/4 526 7.6 25 1.25 1.00 
C2-B3 2Ls-5x3x1/4 410 7.6 25 1.25 0.78 
C3-B4 2Ls-3x2.5x1/4 294 7.6 17 1.25 0.82 
C4-B5 2Ls-3x2.5x1/4 178 7.6 17 1.25 0.50 
C5-B6 2Ls-3x2.5x1/4 62 7.6 17 1.25 0.17 

Drift due to braces = 3.28  
Girder Member P L A M PL(m)/AE 

      kN m cm2   cm 
B2-C2 W12x35 421 6.1 66 1.0 0.193 
B3-C3 W12x35 328 6.1 66 1.0 0.150 
B4-C4 W12x35 146 6.1 66 1.0 0.067 
B5-C5 W12x35 142 6.1 66 1.0 0.065 
B6-C6 W12x35 49 6.1 66 1.0 0.023 

Drift due to girders = 0.498  
Total = 6.782 cm 

Working load drift index top/HF 0.0023 
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4.2(a):                                                     4.2(b): 

Figure 4.2: Elevation of original building with diagonal cross bracing (a) bents 1 and 5 

(b) bents 2-4 

Figure 4.2 shows the final design of the braced and support bents in the original 

building with the diagonal cross bracing. 

Upgraded Building with “Cable Bracing-CORE Damper System” 

The seismically upgraded building with the “Cable Bracing-CORE Damper 

System” is designed so that the yield strength of the damper bracing system at each floor 

is equivalent to that of the diagonal cross bracing system in the original building.  As is 

the case of the original building, the bracing system in the first and second stories and the 

third through fifth stories are identical.  The stiffness of the bracing system is set to 

provide a similar fundamental period for the upgraded building as that of the original 
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building to highlight the effect of the hysteresis characteristics of dampers in building 

responses.  

4.3 Analysis Model 

In order to examine the seismic performance of the original and the upgraded 

buildings, nonlinear dynamic analyses were performed in the OpenSEES analysis 

platform [Mazzoni et al., 2009]. Beam and column members are modeled using the 

nonlinearBeamColumn element with the number of integration points set to 5.  The 

integration along the element is based on the Gauss-Lobatto quadrature rule.  The beam 

and column elements have fiber sections formed by the sub-regions of quadrilateral 

shapes which are discretized into fibers.  The individual fibers are associated with 

uniaxialMaterial objects, which enforce the Bernoulli beam assumption.  The modeling 

of brace elements are explained later, as it was different for the two buildings. 

All members are A36 mild steel with an expected strength factor Ry = 1.2 

(RyFy=294MPa).  These values were used considering the fact that the 1960’s was a 

transition period from ASTM A7 mild steel (Fy=225MPa) to ASTM A36 steel 

(Fy=245MPa) [Newman, 2001].   The material model for the steel is a bi-liner hysteresis 

curve with the strain hardening ratio of 0.28%.  

The dead load and the weight of beams are divided by the gravitational 

acceleration and are applied to beams as a distributed mass.  The weight of the columns is 

applied at column nodes as nodal mass.  The P effect is accounted for by applying a co-

rotational transformation to the column and brace elements.  Numerical damping is 

considered by specifying 5% Rayleigh damping in the first and third modes of vibration.  

The natural frequencies of the original building with diagonal cross bracing and the 
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upgraded building with the CORE Damper bracing were computed as 0.83 sec. and 0.82 

sec., respectively, indicating a relatively flexible structure. 

The transient earthquake analyses are executed after the application of a gravity 

force to the building models.  In the transient analysis, constraints are handled by a 

transformation method which performs a condensation of constrained degrees-of-

freedom.  The system of equations are stored and solved using a BandGeneral solver 

which is suitable for banded unsymmetric matrices.  The solution algorithm used for 

solving nonlinear equations is a Modified Newton-Raphson iteration procedure where a 

tangent stiffness matrix is held constant, an assumption suitable for mildly non-linear 

problems.  The two parameter time-stepping method developed by Newmark is used as 

an integrator to determine the next time step in the analysis including inertial effects. 

Original Building with Diagonal Cross Bracing 

 Brace members are modeled using a nonlinearBeamColumn element command 

with the 7 integration points.  The brace elements also utilized a fiber section command.  

The brace members in the analysis model are able to carry compression and tension, 

although the compressive strength of the brace members is not accounted for at design 

stage because of their very large slenderness ratios [Figure 4.3].  A brace member buckles 

when the applied axial load exceeds the specified maximum compressive strength and 

continues to lose its compressive strength for a further deformation.  The brace model 

does not include a ductility limit but includes a simplified model for strength 

deterioration of the brace members.  The nominal compressive and yielding strength of 

the brace members are computed as Table 4.9 by following the AISC steel construction 

manual [AISC, 2005].  Here, the lengths of the brace members are taken as the diagonal 
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length of the adjacent frame times 0.9 considering the physical size of a beam-column 

connection and end connections of a brace member. 

 
                                 4.3(a):                                                               4.3(c): 

Figure 4.3: Diagonal cross bracing model (a) model elevation (b) brace hysteresis on 

third floor (c) brace hysteresis on first floor 

Table 4.9: Mechanical properties of diagonal cross braces 

Member A K L KxL/rx KyL/ry Fe Fcr Pn Py 

  cm2   m     Mpa Mpa kN kN 

2Ls-5x3x1/4 25.0 1 6.9 83 227 42.2 37.0 93 621 

2Ls-3x2.5x1/4 17.0 1 6.9 144 241 37.4 32.8 56 423 

4.3(b): 
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The brace model shown in Figure 4.4 utilizes a fiber-based nonlinearbeamcolumn 

element to simulate the buckling behavior of a brace member.  This model, originally 

developed for a chevron brace configuration, has an additional node at the midspan of a 

brace member to introduce an initial geometrical imperfection [Uriz, 2008; Yang, 2006, 

2008].  The maximum compression strength of the brace member (Pn) is controlled by 

the amount of the initial imperfection.  Two rotational springs at the end of the brace 

member help control the post-buckling strength of the brace member.  An adequate initial 

stiffness of the rotational spring is set to obtain 0.3Pn at 10-20 times the yielding 

displacement of the brace member [AISC, 2007].  These parameters, initial imperfection 

ratio Rim= (imperfection) / (brace length), and stiffness of rotational spring Ksp, are 

determined based on an iterative procedure in the Pushover analysis of the entire building 

model [Table 4.10].  A large initial imperfection is required to provide relatively small 

compression strength to the brace member due to its large slenderness ratio.  In this 

specific case, the small stiffness of the rotational spring indicated that it could be replaced 

with a simple moment release connection. 
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Figure 4.4: Schematic configuration of a diagonal cross brace model 

 

Table 4.10:  Parameters summary for buckling behavior 

Location Member 
Initial imperfection 

ratio 
Stiffness of rotational 

spring 

 
 RIm Ksp 

1-2 story 2Ls-5x3x1/4 1/95 0.1 

3-5 story 2Ls-3x2.5x1/4 1/250 0.1 
 

  

Beam 

Column Brace 

Initial imperfection 

Rotation spring 



 102

Upgraded Building with “Cable Bracing-CORE Damper System” 

 The analysis model used in Chapter 2 is implemented at each floor of the building 

[Figure 4.5].  The weight of the CORE Damper is applied at damper nodes as a nodal 

mass.   The yield strength and the elastic stiffness of the CORE Damper system are tuned 

to match with those of the diagonal cross bracing system in a preliminary static pushover 

analysis.  The post-buckling stiffness of the CORE Damper is set to 1/13 based on the 

hysteresis curve from the experiment of the prototype reported in Chapter 3.   

 

                                   4.5(a):                                                               4.5(c): 

Figure 4.5: CORE Damper bracing model (a) overall model (b) damper hysteresis on 

third floor (c) damper hysteresis on first floor 

 4.5(b): 
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4.4 Analysis Results 

 The analyses consisted of a pair of ground motions in an attempt to bracket the 

behavior of the two structural systems.  One ground motion is a large, near-fault ground 

motion (LA22 record) and another is a long, far field ground motion (1985 Chile record).  

The LA22 record is one representative ground motion generated for Los Angeles having 

a probability of exceedance of 2% in 50 years [Somerville et al., 1997].  This acceleration 

time history, with a peak ground acceleration of 0.92g and an effective duration of 60 

seconds, corresponds to the fault-normal component of the 1995 Takatori Kobe record. It 

has been altered so that the mean response spectrum matches the 1997 NEHRP design 

spectrum [SAC, 1997].  The Chile ground motion, with a peak ground acceleration of 

0.71g and an effective duration of 116 seconds, was recorded in the 1985 Chile 

earthquake at the Llolleo station located approximately 60 km from the epicenter. 

Near fault earthquake: LA22 ground motion 

 The LA22 ground motion has large peak ground acceleration with short duration.   

Figure 4.6 shows the response history of each floor under the LA22 ground motion for 

the two building cases.  For the case of the diagonal cross bracing system (dotted lines), 

the first story suffered from a very large deformation (4.4% drift) under the first large 

motion at 7 sec.  The accumulation of inelastic deformation in one direction resulted in a 

permanent residual deformation after the earthquake event (0.8% drift).  The ground 

motion resulted in inelastic excursions for the second through fourth stories, but the 

maximum and residual deformations at these levels were not significant compared to 

those of the 1st story.  The deformation time history indicated that the period of the 

building significantly elongated after the first story was significantly damaged and lost its 
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initial stiffness after the large motion at 7-10 sec.  For the case of the CROSS Damper 

bracing system (solid lines), damage did not concentrate in a particular story and rather 

distributed itself along the entire height of the building.  The maximum story drifts were 

similar for the first through fourth stories with the largest maximum story drift observed 

at the third story.  The building did not exhibit a significant residual deformation after the 

earthquake event at any stories.  The building also retained its initial stiffness as indicated 

by the high frequency responses after large shaking at 7-10sec. 

The lateral seismic loads resisted by the two bracing systems at the first story are 

shown in Figure 4.7.  In the diagonal cross bracing system, the seismic energy was 

dissipated mainly in the first large hysteresis loop and inelastic deformation was 

accumulated in one direction.  In the CORE Damper system, the energy was dissipated in 

a stable hysteretic manner under cyclic loading.  After the CORE Damper system 

experienced relatively large deformations, the system showed a slight slip-type behavior 

when the unloading curve crossed the zero threshold.  This behavior comes from the 

slack of cables under the high speed loading when the frame is subjected to a large near 

fault earthquake.  This deformation will probably disappear if the analysis model 

considers some post-tensioning forces which are necessary during the installation of the 

damper system, as described in the report of the experimental tests in Chapter 3. 

The main response indices of the two bracing systems are summarized in Figure 

4.8.  As discussed above, the building with the diagonal cross bracing system exhibited 

severe damage with a soft story developing at the first story.  The ductility demand for 

the brace members in the first story was very large and fractures were likely to occur at 

the hinges developed in repetitive global buckling before the ground motion terminated.  
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The CORE Dampers in the building were evenly subjected to a large deformation and 

dissipated a seismic energy.  The deformation capacity of the damper had been confirmed 

in the proof-of-concept testing [Chapter 3].  The residual deformation at each story 

remained under the operational limit of 0.5% story drift. 
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Figure 4.6: Displacement history under near fault earthquake 
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4.7(a): 

 

4.7(b): 

Figure 4.7: Response of first story brace system under near fault earthquake (a) diagonal 

cross bracing (b) CORE Damper bracing 
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4.8(a): 

 

4.8(b): 
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4.8(c): 

Figure 4.8: Response summary under near fault earthquake (a) maximum story drift (b) 

maximum brace deformation demand (c) residual story drift 
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Far Fault Earthquake: Chile Ground Motion 

The Chile ground motion consists of a large number of small to midsized cycles 

and has a long effective duration.  Figure 4.9 shows the response history for each floor 

for the two building cases.  For the building with the diagonal cross brace system, the 

largest deformation was observed at the first story and is at least 30% larger than other 

stories.  The first large wave at 35sec severely deformed the building and was followed 

by a number of cycles with similar amplitude.  Therefore, the brace system at the first 

story experienced a large number of inelastic deformation cycles as seen in its hysteresis 

plot in terms of total brace shear vs. story drift [Figure 4.10(a)].  The large number of 

inelastic loading cycles into a slender brace member will cause severe strength 

deterioration and likely lead to a low cycle fracture at local buckling where global 

buckling creates a plastic hinge.  The indication of the slight elongation of the building 

natural period was observed when the frequency of story response at 0-20sec was 

compared to that at 80-100sec.  

The building with the CORE Damper system had less variation in story drifts 

along its height, ranging from 0.6% to 0.9%.  No period elongation was observed for the 

building over the entire duration of the ground motion.   The CORE Damper at the first 

story also experienced a large number of inelastic deformation cycles and dissipated a 

seismic energy through its stable plate bending energy dissipation mechanism [Chapter 

2].  The seismic energy was dissipated mainly at the first, third and fourth stories. 

 Figure 4.11 compares the responses in the two systems.  Although the average of 

the maximum story drift along the building height was similar for both systems, the 

observed damage was rather concentrated at the first story for the diagonal bracing 
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system.  For both cases, the deformation in brace members was below their ductility limit 

and the residual deformation was smaller than the operational story drift limit of 0.5%. 
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Figure 4.9: Displacement history for far fault earthquake 
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4.10(a): 

 

4.10(b): 

Figure 4.10: Response of first story brace system under far fault earthquake (a) diagonal 

cross bracing (b) CORE Damper bracing 
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4.11(a): 

 

4.11(b): 
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4.11(c): 

Figure 4.11: Response summary under far fault earthquake (a) maximum story drift (b) 

maximum brace deformation demand (c) residual story drift 
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4.5 Summary 

An example application of the newly developed “Cable Bracing-CORE Damper 

system” to the upgrading of a seismically deficient steel frame was presented in this 

Chapter.  In the study, the original building was assumed to be built in late 1960’s and 

was designed for the combined load of the gravity and wind force using the plastic design 

procedure.  In this example, it is assumed that the seismic response of the original 

building became a concern due to the change of seismic category in the region where the 

building is located.  The seismic performance of the building was enhanced by replacing 

the original diagonal cross bracing with the CORE Damper bracing system.  The main 

difference between the two systems arises from their post yielding behavior.  Once the 

diagonal cross bracing system experiences severe inelastic deformation, it loses its elastic 

stiffness until its deformation exceeds the maximum previous deformation.  When 

subjected to several inelastic cycles of deformation, the diagonal brace member becomes 

highly susceptible to fracture at a plastic hinge created by global buckling.  In contrast, 

the CORE Damper bracing system retains its initial stiffness with stable bi-linear 

hysteresis behavior.  It is also notable that the post yielding stiffness of the CORE 

Damper system is significantly higher than the diagonal cross bracing system.  In the 

analysis, the yielding strength of the brace systems at each floor and the natural period of 

the buildings were set equivalent to highlight the performance enhancement provided by 

the difference of the hysteresis shape between the two systems.  This also limited the 

influence on the adjoining framing resulting from the replacement of the bracing system. 

The seismic performance of two building systems under the near and far fault 

earthquakes were evaluated through the nonlinear dynamic analyses in the OpenSEES 



 117

platform.  The original building with the diagonal cross bracing system suffered from 

concentrated damage in the first story with the development of a “soft story” by the 

several large amplitude waves in the near fault earthquake.  The bracing system at the 

first story was severely damaged, experienced very large deformations (beyond its 

ductility limit), and probably failed by low-cycle fatigue of its first story braces (note that 

this phenomenon was not directly modeled and thus collapse can only be inferred 

indirectly).  The original building also had a large residual story drift in the first story due 

to the development of a “soft story”.  The deformation of the building with the CORE 

Damper system was well distributed along its height and a seismic energy was dissipated 

through the stable inelastic cyclic deformation of the CORE Dampers in several stories. 

In the far fault earthquake, the maximum and residual story drifts were similar for 

two building cases.  However, the diagonal bracing system experienced a large number of 

repetitive inelastic cyclic deformations in tension and compression and subsequently 

became highly susceptible to critical damage with brittle fractures initiating at hinges 

created by global buckling. 

The example analytical study successfully demonstrated the effectiveness of the 

seismic upgrading with the application of the CORE Damper bracing system.  The 

performance improvement was achieved thorough the different shape of the hysteresis 

behavior without the increase of strength or stiffness of the building system.  A series of 

model buildings with various shapes should be examined for the further understanding of 

the effectiveness of the proposed system in a general building configuration.  A statistical 

evaluation of the seismic response of these frames under the ground motions with a 
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various spectral characteristic and at various intensity levels are also desirable for 

providing the probabilistic information for the performance of the proposed system.   
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CHAPTER 5  

NARROW STEEL PLATE SHEAR WALL WITH TENSION-ONLY 

BRACING: DESIGN AND ANALYSIS  

 

5.1 Introduction 

 Addition of a properly designed and detailed unstiffened thin steel plate to a steel 

moment frame can give the system a substantial increase in stiffness, load-carrying 

capacity, and energy adsorption [Figure 5.1; Sabelli, 2006].  The advantage of such 

system, named Special Plate Shear Walls (SPSW), are the significant increase of stiffness 

and strength provided to buildings compared to other lateral load resisting systems.  This 

system is also lighter and more ductile compared to reinforced concrete shear wall and 

applicable for new design or retrofit project [Astaneh-Asl, 2001].  Moreover, the SPSW 

system is more economically attractive compared to reinforce concrete shear walls 

[Timler et al., 1998].  The first application of such system was the Nippon Steel Building 

in Japan, 20-story office building completed in 1970 and since then the system were 

applied to a wide variety of structure [see for summary, Thorburn et al., 1983].  Design 

philosophy of SPSW prior to 1980s prevented global shear buckling and ensured shear 

yielding of the infill panel by utilizing thick plate and/or adding heavily stiffeners [: 

Similar philosophy can been seen today in the design of Composite steel Plate Shear Wall 

(C-PSW) [AISC, 2007].  Since Thorburn et al. (1983) introduced the design philosophy 

for the use of unstiffened thin plates and considered the post-buckling strength of the 

infill plate for the calculation of shear strength of system, this new design philosophy has 
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been widely adopted among researchers and in the current design codes [e.g., Trompoch 

and Kulak, 1987; Ghomi 1992, 2005; Caccese et al., 1993; Driver et al., 1997; Elgaaly 

1993, 1997, 1998; Driver 1998a, 1998b; Behbahanifard et al., 2004; Shinshkin, 2005 ; 

AISC, 2007; CSA, 2006; etc]. 

 Since the SPSW system possess significantly large strength, in some applications, 

the available steel for infill plate material results in thicker or stronger than require by 

design.  According to capacity design principle, which is widely accepted in seismic 

community, the overstength of the infill panel is not desirable and misleads to unexpected 

failure mode of structure.  Several solutions proposed to remove this concern include the 

system utilizing light-gauge cold-rolled and Low Yield Strength (LYS) steel [Berman, 

2003a, 2005; Vian, 2005].  Roberts (1992), Vian (2005) and Purba (2007) also 

investigated the behavior of unstiffened thin steel pate shear walls having opening on the 

infill plate analytically and experimentally.  Hitaka (2003) thoroughly studied a steel 

plate shear wall with vertical slits where the steel plate segments between the slits behave 

as a series of flexural links, which provide a fairly ductile response without the need for 

heavy stiffening of the wall. 

 As seen in the free body diagrams, VBEs are subjected to the axial and shear 

force induced by the overturning moment as well as the inward flexural force induced by 

tension field action in the infill panel.  When a slender, thin plate is used, inelastic 

behavior commences by yielding of the plate and the system strength is governed by 

plastic hinge formation in the VBEs.  When relatively thick plates are used the failure 

mode is governed by the VBE instability.  Once the failure mode is governed by the 

VBEs, only a negligible increase in system strength is achieved when the plate is 
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thickened, and the additional plate material used is essentially wasted.  Therefore, 

effective use of thin steel plate shear walls to resist seismic forces is possible only when 

the boundary elements, especially VBEs are designed to yield after the yielding of the 

infill plate take place.   

Figure 5.2(a) shows results of experiments where improper inward flexure of the 

boundary elements resulted in an hourglass effect with only a limited area of tension field 

action developing in the infill panel [Lubell et al., 2000].  Qu and Bruneau (2008) 

concluded that the failure of the Lubell et al. specimen [Figure 5.2(b)] was actually 

caused by the insufficient out-of-plane buckling strength of VBEs rather than excessive 

column flexibilities.  Figure 5.2 (c) shows severe damage in VBE with local flange 

buckling [Behbahanifard et al., 2003]. 

Qu and Bruneau (2008) recently reported on flexibility limits for VBEs design.  

They reviewed the derivation of a flexibility factor in plate girder theory and how that 

factor was incorporated into current codes. Based on this review, they developed 

analytical models for preventing shear yielding and estimation out-of-plane buckling 

strength of VBEs of SPSWs. 
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Figure 5.1: Steel plate shear wall system with free body diagram [Sabelli and Bruneau, 

2006] 
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Fig 5.2(a):  

 

Fig 5.2(b): 
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Fig 5.2(c): 

Figure 5.2: Behavior of boundary elements (a) improper boundary element flexibility 

[Lubell et al., 2000] (b) out of plane buckling of bottom VBE [Courtesy of Ventura, 

adopted from Qu and Beubeau, 2008] (c) Local buckling of VBE [Behbahanifard et al., 

2003] 

 In order to utilize a thin steel plate as a supplemental lateral load resisting system 

for relatively small seismic rehabilitation projects, a geometry where a plate with 

surrounding boundary elements is installed at the middle span separately from existing 

columns is proposed herein.  The proposed geometry intends to minimize impact and to 

reduce the need to strengthen the existing columns.  These columns would have typically 

been designed for the combined forces of gravity and wind.  The Vertical Boundary 

Elements (VBE) in the proposed system need to have enough strength and stiffness 

relative to the infill steel plate, otherwise the thin plate will not resist seismic effectively.  



 125

This objective is achieved by the use of a relatively weak beam supported by tension-only 

bracing elements.  Installation of a strong beam as a VBE will require much effort and 

result in large force demands on the existing beams where the VBE is attached. 

 Figure 5.3 shows a free-body diagram of the infill steel plate, boundary elements, 

and tension-only elements for the proposed “Narrow Steel Plate Shear Wall with 

Tension-Only Bracing (NPSW-TB)”.  In the figure, the connections between the 

Horizontal Boundary Elements (HBE) and Vertical Boundary Elements (VBE) are 

treated as pinned.  In this system, the bracing rods attract a large amount of the inward 

force in the VBE and transfer them to beam elements.  A proper design of tension-

element strength and stiffness enables the VBE to remain in the elastic range until the 

infill panel reaches its shear yielding strength.  

 In this chapter, a design approach and design procedure, including a design 

flowchart, were developed for the proposed NPSW-TB system.  The geometry of the 

prototype was selected following the design flowchart developed based on the proposed 

design approach.  For this work, a simplified analysis model was constructed in the 

OpenSEES platform as a design support tool.  The performance of the prototype was 

evaluated by a displacement-controlled static pushover analyses.  A scaled system was 

also designed for proof-of-concept testing; the details of the experimental work are 

discussed in Chapter 6.  The performance of the scaled system was predicted with both 

simplified analyses using OpenSEES and advanced finite element analyses using 

ABAQUS. 
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Figure 5.3:  Concept and free-body diagram of “Narrow Steel Plate Shear Wall with 

Tension-only Bracing (NSPW-TB)”   
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5.2 Prototype Design 

 A prototype of the proposed shear wall system was designed based on preliminary 

parametric analyses.  The performance goal of the system was to achieve a total system 

shear strength of 707kN (236kips), which is compatible approximately to the shear force 

carried by three columns with standard section in low-to-mid size steel moment resisting 

frames when columns were assumed to have fixed-fixed end conditions; one column with 

Japanese standard section, H-300x300x10x15 (section modulus, Zx =1350cm3, roughly 

equivalent to an American W12x58 section), can sustain approximately 236kN (53kips) 

shear force with its plastic moment capacity, Mp, when story height, h, is 4m (157in) and 

the expected yield strength as 305MPa (45ksi, or 1.3 times its nominal value of 36ksi). 

Design Approach 

 A main design constraint for the prototype system is the requirement that yielding 

of the infill panel should occur prior to yielding of the boundary elements.  The Vertical 

Boundary Elements (VBE) is subjected to inelastic deformation later due to the inward 

flexural force induced by the tension field developed in the infill panel.  The design of the 

VBE requires an iterative procedure since its behavior interacts with the behavior of the 

tension-only rod and the local geometry of the arm.  The strength and stiffness of the 

VBEs greatly affect the global behavior of the system while the behavior of the 

Horizontal Boundary Elements (HBE) does not influence to the global behavior as long 

as they are designed to be stronger than the infill panel.  The proper design of the HBEs 

is relatively easy task since they are directly attached to the top and bottom beams of a 

frame.  The tension-only elements are designed to remain elastic until very large 

deformation.  
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Prototype Geometry 

  The story height of a frame to be rehabilitated is assumed to be 4m (157in) with 

its clear height as 3.5m (137in).  The aspect ratio of the infill panel is arbitrarily taken as 

4:3 (height to width).  Figure 5.4 shows the geometry of the prototype determined based 

on parametric analyses in OpenSEES using a strip model for the wall (see next section 

for details).  The thickness of the infill panel was 3.2mm and the required section for 

Vertical Boundary Elements (VBE) were defined as CT-200x200x8x13 (Ix = 1390cm4, Zx 

= 88.6cm3, roughly equivalent to an American WT6x22.5 section in terms of section 

modulus).  The expected yield strength of the infill panel made of hot-rolled thin steel 

plate was assumed to be 207MPa (30ksi).  The expected yield strength of the VBEs was 

assumed as 305MPa (45ksi, or 1.3 times its nominal value of 36ksi).  The tension-rods 

were M30 (=1 5/32”) with at yield strength of 222kN (50kips).  Two tension rods were 

placed at each diagonal, sandwiching the VBEs with the inclination of 45 degrees: eight 

tension-rods were used in total.  The other ends of the tension rods are anchored to beams 

at the position outside of protected zones (one half of beam depth away from column 

surfaces).  The arms (brackets) shown in the figure were designed with the intention for 

limiting force demand in the tension rods by their rotational movement involving 

inelastic deformation at their connection to the VBEs. 

Hysteresis of Prototype from Preliminary OpenSEES Analysis 

 The performance of the prototype was analyzed in OpenSEES platform using the 

simplified analysis model described later in this section.  The global hysteresis of the 

system in terms of shear strength versus story drift is shown in Figure 5.5(a).  The system 

yielded approximately at 0.5% story drift with a yield shear strength of 710kN (160kips).   
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The yield shear strength was estimated from the bi-linearization of the hysteresis curve as 

indicated in the figure.  The hysteresis of the tension-rods located in the extended and 

shortened diagonals in the frame are shown in Figure 5.5(b).  The rods connecting in the 

extended diagonal carried a large tension force as expected.  The rods connecting in the 

shortened diagonal also carried a slight tension force in the pushover analysis.  All rods 

remained elastic until 2.5% story drift as envisioned in the design approach. 

 

 

 

Figure 5.4: Geometry and components of prototype 
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Fig 5.5(a): 

 
\ 

Fig 5.5(b): 

Figure 5.5: Hysteresis of prototype in pushover analysis (a) global hysteresis (b) force 
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5.3 Design Procedure 

Design Flowchart 

 The flowchart shown in Figure 5.6 schematically describes the design procedure.  

Given the geometry of a frame and a target shear force, the approximate thickness of a 

infill panel is estimated using the formula specified in the U.S. and Canadian seismic 

codes for the calculation of the nominal shear strength of infill panel for Special Plate 

Shear Wall system (SPSW) [CSA, 2006; AISC, 2005].  This formula includes including 

overstrength factor of 1.2. ; 

 .  5.1 

where, Fy = yielding stress of the infill panel, tw = thickness of the infill panel, L = 

distance between the centerlines of VBEs and  = the inclination of the tension field.

It should be noted here that this equation is valid when the aspect ratio of the infill panel 

is larger than 0.8 and the boundary elements satisfy the specified stiffness limitation 

[Rezai, 1999; Qu and Bruneau, 2008].  The shear strength of the infill panel is used as a 

rough estimate of the total shear strength of the system as a simplification since the pin 

connected boundary elements do not carry shear force.  In reality, the shear strength of 

the boundary frame should be added to the panel shear strength to obtain the total shear 

strength of SPSW systems.  The inclination of the tension field is assumed to be 45 

degree.   

 Once the thickness of the infill panel has been selected, a trial section is picked 

for the VBEs.  In the first nonlinear static pushover analysis, the behavior of tension-rods 

is assumed to be elastic.  Reasonable dimensions are assigned to tension-rods and arms.  

Using the analysis result, the requirement that the infill panel yields prior to the VBEs is 



 132

checked.  This judgment is rather arbitrary since not all areas of the infill panel yields 

even with very stiff and strong VBEs.  For the design of the prototype, the criterion was 

whether most of the middle part of the infill panel yielded or not.   

 When the criterion is satisfied, the diameter of the tension-rods is selected based 

on the force at 1% story drift.  A second analysis is then executed to see if the total shear 

strength of the system is acceptable.  If the error is within a reasonable tolerance, the 

dimension of the arm is determined in an iterative manner to ensure that the tension-rod 

remains elastic to at least a 2.5% story drift; otherwise the thickness of the infill panel 

need to be updated. 
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Figure 5.6: Design flowchart 
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Analysis Model in OpenSEES 

 Figure 5.7 shows the simplified analysis model in OpenSEES.  The infill panel is 

modeled using strip model in which an infill panel is represented by a series of inclined 

pin-ended tension-only members [Thorburn et al., 1983; Driver et al., 1997; AISC, 

2005].  The cross-sectional area of each strip is equal to the strip spacing times the panel 

thickness; 

 /  5.2 

where, tw = thickness of panel, L = width of panel, H = height of panel,  = angle of 

inclination and n = number of strips per panel. 

 The tension-only strips are modeled by truss element with ElasticPPGap material 

which is used to construct an elastic perfectly-plastic gap uniaxial material object 

[Mazzoni et al., 2009].  The angle of inclination is assumed as 45 degree since there are 

no experimental data yet for the proposed geometry.   Arms are connected to the VBEs at 

with the inclination of 30 degree [Figure 5.7].  The location and inclination of the arms 

are determined from preliminary analyses and by reasonable engineering judgment.  In 

the analysis, the arms are treated as rigid members using elasticBeamColumn elements 

with large stiffness.  Beams and columns are modeled by nonlinearBeamColumn 

elements with Steel02 material which is used to construct a uniaxial Giuffre-Menegotto-

Pinto steel material object. 

 The translational degree-of-freedoms of all nodes in the bottom beam are fixed 

and a static displacement is incrementally applied to left and right ends of the top beam 

until a target displacement is reached. 
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Figure 5.7: Analysis model in OpenSEES 
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Example Design: Prototype Design Review 

1. The target shear strength of the prototype was 525kN (118kips).  The clear story 

height of a frame was 3.5m and the aspect ratio of the infill panel was 4:3 (height-to-

width).   

2. The nominal shear strength of panel was with Fy = 200MPa (30ksi) with the selected 

thickness of the infill panel of 2.3mm (0.091in): 

           . . . °/   5.1 

The area of the strips was calculated as: 

               . ° ° /  5.2 

3. Figure 5.8 shows the shear strength of the system and the hysteresis of the strips at in 

middle part of the infill panel with three different sections of the VBEs, CT-

150x150x6.5x9 (CT-150, Zx=33.8cm3, roughly equivalent to an American WT4x12 

section in terms of section modulus), CT-175x175x7x11 (CT-175, Zx=59.3cm3, 

roughly equivalent to WT5x16.5), CT-200x200x8x13 (CT-200, Zx=88.6cm3, roughly 

equivalent to WT6x22.5), and CT-225x200x9x14 (CT-225, Zx=124cm3, roughly 

equivalent to WT6x32.5).  The yielding strength doubled when the section was 

changed from CT-150 section to CT-200 section.  The yield shear force with CT-200 

section was approximately 725kN (163kips) which was slightly larger to the target 

shear strength.  The behaviors of 10 strips in the middle part of the infill panel are 

shown in Figure 5.9.  With the CT-175 section, only 1 strips yielded prior to the 

yielding of VBEs, which is indicated in the non-linear force hysteresis of some strips 

before the force reached the yielding force of strips, 143kN (32kips) [Figure 5.9(a)].  

The numbers of the yielded strips prior to the yielding of the VBEs were 6 both with 
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CT-200 section and CT-225 section, respectively [Figure 5.9(b) and (c)].  Table 5.1 

summarizes the estimated yield shear from bi-linearization of hysteresis curves with 

various sections.  The increase of section modulus affected significantly to the shear 

strength when section was upsized from CT-150 to CT-200.  Once the shear strength 

of system was governed by the shear strength of the infill panel, the increase of 

section size did not lead to significant increase of the system shear strength.  CT-200 

section was selected for the section of VBEs in the prototype.  Here, the tension rods 

were treated as elastic elements and the length of the arm was arbitrarily set to 

280mm (11in).   

4. The size of the tension-rod was defined based on the elastic force demand at 1% story 

drift, which was around 230kN (52kip) [Figure 5.10].  In the figure, the rods carrying 

larger forces were located in the extended diagonal of the frame and the others were 

located in the shortened diagonal of the frame.  The size of the rods selected was M30 

( = 1 5/32”) with the yield strength of 234kN (53kip). 

5. The yield shear strength of the system was 710kN (160kip) and was close enough to 

the target shear strength.  It was also notable that the yield strength was pretty close to 

the nominal yield strength of the infill panel computed by the formula specified in the 

seismic codes. 

6. The last step of the design was to define the length of arm.  Figure 5.11 shows the 

force histories of tension-rods with the arm length of 254mm (10in), 280mm (11in) 

and 305mm (12in).  The length was defined as 280mm (11in). 
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Figure 5.8: Shear strength with different VBEs  

 

Table 5.1: Yield shear strength for various sections 

Section Zx 
Increase from 
Zx of CT-150 

Yield 
strength 

Increase from yield 
strength of CT-150 

 cm3 % kN % 

CT-150 33.8 0 300 0 

CT-175 59.3 75 510 70 

CT-200 88.6 162 725 142 

CT-225 124 267 860 187 
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Fig 5.9 (a): 
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Fig 5.9 (c): 

Figure 5.9: Hysteresis of 10 strips in middle part of infill panel (a) CT-175x175x7x11 

(b) CT-200x200x8x13 (c) CT-225x200x9x14  

 

Figure 5.10: Force histories in elastic tension-rods 

S
tr

ip
 f

o
rc

e 
(k

ip
s)

 

67
 
 
 
 
45 
 
 
 
 
22 
 
 
 
 
0 

A
xi

al
 f

o
rc

e 
(k

ip
s)

 

34
 
 
 
 
22 
 
 
 
 
11 
 
 
 
 
0 



 141

 

Figure 5.11: Force histories in tension-rods with various arm length 
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5.4 Analysis of Scaled System 

 The prototype system was scaled for the proof-of-concept testing whose details 

are described in Chapter 6.  The scaled system was designed using the proposed design 

procedure with the clear story height of 1750mm (69in) and the story height of 2000mm 

(79in): the system was scaled to 50% with respect to width and height.  The thickness of 

the infill panel was 1.6mm (0.063in) so that the prototype is scaled to 50% in all 

dimensions.  The target shear strength of the system was scaled down to 25% of the 

prototype strength, 177kN (40kip). 

 The geometry of the scaled system is described with more details in Chapter 6.  

Using the proposed design procedure, the section of VBEs, the size of tension-rods and 

the length of arms were selected as CT-75x100x6x9, M16 (=5/8”) and 100mm (3.9in), 

respectively.  

OpenSEES Analysis Results 

  The predicted behavior of the scaled system is shown in Figure 5.12.  The shear 

strength of the system was around 180kN (40kips) at 0.45% story drift which was close 

enough to the target shear strength and the nominal shear strength of the infill panel 

computed by the code equation.  All tension-rods remained elastic until 2.5% story drift.  

The more than half of middle strips yielded prior to the infill panel. 
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Fig 5.12(a): 

 

Fig 5.12(b): 
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Fig 5.12(c): 

Figure 5.12: Hysteresis of scaled system in OpenSEES analysis (a) global hysteresis (b) 

force histories of tension-rods (c) hysteresis of strips 
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FE Analysis of Scaled System 

 The detailed behavior of the scaled system was examined using a general-purpose 

finite element program, ABAQUS.  The purpose of the FE analyses was to provide an 

accurate prediction of both global and local behavior for the experimental study and to 

validate the OpenSEES analyses system.  The scaled system was analyzed together with 

the test setup used in the proof-of concept test at the Disaster Prevention Research 

Institute (DPRI) in Kyoto University [see details in Chapter 6 and Appendix B]. 

 Figure 5.13 shows the analysis model constructed in ABAQUS.  The bottom 

beam was ignored in the system.  The bottom boundaries such as bottom pins and the 

flanges of the bottom HBE were fixed instead.  All components except tension-only rods 

and arms were modeled using a general-purpose four-node, doubly curved, finite 

membrane strain shell element (S4R) with reduced integration and linear geometric order.  

A two-node linear truss element (T3D2) was used for the modeling of the tension-rods.  

The arms were modeled by connecting the ends of the tension-rods and the flanges of the 

VBEs where arms were attached with a rigid constraint feature.  The HBE-VBE 

connections as well as beam-column connections were modeled by the combined use of 

beam and link connectors.  The infill panel was rigidly connected to the boundary 

elements using the tie constraint feature.  The top HBE was connected to the bottom 

flange of the top beam again using the tie constraint feature. 

 For comparison, nonlinear finite element analyses were conducted for the scaled 

system as well as the scaled system without tension-only elements.  The displacement-

controlled analyses were executed up to 2.5% story drift.  Prior to the pushover analyses, 
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an out-of-plane imperfection of 0.05% was applied to the top beam to initiate global 

buckling in the infill panel.  

FE Analysis Results 

 The hysteresis curves of two systems in terms of shear strength versus story drift 

relationship are shown in Figure 5.14(a).  The predicted yield shear strength for the 

system with tension-rods was slightly higher than that from OpenSEES analysis and was 

around 185kN at 0.3% story drift.  The FE analysis predicted 50% larger initial stiffness 

and very small post-yielding stiffness compared to those from a strip model.  The shear 

strength increased by approximately 65% with the presence of the tension-only elements. 

 The deformed shape of the scaled models are shown in Figure 5.14(b) and (c) 

with the von Mises stress contours.  Most of the middle part of infill panel yielded for 

both cases, but the yielded area, indicated by green color, was larger with tension-only 

elements.  More notably, most of the VBEs yielded with tension-only elements while, 

without tension-only elements, damage was highly concentrated to the area of HBE-VBE 

connections involving plastic hinge formation.  The HBE-VBE connections located in the 

extended diagonal suffered from large closing deformation for the system without 

tension-only elements.  The closing deformation was much moderate with the presence of 

tension-only elements. 
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Figure 5.13: FE analysis model 
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Fig 5.14(b): 

 

Fig 5.14(c): 

Figure 5.14: FE analyses results (a) hysteresis curve (b) stress contour for scaled model 

(c) stress contour for scaled model without tension-only element 

  

Unit: MPa 
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5.5 Summary 

 In order to utilize a thin steel plate as a supplemental lateral load resisting system 

for relatively small seismic rehabilitation projects, a geometry where a thin steel plate 

with boundary elements was installed in the middle of the span, separately from exiting 

columns, was examined.  The proposed geometry intends to minimize impact and to 

reduce the need to strengthen the existing columns.  These columns would have typically 

been designed for the combined forces of gravity and wind.  The Vertical Boundary 

Elements (VBE) in the proposed system need to have enough strength and stiffness 

relative to the infill steel plate, otherwise the thin plate will not resist seismic effectively.     

 The prototype of the proposed system “Narrow Steel Plate Shear Wall with 

Tension-Only Bracing (NPSW-TB)” was presented.  The performance goal of the system 

was to achieve a total system shear strength of 707kN (160kips), which is compatible 

approximately to the shear force carried by three columns with standard section in low-

to-mid size steel moment resisting frames when columns were assumed to have fixed-

fixed end conditions.  The geometry of the prototype was selected following the design 

flowchart developed based on the proposed design approach.  A main design constraint 

for the prototype system is the requirement that yielding of the infill panel should occur 

prior to yielding of the boundary elements.  The vertical boundary elements (VBE) was 

also subjected to inelastic deformation later due to the inward flexural force induce by the 

tension field developed in the infill panel.  The design of the VBE requires an iterative 

procedure since its behavior interacts with the behavior of the tension-only rod and the 

local geometry of the arm.  The tension-only elements are designed to remain elastic until 

very large deformation.   
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 The performance of the prototype was evaluated by a displacement-controlled 

static pushover analyses.  The performance goal of the prototype system was to achieve a 

total system shear strength which is compatible approximately to the shear force carried 

by three columns with standard section in low-to-mid size steel moment resisting frames 

when columns were assumed to have fixed-fixed end conditions.  The shear strength of 

the prototype system obtained from a simplified analysis model was close to the shear 

strength of the infill panel computed by the formula specified in the current seismic codes 

in U.S. and Canada.   

 A scaled system was also designed for proof-of-concept testing using the 

proposed design procedure for a frame 50% scaled with respect to width and height.  For 

comparison, nonlinear finite element analyses were conducted for the scaled system as 

well as the scaled system without tension-only elements.  The detailed behaviors of the 

scaled systems were examined using a general-purpose finite element program, 

ABAQUS and were compared with the prediction from the preliminary simplified 

analyses in OpenSEES.  Most of the middle part of infill panel yielded for both cases, but 

the yielded area was larger with tension-only elements.  More notably, most of the VBEs 

yielded with tension-only elements while, without tension-only elements, damage was 

highly concentrated to the area of HBE-VBE connections involving plastic hinge 

formation.  The HBE-VBE connections located in the extended diagonal suffered from 

large closing deformation for the system without tension-only elements.  The closing 

deformation was much moderate with the presence of tension-only elements.  The 

predicted yield shear strength in both analyses was very close to the design shear 

strength.  The initial stiffness of the system predicted in the FE analysis was 50% higher 
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than that in the OpenSEES analysis.  The shear strength increased by approximately 65% 

with the presence of the tension-only elements. 
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CHAPTER 6  

EXPERIMENTAL STUDY OF NARROW STEEL PLATE SHEAR 

WALL WITH TENSION-ONLY BRACING 

  

6.1 Introduction 

 The performance of the scaled prototype of the narrow steel plate shear wall 

system [Chapter 5] was evaluated through an experimental program conducted at Kyoto 

University, Japan.  This program was embedded into a series of experiments for shear 

wall type structures planned at the Disaster Prevention Research Institute (DPRI) of 

Kyoto University, in cooperating with Dr. M. Nakashima.  For these experiments a test 

setup was designed by the author and installed into an existing, large load reaction frame 

at the structural laboratory of DPRI. 

In the experimental program, two shear wall specimens were tested.  One was the 

prototype specimen with tension only bracing and another was a specimen without 

tension-only bracing to evaluate the effects of the bracing on the global and local 

behavior of the prototype.  The test specimens had a dimension scaled to approximately 

50% of the prototype size due to size limitations of the existing load reaction frame.  The 

test setup and specimens were fabricated by a local fabricator in Kyoto using members 

and materials specified in Japanese standard [JIS, 2005].  As a part of the experimental 

program, a pre-qualification tests for the unique welding method specifically intended for 

shear walls with light gauge steel plate were also conducted. 
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The first coordination meeting was held at Georgia Institute of Technology in 

May, 2008 for planning the overall scope and schedule of the experimental program.  

This was followed by a second planning meeting at the DPRI in July, 2009 for the draft 

design of a test setup and a budgetary plan.  The third planning meeting to finalize the 

specimen design was held in conjunction with the pre-qualification test of the welding 

method, and took place at DPRI in November, 2008.  The tests were carried out over a 

two week period in March 2009.  Each test encompassed  two days for the assemblage of 

the test setup, three days for the installation of each specimen and instrumentation, one 

day for the tensile coupon tests, two days for testing and one day for cleanup.  The 

program was successfully completed without any time delay thanks to an invaluable 

support from the local specimen manufacturer and the graduate students of Dr. M. 

Nakashima’s research group.  The timeline of the experimental program is summarized in 

Table B.1 [see Appendix B].   
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6.2 Test Setup 

For this work, a new testing setup was installed into an existing load reaction 

frame at the structural laboratory in the DPRI.  The testing setup is a portal frame with 

four pins at each corner and has an inter-story height of 1748mm and a column centerline 

spacing of 3000mm [Figure 6.1].  The main components of the testing bed were as 

follows: (a) top and bottom H-400x400x13x21 beams (b) two H-250x250x9x16 columns 

(c) four pin-clevis subassemblies with load carrying capacity of 900kN each (d) a fixed 

support for the actuator loading.  The beam and column designations indicate the overall 

height and width of the section and the thickness of the webs and flanges, respectively; 

there are no corresponding US rolled section sizes for these members.  The dimension of 

the components are shown in Appendix B.   

The assembly is capable of applying a horizontal force more than 750kN which is 

determined by slip critical force at bolted connections.  The assembly was installed into 

the reaction frame by fixing its bottom beam to a foundation beam using 12-F10TM22 

(A325 7/8 in. approximately) high strength bolts and by connecting the top beam to the 

horizontal actuator via fixity. 

The deformation of the test setup was restrained to in-plane deformations using 

out-of-plane restrainers and guiding beams [Appendix B].  Two restrainers, each of 

which consists of a short wide flange beam and two frictionless rollers, were attached to 

the top beam of the test setup.  The top beam was guided to deform in-plane by the 

physical contacts between the frictionless rollers and the guiding beams attached to the 

loading frame. 
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Figure 6.1: Loading frame and test setup 
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6.3 Loading System 

The loading system at the DPRI was a fully automated system.  Primary hardware 

devices included: (1) a quasi-static horizontal loading actuator, (2) a hydraulic pump 

system activated by an inverter motor, (3) a load cell which measures the reaction force 

of the actuator (4), a digital displacement transducer which measures the displacement of 

the actuator (5) a pump controller that control the frequency of the inverter motor to 

adjust the actuator’s ram speed (6) a switch box and data logger that collects strain 

gauges, LVTDs, and other date (7) a PC that controls the controllers (8) another PC that 

stores the data collected by the data logger. 

The horizontal actuator had a stroke capacity of ±250mm and a force capacity of 

±1500kN.  In order to measure the movement of the cylinder, a digital transducer was 

attached.  The controllers selected the direction of actuator motion (“push” or “pull”), the 

frequency of the inverter motor during loading, the frequency of the valve during 

unloading, and change between the loading and unloading modes. 
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6.4 Specimen Details 

The geometrical properties of the two specimens are shown in Figure 6.2.  The 

two specimens, S1 and S2, were identical except for the tension-only bracing attached to 

Vertical Boundary Elements (VBE) in S2.  The typical assembly of a specimen was as 

follows: (1) Horizontal Boundary Elements (HBE) were attached to top and bottom 

beams of the test setup with high strength bolts, (2) VBEs were pin-connected to HBEs 

with L-shape plates and M16 high strength bolts, and (3) an infill thin steel panel was 

welded to HBEs and VBEs.  For the specimen with tension-only bracing (S2), the 

assembly continued as follows: (4) four steel brackets were installed to VBEs using M14 

high strength bolts after the welding of the infill panel (5) four pad-eyes were installed to 

top and bottom beams (6) eight tension-only braces, composed of a 5/8” steel threaded 

rod and a 5/8” steel turnbuckle, were connected the steel brackets and the pad-eyes.  

 The dimensions of each component are shown in Appendix B.  The HBEs and 

VBEs were CT-100x175x8.5x11 and CT-75x100x6x9, respectively.  The connection 

between the HBE and the VBE was assumed as a pinned connection.  The L-shape 

connector was allowed to slip at oversized holes under in-plane bending moment but not 

under axial or shear force.  The infill steel panel was a 1.6mm thin steel plate with its 

dimension of 1250mmx1673mm.  The material of the panel was a low carbon mild steel, 

SHPC whose the chemical composition shown in Table 6.1.  The corners of the infill 

panel were cut to avoid interference with the connectors.  A series of small holes 

(10mm) along the edge of the infill panel were for welding inside of holes to attach the 

infill panel and boundary members.  The steel bracket consisted of mild steel plates 

(SS400) with thickness of 6 mm and 9 mm.  The wall of the bracket was enforced by 
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cheek plates and stiffener plates.   The material properties of the infill panel, the web of 

the HBE, the flange and web of the VBE were obtained from tensile coupon tests and 

summarized in Table 6.2.  The shape of the coupons followed the Japanese Industry 

Standard [JIS, 2005].  
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Fig 6.2(a):  

Pin connector close up view 

Specimen 
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Fig 6.2(b):  

Figure 6.2: Specimen dimensions (a) specimen 1 - no bracing (b) specimen 2 - with 

bracing 

Bracket close up view 

Specimen 
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Table 6.1: Chemical composition 

Element Material C Si Mn P S 

  (%) (%) (%) (%) (%) 

Infill panel SPHC-P* 0.07 0.021 0.070 0.020 0.011 

* Steel Plate Hot Commercial Pickling (JIS G3131, JSA 2005) 

 

Table 6.2: Mechanical properties 

Name Element 
Coupon 
Shape* 

Thickness 
Yield 

strength 
Tensile 
strength 

Elongation 

   t y u EL 

   (mm) (MPa) (MPa) (%) 

C-A Infill panel JIS 1B 1.60 201.9 329.6 34.4 

C-B VBE web JIS 1A 5.61 328.9 438.1 28.0 

C-C HBE web JIS 1B 6.88 343.4 482.1 19.9 

C-D VBE flange JIS 1A 8.63 299.7 430.1 28.7 

* Coupon shape refers to the Japanese Standard Association (JIS Z2201, JSA 1980) 
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6.5 Method for Connecting Infill Panel to Boundary Elements  

 For structural efficiency, the infill steel panel need to be continuously connected 

on all edges to the boundary elements with welds and/or slip-critical high strength bolts.  

This will allow the wall to develop the nominal shear strength of the panel [AISC, 2007].  

Per capacity design principles, the connections to the surrounding HBE and VBE are 

required to develop the expected tensile strength of the infill steel panel.  Net sections 

must also provide this strength for the case of bolted connections.  Designs of 

connections between the infill panel and the boundary elements should also anticipate the 

buckling of the infill panel as the connections are subjected to tension and compression 

force during cyclic loading.  Previous results indicate that thin steel plates, which are 

adequately supported along all edges and subjected to cyclic shear loading, have stable 

hysteretic behavior in the post-buckling region [Elgaaly, 1998; Berman and Bruneau, 

2003]   

Background 

 In the majority of past experiments, the infill wall was attached to the boundary 

elements via a continuous fillet welding method [ex. Sabelli and Bruneau, 2006].  Elgaaly 

reported that the bolted plate shear walls had smaller elastic stiffness and lower initial 

yielding load than welded shear walls [Elgaaly, 1998].  For a bolted plate, loss of initial 

stiffness can occur when the bolted connection starts slipping or when the plate yields 

locally near the boundaries.  The load to cause slippage is controlled by the friction 

coefficient between the connected surfaces and the normal force applied by the bolts. 

A thin steel plate available in commercial market changes as its thickness gets 

thinner.  A steel plate commonly used as a structural steel (SS400 in Japanese standard or 
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A36 in US standard) is available in thicknesses of 4.5mm or thicker.  Steel plates thinner 

than 4.5mm are available with the material as SPHC (Steel Plate Hot Commercial) or as 

SPHC (Steel Plate Cold Commercial) in the Japanese market.  These materials are 

commonly used for mechanical engineering applications and contain more carbon and 

have surfaces smoother than typical structural steel.  Bacuse of the lower friction 

coefficients for this type of plate, the design of a bolted connection with these materials 

requires more bolts than that with a common structural steel. 

When welding is selected as the method for attachment, distortion and residual 

stresses in the thin steel panel becomes a concern.  The distortions and residual stresses 

are primarily caused by an angular bending of the plate itself due to the shrinkage of weld 

metal in unsymmetrical welds [Bruneau et al., 1998].  For the case of Special Plate Shear 

Wall (SPSW) Caccese et al. reported a loss and nonlinearity in initial stiffness attributed 

to the slenderness of the infill plate; the imperfections in the plate due to fabrication 

cause out-of-plane deformations that commence almost immediately and the plate can 

sustain virtually no in-plane force without transverse movement [Caccese et al. 1993].  In 

modern design guidelines, the effect of residual stress due to welding are considered 

indirectly through strength reduction factors for the design column buckling strength 

[AISC, 2007; Galambos, 2008]. 

The magnitude of the distortions depends on several design-related and process-

related variables.  Examples of design-related variables include weld joint details, plate 

thickness, transition thickness, and assembly sequence, while important process-related 

variables include welding process, number of welding pathes, heat input, travel speed, 
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and welding sequence.  The analytical studies of the distortion mechanism and the effect 

of welding sequence on panel distortion can be found in [Tsai et al., 1999].  

The common strategy for welding a thin steel panel is a single path continuous 

fillet welding, as the angular distortion increses almost proportionally with the number of 

welding path increases [Wakabayashi, 1985].  As a plate become thinner, the welding 

around all edges should be completed in shorter time since the distortion increase as the 

speed of welding decreases.  However, the single path, continuous, and rapid welding 

technique demands high skilled and experienced welders and results in sacrifying the 

reliability on the welding strength. 

Pre-Holed Fillet Welding 

  The infill panel used in the scaled specimen was 1.6mm.  After a discussion with 

the local manufactures in Japan, it was decided that a discrete welding method would 

work better than a continuous fillet one for this specimen in order to minimize initial out-

of-plane imperfections and residual stresses.  These two phenomena result in the loss of 

initial stiffness and yield strength as discussed earlier.  One of the commonly used 

discrete welding methods in construction sites is a deep arc spot welding (puddle 

welding), used for the attachment of deck plates to steel beams.  The installation of deck 

plate in a construction site and sections of a deep spot arc weld are shown in Figure 6.3.  

The welding procedure specified in a Japanese manual is as follow [BCJ, 2009]:  (1) hold 

deck plate to the surface of a beam (clearance less than 2mm) and establish arc electrode 

with the position of a welding rod perpendicular to the deck plate; (2) slightly pull up the 

welding rod and spark arc and burnout the deck plate for a circle shape with a diameter of 

10mm; (3) push the welding rod to reach the surface of the steel beam and move the 
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welding rod along the inner boundary of the circle for two-three times; (4) shape the weld 

metal and gently pull up the welding rod at the center of the circle; and  (5) remove slag 

and check the finishing.  Normally, welding at each spot takes around 10sec and 

generates an excessive weld metal in a circle.  For the welding, a welding machine with 

AW250A or more with a non-covered hydrogen arc welding rod with a diameter of 4mm 

are specified in the manual.  For design calculations, a minimum, long-term tensile 

strength of one spot weld is specified as 4.9kN. 

The deep arc spot welding is widely use for the installation of deck plates but not 

for critical welding such as the installation of steel plate shear wall.  The main reasons 

include the larger uncertainty of weld strength compared to that in fillet welding and the 

location of the weld.  This welding method is not suitable for the installation in an upright 

position because an excessive amount of melted weld metal drops from the circle [Figure 

6.3(c)]. 

To reduce the uncertainty in welding strength and to reduce the amount of 

excessive melted weld metal, the author and a local manufacture in Kyoto developed a 

“pre-holed fillet welding method”.  In this method, small diameter circles are 

prefabricated at the location of welding along the edges of a steel panel.  The infill panel 

is attached to the surrounding boundary elements by fillet welding along the inner 

boundary of the holes. 
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Fig 6.3(a): 

            

                                  Fig 6.3(a):                                                    Fig 6.3(c) 

Figure 6.3: Photos of deep spot arc welding photos (courtesy of JFE steel) (a) installation 

of deck plate (b) in-plane section of a spot welding (c) out-of-plane section of a spot 

welding  
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Preliminary Welding Test  

 To investigate the performance of this newly developed welding method, 

preliminary welding tests were conducted using the same thin steel plate as the infill 

panel in the scaled specimens.  For comparison, the performance of the deep arc spot 

welding method was investigated as well.  The main parameters in the preliminary 

welding tests were the method of welding, the posture of the welder, the welding size in 

diameter and a welding pitch [Table 6.3].  The dimension of specimen for the tensile test 

was 180 x 300mm [Figure 6.4].  The shape of a loading grip made of 9mm A36 steel 

plate was designed specifically for the universal loading machine in the structural 

laboratory at the DPRI.  The pitch of the location for welding was calculated using a 

minimum, long-term tensile strength of one spot weld specified in the manual [BCJ 

2005]. 

 The stress and strain relationship of a specimen was monitored and recorded using 

Visual Log Light, a software developed by Tokyo Sokki and utlizing a TDS-530 data 

logger from Tokyo Sokki.  

 

Table 6.3: Welding test parameter summery (Unit: mm) 

Specimen Welding method Welder’s posture Size (diameter) Pitch 

7W1 Deep Arc Spot Look down 7 36 

7W2 Deep Arc Spot Upright 7 36 

7W3 Pre-holed fillet Look down 7 36 

7W4 Pre-holed fillet Upright 7 36 

10W1 Pre-holed fillet Upright 10 36 

10W2 Pre-holed fillet Upright 10 30 

 



 168

 

                     

                                 Fig 6.4(a):                                                                Fig 6.4(b) 

Figure 6.4: Dimension of connection test specimen (a) testing grip (b) steel plate 

  

Location of pre-
holed fillet welding 
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Preliminary Test Results for Welding 

 All specimens except the specimen 10W2, pre-holed welding with 10mm 

diameter at upright position, failed in the weld metal.  Specimen 10W2 successfully 

failed by fracture of the thin plate [Figure 6.5].  

 The shear strength per one welding spot obtained for different combinations of 

welding methods and welder’s posture are summarized in Table 6.4.  The specimen with 

a pre-hold fillet welding was 50% stronger than that with the deep arc spot welding for 

the same diameter.  It was also notable that pre-holed fillet welding in an upright posture 

was only 10% weaker than that at a look down posture. 

 Figure 6.6 shows the test results for pre-hole welding specimens in terms of the 

force and displacement relationship.  When failure occurred in the weld metal (7W4), the 

specimen failed in brittle manner without the indication of any post yielding deformation.  

The specimen showed large ductility if the failure occurred at the thin steel plate (10W2).  

Specimen 10W1 showed the combined behavior of two failure modes.  The elastic 

stiffness of the specimen with the plate failure mode (10W2) was higher than that of the 

specimen with the weld failure mode (7W4 and 10W1).  The elastic stiffness of the 

specimens 7W4 and 10W1 was similar although these specimens had different yielding 

strengths. 
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Figure 6.5: Failure modes; weld metal fracture (up) plate fracture (bottom) 

 

Table 6.4: Welding test results 

Specimen Failure mode 
Shear Strength 

per spot 

   (kN) (kip) 

7W1 weld metal fracture 8.2 1.80 

7W2 weld metal fracture 8.1 1.78 

7W3 weld metal fracture 12.5 2.75 

7W4 weld metal fracture 11.0 2.41 

10W1 weld metal fracture 15.5 3.41 

10W2 plate fracture   
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Figure 6.6: Force displacement relationship for pre-holed welded specimens 
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6.6 Loading Protocol  

 The loading protocol used in the test is shown in Table 6.5.  The displacement 

controlled cyclic loading was repeated three times for rotations up to 0.0075 rad. drift 

angle and repeated two times for larger amplitudes.  The applied loading protocol was 

determined after a review of the loading protocols used in previous tests and the design 

guidelines [Vian and Bruneau, 2005; AISC, 2007; ATC-24, 1992].  

  

Table 6.5: Loading Protocol 

Drift angle Cycle Displacement 

rad. mm 

0.00375 3 6.56 

0.005 3 8.74 

0.0075 3 13.11 

0.01 2 17.48 

0.015 2 26.22 

0.02 2 34.96 

0.03 2 52.44 

0.04 2 69.92 
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6.7 Measurement Plan 

 The load and displacement of the hydraulic jack were measured using a load cell 

with the maximum loading capacity of 2000kN and a digital Linear Variable Differential 

Transformer (LVDT) with the maximum deformation capacity of ±20in.  To measure the 

local deformation of the specimens, twelve high resolution potentiometers were installed.  

The slippage between the specimen and the test setup was monitored using digital 

LVDTs.  The strain histories for the infill panel and the Vertical Boundary Elements 

(VBE) were measured using rosette strain gauges and uniaxial strain gauges.  The 

location of the measurements and the strain gauges is shown in Figures 6.7 and 6.8, 

respectively.  The capacity and the resolution of the measurements and the strain gauges 

are listed on Table B.1 with the corresponding input channels in a data logger [Appendix 

B].  

 For the specimen with tension-only bracing (S2), forces in the tension-only 

bracing elements were monitored using uniaxial strain gauges attached on the sides of the 

turnbuckles.  The relationship between the strain and the axial load in the turnbuckles 

were calibrated from preliminary tension tests so that the turnbuckles could be used as 

load cells [Table 6.6].  The yielding strength of turnbuckles T2 and T5 were obtained by 

tensile loading tests after all the test were completed.  The rest of turnbuckles were stored 

as load cells for the future experimental programs at the DPRI.   
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Fig 6.7(a): 
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Fig 6.7(b): 

Figure 6.7: Location of measurements (a) specimen 1 (b) specimen 2 
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Fig 6.8(a):  
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Fig 6.8(b): 

Figure 6.8: Location of strain gauges (a) specimen 1 (b) specimen 2 
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Table 6.6: Turnbuckle calibration results 

Name Location Sensitivity Yield strength Tensile strength 

  kN/ kN kN 

T1 left bottom 0.0777   

T2 left bottom 0.0809 60 81 

T3 left top 0.0919   

T4 left top 0.0877   

T5 right bottom 0.0759 61 82 

T6 right bottom 0.0951   

T7 right top 0.0918   

T8 right top 0.0900   
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6.8 Test Views 

 The overall view of the entire testing system icluding a loading frame, testing 

setup and specimen is shown in Figure 6.9.  Grid lines were drawn on the surface of the 

infill panel with white markers to help tyrack the local deformed shape under loading.  

Figure 6.10 shows the details of the specimens.  The HBE and the VBE were connected 

with the L-shape steel plates with the clearance of 9mm to allow the rotation of the VBEs 

at the connection.  The tension-only braces were hand-tightened after installation.    

 The installation of the infill panel was completed with three major steps [Figure 

6.11].  First, the infill plate was fixed at the correct location with several cramps.  

Second, the plate was tack-welded to the boundary elements at all welding spots.  Third, 

the installation was completed with the fillet welding of all holes.  The two steps of 

welding were selected to minimize the initial imperfection and the residual stresses in the 

infill panel.  The strain in the infill panel during the welding was monitored during the 

entire duration of the welding procedure [Figure 6.12].  The maximum principal strain 

values during the welding were around 230 and 175, for the specimen 1 and the 

specimen 2, respectively.  These values are 10% of the yield strain, and much smaller 

than the values of the residual stress accounted for the column buckling strength (30% of 

the yield stress) in the modern steel design guidelines [AISC, 2007]. 

 Figure 6.13 shows the data acquisition system and the load control system used in 

the tests. 
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Figure 6.9: Load reaction frame and test setup 
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Fig 6.10(a): 

 

Fig 6.10(b): 
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Fig 6.10(c): 

 

Fig 6.10(d): 

Figure 6.10: Specimen views (a) specimen 1 (b) specimen 2 (c) HBE-VBE connection 

(b) steel bracket and tension-only bracing 
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Fig 6.11(a): 

 

Fig 6.11(b): 

Figure 6.11: Welding condition (a) preliminary tack welding (b) welding final condition  
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Fig 6.12 (a): 

 

Fig 6.12 (b): 

Figure 6.12: Maximum principle strain history during welding (a) specimen 1 (b) 

specimen 2 
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Fig 6.13(a): 

 

Fig 6.13(b): 

Figure 6.13: Loading and data acquisition system (a) data logger (b) control box and PCs 
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6.9 Test Results 

Test Observation 

Specimen 1 

 Global buckling of the infill plate took place immediately in the first load cycle 

with the amplitude of 0.00375rad. with the development of tension-field action in the 

infill plate [Figure 6.14(a)].  The buckling of the plate involved a single low tone sound 

following a series of high tone sounds accompanied by vibration of the infill plate.  The 

main wave line in the global buckling ran exactly diagonally across the corners in the 

infill panel.  At every each half cycle, the shape of global buckling reversed making a 

loud, low tone, impact-like sound.  There was no residual deformation observed at the 

end of the three cycles of 0.00375rad. loading.  One of the four rosette strain gauges at 

the centerline of the infill panel indicated the yielding of steel (2000) at the first cycle 

of 0.005rad. loading [Figure 6.14(b) and (c)].  At this stage, the maximum out-of-plane 

deformation of the Vertical Boundary Elements (VBE) was a negligeble 2mm.  Figure 

6.14(d) shows the in-plane rotation of VBE induced by the tension-field action and the 

deformation of the infill panel at the connection between the HBE and VBE.  The infill 

plate at the corner was subjected to compressive stress and was deformed out-of-plane.  

This out-of-plane deformation caused the weld metal at the boundary to be loaded under 

a combined tension and shear stress.  The residual deformation observed visually at the 

end of the 0.005rad. loading cycle was very limited. 

 Under further loading, a slight residual deformation was observed mainly in the 

corner area of the infill panel as indicated by several folded lines [Figure 6.15(a) and (b)].   

During the 0.0075rad. loading cycle, three of the four rosette strain gauges at the 



 187

centerline of the infill panel showed values above the yielding strain (2000).  The two 

welds at the left bottom and the right top of the boundaries fractured during the second 

half cycle of the 0.01rad. loading while all four rosette gauges showed values above the 

yielding strain (2000) [Figure 6.15(c)].  The HBE-VBE connection successfully 

worked as pin-connection rotating under bending moment in VBEs without any 

translation deformations [Figure 6.15(d)]. 

 Figure 6.16 (a)-(c) shows the transition of deformed shapes in one cycle of the 

0.015rad. loading.  The tension-field action reversed as the direction of loading changed 

without generating any fracture in the infill panel while a significant amount of 

deformation remained at zero story drift [Figure 6.16(b)]. 

 At the 0.02rad. loading cycle, the VBEs deformed inelastically due to the inward 

forced generated by the tension-field action of the infill panel [Figure 6.17(a) and (b)].  

At the left bottom corners of the infill panel, most of fractures occurred in the welds 

while some of them occurred in the infill plate. 

 Under further loading, fractures at the boundary connection propagated rapidly, 

with the bottom boundary of the infill panel almost disconnected at the end of the 

0.04rad. loading [Figure 6.18].  After the scheduled loading cycles completed, a 

monotonic loading was applied to the specimen until the bottom boundary of the infill 

panel completed disconnected at the amplitude of 0.053rad.  
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Fig 6.14(a): 

 

Fig 6.14(b): 
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Fig 6.14(c): 

 

Fig 6.14(d): 

Figure 6.14: Behavior at small amplitudes (a) global buckling at 0.00375rad. (b) global 

buckling at 0.005rad. (c) shape of bucking at 0.005rad. (d) rotation at HBE-VBE 

connection 
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Fig 6.15(a): 

 

Fig 6.15(b): 
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Fig 6.15(c): 

 

Fig 6.15(d): 

Figure 6.15: Deformation at middle amplitudes (a) deformed shape at 0.0075rad. (b) 

deformed shape at 0.01rad. (c) fractured welds at left bottom corner (d) behavior of pin-

connection  
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Fig 6.16(a): 

 

Fig 6.16(b): 
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Fig 6.16(c): 

Figure 6.16: Transition of deformed shape during 0.015rad. loading cycle (a) 

deformation at positive loading (b) residual deformation at zero displacement (c) 

deformation at negative loading 
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Fig 6.17(a): 

 

Fig 6.17(b): 

Figure 6.17: Behavior at 0.020rad. loading (a) inelastic deformation of VBE (b) 

condition of left bottom corner 
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Fig 6.18(a): 

 

Fig 6.18(b) 
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Fig 6.18(c) 

 

Fig 6.18(d) 

Figure 6.18: Strength deterioration and final condition (a) deformation at 0.03rad. (b) 

deformation at 0.04rad. (c) damage at 0.04rad. (d) final condition at 0.054rad. 
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Specimen 2 

 As for Specimen 1, global buckling of the infill plate took place immediately in 

the first load cycle with the development of tension-field action in the infill plate [Figure 

6.19(a)].  However, the deformed shape exhibited more short wave lines for specimen 2 

than for specimen 1, which indicated that the buckling mode was higher for the specimen 

2 than for the specimen 1.  The main wave line in the global buckling ran diagonally 

across the corners in the infill panel while two other wave lines initiated from the location 

of the steel brackets [Figure 6.19(b)].  Again, the buckling of the plate was accompanied 

by a single low tone sound following series of high tone sounds with vibration of the 

infill plate.  At every each half cycle, the shape of global buckling reversed making a 

loud, low tone, impact-like sound.  No residual deformation was observed at the end of 

the three cycles of 0.005rad. loading.  The rotation at the HBE-VBE connection was 

smaller than that in the specimen 1 and the deformation at the corners of the infill panel 

was not large [Figure 6.19(c) and (d)].  

 Three of the four rosette strain gauges at the centerline of the infill panel indicated 

the yielding of steel panel (2000) during the second cycle of 0.0075rad. loading 

[Figure 6.20(a)].  As deformations became larger, the number of wave lines increased and 

thus the buckling mode became higher [Figure 6.20(a)-(c)].  This is because the tension-

only bracing started to resist against the inward deformation of the VBEs and the tension 

load paths in the infill panel changed.  The deformations at the corners of the infill panel 

were still limited as a benefit of the tension-only braces.  No damage was observed at the 

boundary connections at end of the 0.01rad. loading cycle.  At the 0.01rad. loading cycle, 

large deformation were observed in the steel brackets [Figure 6.20(d)] 
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 Figure 6.21(a)-(c) shows the transition of deformed shapes in the 0.015rad. 

loading cycle. A large number of folded lines and out-of-place deformation of the infill 

panel were observed.  Several weld fractures were observed at the right bottom of the 

infill panel.  Yielding of the still brackets and the VBE occurred due to the large local 

force input from the tension-only braces [Figure 6.21(d) and (e)].  The yielding of the 

steel brackets at top left and bottom right of the plate were confirmed.  Some permanent 

rotation remained at zero displacement with a series of Lueder’s lines on the bracket 

surface.  These two brackets were tension-only braces and worked primarily under 

loading in the positive story drift direction. 

 The steel bracket located at left bottom fractured during the 0.03rad. loading 

cycles [Figure 6.22].  This undesirable fracture resulted in the slight buckling of the 

tension-only element located at the bottom left.  The yielding of all steel brackets affected 

the mode of the inelastic buckling and the deformed shape of the infill panel [Figure 

6.22(b)].  This increased the force input in the corner of the infill panel and resulted in 

fractures at the bottom boundary connection.  Under further loading, fractures at the 

bottom boundary increased excessively.  After the scheduled loading cycles completed, 

the specimen was monotonically loaded until 0.055rad. [Figure 6.23]. 

 After the test was completed, the tension-only bracing elements and steel brackets 

were removed from the VBEs [Figure 6.24].  The severe damage including the 

development of yield lines in the flanges was observed in the VBEs with residual plastic 

deformations.  The infill panel was also torn at the location of the steel brackets.  The 

damage in the steel brackets was inspected carefully [Figure 6.25].  The steel brackets 



 199

suffered from very severe damage involving  large deformations around holes where high 

strength bolts pulled and the fractures at fillet welded lines. 

 

Fig 6.19(a): 

 

Fig 6.19(b): 
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Fig 6.19(c): 

  

Fig 6.19(d): 

Figure 6.19: Deformed shape at small deformation (a) global buckling at 0.00375rad. (b) 

global buckling at 0.005rad. (c) rotation of HBE-VBE connection (d) buckling wave lines 
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Fig 6.20(a): 

 

Fig 6.20(b): 
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Fig 6.20(c): 

 

Fig 6.20(d): 

Figure 6.20: Behavior in mid amplitude loading (a) inelastic buckling at 0.0075rad. (b) 

higher mode buckling at 0.01rad. (c) wave line at corners (d) deformation of steel bracket 
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Fig 6.21(a): 

 

Fig 6.21(b): 
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Fig 6.21(c): 

 

Fig 6.21(d): 
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Fig 6.21(e): 

 

Fig 6.21(f): 

Figure 6.21: Condition at 0.015rad. loading (a)-(c) transition of buckled shape (d) 

fracture at right bottom corner (e) permanent rotation of brackets (e) yielding of brackets 
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Fig 6.22(a): 

 

Fig 6.22(b): 
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Fig 6.22(c): 

Figure 6.22: Damage at 0.03rad. loading (a) deformation  mode before bracket fracture 

(b) deformation mode after bracket fracture (c) bracket fracture 

  



 208

 

Fig 6.23(a): 

 

Fig 6.23(b): 

Figure 6.23: Condition at end of loading (a) buckling of tension-only element (b) 

fractures at bottom boundary 
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Fig 6.24(a): 

 

Fig 6.24(b): 

Figure 6.24: VBE after removal of brackets (a) residual inelastic deformation (b) infill 

panel tearing 
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Fig 6.25(a): 

 

Fig 6.25(b): 
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Fig 6.25(c): 

 

Fig 6.25(d): 

Figure 6.25: Inspection of steel bracket (a) from top (b) from side (c) from back (d) 

fracture 
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Hysteresis Behavior 

Initial behavior 

 The performance of the two specimens can be compared in terms of actuator force 

versus interstory drift.  Figure 6.26(a) shows the hysteresis behavior of the two specimens 

during the first loading cycle with at 0.375% story drift.  Both specimens showed 

nonlinearly in their hysteresis curves immediately after the loading started.  This was 

mainly caused by the global buckling of the infill plate.  The large stiffness changes in 

both specimens in the 0.25-0.3% story drift range indicates initial yielding of the infill 

plates.  The nominal yield strengths were estimated as 80kN for specimen 1 and 115kN 

for specimen 2.  The yield strength and initial secant stiffness were increased by 

approximately 45% by the addition of the tension-only braces. 

 The hysteretic behavior until the end of the 1% story drift cycles is shown in 

Figure 6.26 (b).  Both specimens showed pinched behavior after the second loading cycle 

at the 0.375% story drift.  The pinching was more severe for the second and/or third 

cycles at each amplitude.  For both specimens, it was notable that unloading curves 

crossed a zero displacement line with the approximately same amount of residual forces 

even for loading with different amplitudes.  The sources of residual forces are estimated 

to be the force required to change the deformed shape during the transition of global 

buckling modes. 

 The post yielding stiffness of the specimen 2 was larger than that of the specimen 

1 [Figure 6.26(b)].  As a result, the strength of the specimen 2 became 67% larger than 

that of the specimen 1 at the 1% story drift. 
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Global behavior 

 The global behavior before the specimens degraded are shown in Figure 6.27.  

The maximum strength of the specimens differed slightly for the positive and negative 

story drifts.  The strength of the specimen 1 reached its maximum value, 108kN, during 

the first loading cycle at 2.0% story drift.  The strength started to deteriorate slightly 

earlier (1.5% story drift) for the negative loading direction due to the fractures that 

propagated at the left bottom of the boundary connections.  The strength of the specimen 

2 reached its maximum value, 175kN, during the first loading cycle at 3.0% story drift.  

The strength stopped increasing earlier in the positive loading direction due to early, 

undesirable yielding of the steel brackets at their left top and right bottom locations.  The 

design of the steel brackets should be reexamined to prevent this early termination of the 

strength increase.  At 3% story drift, the strength deterioration in the positive loading 

direction became significant due to the fracture of the steel brackets and the development 

of the yielding line in the flange of the VBEs.  In the negative loading direction, the 

deterioration was milder where the steel brackets deformed rather in a ductile manner  

withouth fracture at welding.  

 When two specimens were compared, the maximum strength was 62% larger in 

specimen 2.  The ductility of the specimens, defined as the deformation where strength 

deteriorated to 80% of the maximum strength divided by the deformation at yield, were 

roughly estimated as 10 (2.5%/0.25%) for the specimen 1 and 14 (3.5%/0.25%) for the 

specimen 2.  The energy dissipated by the two specimens did not differ much until 1% 

story drift [Figure 6.28].  This fact indicates that the tension-only bracing elements 

contributed to stiffness and strength of the specimen 2 without adding much energy 
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dissiapting capacity to the system.  The difference of the amount of dissipated energy 

between two specimens increased notably after 1% story drift and reached approximately 

30% of the energy dissipated by specimen 1 at a 4% story drift.  The difference was 

mainly achieved by the energy dissipated by the steel brackets and VBEs and by the more 

ductile behavior of the infill panel in the specimen 2 given the smaller damage at the 

boundary connection. 

Boundary behavior 

 The numbers of fractured weld points are listed in Table 6.7.  The fractures 

mostly occurred at the bottom boundary connection.  One possible reason for this 

phenomenon might be because the welder was forced to weld in an uncomfortable 

posture for the low height location.  The numbers of fractured weld points were 

significantly smaller for specimen 2 until 3% story drift due to the small closing at the 

corners of the infill panel. 
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Fig 6.26(a): 

 

Fig 6.26(b): 

Figure 6.26: Hysteresis until large deformation (a) first cycle (b) until 1% story drift 
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Fig 6.27 (a): 

 

Fig 6.27 (b): 

Figure 6.27: Behavior until end of loading (a) specimen 1 (b) specimen 2  
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Figure 6.28: Cumulative dissipated energy at end of each amplitude cycle  

 

Table 6.7: Number of fractured welds for two specimens  

 Specimen 1  Specimen 2  

Cycle Number of fractured welds  Number of fractured welds  

 bottom top 
total 

bottom top 
total 

rad. left right left right left right left right 

0.00375 0 0 0 0 0 0 0 0 0 0 

0.005 0 0 0 0 0 0 0 0 0 0 

0.0075 0 0 0 0 0 0 0 0 0 0 

0.01 2 0 0 1 2 0 0 0 0 0 

0.015 3 1 0 1 5 1 4 0 0 5 

0.02 12 3 3 1 19 2 6 0 0 8 

0.03 17 7 3 1 28 3 15 0 0 18 

0.04 22 9 4 1 36 7 24 0 0 31 
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Strain history 

 The direction of the principal axes of strain at the centerline of the infill panels 

were computed from the data of the rosette gauges [Figure 6.29].  The angles are 

measured off the vertical center line of the infill panel.  The location of the rosette gauges 

can be found in Figure 6.11.  In the specimen 1, the gauges showed similar peak values 

for the positive and the negative loading direction.  The peak value started at around 30 

degrees and decreased gently to 23 degrees probably due to the fracture of welds at the 

corners of the infill plate.  In specimen 2, the gauges showed different peak values for the 

positive and the negative loading direction, which indicates that the data was highly 

influenced by the local behavior at the location of measurement.  The rosette gauge R1 

had the peak values for the positive loading direction that were almost constant and 

around 38 degree through the entire loading.  This indicates that the angle of the tension 

field action in specimen 2 was larger than that in the specimen 1. 

 The force histories in the tension-only braces are plotted in Figure 6.30.  The 

forces in all tension-only elements were successfully smaller than their yielding strength 

(around 60kN), as intended in the capacity design approach used.  The hysteresis 

indicates that the yielding of the steel brackets and/or the VBEs started approximately at 

a 1% story drift.  For large deformation after the 3% story drift loading, the tension-only 

braces at left bottom ended up carrying a slight compressive force and globally buckled 

as confirmed in the Figure 6.23(a). 
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Fig 6.29 (a): 

 

Fig 6.29 (b): 

Figure 6.29: Direction of principal strain axes from R1 and R2 (a) speciemen 1 (b) 

specimen 2 
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Fig 6.30 (a): 

 

Fig 6.30 (b): 

Figure 6.30: Average force hysteresis of tension-only rods (a) left top and right top (b) 

left bottom and right bottom 
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VBE behavior 

 The in-plan deformation of the right VBE in specimens are tracked using four 

potentionmeters [Figure 6.31, see Figure 6.7 for location of  potentionmeters].  The 

measurement of the deformation terminated at 2% story drift due to the capcities of 

LVDTs.  For both spesimens, the shape of the VBE was close to linear until 0.5% story 

drift.  Nonlinearity in the deformed shape became significant after 0.75% story drift.  The 

VBE shape of specimen 1 in large story drifts showed kinks at the location of 1300mm 

and 400mm in positive and negative loading direction, repectively [Figure 6.31(a)].  The 

kinks indicate the formation of plastic hinges. The VBE shape of specimen 2 was rather 

smoooth without severe kinks which indicate the speread inelasticity in the VBE.  

Therefore, the closing rotational deformation at HBE-VBE connections in specimen 1 

were larger  than those in specimen 2. 

 Figure 6.32 shows the out-of-deformation of the left and right VBEs measured at 

the middle section of the members.  In specimen 1, the out-of-deformation was 

accumulated under cyclic loading and reached 0.55% and 0.75% in left and right VBEs, 

respectively.  These defomation were not significant given the flexibility of the member 

with CT section in weak axis.   The out-of-deformation in specimen 2 did not accumulate 

and returned to origin during unloading cycles.  The tension-only elements also behaved 

similar to stability bracings for out-of-deformation. 
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                                   Fig 6.31(a):                                                            Fig 6.31(b): 

Figure 6.31: In plane deformation of right VBE (a) specimen 1 (b) speceimen 2 

  



 223

 

Fig 6.32(a): 

 

Fig 6.32(b): 

Figure 6.32: Out-of-deformation of VBEs (a) specimen 1 (b) specimen 2 
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6.10 Summary 

 The proof of concept testing of the narrow steel plate shear wall system was 

conducted at the structural laboratory of the DPRI of Kyoto University, Japan.  The 

experimental program was completed successfully with the scheduled timeline.   

 In the experimental program, two shear wall systems were tested.  One was a 

specimen with tension-only bracing and another was the specimen without tension-only 

bracing.  The two specimens were prepared to investigate the benefits of the bracing on 

the global and local behavior of the prototype.  The specimens had a dimension scaled to 

approximately 50% of the original.  The specimens were fabricated using members and 

materials specified in Japanese standard [JIS, 2005].  As the part of the experimental 

program, a pre-holed fillet welding method intended for shear walls with light gauge steel 

plates was proposed collaboratively by the author and a local manufacture.  The 

performance of the welding method was evaluated through the preliminary tensile testing 

of the welded thin steel plates.  Using the test results, the pitch and the size of holes were 

determined for the welding of the boundary connection in the shear wall specimens. 

 The performance of the two specimens was evaluated through the incremental 

cyclic loading using displacement controlled hydraulic actuators.  Both specimens 

showed nonlinear hysteresis curves immediately after the loading started.  This was 

mainly caused by the global buckling of the infill plate.   Initial yielding of the specimens 

took place at 0.25-0.3% story drift.  The yield strength and initial secant stiffness was 

increased by approximately 45% by the addition of tension-only braces.  Both specimens 

showed pinched behavior after the second loading cycle with the 0.375% story drift.  The 

pinching was severer for the second and/or third cycles of each amplitude.  The strength 
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of specimen 2 became 67% larger than that of the specimen 1 at the 1% story drift 

because of the larger post-yielding stiffness of specimen 2 as compared to  specimen 1. 

 In specimen 1, the strength started to deteriorate slightly at the 1.5% story drift 

due to the fractures that propagated at the left bottom of the boundary connections.  In 

specimen 2, the strength stopped increasing earlier in the positive loading direction due to 

early, undesirable yielding of the steel brackets at left top and right bottom.  At the 3% 

story drift, the strength deterioration in the positive loading direction became significant 

due to the fracture of steel brackets and the development of the yield lines in the flange of 

the VBEs.  The maximum strength was 62% larger for specimen 2 than for specimen 1.  

The ductility of the specimens, defined as the deformation where strength deteriorated to 

80% of the maximum strength divided by the deformation at yielding, were roughly 

estimated as 10 for specimen 1 and 14 for  specimen 2.  The energy dissipated by the two 

specimens did not differ much until 1% story drift was exceeeded.  The difference of the 

amount of dissipated energy between two specimens increased notably after 1% story 

drift and reached approximately 30% of the energy dissipated by the specimen 1 at 4% 

story drift.  The difference was mainly achieved by the energy dissipated by both the steel 

brackets and VBEs, and by the more ductile behavior of the infill panel in the specimen 2 

given the smaller damage at the boundary connection. 

 The in-plan deformation of the right VBE in specimens are tracked using four 

potentionmeters.  For both spesimens, the shape of the VBE was close to linear until 

0.5% story drift.  Nonlinearity in the deformed shape became significant after 0.75% 

story drift.  The VBE shape of specimen 1 showed kinks under large story.  The kinks 
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indicate the formation of plastic hinges in the VBE.  The VBE shape of specimen 2 was 

rather smoooth without severe kinks which indicate the speread inelasticity in the VBE.   

 The out-of-deformation of the VBEs in specimen 1 accumulated under cyclic 

loading but the maximum defomation was not significant given the flexibility of the 

member with CT section in weak axis.  The out-of-deformation in specimen 2 did not 

accumulate and returned to origin during unloading cycles.  The tension-only elements 

also behaved similar to stability bracings for out-of-deformation. 
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CHAPTER 7 

SUMMARY, CONCLUSION AND IMPACT 

 

7.1 Summary and Conclusions 

 Two innovative strategies were proposed for rapid seismic rehabilitation in the 

context of sustainability, where environmental impact and social consequence were 

minimized by the limited usage of heavy construction equipment and disruption to 

occupants.  These strategies are primarily intended for relatively small rehabilitation 

projects and are suitable for a multi-stage rehabilitation methodology.  This thesis 

presented the work completed for the development of the two proposed systems 

including: verification through analyses, prototype design, development of design 

procedure, and proof-of-concept testing.  Both systems have the common trait of stable 

hysteretic performance under seismic load, while benefitting from reduced installation 

effort and minimal environmental impact.   

“Cable Bracing System-CORE Damper”  

 The cable cross bracing system developed by the author has a unique geometry to 

maintain key elements always in tension under cyclic lateral loading, and provides stable 

energy dissipation until very large deformations are reached by taking advantage of 

permanent rotations in a central energy dissipating device.  The central device, referred to 

as the COuples REsisting Damper (CORE Damper), dissipates energy through the 

bending and yielding of mild steel plates and does not require periodic maintenance.  In 

order to achieve stable hysteretic behavior and allow for easy replacement after a major 

seismic event, the connections in regions of anticipated maximum ductility are designed 
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using high strength bolted connections to avoid potential brittle weld failures.  The main 

objectives of this study were to provide the first prototype design and analytical model 

validated through a proof-of-concept testing for the system.  An example application of 

the proposed system for the seismic upgrading of steel frame buildings was also 

presented.   

 The first task undertaken was to verify the concept and behavior of the proposed 

cable bracing system with unique geometry.  This task was accomplished through 

preliminary simplified analyses in the OpenSEES platform, the prototype design of the 

CORE Damper using FE analysis models and the identification of the dynamic behavior 

of the prototype system under high-speed loading.  In the preliminary analyses, a bi-

linear hysteresis behavior was implemented for the rotational spring and one cycle of 3% 

story drift amplitude was statically applied to the model frame.  The approximate strength 

demand, required deformation capacity, and optimal shape for the CORE Damper were 

determined through parametric analyses using this simplified analysis model.  The details 

of the CORE Damper were designed carefully by using a general purpose finite element 

analysis program, ABAQUS, as a design tool.  The dynamic behavior of the prototype 

system was identified through the nonlinear dynamic analyses using the simplified 

analysis model with the hysteresis of the prototype CORE Damper obtained from FE 

analyses. 

 Utilizing the developed CORE Damper, an option to add re-centering capability 

to an existing bracing system was also considered.  The re-centering system was 

specifically for the reduction of residual deformation at critical sections of existing 

buildings.  By simply adding extra cables made of shape memory alloy (NITINOL) to the 
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same diagonal in the base system, the system was upgraded as a re-centering system.  

The concept of the re-centering system was validated through nonlinear static analyses in 

the OpenSEES platform. 

 The second task undertaken was to proof the proposed concept for the cable 

bracing system through physical testing.  The testing for the prototype system was carried 

out through the use of a full-scale testing frame constructed in the structural laboratory at 

the Georgia Institute of Technology.  The performance of the system was evaluated at 

various drift levels under quasi-static cyclic loading.  The local behavior of the system 

was carefully monitored using digital instrumentations including hand-made load cells 

made for the cables.  The surface strains of the SPEAs were acquired by strain gauges. 

 The third task undertaken was to demonstrate an example application of the newly 

developed “Cable Bracing-CORE Damper system” to the upgrading of a seismically 

deficient steel frame.  In the study, the original building was assumed to be built in late 

1960’s and was designed for the combined load of the gravity and wind forces using the 

plastic design procedure.  It was assumed that the seismic response of the original 

building became a concern due to the change of seismic category in the region where the 

building is located.  The seismic performance of the building was enhanced by replacing 

the original diagonal cross bracing with the CORE Damper bracing system.  The main 

difference between the two systems arises from their post yielding behavior.  Once the 

diagonal cross bracing system experiences severe inelastic deformation, it loses its elastic 

stiffness until its deformation exceeds the maximum previous deformation.  When 

subjected to several inelastic cycles of deformation, the diagonal brace member becomes 

highly susceptible to fracture at a plastic hinge created by global buckling.  In contrast, 
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the CORE Damper bracing system retains its initial stiffness with stable bi-linear 

hysteresis behavior.  It is also notable that the post yielding stiffness of the CORE 

Damper system is significantly higher than the diagonal cross bracing system.  The 

seismic performance of two building systems under both a near and far fault earthquakes 

was evaluated through nonlinear dynamic analyses in the OpenSEES platform.   

 The key findings and conclusions for the study of “Cable Bracing-CORE Damper 

System” are summarized below: 

 In the proposed cable bracing geometry, if the rotational spring could deliver a 

stable bi-linear curve, then the behavior of the entire subassemblage, as 

characterized by its force vs. story drift curve, is also stable and bi-linear. 

 The CORE Damper is carefully designed using a finite element analyses as a 

design tool and can sustain a stable, bi-linear hysteresis curve until the rotation 

corresponding to a story drift much larger than that specified in current design 

guidelines. 

 The analytical study of cable bracing system under high speed loading showed 

that the increments in local and global forces are limited until a frequency of 1Hz 

and become noticeable for higher frequencies.  In general, the effects of dynamic 

loading were larger in the local cable forces than in the global system behavior, 

while the effects were limited for the CORE device even with very high speed 

loading because the effects were attenuated by the yielding of the damper device. 

 A re-centering system can be realized by simply adding extra cables made of 

shape memory alloy (NITINOL) to the same diagonal in the base system. 
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 The prototype of the proposed system successfully showed stable bi-linear 

hysteresis, even through very large deformations.  As the drift level increased, the 

relative rotation between the front and back cover plates increased.  The rotation 

became noticeable at the 0.0075rad. cycle when the SPEAs started to yield. 

 The SPEAs successfully exhibited inelastic deformations throughout their length 

as intended in the design.  This was confirmed from the surface condition of the 

SPEA which had flaked in several sections by the end of the loading.   

 The post-yielding stiffness of the system increased after the 0.02rad. cycles when 

the bolts at the connections between the SPEAs and the cover plates started to slip 

along long slotted holes.   

 The base shear resistance of the system is slightly higher when the CORE Damper 

deformed outward than when it deformed inward.  This is due to the difference in 

boundary conditions in outward and inward deformation modes.  

 The preliminary analyses in ABAQUS and OpenSEES predicted well the elastic 

stiffness and yielding strength of the system. 

 The CORE Damper successfully remained below the limit state condition until 

the end of loading, defined as a physical contact between two SPEAs under the 

inward deformation mode.  The investigation of the components after the test 

confirmed that damage was concentrated only in the SPEAs.   

 The process of reassembling the system by replacing the damaged SPEAs was 

simple and rapid.  This demonstrated the ease of replacement after a significant 

seismic event. 
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 The original building with the diagonal cross bracing system suffered from 

concentrated damage in the first story with the development of a “soft story” due 

to several large amplitude excursions in the near fault earthquake.  Compared to 

this, the deformation of the building with the CORE Damper system was well 

distributed along its height and seismic energy was dissipated through the stable 

inelastic deformation of the CORE Dampers in several stories. 

 The example analytical study successfully demonstrated the effectiveness of the 

seismic upgrading with the application of the CORE Damper bracing system.  

The performance improvement was achieved through the different shape of the 

hysteresis behaviour without the increase of strength or stiffness of the building 

system. 

“Narrow Steel Plate Shear Wall with Tension-Only Bracing”  

 Addition of a properly designed and detailed unstiffened thin steel plate to a steel 

moment frame can give the system a substantial increase in stiffness, load-carrying 

capacity, and energy adsorption.  In order to utilize a thin steel plate as a supplemental 

lateral load resisting system for relatively small seismic rehabilitation projects, a 

geometry where a plate with surrounding boundary elements is installed separately from 

existing columns is proposed.  The proposed geometry intends to minimize installation 

impact and to reduce the need to strengthen the existing columns.  The Vertical Boundary 

Elements (VBE) which surround the plate need to have significant strength and stiffness 

overcapacity relative to the infill steel plate, otherwise the thin plate will not resist 

seismic effectively.  This objective was achieved by the use of a relatively weak beam 

supported by tension-only bracing elements.  Installation of a strong beam as a VBE 



 233

would require much effort and result in large force demands on the existing beams where 

the VBE was attached.  The main objectives of the study were to provide a prototype 

geometry and experimental data for the proposed system, named “Narrow Steel Plate 

Shear Wall with Tension-Only Bracing (NPSW-TB)”.  The study also provided a design 

approach and design procedure for the proposed system. 

 The first task was the development of the prototype NPSW-TB system.  This task 

was accomplished by developing a design approach and design procedure, including a 

simple and logical design flowchart.  For this work, a simplified analysis model was 

constructed in the OpenSEES platform as a design support tool.  A major design 

constraint for the prototype system is the requirement that yielding of the infill panel 

should occur prior to yielding of the boundary elements.  The Vertical Boundary 

Elements (VBEs) were also subjected to inelastic deformation late in the load history due 

to the inward flexural force induced by the tension field developed in the infill panel.  

The design of the VBE required an iterative procedure since its behavior interacted with 

the behavior of the tension-only rod and the local geometry of the arm.  The tension-only 

elements were designed to remain elastic until very large deformations.  The performance 

goal of the prototype system was to achieve a total system shear strength which was 

comparable to the shear force carried by three typical columns in low-to-mid size steel 

moment resisting frames, with the columns assumed to have fixed-fixed end conditions.  

The shear strength of the prototype system obtained from a simplified analysis model was 

close to the shear strength of the infill panel computed by the formula specified in the 

current seismic codes in U.S. and Canada for steel-plated shear walls.  A ½ scale system 

was also designed for proof-of-concept testing using the proposed design procedure for a 
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frame.  For comparison, nonlinear finite element analyses were conducted for the scaled 

system as well as the scaled system without tension-only elements.  The detailed behavior 

of the scaled systems were examined using a general-purpose finite element program, 

ABAQUS, and were compared with the prediction from the preliminary simplified 

analyses in OpenSEES.  The purpose of the FE analyses was to provide an accurate 

prediction of both global and local behavior for the experimental study and to validate the 

OpenSEES analyses system. 

 The second task was to verify the performance of the proposed NSPW-TB system 

in proof-of-concept testing.  This task was accomplished through the performance 

evaluation of the scaled prototype conducted at Kyoto University, Japan.  The test 

program was embedded into a series of experiments for shear wall type structures 

planned at the Disaster Prevention Research Institute (DPRI) of Kyoto University, in 

cooperation with Dr. M. Nakashima.  In the experimental program, two shear wall 

specimens were tested.  One was the prototype specimen with tension-only bracing and 

another was a specimen without tension-only bracing to evaluate the effects of the 

bracing on the global and local behavior of the prototype.  As part of the experimental 

program, a pre-holed fillet welding method intended for shear walls with light gauge steel 

plates was proposed collaboratively by the author and a local manufacture.  The 

performance of the welding method was evaluated through preliminary tensile testing of 

welded thin steel plates.  Using the test results, the pitch and the size of holes were 

determined for the welding of the boundary connection in the shear wall specimens.  The 

performance of the two systems was evaluated through the incremental cyclic loading. 
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 The key findings and conclusions for the study of “Narrow Steel Plate Shear Wall 

with Tension-Only Bracing” are summarized below: 

 The geometry of the prototype selected following the proposed design flowchart 

successfully meets the target design strength and the primary design constraint, 

which is the requirement that yielding of the infill panel should occur prior to 

yielding of the boundary elements.  The other design constraint, which is the 

requirement that the tension-only elements remain elastic until very large 

deformation, was successfully achieved both in the preliminary analyses and in 

the physical testing. 

 The local and global behavior of the scaled systems obtained using a general-

purpose finite element program, ABAQUS, were similar to the prediction from 

the preliminary simplified analyses in OpenSEES.   

 In the FE analyses of the scaled systems, most of the middle part of the infill 

panel yielded for both cases, but the yielded area was larger with tension-only 

elements.  More notably, most of the VBEs yielded with tension-only elements 

while, without tension-only elements, damage involving plastic hinge formation 

was highly concentrated in the area of the  HBE-VBE connections.   

 For the system without tension-only elements, the HBE-VBE connections located 

in the extended diagonal suffered from large closing deformation.  The closing 

deformation was more moderate with the presence of tension-only elements.  The 

predicted yield shear strength in both analyses was very close to the design shear 

strength.   
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 In the experiental program, both the scaled systems with and without tension-only 

bracing showed nonlinear hysteresis curves immediately after the loading started.  

This was mainly caused by the global buckling of the infill plate. 

 In the tests, the yield strength and initial secant stiffness were increased by 

approximately 45% by the addition of tension-only braces.  Both systems showed 

pinched behavior after the second loading cycle at 0.375% story drift.  The 

pinching was severer for the second and/or third cycles of each amplitude.  With 

the presence of the tension-only bracing, the shear strength at the 1% story drift 

and maximum shear strength increased 67% and 62%, respectively.   

 In the experiments, strength started to deteriorate much later with the presence of 

tension-only bracing.  In the case without the tension bracing, the strength started 

to deteriorate slightly at the 1.5% story drift due to the fractures that propagated at 

the left bottom of the boundary connections.  In the case with the tension bracing, 

the strength deterioration in the positive loading direction became significant at 

the 3% story drift, due to the fracture of steel brackets and the development of the 

yield lines in the flange of the VBEs.   

 The ductility of the specimens, defined as the deformation where strength 

deteriorated to 80% of the maximum strength divided by the deformation at 

yielding, were roughly estimated as 10 and 14 for specimens with and without 

tension-only bracing, respectively.   

 For both systems, the in-plane deformation shape of the VBE was close to linear 

until 0.5% story drift.  Nonlinearity in the deformed shape became significant 

after 0.75% story drift.  The VBE shape of the system without tension-only 
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bracing showed kinks under large story deformations.  The kinks indicate the 

formation of plastic hinges in the VBE.  The deformed shape of VBEs with 

tension-only bracing was rather smoooth without severe kinks, indicating the 

spread inelasticity in the VBE. 

 The out-of-deformation of VBEs accumulated under cyclic loading for the system 

without tension-only bracing while the out-of-deformation did not accumulate and 

returned to the origin during unloading cycles for the system with tenion-only 

bracing.  The tension-only elements also behaved similar to stability bracings for 

out-of-deformation. 

7.2 Impact of Research 

 The United Nations noted that we face an urgent need today to realize the 

freedom of future generations to sustain their lives on this planet.  We are failing to 

provide that freedom.  On the contrary, we have been plundering our children’s future 

heritage to pay for environmentally unsustainable practices in the present [United Nations 

2000].  The strategies proposed on this thesis should help contribute to realizing 

sustainable infrastructure systems in our society.  They will give an option to building 

owners and stakeholder for the rehabilitation with low initial cost and thus contribute to 

sustainable society by providing healthier building stocks. 

 The significant contribution of this study is the proposal of the concept for rapid 

rehabilitation strategies utilizing tension-only design approaches.  The proposed 

strategies showed stable, high physical performance under seismic load with 

reduced influence on existing framings with replaceable energy dissipating 

elements.  The application of these strategies for rehabilitation should benefit 
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from reduced installation effort, resulting in minimal environmental impact and 

social consequences during construction. 

 Each component of the proposed systems is light enough to be carried without the 

help of heavy construction equipment.  Also, most components are sized to be 

transported using existing elevators, which eliminates the use of large cranes.  

Minimal use of heavy construction equipment may enable overnight or weekend 

rehabilitations.  For instance, if applied to school building, the minimal disruption 

to classroom activities results in reduced social consequences from rehabilitation.  

The approach taken for this study can provide a road map for future development 

of rehabilitation strategies in a sustainable frame work.  

 The proof-of-concept testing of the cable bracing system showed that the process 

of reassembling the system by replacing the damaged SPEAs is simple and rapid.  

This demonstrated the ease of replacement after a significant seismic event in the 

adjustable cable bracing geometry.  This work provides a unique option to 

practitioners by adding new bracing geometry with replaceable elements into the 

lists of exiting bracing system. 

 The replacement of slender, tension-only cross bracing systems in traditional steel 

frames with the proposed cable bracing system could reduce the seismic response 

of the frames significantly without modifying the strength and stiffness of the 

original frame.  This indicates that seismic responses can be controlled by simply 

changing hysteresis behavior of the energy dissipating elements with enhanced 



 239

ductility, while lateral load resisting path remain the same as was originally 

designed for in the tension-only cross bracing system.  

 The narrow steel plate shear wall system provides a new option for practitioners 

to utilize thin plate shear wall systems in the situation where exiting columns are 

not easily accessible or the columns do not possess reserved strength.  Also, the 

experimental study of the narrow shear wall system without tension-only elements 

provides a much-needed set of experimental data for the infill plates with small 

aspect ratios. 

 Unique welding methods were applied for the narrow steel plate shear wall 

system.  This method is intended for reduced residual stress in the infill panel 

which may lead to the large reduction of initial stiffness and strength. 
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7.3 Recommendations for Future Work 

 Areas in which this study can be extended through additional research are cited 

below:  

 The prototype of the CORE Damper system showed stable performance in 

analyses and in physical testing but the scalability of the system in terms of 

strength and stiffness has not yet been explored.  These parameters are mainly 

controlled by the geometry in the CORE Damper and analytical and experimental 

research on defining the upper limit of the strength and stiffness of the damper 

should be explored.  It is desirable to provide an option to select different 

performance goals for end users. 

 Current design method for the CORE Damper relies on finite element analyses.  

Simple design formulation to estimate rough geometry of the damper should be 

developed so that the effort in designing the damper will be significantly reduced. 

 The application of the “Cable Bracing-CORE Damper System” for seismic 

upgrading was explored with only a single building configuration.  A series of 

model buildings with various shapes should be examined for the further 

understanding of the effectiveness of the proposed system in a general building 

configuration.  A statistical evaluation of the seismic response of these frames 

under ground motions with various spectral characteristic and at various intensity 

levels is also desirable for providing the probabilistic information for the 

performance of the proposed system. 
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 The proposed cable bracing geometry can be extended to other kinds of structures 

such as wood frame or concrete frame buildings.  The CORE Damper made of 

other materials, the use of aluminum for the SPEAs and wood for cover palate, 

cables made with bamboo or synthesis ropes can be used for such rehabilitation 

projects, possibly outside of the developed countries. 

 The impact of the installation of the proposed shear wall systems in existing 

frames should be quantitatively evaluated and compared with other existing 

retrofit strategies.  A statistical evaluation of the impact of installation for various 

frame geometries under the earthquake ground motions is also desirable for 

providing the probabilistic information. 

 Cost-benefit analyses of the rehabilitation projects with each proposed systems 

and other rehabilitation strategies would have larger impact on promoting the 

proposed strategies.  The analyses should include the cost for installation effort 

and time as well as the amount of saved materials.  In addition, limited usage of 

the heavy construction equipment should have significant advantage in reducing 

the initial investment. 

 Finally, example application of the proposed rapid rehabilitation strategies in the 

incremental rehabilitation methodology should be demonstrated.  The benefit 

arisen from the use of the rapid rehabilitation strategies into construction 

management such as flexible scheduling, financial aspect and social 

consequences. 
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APPENDIX A  

STRUCTURAL COMPONENTS TESTING SETUP AT GEORGIA 

INSTITUTE OF TECHNOLOGY 

 

A.1 Preliminary Analysis 

 A new testing setup at the GT structural lab was developed to provide the proof-

of-concept data for the proposed seismic rehabilitation systems.  The designed testing 

system was a portal frame with pins at its four corners and is capable of testing sub-

assemblages of low-to-mid rise steel buildings under quasi-static earthquake loads.  After 

an overview of previous full-scale tests in steel buildings [Berman et al., 2005], the 

maximum capacity of the testing frame was chosen as 440kips by using two MTS 

243.70T hydraulic actuators.  

 By applying the maximum output force of two actuators, local force demands in 

all frame elements were examined by pushover analysis of the steel plate shear wall 

(SPSW).  The SPSW was analyzed as a strip model proposed by Thorburn where the 

number of tension-only strip elements represented a steel infill panel as shown in Figure 

A.1(a) [Thorburn et al.,  1983].  Figure A.2(b) and (c) are the results obtained by general 

purpose structural analysis program, SAP2000.  All components of the testing bed were 

designed to have safety factors larger than 1.3 under the combined shear force and 

bending moment obtained in the analysis. 
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Fig A.1(a): 

 

Fig A.1(b): 

 

Fig A1.1(c): 

Figure A.1: Analysis of testing setup with SPSW (a) strip model [Thorburn et al., 1983] 

(b) deformed shape (c) pushover curve 

Tension-only strip elements Beam elements

Thin steel plate panel
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A.2 Geometry of Testing Setup 

 The main components of the frame are 735mm-W36x160 beams, 457mm-

W14x150 columns, and specially assembled frictionless pin clevises.  The bottom beam 

is post tensioned to the strong floor by 24 large diameter DYWIDAG bars.  The columns, 

beams and pins are connected using F1410T super high strength bolts so that the number 

of the required bolts is reduced.  The location of bolt holes at column ends and beam 

flanges are shown in Figure A.2.  An end plate is welded to the left end of the top beam 

where two diagonal stiffeners are welded to increase strength [Figure A.3(a)].  An 

“actuator-load end connector” is connected to the left end of the top beam with complete 

penetrate welding as a primary load transfer system and with 10-M22 high strength bolts 

as a backup load transfer system [Figure A.3(b)].  An actuator is installed between the 

“actuator-load end connector” and a “strong wall-actuator connector” [Figure A.3(c)].  

These connectors can be used either in single actuator option (1000kN maximum load) or 

double actuator option (2000kN maximum load). 
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Fig A.2(a):  
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Fig A.2(b): 

Figure A.2: Location of bolt holes (a) column end plates (b) beam flanges facing inner 

side 
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Fig A.3(a): 
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Fig A.3(b): 
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Fig A.3(c): 

Figure A.3: Drawing of fixity at loading point 
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A.3 List of Measurements in CORE Damper Test 

 The location and properties of the measurements used in the tests are listed in 

Figure A.4-A.7 and Table A.1-A.3. 

 
 

Figure A.4: Location of load measurements 

Table A.1: Load measurement plan (terminal SCXI 1314) 

Name Chan. Capacity Sensitivity Ext Output Location 

L01 01 160kip 2mV/V 10V 8kip/mV top left pin 

L02 02 160kip 2mV/V 10V 8kip/mV top right pin 

L03 03 330kip 2mV/V 10V 16.5kip/mV bottom left pin 

L04 04 330kip 2mV/V 10V 16.5kip/mV bottom right pin 

L05 05 20kip 82.5lb/mV/V 10V 825lb/mV left front turnbuckle 

L06 06 20kip 86.6lb/mV/V 10V 866lb/mV left back turnbuckle 

L07 07 20kip 82.8lb/mV/V 10V 828lb/mV right front turnbuckle 

L08 08 20kip 83.4lb/mV/V 10V 834lb/mV right back turnbuckle 

L01 L02 

L03 L04 

L05 

L06 

L07 

L08 
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Figure A.5: Location of displacement measurements 
 

Table A.2: Displacement measurement plan (Terminal SCXI 1303) 

Name Chan. Type Cap Ext Output Location 

A01 00 Monitor 220kip 10V 22kip/V actuator 

A02 01 Monitor ±10in 10V 1in/V actuator 

P01 02 PA-20 20in 10V 48.0mV/V/in top beam 

P02 03 PA-2 2in 10V 428.6mV/V/in top beam 

P03 04 PA-10 10in 10V 92.5mV/V/in front cover plate 

P04 05 PA-20 20in 10V 48.6mV/V/in front cover plate 

P05 06 PA-10 10in 10V 92.9mV/V/in back cover plate 

P06 07 PA-20 20in 10V 48.1mV/V/in back cover plate 

P07 08 PA-2 2in 10V 488.01mV/V/in cover plate 

P08 09 PT1A-50-UP 50in 10V 18.36mV/V/in cover plate 

D01 11 DCTH500 ±0.5in 20V 9.815V/in left top padeye 

D02 12 DCTH500 ±0.5in 20V 9.615V/in right top padeye 

D03 13 DCTH500 ±0.5in 20V 9.62V/in left bottom padeye 

D04 14 DCTH500 ±0.5in 20V 9.76V/in right top padeye 

P01 

P03, P05 

D02 

D04 
P07 

P02 

P04, P06 

D03 

D01 

P08 
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Figure A.6: Location of strain gauges (shown only gauges attached in front surface) 

Table A.3: Strain measurement plan (Terminal SCXI 1317) 

Name Chan. Type Resistance GF Location 

S1 00 FLA 3-11-3L 120 2.1 front center top 

S2 01 FLA 3-11-3L 120 2.1 front center middle 

S3 02 FLA 3-11-3L 120 2.1 front center bottom 

S4 03 FLA 3-11-3L 120 2.1 front intermediate top 

S5 04 FLA 3-11-3L 120 2.1 
front intermediate 

bottom 

S6 05 FLA 3-11-3L 120 2.1 front edge top 

S7 06 FLA 3-11-3L 120 2.1 front edge bottom 

S11 07 FLA 3-11-3L 120 2.1 back center top 

S12 08 FLA 3-11-3L 120 2.1 back center middle 

S13 09 FLA 3-11-3L 120 2.1 back center bottom 

S14 10 FLA 3-11-3L 120 2.1 back intermediate middle

S15 11 FLA 3-11-3L 120 2.1 
back intermediate 

bottom 

S16 12 FLA 3-11-3L 120 2.1 back edge top 

S17 13 FLA 3-11-3L 120 2.1 back edge bottom 

 

S1, S11

S6, S16 

S7, S17

S2, S12

S3, S13

S4, S14 

S5, S15 

4.25” 

7” 

9.75” 

1” 1.25” 1.5” 

vertical pitch = 1.5” 
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A.4 Load Cell for Cable 

 Load in the cables mounted in the full scale testing setup was measured using 

hand-made load cells specially designed for the cables.   The load cells were made from 

ASTM A193 Grade B7 Alloy steel 7/8”-9 threaded rods [Figure A.7].  The unknown 

cable force was measured by sensing the strain developed in the middle section where 

surface were grinded to flat.  To convert the middle section into a load cell, four uniaxial 

strain gauges were mounted to the smoothed surface with two opposite gauges in the 

axial direction and two opposite gauges in the transverse direction as shown in Figure 

A.8 [Dally and Riley, 1991].  The strain gauge used for the load cell, FLA-2-11-1L, is a 

general-purpose gauge for mild steel under a room temperature condition (-20 to 80°C) 

[Tokyo Sokki 2008].  The gauges were bonded to the surface of rods using Cyanoacrylate 

adhesive, CN-1, and coated by Chloroprene rubber, N-1, (both are produced by Tokyo 

Sokki).  The four gauges were connected to form the Wheatstone bridge as shown in 

Figure A.8.  As long as strain remains under the proportional limit of a material, the 

output signal from the bridge is proportional to applied load with a theoretical equation as 

follows. 

 
∆

 A.1 

where E = output signal, V = excitation voltage, GF = gauge factor, E = Young’s 

modulus, A = area of material, P = applied load 

 The relationship between load and output signal was calibrated from tensile load 

tests for each of the manufactured load cells. 
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Figure A.7: Dimension of cable load cell 

 

Figure A.8: Strain gauges mounted on a simple tension specimen to produce a load cell 

[Dally and Riley, 1991] 

 

Elevation 

A-A’ section B-B’ section 
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APPENDIX B 

TESTING SETUP AT DISASTER PREVENTION RESEARCH 

INSTITUTE IN KYOTO UNIVERSITY 

 

B.1 Test schedule 

 Table B.1 shows the timeline of the experiments held at the DPRI in Kyoto 

University.  

Table B.1: Timeline of experimental program 

Task Timeline 

 2008 2009 

 5 6 7 8 9 10 11 12 1 2 3 

1st planer 
meeting 

x           

2nd planer 
meeting 

  x         

3rd planer 
meeting 

      x     

Test setup 
design 

           

Test setup 
fabrication 

           

Preliminary 
welding test 

           

Specimen 
design 

           

Specimen 
fabrication 

           

Testing           x 



 256

B.2 Dimension of Components in Test Setup 

 The dimensions of main components in the test setup constructed in the DPRI are 

shown in Figure B.1. 

 

 

Fig B.1(a): 

Bottom 

Elevation 

Unit: mm 

Top 
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Fig B.1(b): 

Unit: mm Bottom 

Elevation 

Top 
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Fig B.1 (c): 

 

 

 

Fig B.1 (d): 

Unit: mm 

Unit: mm 



 259

 

Fig B.1 (e): 

Figure B.1: Components of test setup (a) top beam (b) bottom beam (c) column (d) pin-

clevis set (e) fixity to actuator 

  

Unit: mm 
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B.3 Dimension of Components in Specimen 

 The detailed geometries of the all components in the NSPSW-TB system are 

shown in Figure B.2. 

 

Fig B.2(a): 

 

 

Fig B.2(b)  

VBE for S1 

VBE for S2 
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Fig B.2(c): 

 

Fig B.2(d): 
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Fig B.2(e): 

 

Fig B.2(f): 

Figure B.2: Components of specimen (a) horizontal boundary element (HBE) (b) vertical 

boundary element (VEB) (c) L-shape plate for pin connection at corners of boundary 

elements  (d) infill wall (e) bracket for tension only bracing in S2 (f) padeye in S2 
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B.4 Out-of-plane Restraining System 

 The out-of-plane restraining system designed for the test setup constructed at 

DPRI is presented in Figure B.3(a).  The rollers installed between the test setup and the 

existing load resisting frame is shown in Figure B.3(b). 

 

Fig B.3(a): 
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Fig B.3(b): 

Figure B.3: Out-of-plane restraining system (a) restrainers and guiding beam (b) roller 
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B.5 Measurement Channel List 

 The list of measurement channel used in the tests is shown in Tables B.3 and B.4. 

Table B.3: Channel List for Specimen 1 

CH Location Type Name Resolution m/mm Stroke mm
000 Jack Disp LVDT
001 Jack Load Load Cell
002 Top Beam H Potentiometer DP-500C 10 500
003 LT Ccon H Potentiometer SDP-100CT 50 100
004 LB Ccon H Potentiometer SDP-100CT 50 100
005 R Ccon H 1 Potentiometer SDP-100CT 50 100
006 R Ccon H 2 Potentiometer SDP-100CT 50 100
007 R Ccon H 3 Potentiometer SDP-100CT 50 100
008 R Ccon H 4 Potentiometer SDP-50CT 100 50
009 L VBE OOP Potentiometer SDP-100CT 50 100
010 R VBE OOP Potentiometer SDP-100CT 50 100
011 Top Beam V Potentiometer SDP-100CT 50 100
012 Panel LT-RB Potentiometer SDP-200R 100 200
013 Panel RT-LB Potentiometer SDP-200R 100 200
014 Top HBE H LVDT CDP-100 100 100
015 Bottom HBE H LVDT CDP-100 100 100
016 Bottom Beam H LVDT CDP-100 100 100
017
018
019
020
021
022
023
024
025 GF
026 Wall Middle 1 Rossete Gauge FRA-5-11-5L 2.1
027 FRA-5-11-5L 2.1
028 FRA-5-11-5L 2.1
029 Wall Middle 2 Rossete Gauge FRA-5-11-5L 2.1
030 FRA-5-11-5L 2.1
031 FRA-5-11-5L 2.1
032 Wall Middle 3 Rossete Gauge FRA-5-11-5L 2.1
033 FRA-5-11-5L 2.1
034 FRA-5-11-5L 2.1
035 Wall Middle 4 Rossete Gauge FRA-5-11-5L 2.1
036 FRA-5-11-5L 2.1
037 FRA-5-11-5L 2.1
038 VBE 1 Uniaxial Gauge FLA-5-11-5L 2.1
039 VBE 2 Uniaxial Gauge FLA-5-11-5L 2.1
040 VBE 3 Uniaxial Gauge FLA-5-11-5L 2.1
041 VBE 4 Uniaxial Gauge FLA-5-11-5L 2.1
042 VBE 5 Uniaxial Gauge FLA-5-11-5L 2.1
043 VBE 6 Uniaxial Gauge FLA-5-11-5L 2.1
044 VBE 7 Uniaxial Gauge FLA-5-11-5L 2.1
045 VBE 8 Uniaxial Gauge FLA-5-11-5L 2.1
046 VBE 9 Uniaxial Gauge FLA-5-11-5L 2.1
047 VBE 10 Uniaxial Gauge FLA-5-11-5L 2.1
048 VBE 11 Uniaxial Gauge FLA-5-11-5L 2.1
049 VBE 12 Uniaxial Gauge FLA-5-11-5L 2.1
050 VBE 13 Uniaxial Gauge FLA-5-11-5L 2.1
051 VBE 14 Uniaxial Gauge FLA-5-11-5L 2.1
052 VBE 15 Uniaxial Gauge FLA-5-11-5L 2.1
053 VBE 16 Uniaxial Gauge FLA-5-11-5L 2.1  
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Table B.4: Channel List for Specimen 2 

CH Location Type Name Resolution m/mm Stroke mm
000 Jack Disp LVDT
001 Jack Load Load Cell
002 Top Beam H Potentiometer DP-500C 10 500
003 LT Ccon H Potentiometer SDP-100CT 50 100
004 LB Ccon H Potentiometer SDP-100CT 50 100
005 R Ccon H 1 Potentiometer SDP-100CT 50 100
006 R Ccon H 2 Potentiometer SDP-100CT 50 100
007 R Ccon H 3 Potentiometer SDP-100CT 50 100
008 R Ccon H 4 Potentiometer SDP-100CT 50 100
009 L VBE OOP Potentiometer SDP-100CT 50 100
010 R VBE OOP Potentiometer SDP-100CT 50 100
011 Top Beam V Potentiometer SDP-50CT 100 50
012 Panel LT-RB Potentiometer SDP-200R 100 200
013 Panel RT-LB Potentiometer SDP-200R 100 200
014 Top HBE H LVDT CDP-100 100 100
015 Bottom HBE H LVDT CDP-100 100 100
016 Bottom Beam H LVDT CDP-100 100 100
017 LT PadEye LVDT CDP-50 200 50
018 RT PadEye LVDT CDP-50 200 50
019 LB PadEYE LVDT CDP-50 200 50
020 RB PadEye LVDT CDP-50 200 50
021
022
023
024
025
026 Wall Middle 1 Rossete Gauge FRA-5-11-5L 2.1
027 FRA-5-11-5L 2.1
028 FRA-5-11-5L 2.1
029 Wall Middle 2 Rossete Gauge FRA-5-11-5L 2.1
030 FRA-5-11-5L 2.1
031 FRA-5-11-5L 2.1
032 Wall Middle 3 Rossete Gauge FRA-5-11-5L 2.1
033 FRA-5-11-5L 2.1
034 FRA-5-11-5L 2.1
035 Wall Middle 4 Rossete Gauge FRA-5-11-5L 2.1
036 FRA-5-11-5L 2.1
037 FRA-5-11-5L 2.1
038 VBE 1 Uniaxial Gauge FLA-5-11-5L 2.1
039 VBE 2 Uniaxial Gauge FLA-5-11-5L 2.1
040 VBE 3 Uniaxial Gauge FLA-5-11-5L 2.1
041 VBE 4 Uniaxial Gauge FLA-5-11-5L 2.1
042 VBE 5 Uniaxial Gauge FLA-5-11-5L 2.1
043 VBE 6 Uniaxial Gauge FLA-5-11-5L 2.1
044 VBE 7 Uniaxial Gauge FLA-5-11-5L 2.1
045 VBE 8 Uniaxial Gauge FLA-5-11-5L 2.1
046 VBE 9 Uniaxial Gauge FLA-5-11-5L 2.1
047 VBE 10 Uniaxial Gauge FLA-5-11-5L 2.1
048 VBE 11 Uniaxial Gauge FLA-5-11-5L 2.1
049 VBE 12 Uniaxial Gauge FLA-5-11-5L 2.1
050 VBE 13 Uniaxial Gauge FLA-5-11-5L 2.1
051 VBE 14 Uniaxial Gauge FLA-5-11-5L 2.1
060 Turnbuckle 1a Uniaxial Gauge FLA-5-11-5L 2.1
061 Turnbuckle 1b Uniaxial Gauge FLA-5-11-5L 2.1
062 Turnbuckle 2a Uniaxial Gauge FLA-5-11-5L 2.1
063 Turnbuckle 2b Uniaxial Gauge FLA-5-11-5L 2.1
064 Turnbuckle 3a Uniaxial Gauge FLA-5-11-5L 2.1
065 Turnbuckle 3b Uniaxial Gauge FLA-5-11-5L 2.1
066 Turnbuckle 4a Uniaxial Gauge FLA-5-11-5L 2.1
067 Turnbuckle 4b Uniaxial Gauge FLA-5-11-5L 2.1  
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