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SUMMARY

One of the major challenges in modern wireless transceiver design stems from the

fundamental trade-off between the linearity and power efficiency of RF amplifiers. On

one hand, the varying envelope of spectrally-efficient modulated signals such as wideband

code division multiple access (WCDMA) and orthogonal frequency division multiplexing

(OFDM) interacts with the amplifier nonlinearity, resulting in both in-band distortion and

undesired out-of-band spectral regrowth. These distortions cause the violation of the strict

standard requirements. On the other hand, improving the inherently low power efficiency

of amplifiers generates significant savings in cooling and running costs at the base station

infrastructure and enables an equally important increase in mobile handsets battery life.

Digital baseband predistortion is one of the most effective techniques used to reconcile

the conflicting requirements of power efficiency and increased data throughput per unit

bandwidth. The accuracy and flexibility of digital predistortion allows the use of a highly

nonlinear amplifier to increase the overall power efficiency while meeting the strict perfor-

mance requirements.

This dissertation studies the design of an efficient adaptive digital baseband predistorter

for modern cellular handsets that combines low power consumption, low implementation

complexity, and high performance. The proposed enhancements are optimized for hardware

implementation.

We first present a thorough study of the optimal spacing of linearly-interpolated lookup

tables supported by theoretical calculations as well as extensive simulation experiments. A

constant-SNR compander that increases the LUT predistorter’s supported input dynamic

range is derived. A corresponding low-complexity approximation that lends itself to efficient

hardware design is also implemented in VHDL and synthesized with the Synopsys Design

Compiler. This dissertation also proposes an LMS-based predistorter adaptation that is

optimized for hardware implementation and compares the effectiveness of the direct and

xii



indirect learning architectures.

Analog RF imperfections such as quadrature imbalances and varying antenna impedance

during the device operation severely reduce the effectiveness of adaptive predistorters. A

novel predistorter design with quadrature imbalance correction capability is developed and

a corresponding adaptation scheme is proposed. This robust predistorter configuration is

designed by combining linearization and I/Q imbalance correction into a single function

with the same computational complexity as the widespread complex-gain predistorter. An

adaptive gain and phase normalization technique that reuses the predistorter update hard-

ware is also proposed to mitigate the effects of varying antenna matching condition during

predistorter adaptation.
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CHAPTER I

INTRODUCTION

1.1 Motivation

In modern wireless communication systems, the power added efficiency (PAE) of the under-

lying power amplifier (PA) is of paramount importance. On the base station side, a slight

improvement in power amplifier efficiency translates into considerable savings in cooling

bills and running costs for the network operator. On the other side of the transmission link,

increased battery life is the main driver for improving the efficiency of the power amplifier

in the mobile station.

In the current state of the art amplifier design methodology, there is a fundamental trade-

off between power efficiency and device linearity. The power efficiency is improved at the

cost of undesired envelope-dependent nonlinear distortions to the transmitted signal. For

a long time, this has favored the design and extensive use of robust modulation techniques

such as frequency shift keying (FSK) and Gaussian minimum shift keying (GMSK), which

are immune to nonlinear amplifier distortions.

The strong demand in increased transmission rates has led to the development of mod-

ulation schemes with higher spectral efficiency such as orthogonal frequency division mul-

tiplexing (OFDM) and wideband code division multiple access (WCDMA). The resulting

baseband signals have varying complex envelopes with high peak-to-average power ratios

(PAPR), which further worsens the efficiency-linearity trade-off. The amplifier nonlinearity

results in in-band distortion measured by the deterioration of the error vector magnitude

(EVM) or the bit error rate (BER) and undesired out-of-band spectral regrowth [41, 52],

which leads to the violation of the strict standard spectral requirements.

To reconcile the conflicting requirements of power efficiency and increased data through-

put per unit bandwidth, it is necessary to linearize the radio frequency power amplifier.

1



Numerous analog linearization techniques have been proposed and most of them were ex-

tensively used over the years. These analog techniques can generally be classified into one

of three different categories:

∙ Indirect feedback

∙ Feedforward linearization

∙ Predistortion linearization

Two widely used indirect feedback techniques are the polar and Cartesian corrections.

The complex input and output envelopes are compared to generate a correcting function,

which is subsequently applied to the input signal envelope. These techniques typically

achieve moderate performance improvement and are subject to bandwidth and stability

issues.

The feedforward method is a powerful linearization technique that is immune to the

bandwidth and stability issues of the above mentioned indirect feedback techniques. The

feedforward correction is directly applied to the output RF signal. The high power con-

sumption and overall cost of the feedforward technique constitute major limitations.

Simple analog predistortion techniques have been successfully used to provide moderate

correction with little additional power consumption and at a very low cost. But their

inability to track the drifts of amplifier characteristics and provide correction over a large

dynamic range considerably limits their effectiveness.

The development of faster low-cost digital signal processors (DSP) has favored the emer-

gence of adaptive digital predistortion linearization techniques. These techniques combine

the computational power of DSP processors and advanced signal processing algorithms to

provide accurate correction with the capability to precisely track both the short-term vari-

ations of the amplifier characteristics, which are caused by temperature fluctuations and

the long-term drift effects resulting from the aging of analog devices.

Furthermore, the recent appearance of digital cellular transmitters with embedded pro-

cessors has increased the appeal of digital baseband predistortion, which benefits from the

2



low cost of implementation and high flexibility offered by digital circuit design. Conse-

quently, digital predistortion is receiving increased attention and many digital baseband

linearizers of varying complexity and performance have been proposed in the recent litera-

ture.

Even though the general principles of digital predistortion are the same across all appli-

cations, each design must be optimized with respect to the system under consideration. For

example, a simple memoryless predistorter would be ineffective in the case of high power

amplifiers (HPA) used in cellular base-stations (BS), which produce strong memory effects.

A more complex predistorter structure with memory effect mitigation capability would be

required. The Hammerstein and memory polynomial predistorters are two examples of

such systems. On the other hand, memory effects are often negligible in low-power cellular

handset amplifiers. For these resource-constrained devices, the focus is on minimizing the

computational complexity of the predistorter hardware to produce low-cost handsets with

increased battery life.

1.2 Objectives

The objective of this dissertation is to develop an efficient digital baseband predistorter

for modern cellular handsets that combines low power consumption, low implementation

complexity, and high performance. The high peak-to-average power ratio and large sig-

nal bandwidth of modern modulation techniques (OFDM, WCDMA) represent significant

challenges to the design of an effective digital predistorter for mobile devices with limited

resources. Our research efforts focus on three main areas:

∙ Develop lookup table predistorter enhancement techniques

∙ Design an adaptive predistorter optimized for efficient hardware implementation

∙ Mitigate RF impairments affecting the effectiveness of an adaptive predistorter

Amplifiers used in cellular handsets are operated at a relatively low power (e.g. typical

maximum of 1W of power). At such a low output power and for the signal bandwidths

considered, memory effects are negligible. Therefore, our research will focus on memoryless

3



predistorter design, even tough most of the proposed design optimizations can be extended

to predistorters with memory correction capability. Additionally, as signal bandwidths

continue to increase with 4G standards (e.g. up to 20MHz for LTE), memory predistorters

might be required even for low-power handsets in the near future.

1.3 Outline

This dissertation is organized as follows.

Chapter 2 reviews the principles of digital predistortion and presents different predis-

torter configurations. The characterization of nonlinear amplifier characteristics is illus-

trated with the AM-AM and AM-PM responses of different types of amplifiers. The main

predistorter configurations proposed in the literature such as the Cartesian mapping predis-

torter [39], the complex-gain predistorter [8], and the polar predistorter [21] are presented.

Predistorter training and adaptation techniques are also reviewed.

Chapter 3 and Chapter 4 present a study of optimal spacing of linearly-interpolated

lookup tables (LUT) for the polar and complex-gain predistorters, respectively. Previous

studies [11] have shown that optimal LUT spacing has little effect on non-interpolated

LUTs. This chapter theoretically and experimentally demonstrates that the combination

of linear interpolation with optimal spacing can greatly enhance the performance of LUT

predistorters and decrease their cost of implementation by reducing the required memory

space.

Chapter 5 presents a constant-SNR compander that increases the LUT predistorter’s

input dynamic range. A corresponding low-complexity approximation that lends itself to

efficient hardware implementation is also presented. This approximation is implemented in

VHDL and synthesized with the Synopsys Design Compiler.

Chapter 6 analyzes the performance of power and amplitude LUT indexing when in-

put signal backoff is supported. Traditionally, the use of power indexing has been favored

in digital predistorter design because of the convenient computation of the instantaneous

power (I2 + Q2) as opposed to using a suitably-accurate amplitude approximation. It is

4



shown that the amplitude indexing results in better performance for highly nonlinear am-

plifiers. An efficient amplitude approximation is proposed and its hardware implementation

is illustrated.

Chapter 7 proposes an LMS-based predistorter update that is optimized for hardware

implementation. A comparison of the direct and indirect learning architectures is also

presented.

Chapter 8 introduces a robust predistorter configuration that also mitigates quadrature

gain and phase imbalances. The proposed predistorter has the same computational com-

plexity as the complex-gain predistorter, but is more effective in the presence of analog

impairments such as I/Q imbalances. A simple and efficient LMS-based adaptation is also

proposed for this predistorter.

Chapter 9 studies the effects of varying impedance matching conditions on the predis-

torter adaptation during real-life device operation. An adaptive gain and phase normaliza-

tion that reuses the predistorter update hardware is proposed to mitigate these effects.

Finally, Chapter 10 summarizes the contributions in this dissertation and suggests future

research directions.
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CHAPTER II

BACKGROUND

In this chapter, an overview of the effects of amplifier nonlinearity is presented. The general

concepts of predistortion linearization, the different prior-art predistorter configurations and

their corresponding training algorithms are also reviewed.

2.1 Power Amplifier Nonlinearity

Class-A power amplifiers represent the family of most linear and well-behaved power ampli-

fiers. But they can only achieve a maximum theoretical power efficiency of 50%. The trans-

fer characteristic of a class-A amplifier is linear at low amplitude levels and is compressed

as the saturation level is approached. An important reference is the 1 dB compression

point(P1dB), which represents the output power level at which the PA gain is compressed

by 1 dB. An amplitude modulated signal can be successfully transmitted through a suitably

backed-off class-A power amplifier without suffering major distortions. The amount of back-

off needed is proportional to the peak-to-average power ratio (PAPR) of the input signal.

But in this configuration, the inherently low power efficiency of class-A amplifiers is further

degraded by the input signal back-off. In the case of high spectral efficiency modulation

techniques such as OFDM and WCDMA, which often have PAPRs of more than 10 dB, the

resulting power efficiency may be well below 10%.

A sharp increase in efficiency can be achieved by lowering the quiescent bias level of

the amplifier. This consequently results in a reduction of the conduction angle and the

appearance of high-order harmonics, which can be filtered by a carefully designed matching

network. The maximum efficiency of an amplifier is given as function of the conduction

angle by [30]

� =
2 − sin 2

4(sin  −  cos )
, (2.1)

where  is the conduction angle. This relationship between efficiency and conduction angle
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is illustrated in Figure 2.1. A class-A amplifier has a conduction angle of  = 2� and a

maximum power efficiency of � = 50%. Class-B operation corresponds to a conduction

angle  = � with a maximum efficiency of � = 78.5%. When 2� <  < �, the amplifier

is in class-AB operation. A conduction angle of  < � corresponds to a class-C amplifier.

The power efficiency increases dramatically when the conduction angle is biased towards

class-C operation. But this huge gain in efficiency comes at the cost of severe degradation

of the amplifier linearity, as illustrated by the decrease in signal to noise and distortion ratio

(SNDR).
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Figure 2.1: Power efficiency and SNDR vs. conduction angle.

Low-power amplifiers exhibit a memoryless type of nonlinearity. This type of nonlinea-

rity causes a static, envelope-dependent amplitude distortion known as AM-AM conversion.

A less intuitive but equally destructive type of distortion is the envelope-dependent phase

distortion or AM-PM, which is observed in amplifiers with very short memory. The latter

type of devices are also known as quasi-memoryless amplifiers. Let us consider an amplitude

and phase modulated carrier:

S(t) = A(t) cos[wct+ �(t)] , (2.2)

where A(t) represents the amplitude modulation and �(t) the phase modulation. The cor-

responding distorted output of a nonlinear amplifier is then given by

D(t) = f [A(t)] cos{wct+ �(t) + g[A(t)]} , (2.3)
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where f(.) and g(.) respectively represent the AM-AM and AM-PM conversion functions.

Figure 2.2 compares the AM-AM and AM-PM of typical class-A and class-C amplifiers.
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Figure 2.2: AM-AM and AM-PM conversion functions. (a) Class-A amplifier. (b) Class-C
amplifier.

The class-A amplifier has a maximum gain variation of 1.4 dB and a maximum phase

variation of less than 2∘ across a 25 dB power range. The class-C characteristic is subject to

significantly stronger distortions with a maximum gain variation of 9 dB and a maximum

phase variation of 8∘ across the same power ranger. Unlike the relatively smooth compressed

gain characteristic of the class-A amplifier, its class-C counterpart displays severe amplitude

and phase distortions across all amplitude levels. Therefore, backing off a class-C amplifier

will only reduce its effective power efficiency while doing little to reduce the effects of
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nonlinear distortions.

High-power amplifiers (HPA) such as those used in cellular base stations exhibit a non-

linear behavior that is coupled with strong memory effects [32, 48], especially in the case

of wideband signals. This type of nonlinearity causes complex distortions that depend on

the current as well as past amplitude levels. The memory effects can be observed on the

input-output characteristics, as illustrated in Figure 2.3.
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Figure 2.3: Amplifier nonlinearity with memory effects.

Two physical sources of PA memory effects are described in [48]. Electrical memory

effects are due to the variations of complex envelope impedance across the signal’s frequency

band. The electro-thermal memory effects are caused by signal-dependent variations of the

thermal impedance through the process of thermal power feedback (TPF). The transfer

characteristics of amplifiers with memory effects can be accurately modeled with Volterra

series [44]. The Wiener model [13], which is a special case of the Volterra system, consists

of a linear time-invariant (LTI) system cascaded with a memoryless nonlinearity. Another

special case of the Volterra series is the memory polynomial described in [31].

A widely adopted method of assessing an amplifier’s linearity (or lack thereof) is the

two-tone test. It consists of feeding the amplifier with a test signal that is constructed by

summing two closely-spaced unmodulated RF carriers:

vin(t) = A cos(2�f1t) +A cos(2�f2t). (2.4)
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This test signal is equivalent to an amplitude modulated carrier that is free of any dis-

tortion that would otherwise be caused by a non-ideal RF modulator. To illustrate this,

equation (2.4) can be rewritten as follows:

vin(t) = 2A cos(2�fmt)×A cos(2�fct), (2.5)

with fm = f2−f1
2 and fc =

f1+f2
2 . Let us consider an amplifier with an amplitude conversion

function (AM-AM) modeled by a polynomial function of arbitrary order N. The output is

then given by

vout(t) = a1vin(t) + a2vin(t)
2 + ⋅ ⋅ ⋅+ akvin(t)

k + ⋅ ⋅ ⋅+ kNvin(t)
N . (2.6)

When the two-tone signal is applied to the input of this amplifier, each order of nonlinearity

k will generate additional frequency components or intermodulation products of the form

fim = mf1 + nf2, (2.7)

wherem and n are positive integers andm+n = k. The even orders of nonlinearity generate

intermodulation (IMD) products that are located far away from the input frequencies. These

IMD product terms are less important since they can be easily filtered. On the other hand,

the odd-order terms generate IMD products that lie in the frequency band of interest.

Figure 2.4 illustrates the in-band IMD products caused by the third, fifth, and seventh

orders of nonlinearity. It is analytically shown in [14, p. 203] that the AM-PM effect results

in the appearance of similar intermodulation products in the frequency band of interest.

1f 2f

∑
=

7

1k

k
k va

1f 2f

Figure 2.4: In-band IMD products for an amplifier with up to seven orders of nonlinearity.
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Over the years, the two-tone test has proven to be a powerful PA linearity assessment

procedure that can be performed with a relatively simple experimental setup. However,

modern modulated signals are far more complex than the simple two-tone test signals. It

is therefore often necessary to perform a test with the modulated signal of interest. As a

general rule of thumb, the kth order of PA nonlinearity causes the appearance of a parasitic

component occupying k times the bandwidth of the input signal [14, p. 185]. The actual

power level of this parasitic component depends on the strength of the nonlinear term in

question. This is illustrated in Figure 2.5.

cf

mc ff − mc ff +

mc f3f + mc f5f +mc f3f −mc f5f −

Figure 2.5: Intermodulation spectrum of a typical digitally modulated signal [14, p. 185].

It can be clearly seen in Figure 2.5 that the PA nonlinearity results in the appearance of

parasitic components that span the adjacent channels, causing the effect known as spectral

regrowth. It should also be noted that a portion of the unwanted distortion lies within the

frequency band of the original signal, causing in-band distortions that degrade the BER

performance. The amount of spectral spreading is measured by the adjacent channel power

ratio (ACPR), which is defined as the ratio of the power contained in a given bandwidth

at a defined frequency offset f0, to the power in the channel bandwidth around the center

frequency. The metric used for measuring the in-band distortion is the error vector mag-

nitude (EVM). The EVM is defined as the ratio of RMS error vector power to the RMS
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power of the reference signal:

EVMRMS =

√
√
√
⎷

∑N
k=1 ∣Si[k]− Sm[k]∣2
∑N

k=1 ∣Si[k]∣2
, (2.8)

where Si and Sm are respectively the ideally amplified and distorted complex signal samples.

The EVM can be expressed in percentage (%) or decibels (dB):

EVM% = 100× EVMRMS.

EVMdB = 10 log10 (EVMRMS) . (2.9)

2.2 Principles of Digital Predistortion

The basic principle of predistortion is illustrated in Figure 2.6. It consists of inserting in

the transmit path, prior to amplification, a nonlinear block with a transfer characteristic

that is the inverse of the PA nonlinearity. The cascade of the two nonlinear elements will

ideally result in a distortion-free and perfectly linear transmitter.

input output

Nonlinear amplifier

(a)

Nonlinear amplifier

input output

Predistorter

(b)

Figure 2.6: Principle of predistortion. (a) Amplifier distortion. (b) Cascade of predistorter
and amplifier.

Predistortion can be applied at different points across the transmit chain. RF and

IF signal predistorters are typically realized with relatively simple analog elements (such

as diodes) that exhibit an expanding characteristic. The analog devices are calibrated to

suppress the third order of amplitude nonlinearity, which is responsible for PA compression.
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These types of predistorters are capable of only moderate correction. But their simplicity,

very low cost, and low power consumption make them particularly appealing for wireless

handsets. Other major disadvantages of analog RF/IF predistorters include their lack of

flexibility and their inability to precisely track the variations of nonlinear characteristics.

Another type of predistortion linearizer known as the data predistorter applies the cor-

rection to the complex symbols [28,43]. The data predistorter has a very low implementation

complexity since only a few complex corrections values are needed. On the downside, this

predistorter is modulation dependent and requires placing the Nyquist pulse-shaping filter

at the output of the amplifier. This unattractive arrangement is difficult to realize.

Predistortion can also be applied to the digital complex baseband signal after Nyquist

filtering and prior to up-conversion. These digital baseband predistorters have been gain-

ing increased popularity because of the flexibility and high accuracy provided by digital

computations and their relatively low power consumption. Additionally, digital baseband

predistorters further leverage the DSP processors that are embedded in modern wireless

transmitters. They are also very well suited to adaptive algorithms, therefore allowing pre-

cise tracking of nonlinear characteristic variations resulting from temperature fluctuations

and aging of analog devices. The basic structure of an adaptive baseband predistorter is

illustrated in Figure 2.7.

FDATool

FDATool

I

Q

I

Q

Figure 2.7: Structure of an adaptive baseband predistorter.

The adaptation process in general requires an auxiliary receiver for the feedback path.

This additional hardware component accounts for most of the cost of the adaptive predis-

torter. Several digital predistorters have been reported in the literature. The Cartesian
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mapping predistorter, the polar predistorter, and the complex-gain predistorter are three

of the most popular configurations.

2.2.1 Cartesian Mapping Predistorter

The Cartesian mapping predistorter was one of the early successful implementations of

a digital baseband predistorter and was proposed by Nagata [39]. The structure of the

mapping predistorter is illustrated in Figure 2.8.

x

Ix

Qx

),( QI xxF

Figure 2.8: Mapping predistorter.

This predistorter is implemented as a bi-dimensional lookup table (LUT) that is ad-

dressed by the quadrature input components (I/Q). It provides an incremental complex

correction to the I/Q input, thereby mapping the complex plan to itself. This linearization

method has minimal computational complexity but is plagued by high memory require-

ments. It requires an LUT size of 2000 entries for an input signal resolution of 10 bits.

This requirement increases to 8000 entries with 11 bits of input resolution [8]. A direct

consequence of the large LUT size is the very slow convergence (10 s for a sampling rate of

16 kHz).

2.2.2 Complex-Gain Predistorter

The complex-gain predistorter was proposed by Cavers in [8]. The amplifier is modeled as

a complex gain that is a function of the input power or amplitude. The complex envelopes

of the amplifier’s input vp and its corresponding complex output vo are then related by

vo = vpG
(

∣vp∣2
)

. (2.10)
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The predistorter is similarly modeled and realized as a power-dependent complex gain. The

predistorter’s output is related to the input by

vp = vp F
(

∣vi∣2
)

. (2.11)

The transmitter is perfectly linear if the following condition is met:

F
(

∣vi∣2
)

G

(∣
∣
∣vpF

(

∣vi∣2
)∣
∣
∣

2
)

= K, (2.12)

where K is a constant representing the desired linear gain. An illustration of the complex-

gain predistorter is shown in Figure 2.9.

x

)(rF

2r

2

Figure 2.9: complex-gain predistorter.

In [8], the complex-gain predistorter is implemented as a lookup table that is indexed

by the input power. This results in a non-uniformly spaced LUT in the amplitude domain,

where entries are mostly concentrated near the saturation region. The predistorter F can

also be implemented as a complex polynomial function [42]. The complex-gain predistorter’s

memory requirements and convergence time are four orders of magnitude lower than that

of the Cartesian mapping predistorter. The cost of this improvement is the additional

computations of the input power ∣vi∣2 and the complex multiplication.

2.2.3 Polar Predistorter

The polar predistorter proposed in [21] consists of an amplitude correction function F� and a

phase correction F� that respectively compensate the power amplifier’s AM-AM distortion

G� and AM-PM distortion G�. The polar predistorter exploits the fact that the PA’s

distortion is only a function of the input amplitude (or power). Consequently, F� and F�
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are one-dimensional functions of the input amplitude. Two equivalent versions of the polar

predistorter are shown in Figure 2.10.
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∠
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Figure 2.10: Polar predistorter configuration. (a) Cascaded AM-AM and AM-PM correc-
tions. (b) Parallel AM-AM and AM-PM corrections.

In both cases, the AM-AM distortion is perfectly compensated if the following relation

holds:

G� [F�(r)] = Kr, (2.13)

where r is the input amplitude and K is the desired linear gain. For the cascaded polar

predistorter in Figure 2.10(a), the phase correction is given by solving

F�(r) +G�(r) = 0. (2.14)

In the parallel configuration case of Figure 2.10(b), the phase correction is given by:

F�(r) +G� (F�(r)) = 0. (2.15)

The cascaded version of the polar predistorter is simpler and has a faster phase convergence.

The parallel version has lower latency since the amplitude and phase corrections are done

in parallel.
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The polar predistorter has low memory requirements and fast convergence speed, which

are comparable to the complex-gain predistorter. The polar predistorter can be easily cal-

culated from the amplifier’s AM-AM and AM-PM characteristics. Unlike the complex-gain

predistorter, the polar predistorter does not require a complex multiplier, but a rectangular

to polar conversion is required if used in a Cartesian transmitter. This makes it more suit-

able for polar transmitter configurations since the baseband modulation signal is already

available in polar form.

2.3 Calibration and Adaptation

Memoryless predistorters can be implemented as a set of lookup tables that model the

inverse of the PA distortion. Alternatively, a functional approximation of the inverse dis-

tortion can be used as well. The most popular form of functional approximation is the poly-

nomial predistorter, which has been extensively documented in the literature [4,5,25,26,45].

Its main advantage is the relatively low number of parameters that is needed to model the

predistorter. A predistorter can be constructed by first identifying the amplifier’s nonlinear

transfer characteristic and then calculating its inverse. However, the inversion process of

the nonlinear function is often a non-trivial task. The indirect learning architecture illus-

trated in Figure 2.11 avoids the inversion step by directly computing the inverse nonlinear

function. The calibration process as well as the adaptation of the predistorter depend on

the type of predistorter that is considered.

K

1

)(nx )(nz

)(ˆ nz

)(ne

)(ny

Figure 2.11: Indirect learning architecture.
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2.3.1 Polynomial Predistorter

Polynomial functions or power series models are widely used in predistorter design. The

polynomial approximation is attractive for its simplicity and the relatively reduced number

of parameters. This model has been used to provide a good predistorter model for ampli-

fiers presenting relatively weak nonlinearity such as class-A and class-AB amplifiers. The

simplicity of such a model lies mainly in the fact that the output is a linear function of

the parameters (or coefficients) to be estimated. Once the output signal corresponding to

a chosen training signal is recovered, the predistorter design boils down to solving a linear

least-squares system.

Let zk denote the amplifier’s input envelope samples and vk the corresponding output

values normalized by the gain K. The vector of polynomial predistorter coefficients p is

obtained by solving the following equation:

z = V p, (2.16)

where z and V are respectively given by

z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1

z2
...

zL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1 v21 ⋅ ⋅ ⋅ vn1

v2 v22 ⋅ ⋅ ⋅ vn2
...

...
. . .

...

vL v2L ⋅ ⋅ ⋅ vnL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To avoid numerical instabilities during the inversion of the matrix V, the use of or-

thogonal polynomial basis is suggested in [42]. The high computational complexity asso-

ciated with the least-squares identification method makes this solution quite unattractive

for resource-constrained mobile devices. A significant amount of memory space is required

to store the input and output samples zk and vk. Furthermore, this operation must be

repeated periodically to track the nonlinear characteristic’s drifts. A lower-complexity pre-

distorter identification and adaptation method based on the adaptive least-mean-squares

(LMS) algorithm is proposed in [4] and [45]. The algorithm in [4] was developed for

the polar predistorter configuration discussed in Section 2.2.3. The amplitude and phase
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predistorters are modeled as polynomial functions of the input amplitude r.

F�(r) = �1r + �2r
2 + ⋅ ⋅ ⋅+ �Lr

L = a
T

r�

F�(r) = �0 + �1r + �2r
2 + ⋅ ⋅ ⋅+ �Mr

M = b
T

r�, (2.17)

with r� = [r, r2, ⋅ ⋅ ⋅ , rL]T , r� = [1, r, ⋅ ⋅ ⋅ , rM ]
T
, a = [�1, ⋅ ⋅ ⋅ , �L]

T
, and b = [�1, ⋅ ⋅ ⋅ , �M ]

T
.

The steepest descent algorithm is used to minimize the mean-squared amplitude and phase

errors. The resulting LMS update algorithm is described by the following equations:

ak+1 = ak + ��r
[k]
� e

[k]
� (2.18)

bk+1 = bk + ��r
[k]
� e

[k]
� , (2.19)

where e
[k]
� is the amplitude error between the kth input sample and the normalized output of

the PA and e
[k]
� is the corresponding phase error. �� and �� are positive update coefficients

that are carefully chosen to provide a suitable trade-off between the convergence speed

and the steady-state error. This algorithm can be used for both the calibration and the

adaptation of the predistorter. Its low complexity and minimal memory requirements make

it particularly attractive. Even though the convergence speed is relatively slow, precise

tracking of temperature and aging drifts is still achievable.

2.3.2 Lookup Table Predistorter

Building a LUT predistorter from a set of stored input and output complex envelope samples

is a trivial process. But just as for the least-squares polynomial identification, high storage

requirements and periodic updates contribute to the high cost and complexity of the system

identification process. Alternative LUT adaptation techniques with low complexity and low

memory requirements have been proposed in the literature. The linear update algorithm [11,

21, 39] consists of incremental small updates to LUT entries as they are accessed. When

the nth entry of the LUT F is accessed and an error en[k] is produced at the output of the

PA, the updated LUT is computed as follows:

Fn[k + 1] = Fn[k] + �× en[k], (2.20)

where � is a positive step size that must be smaller than two to guarantee the stability

of the algorithm. A value of � less than one is required for better steady-state behavior,
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specially in the case of noisy output measurements. The linear update algorithm has a very

low complexity but is plagued by slow convergence speed, which also depends on the signal

envelope’s statistics.

The secant update algorithm was proposed in [8] to provide faster convergence. With

the secant method, the nth LUT entry is updated as follows:

Fn[k + 1] =
Fn[k − 1]en[k]− Fn[k]en[k − 1]

en[k]− en[k − 1]
(2.21)

The secant update is reported as being twice as fast as the linear update algorithm. The

cost of this improvement is the additional multiplications and the division required during

the update step and to a lesser extent, the memory space needed to store the previous

entries Fn[k − 1] and the error samples en[k − 1].

2.3.3 Predistorter with Memory

Memoryless predistortion of a high power amplifier (HPA) that exhibits strong memory

yields very marginal performance improvements [33]. The predistorter itself must be a

system with memory in order to successfully mitigate the memory effects. A memory

predistorter can be generally represented by a discrete Volterra system [19,34]:

y[n] =
Q
∑

q=0

ℎ(1)q x[n− q] +
Q
∑

q1=0

Q
∑

q2=0

ℎ
(2)
q1,q2x[n− q1]x[n− q2]

+
Q
∑

q1=0

Q
∑

q2=0

Q
∑

q3=0

ℎ
(3)
q1,q2,q3x[n− q1]x[n− q2]x[n− q3] ⋅ ⋅ ⋅ . (2.22)

The Volterra system is not well suited to practical implementation because of the large

number of parameters and the non-trivial estimation process involved. A special case of

the Volterra system with a significantly lower number of parameters is the Hammerstein

predistorter described in Figure 2.12.

Figure 2.12: Hammerstein memory predistorter
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The Hammerstein predistorter is merely the cascade of a memoryless nonlinearity and a

linear time invariant (LTI) system that emulates the desired memory effect. The Hammer-

stein system can be identified by using an iterative process such as Newton’s or Narenda-

Gallman (NG) algorithms [18]. The potential convergence issues of the latter iterative

algorithms can be avoided by using the two-stage LS/SVD algorithm presented in [16]. An-

other special case of the Volterra system is the memory polynomial [17] described by the

following equation:

z[n] =
K∑

k=1

Q
∑

q=0

ℎk,q x[n− q] ∣x[n− q]∣k−1 . (2.23)

The parameters of the memory polynomial system can be identified by using the least-

squares approximation. Even though the memory polynomial predistorter requires a larger

number of parameters than the Hammerstein system, it is more robust and the parameter

identification process is much simpler.
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CHAPTER III

SPACING OF A POLAR LUT PREDISTORTER

As previously discussed in Chapter 2, predistorters can implemented as lookup tables

(LUT). Functional approximations such as fitted polynomials or power series approxima-

tions can be used as well. LUT predistorters have minimal computational complexity and

can implement arbitrary nonlinear mappings. But they require significantly more memory

space to store the model parameters than a polynomial approximation. A direct conse-

quence of the larger number of parameters is a relatively slow convergence speed of iterative

training algorithms. On the other hand, evaluating a polynomial function is more computa-

tionally complex than a simple memory lookup. Furthermore, compensating higher orders

of nonlinearity requires a high-order polynomial predistorter evaluated at a sampling fre-

quency a few orders of magnitude higher than the bandwidth of the input baseband signal.

For modern high spectral efficiency modulation techniques such as WCDMA and OFDM,

a predistorter bandwidth of several tens of MHz might be required. In this case, dedicated

high-speed hardware is needed to implement a polynomial predistorter, therefore reduc-

ing its appeal in low-cost cellular handset applications. This chapter will focus on LUT

enhancement techniques that combine the inherent low complexity of table lookup with

reduced memory requirements achieved by using interpolation and efficient spacing of table

entries.

3.1 Analysis of Linearly-Interpolated LUT

The use of linearly interpolated LUT predistorters has been reported in the literature [21]

as an efficient way to reduce LUT approximation errors. A low-complexity and practical

implementation of LUT interpolation is also discussed in [47]. In the present study, the

problem is approached with a mathematical justification. The polar predistorter configura-

tion [21] is considered here. The complex-gain configuration will be addressed in Chapter 4.

A polar predistorter is illustrated in Figure 3.1.
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Figure 3.1: Polar predistorter LUT arrangement (complex baseband model)

This setup uses the cascaded LUT arrangement discussed in Section 2.2.3. The am-

plifier’s nonlinear AM-AM and AM-PM distortions are respectively designated by the

amplitude-dependent functions g�(r) and g�(r). To simplify the mathematical expressions,

it is assumed that the gain of the amplifier is normalized to one (i.e., K = 1). The polar

predistorter consists of two LUTs approximating the inverse function of the amplifier’s am-

plitude distortion f�(r) = g−1
� (r) and the phase compensation function f�(r) = −g�(r). The

LUT approximation error of f�(r) and f�(r) respectively result in independently computable

amplitude and phase errors at the output of the PA. The derivation for the two types of

errors is similar. Therefore, the focus here will be on the amplitude table. Let us consider

the kth bin of the amplitude LUT, which is delimited by the amplitude entries rk and rk+1

and let dk = rk+1 − rk be the width of the kth interval. The amplitude predistorter f�(r)

will be precisely determined at the amplitudes rk and rk+1, where the approximation error

is equal to zero. For an input amplitude ri = rk + "r, with 0 < "r ≤ dk, the output of

the LUT predistorter is f�(ri) + "
f�
. Assuming that the predistorter f�(r) is at least twice

continuously differentiable and f ′′� (r) varies little within the bin, it is shown in Appendix A

that the linear interpolation results in an approximation error given by

"
f�
= f ′′� (r)

"r ("r − dk)

2
, (3.1)

with f ′′� being the second-order derivative of f�. The amplitude at the output of the amplifier,
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with normalized gain K = 1 is

ro = g�
[
f�(ri) + "

f�

]

≈ g�
[
f�(ri)

]
+ "

f�
g′�
[
f�(ri)

]

≈ ri +
f ′′� (ri)

f ′�(ri)

"r ("r − dk)

2
, (3.2)

where (3.2) uses the relation between f� and g�, i.e., f� = g−1
� ⇒ g′� = 1/f ′� . It is also assumed

that f ′� does not change appreciably within the bin (i.e, the number of LUT entries is large

enough). The amplitude error measured at the amplifier’s output can therefore be expressed

as follows:

e� = ro − ri

=
f ′′� (ri)

f ′�(ri)

"r ("r − dk)

2
(3.3)

Calculating the phase error at the amplifier’s output is a more straightforward process since

the phase LUT approximation error is simply propagated to the output phase. Therefore,

the output phase error is simply expressed as follows:

e� = g′′� (ri)
"r ("r − dk)

2
(3.4)

Assuming that the amplitude and phase errors are small enough, the complex baseband

equivalent output of the amplifier can be written as

vo = (ri + er) e
j(�i+e�)

≈ (ri + er)
[

ej�i + e�e
j(�i+�

2 )
]

≈ vi + er e
j�i + e� ri e

j(�i+�
2 ). (3.5)

The complex error at the output of the PA is thus given by

eo = vo − vi

≈ er e
j�i + e� ri e

j(�i+�
2 ). (3.6)

The residual error at the output of the PA consists of two terms resulting from the approx-

imation errors in the amplitude and phase LUTs. These two error terms can be considered
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independent of each other to simplify the remaining calculations. The total noise contribu-

tion of the kth bin to the output SNR can be computed using the usual quantizer assump-

tion [24] that "r is a random variable uniformly distributed in [0, dk]. The mean-squared

error (MSE) contribution of the kth bin of the amplitude table is

E
[

∣e�∣2
]

=
f ′′� (rk)

2

4 dk f ′�(rk)
2

∫ dk

0
"2("− dk)

2 d"

=
f ′′� (rk)

2

120 f ′�(rk)
2 d

4
k. (3.7)

Similarly, the contribution of the kth of the phase LUT to the total residual error is

E
[

∣e�∣2
]

≈ f ′′� (rk)
2

120
r2kd

4
k. (3.8)

For an arbitrary LUT spacing achieved using a compander [24] c(r), the bin width is related

to the compander by

dk ≈ 1

Nc′(rk)
, (3.9)

where N is the LUT size and V is the maximum amplitude addressable by the LUT. For

the special case of uniform spacing c(r) = r and dk = 1/N is constant. Assuming that the

number of LUT bins is large enough, the total residual distortion power at the PA output

can be approximated as follows:

Pdis = P� + P� (3.10)

with

P� =
1

120N4

∫ 1

0

f ′′� (r)
2

c′(r)4 f ′�(r)
2 p(r) dr (3.11)

P� =
1

120N4

∫ Ã

0

f ′′� (r)
2

c′(r)4
r2p̃(r) dr (3.12)

where p(r) is the probability density function (pdf) of the input amplitude and p̃(r) is the

pdf of the predistorted amplitude of the input signal. Equations (3.11) and (3.12) show

that the mean-squared amplitude and phase errors are inversely proportional to N4, which

is a much faster rate of decrease than for the ZOH LUT [11], which results in a MSE that is

inversely proportional to N2. The predistorted signal’s SNR increases by 12 dB if the LUT

size is doubled as opposed to just 6 dB for the ZOH LUT.
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Figure 3.2: PSD of a WCDMA signal using a LIN-LUT and a ZOH-LUT, with N = 128

A comparison of the two approaches using a WCDMA input is summarized in Figure 3.2

and Figure 3.3. Figure 3.3(a) shows that linear interpolation improves the WCDMA error

vector magnitude (EVM) by 25 dB. The adjacent channel leakage ratio at 5MHz offset

(ACLR1) and 10MHz offset (ACLR2) are respectively improved by 0.5 dB and 17 dB.
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Figure 3.3: WCDMA measurements for LIN-LUT and ZOH-LUT. (a) Error vector mag-
nitude. (b) Adjacent leakage ratio at 5MHz offset (ACLR1). (c) Adjacent leakage ratio at
10MHz offset (ACLR2).
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3.2 Analysis of LUT Predistorter Spacing

The early implementations of LUT predistorters were mainly based on uniform spacing in

power to minimize the complexity of the LUT address calculation. To reduce LUT approxi-

mation errors, non-uniform spacing has been studied for nearest-neighbor or zero-order hold

LUT (ZOH-LUT) predistorters. Several spacing schemes for the complex-gain predistorter

configuration have been proposed in the literature. In [11], a closed-form optimal spacing

expression that depends on the signal’s probability distribution as well as the amplifier’s

characteristics has been derived. This result is modified in [6] to remove the dependency

with respect to the input signal’s statistics while maintaining a considerable performance

advantage over uniform spacing.

Other LUT techniques have been presented in [29, 35, 36, 38]. These results mainly

address the complex-gain predistorter configuration. In this work, the optimal spacing ex-

pression will be derived for the polar LUT predistorter configuration (Figure 2.10), in which

the amplitude and phase predistorters reside in separate LUTs. It was shown in Section 3.1

that linear interpolation tremendously improves the performance of LUT predistortion with

relatively little added complexity. It is therefore important to consider optimal spacing in

the context of linearly-interpolated LUTs (LIN-LUT) as well.

3.2.1 Optimal Spacing of Nearest Neighbor LUT Predistorter

The problem of optimal LUT spacing is quite similar to the design of an optimal quantizer.

In the case of the polar LUT predistorter in Figure 3.1, both amplitude and phase predis-

torter LUTs must be optimally spaced to minimize the total transmitted residual distortion

power resulting from LUT approximations. Optimal spacing can be achieved by applying

a suitable compander c(r) to the amplitude signal prior to addressing the LUT. This is

illustrated in Figure 3.4. The objective of this study is to find a set of companders c� and

c� that minimize the total residual nonlinear distortion power at the output of the PA. To

simplify the derived mathematical expressions, it is assumed that the input signal’s ampli-

tude and the amplifier’s gain are normalized to unity. The generalization of the presented

results is a matter of trivial extension.
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The amplitude and phase LUTs are assumed to be of the same size N . Let us first

consider the amplitude LUT. The amplitude signal ri is quantized to the nearest LUT

entry rk, therefore causing a quantization error "r = rk − ri. Assuming that rk is located in

the middle of kth LUT interval with width dk, then "k is bounded by −dk/2 < "r < dk/2.

The quantized predistorted amplitude is

rp = f�(rk)

= f�(ri + "r). (3.13)

Assuming a gain of unity and applying (2.13) with K = 1, the output amplitude is given

by

ro = g�
[
f�(ri + "r)

]
= ri + "r. (3.14)

Similarly, the output phase is given by

�o = �i + f�(rp + "̃r) + g�(rp). (3.15)

Using first-order approximation,

f�(rp + "̃r) ≈ f�(rp) + "̃rf
′
� (rp).

The output phase can be simplified to

�o ≈ �i + f�(rp) + "̃rf
′
� (rp) + g�(rp)

≈ �i + "̃r f
′
� (rp). (3.16)

Assuming that the amplitude and phase errors are small enough, the output of the amplifier
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can be written as follows:

vo = (ri + "r) e
j(�i+"̃r f ′

�
(rp))

≈ (ri + "r)
[

ej�i + "̃r f
′
� (rp)e

j(�i+�
2 )

]

≈ vi + "r e
j�i + "̃r ri f

′
� (rp) e

j(�i+�
2 ), (3.17)

with

vi = rie
j�i and vo = roe

j�o .

The distortion at the output of the PA is thus given by

eo ≈ "re
j�i + "̃r ri f

′
� (rp) e

j(�i+�
2 ). (3.18)

The result in equation (3.18) shows that the residual distortion error at the output of the PA

consists of two terms resulting from the approximation errors in the amplitude and phase

LUTs respectively. These two error terms can be reasonably considered independent of each

other. For an LUT size N that is large enough, the errors "r and "̃r can be approximated by

uniformly distributed zero-mean random variables over their respective interval [−dk
2 ,

dk
2 ].

Using the approach described in [11], the total residual distortion power and the optimal

companders can be estimated. The residual distortion power is given by

Pdis = E
[

∣eo∣2
]

=
1

12N2

[
∫ 1

0

w�(r)

c�(r)
dr +

∫ 1

0

w�(r)

c�(r)
dr

]

, (3.19)

where

w�(ri) = p(r) and w�(r) =
∣
∣g�(r)f

′
� (r)

∣
∣
2
p̃(r).

p(r) and p̃(r) are the probability density functions of the input amplitude and predistorted

amplitude, respectively. It is observed that similarly to the complex-gain predistorter con-

figuration in [11], the total residual distortion power is inversely proportional to N2. In

other words, the residual distortion resulting from ZOH-LUT approximations decreases by

6 dB when the LUT size is doubled. The optimal companders for the non-interpolated polar

predistorter LUTs are found by using an approach similar to the one described in [11]:

c�(r) =
w�(r)

1/3

∫ 1
0 w�(r)

1/3dr
and c�(r) =

w�(r)
1/3

∫ 1
0 w�(r)

1/3 dr
. (3.20)
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It is interesting to note that the optimal amplitude LUT spacing only depends on the

input probability density function. Experimental results have also shown that the depen-

dence on the amplifier characteristics can be generally neglected for the phase LUT spacing.

A residual distortion power difference of less than 0.1 dB is measured if w� ≈ p̃(r) is used in

computing the phase LUT compander. This result corresponds to the traditional optimal

quantizer in [24]. Therefore, the same LUT spacing can be used for both amplitude and

phase LUTs if p(r) ≈ p̃(r). In this case, the spacing only depends on the input amplitude’s

statistics. Alternatively, instead of using an explicit compander, the LUT can be defined as

optimally spaced pairs of input and output values
[
rk, f(rk)

]
, which are obtained by using

the Lloyd-Max algorithm [24]. The theoretical results derived above have been validated

through extensive simulations. The PA model is based on the measured characteristics

extracted from a near class-E RF power amplifier. The AM-AM and AM-PM profiles are

shown in Figure 3.5.
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Figure 3.5: Class-E amplifier characteristics.

The signal to noise and distortion ratio (SNDR) has been measured from simulations

for various LUT sizes, with both uniform and optimal spacing. The optimal spacing results

in a 2.5 dB decrease of the residual distortion power when compared to uniform spacing.

The experimental results in Figure 3.6 confirm the theoretical assertion that the residual

distortion power decreases by 6 dB each time the LUT size is doubled. Moreover, the

performance measured with the iterative Lloyd-Max algorithm spacing closely matches that

of the optimal compander.
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Figure 3.6: LUT distortion-to-signal power ratio vs. LUT size for ZOH-LUT.

3.2.2 Optimal Spacing of Linearly-Interpolated Polar LUT Predistorters

The use of linearly-interpolated LUT predistorters has been justified experimentally in the

literature [21] as an efficient way to reduce the LUT approximation errors. A low-complexity

and practical implementation of linear interpolation in LUT predistorters is also discussed

in [47]. The problem has been approached with mathematical justification in Section 3.1

and the theoretical results validated with simulated experiments. As previously shown in

Section 3.1, the residual distortion power resulting from linearly approximation errors can

be written as follows:

Pdis =
1

120N4

[
∫ 1

0

w�(ri)

c′�(ri)
4 dri +

∫ 1

0

w�(rp)

c′�(rp)
4 drp

]

, (3.21)

where

w�(ri) =

∣
∣
∣
∣
∣

f ′′� (ri)

f ′�(ri)

∣
∣
∣
∣
∣

2

p(ri) and w�(rp) = ∣g�(rp)f ′′� (rp)∣2p(rp)

The set of companders that minimize the residual distortion power are found by using an

approach similar to [11]:

c�(r) =
w�(r)

1/5

∫ 1
0 w�(r)

1/5dr
and c�(r) =

w�(r)
1/5

∫ 1
0 w�(r)

1/5dr
. (3.22)

Equation (3.21) shows that the residual distortion power resulting from approximation

errors in the linearly-interpolated predistorter is inversely proportional to N4. The residual

distortion power decreases by 12 dB when the LUT size is doubled as opposed to 6 dB for
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the nearest-neighbor LUT (ZOH-LUT). These results have been validated by simulations

using the PA model previously shown in Figure 3.5. The simulated results are summarized

in Figure 3.7.
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Figure 3.7: LUT distortion-to-signal-power ratio vs. LUT size for linearly-interpolated
LUT.

The plot in Figure 3.7 shows that when optimal spacing is used in a linearly-interpolated

LUT predistorter with 64 entries, the residual distortion power is reduced by about 10 dB, as

opposed to just 3 dB for the ZOH-LUT predistorter. Therefore, the important conclusion

reached here is that optimal spacing is more beneficial and justifiable in the context of

linearly-interpolated LUT predistorters.
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CHAPTER IV

OPTIMAL SPACING OF INTERPOLATED COMPLEX-GAIN LUT

PREDISTORTERS

Increasing power-added efficiency, while maintaining requisite transmission characteristics,

is a major concern for resource-constrained mobile devices. Unfortunately, power-efficient

amplifiers have nonlinear amplitude-domain and phase-domain transfer characteristics that

degrade the spectral efficiency of modern complex-envelope modulation signals, such as

EDGE, WCDMA, and the OFDM family of modulations, to name a few. The nonlinearity

of an amplifier manifests itself via in-band and out-of-band spectral regrowth [53], leading to

violation of the strict modulation spectral mask and adjacent channel leakage specifications.

Several baseband linearization techniques have been proposed to date, and the lookup

table (LUT) based digital predistorter is one the most widely used distortion-mitigation

techniques. This is because of its low implementation complexity, simplicity of operation,

and capability to represent arbitrary nonlinear mappings.

In early implementations of digital baseband predistorters, the use of uniform spacing

in the power domain was mainly motivated by the convenient computation of the instanta-

neous power (I2 +Q2), as opposed to using a suitably-accurate amplitude approximation.

The uniform spacing in power has the effect of concentrating the entries near the higher

amplitude region. This is suitable for a class-A amplifier since its characteristic curve is

only compressed near maximum amplitudes. However, this is not well suited to amplifiers

with higher power efficiency, such as class-AB, C, E, etc., which exhibit significant nonlinear

amplitude and phase distortions across the entire amplitude range.

The goal of optimal LUT spacing is to reduce the level of residual distortion resulting

from predistorter approximation errors. This would consequently allow the use of a smaller

LUT size to achieve the targeted performance. In addition to memory savings, this would

also result in faster convergence of iterative LUT training algorithms such as those described
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in [8, 21, 39]. In an attempt to achieve this goal, a theoretical closed-form optimal spacing

expression, which depends on the signal probability distribution as well as the amplifier

characteristics, was derived in [11]. As a result, an additional 4 to 5 dB intermodulation

(IMD) power rejection was reported. This result is modified in [6] to remove the dependency

with respect to input signal statistics while still maintaining a non-negligible performance

advantage over uniform spacing. Other LUT spacing techniques have also been presented

in [29,35,36,38,47]. Note that these prior-art LUT studies address non-interpolated lookup

tables, henceforth referred to as zero-order-hold LUTs (ZOH-LUTs).

Linearly interpolated LUTs (LIN-LUTs) have been experimentally shown to improve

predistorter performance in [21] and [47]. In this chapter, the performance improvement

of a LIN-LUT predistorter is theoretically derived and validated through simulations. It

is shown that the use of linear interpolation alone significantly reduces the minimum LUT

size needed to meet the spectral performance required by modern cellular standards such

as EDGE, WCDMA, WiMax, LTE, etc. In light of this result, the optimal spacing of a

LIN-LUT predistorter is derived and is shown to provide a greater performance impact than

in the case of the ZOH-LUT. An earlier study of LIN-LUT spacing [2] was dedicated to

the polar predistorter configuration. The present chapter deals with the more widespread

complex-gain predistorter configuration.

The residual distortion in a transmitter linearized using a memoryless LUT predistorter

is derived in Section 4.1. The optimal spacing of a LIN-LUT is derived and validated

in Section 4.2. An alternative method that consists of separately optimizing the spacing

of the real-gain and imaginary-gain tables is studied in Section 4.3. In Section 4.4, the

practical implementation of optimal spacing is addressed, and hardware synthesis results

are presented.

4.1 Residual Distortion in LUT-Predistorted Transmitters

A power amplifier’s nonlinear characteristics consist of amplitude-dependent gain and phase-

shift curves, respectively called AM-AM and AM-PM conversion functions. In this work,
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the combination of AM-AM and AM-PM distortions is modeled as a single amplitude-

dependent complex gain g(r), as illustrated in Figure 4.1. The transmitter is successfully

linearized if the complex-gain predistorter f(r) meets the following condition:

g
[
r∣f(r)∣

]
f(r) = Kej�0 , (4.1)

where K is the equivalent gain of the linearized amplifier, and �0 is an arbitrary constant

phase-shift. For mathematical convenience, �0 will be assumed to be zero in this work. An

arbitrary spacing of the complex-gain LUT is achieved by selecting an appropriate function

c(r), as shown in Figure 4.1. In related prior studies [11] and [6], the function c(r) is called

a companding function or simply a compander. For consistency, the same terminology is

adopted in this study, although strictly speaking, companding means compression followed

by expansion. As a first-order approximation, the density of LUT entries is inversely pro-

portional to the first-order derivative of the compander c(r). The LUT is uniformly spaced

in amplitude if the compander is the identity function [c(r) = r].

)(rf

x px

r

y
)( || pxg

)(rc

Figure 4.1: Complex-gain LUT predistorter arrangement with unified compander.

The approximation errors resulting from the LUT representation of the complex-gain

predistorter translate into residual nonlinear distortion at the output of the transmitter. A

simple, but not optimal, solution is to find the compander c(r) that minimizes the error at

the LUT output. But the overall optimal compander is the function co(r) that minimizes

the residual nonlinear distortion at the output of the amplifier. Because of the cascade of

nonlinear functions involved, the derivation of the theoretically optimal compander is not

a trivial operation. To obtain a closed-form solution to this multi-variable optimization

problem, appropriate approximations are introduced as suited.

35



For mathematical convenience, we will consider, without loss of generality, that the gain

of the amplifier K is normalized to unity and the input signal amplitude is also normalized

to lie within the interval [0, 1]. The predistorter f(r) in (4.1) is approximated by a linearly

interpolated complex-gain LUT, as illustrated in Figure 4.1. The error resulting from this

linear approximation will cause residual nonlinear distortion at the output of the transmit

chain. Using an approach often employed in quantization theory [24,46], the total distortion

at the output of the LUT can be approximated by integrating the error contributions across

all the LUT bins, where a bin is defined as the region between two consecutive LUT entries.

Let us consider the kth bin of the complex-gain LUT, which is delimited by the entries

indexed by the amplitudes rk and rk+1, and let d = rk+1 − rk be the width of this kth bin.

The complex-gain predistorter f(r) is precisely determined only at rk and rk+1, as shown

in Figure 4.2(a).

For a complex input x, with amplitude r = ∣x∣ falling anywhere else within the bin (i.e.

r = rk + "r, with 0 < "r < d), there is a complex-gain approximation error "f :

f̃(r) = f(r) + "f .

Assuming that the bin is small enough so that the second-order derivative of the complex-

gain varies little within the considered interval, the linear approximation error can be ob-

tained after a few algebraic manipulations as

"f =
"r("r − d)

2
f ′′(r0), (4.2)

where the amplitude r0 is chosen as the center of the bin. Since the second-order derivative

is assumed to be relatively constant within the bin, any point between rk and rk+1 will yield

a decent approximation. An example of this error estimation is illustrated in Figure 4.2(b),

using the function f(r) = r + 2r2 + r3/2. The linear interpolation error estimated in (4.2)

is shown to be very close to the actual computed error.

The linear approximation error calculated above will be propagated through the non-

linear amplifier. The complex baseband-equivalent signal at the output of the amplifier is
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given by

ỹ = g
[
r∣f̃(r)∣

]
f̃(r)x

= g
[
r∣f(r) + "f ∣

][

f(r) + "f
]

x. (4.3)
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Figure 4.2: Linear interpolation of an arbitrary function. (a) Piece-wise linear interpola-
tion. (b) Comparison of the actual and approximated residual error functions.

Using first-order approximation, the amplifier gain can be rewritten:

g
[
r∣f(r) + "f ∣

]
= g

[
r∣f(r)∣

]
+

ℜ
[
f∗(r)"f

]

∣f(r)∣ g′
[
r∣f(r)∣

]
r,

where ℜ[⋅] designates the real part of the argument. This result is substituted in (4.3) to

get

ỹ =

{

g
[
r∣f(r)∣

]
+

ℜ
[
f∗(r)"f

]

∣f(r)∣ g′
[
r∣f(r)∣

]
r

}
[

f(r) + "f
]

x. (4.4)

37



The error at the output of the amplifier is obtained by subtracting (4.4) from the expression

of the desired, distortion-free output y = g
[
r∣f(r)∣

]
f(r)x and substituting (4.2):

"y = y − ỹ

≈ −
{

"fg
[
r∣f(r)∣

]
+ r f(r)g′

[
r∣f(r)∣

]ℜ
[
f∗(r)"f

]

∣f(r)∣

}

x

=
"r("r − d)

2
 (r),

with

 (r) =

{

f ′′(r)g
[
r∣f(r)∣

]
+ rf(r)g′

[
r∣f(r)∣

]ℜ
[
f∗(r)f ′′(r)

]

∣f(r)∣

}

x.

Taking the derivative of (4.1) and combining it with the above equation, we get an expression

of  (r) as a function of the complex-gain predistorter f(r):

 (r) =
f ′′(r)f∗(r) + j rℑ

[
f ′∗(r)f ′′(r)

]

∣f(r)∣2 + rℜ
[
f∗(r)f ′(r)

] x, (4.5)

where ℑ[⋅] designates the imaginary part of the argument. A common approximation in

quantization analysis is to assume that the amplitude displacement "r is a random variable,

uniformly distributed across the width of the bin. Using this assumption, the contribution

of the bin to the total residual distortion can be calculated as follows:

E
[

∣"y∣2
]

= E
[

∣"r("r − d)∣2
] ∣ (r)∣2

4

=
∣ (r)∣2
4d

∫ d

0
"2("− d)2 d".

Evaluating the integral in the above equation and weighting the result with the amplitude

probability density function leads to

E" = �d4 p(r)∣ (r)∣2, (4.6)

where � = 1/120 is a real constant. The bin width d can be expressed as a function of the

compander c(r) [11], yielding

d(r) ≈ 1

N c′(r)
,

where N is the LUT size. The total residual distortion can then be calculated from the
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above equation and the probability density of the input amplitude p(r):

P"y =

∫

E" dr

= �

∫

∣ (r)∣2d4(r)p(r) dr

=
�

N4

∫ ∣ (r)∣2
c′4(r)

p(r) dr. (4.7)

It is interesting to note that the residual distortion due to linear approximation errors is

inversely proportional to N4, as opposed to N2 in the case of the non-interpolated complex-

gain LUT [11]. The residual distortion is therefore decreased by 12 dB for every additional

bit of precision (whenever the size of the LUT is doubled).

The theoretical expression for the total distortion in (4.7) and its distribution across the

amplitude range given by (4.6) were validated with simulations based on a class-E amplifier

model using a WCDMA signal. The real and imaginary parts of the class-E amplitude-

dependent complex-gain g(⋅) are shown in Figure 4.3 for three different temperature settings.

The nominal curve at 25∘C is used for the purpose of the present experiment.
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Figure 4.3: Real and imaginary parts of a class-E amplifier nonlinearity expressed as a
complex-gain, over different temperature settings.

The LUT predistorter is uniformly spaced in this exercise, i.e., c(r) = r. As seen in

Figure 4.4(a), the theoretical approximation of the total residual distortion closely matches

the simulated results. The difference between the two curves is 1.4 dB for an LUT size of

eight entries and decreases to 0.06 dB as the LUT size is increased to 64 entries. It can
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also be verified that the residual distortion decreases by about 12 dB when the LUT size is

doubled (e.g., from 32 to 64).
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Figure 4.4: Distortion characteristic of a class-E amplifier. (a) Residual distortion vs.
LUT size. (b) Distribution of residual distortion across normalized amplitude for an LUT
of size 64.

The distribution of the residual distortion across the amplitude range is critical to finding

the optimal compander. To minimize the effect of approximation errors, the density of

the LUT entries should be proportional to this error distribution. The accuracy of the

theoretical expression in (4.6) is also illustrated in Figure 4.4(b) for an LUT size of 64 entries.

A very close match is observed between the theoretically approximated and experimentally

determined error distributions.
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4.2 Optimal LUT Spacing

The optimal spacing of an LUT predistorter can be derived by finding the compander c(r)

that minimizes the total residual distortion (4.7), subject to the constraints c(0) = 0 and

c(1) = 1. This is achieved by minimizing the following Lagrangian cost function:

J =
�

N4

∫ 1

0

w(r)

c′4(r)
dr + �

∫ 1

0
[c′(r)− 1] dr,

with

w(r) = ∣ (r)∣2 p(r), (4.8)

where  (r) is defined in (4.5). Setting the derivative of the cost function J with respect to

c′(r) to zero, while exercising the above constraints, results in the derivative of the optimal

compander given by

c′opt(r) =
w

1
5(r)

∫ 1
0 w

1
5(r) dr

⋅

The optimal compander is found by computing the integral of the previous equation. The

resulting function depends on the amplifier’s nonlinear characteristics, the predistorter, and

the probability distribution of the input signal amplitude. It is independent of the LUT

size, as expected.

The resulting residual distortion is obtained by substituting c′(r) in (4.7):

Popt =

[∫ 1

0
w

1
5(r) dr

]5

. (4.9)

When uniform spacing is used, c′(r) = 1. In this case, from (4.8), the residual distortion (4.7)

is simply given by

Puni =

∫ 1

0
w(r) dr. (4.10)

The total reduction in residual distortion resulting from the use of the optimal spacing is

computed by taking the ratio of (4.10) and (4.9):

�P =

∫ 1
0 w(r) dr

[∫ 1
0 w

1
5(r) dr

]5 ⋅ (4.11)
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4.2.1 Performance Evaluation with Optimal LUT Spacing

To assess the performance improvement of the optimal spacing scheme, three different types

of signals with different distributions and varying bandwidths have been chosen: a two-tone

signal, an EDGE-modulated signal, and a WCDMA-modulated signal. The block diagram

in Figure 4.5 illustrates the simulation setup. The amplifier model is based on the extracted

AM-AM and AM-PM characteristics of the class-E PA previously shown in Figure 4.3.

FDATool

FDATool

Figure 4.5: Simulation setup for measuring the predistorter performance, with optimal
LUT spacing.

The envelope probability densities of the three test signals are shown in Figure 4.6.
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Figure 4.6: Estimated envelope probability densities of test signals.

It can be seen from Figure 4.6 that the three chosen signals have quite different envelope

probability densities and therefore constitute an adequately diverse set to evaluate the
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potential benefits of optimal LUT spacing.

4.2.1.1 Two-tone Signal

The two-tone test has traditionally been heavily used by RF engineers to assess the linearity

of power amplifiers. This is because of the relative ease of test setup and the simplicity

of image and cross-product frequency measurements needed to estimate the underlying

nonlinearity. Procedurally, when two closely-spaced RF tones with frequencies f1 and f2

are transmitted through a device with a kth-order nonlinearity, spurious inter-modulation

(IMD) products are generated at frequencies mf1 ± nf2, with m+ n = k. The odd-ordered

nonlinear terms generate IMD products that are difficult to filter because of their close

spectral-proximity to the input-tone frequencies. An ideal predistorter would reduce the

IMD tones to a level below a desired spectral noise floor. But when the same two-tone signal

is used as an input to the predistorted transmitter of Figure 4.1, the LUT approximation

errors will result in the amplification of some residual IMD tones. In this exercise, the

IMD tone levels are measured in the case of uniform and optimal spacing of the linearly-

interpolated LUT. The predistorter LUT size is set to 24 entries. The output spectrum of

the two-tone simulation is shown in Figure 4.7.
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Figure 4.7: Two-tone IMD products for uniform and optimal LUT spacing.

This experiment shows that the use of optimal spacing results in improved rejection of

the spurious IMD products. The third, fifth, and seventh-order IMD products are respec-

tively improved by 22.3 dB, 22.7 dB, and 12.4 dB.
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4.2.1.2 EDGE and WCDMA Modulated Signals

Practically, a cellular power amplifier is intended to transmit a modulated carrier. There-

fore, the optimal LUT spacing has been evaluated with both WCDMA and EDGE modu-

lated signals. The nonlinearity in the transmit path manifests itself through both in-band

distortion, measured by error vector magnitude (EVM), and out-of-band spectral regrowth,

which degrades the modulated spectrum and causes interference with adjacent channels.

The signal EVMs resulting from the use of uniform and optimal spacing, at varying LUT

sizes, are shown in Figure 4.8(a) and Figure 4.8(b) for the EDGE and WCDMA signals,

respectively.
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Figure 4.8: EVM as a function of LUT size N and PSD for N = 40, using EDGE and
WCDMA modulated signals with uniform and optimal LUT spacing. (a) EDGE EVM. (b)
WCDMA EVM. (c) EDGE PSD. (d) WCDMA PSD.

These results show that the benefits of optimal spacing are limited when the LUT size is

very small (say below 10 entries). But the gap quickly widens as the LUT size is increased

above 16 entries. This is expected, as the derivation of optimal spacing used the assumption
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of closely spaced entries.

For an LUT size of 64 entries, the optimal spacing improves the EVM by 13.5 dB for the

EDGE signal, and by 6.5 dB in the case of the WCDMA signal. The power spectral densities

(PSDs) for an LUT size of 40 entries are also shown in Figure 4.8(c) and Figure 4.8(d), for

the EDGE and WCDMA signals. The use of optimal LUT spacing lowers their respective

spectral floors by more than 10 dB and 8 dB.

Apparently, the use of optimal spacing has slightly higher impact in the case of the

EDGE-modulated signal. It is clear from (4.11) that the attenuation of residual distortion

resulting from optimal spacing depends on the combination of the amplifier nonlinearity,

the predistorter, and the probability density of the input signal. As a result, for a given

set of nonlinear characteristics, the measured impact of the optimal LUT spacing will de-

pend on the statistics of the signal under consideration. Therefore, in a multi-standard

transceiver system (supporting different modulation schemes), the LUT spacing may need

to be programmable to achieve optimal performance for each supported class of signals.

Furthermore, the envelope probability density of a WCDMA signal, for example, strongly

depends on the number of simultaneous channels being transmitted. In this case, it might

be impractical to derive and store an optimal compander for each possible probability den-

sity profile. An alternative solution would be to either use a dynamically adaptive LUT

spacing such as in [35], or design a uniformly-spaced LUT with a sufficient number of entries

to guaranty acceptable performance across all supported signal types.

4.2.2 Interpolated vs. Non-Interpolated LUT Predistorter

The optimal compander previously derived for LIN-LUTs is not optimal for non-interpolated

LUTs (ZOH-LUT). Using the optimal compander derived for a ZOH-LUT in a LIN-LUT,

or vice versa, would actually worsen the performance with respect to uniform spacing.

The optimal spacing for a ZOH-LUT predistorter is derived in [11]. In this case, the

optimal compander is given by

copt(r) =
1

∫ 1
0 w

1
3(r) dr

∫

w
1
3(r) dr, (4.12)

where w(r) is a function of the predistorter f(⋅), the amplifier’s nonlinear characteristics
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g(⋅) and the probability density of the input signal amplitude p(r):

w(r) =

∣
∣
∣g′
[
r∣f(r)∣

]
∣
∣
∣

2

∣
∣
∣g
[
r∣f(r)∣

]
∣
∣
∣

4 r
2p(r).

The use of a ZOH-LUT results in an approximation error dominated by the magnitude of

the first-order derivative of the complex-gain f(⋅) [11]. If a uniformly-distributed signal is

considered, the optimal compander roughly makes the density of entries proportional to

the magnitude of the first-order derivative. On the other hand, the LIN-LUT generates

an error that is proportional to the second-order derivative. Consequently, its optimal

compander will tend to increase the density of entries in the regions of higher magnitude of

the second-order derivative of the complex-gain f(⋅).

To achieve a fair comparison, the impact of optimal spacing is measured for both in-

terpolated and non-interpolated LUT predistorters, using the same class-E nonlinear char-

acteristics and the EDGE-modulated test signal. The results in Figure 4.9 show that the

optimal spacing of ZOH-LUT improves the EVM by 4 dB with respect to uniform spacing,

supporting the results obtained in [11].
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Figure 4.9: Impact of optimal spacing on EDGE EVM using linearly-interpolated (Lin)
and non-interpolated (ZOH) LUT predistorters.

Under the same operating conditions, the optimal spacing of the LIN-LUT predistorter

improves the EVM by at least 15 dB for LUT sizes larger than 50 entries. This result shows

that the impact of optimal spacing is significantly higher when linear interpolation is used.
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The combination of linear interpolation and optimal spacing reduces the residual EVM to

below −60 dB for an LUT size of only 20 entries. The size of a non-interpolated LUT must

be increased to 200 entries to achieve the same level of residual distortion. In addition

to the savings in required memory space, the smaller LUT size allows faster convergence

during adaptive training of the predistorter.

4.2.3 Effect of Operating Temperature

The nonlinear characteristics of power amplifiers vary with the operating temperature, espe-

cially in the case of modern 3G and 4G duplex modulation schemes, where the temperature

can change drastically during active operation of the device. It is therefore important to

determine the sensitivity of the optimal compander to temperature changes. The extracted

characteristics of the class-E amplifier were used across a wide range of temperature set-

tings. A sample of nonlinearity curves and their variation at extreme temperatures has

been previously shown in Figure 4.3, where the real and imaginary parts of the amplifier’s

complex gain are shown for three different temperatures: −35∘C, 25∘C, and 105∘C. To as-

sess the sensitivity of optimal spacing to temperature variations, the optimal compander is

computed using the characteristics measured at a nominal temperature of 25∘C, and then

the temperature of operation is varied across the entire operational range. Figure 4.10 shows

the incremental EVM improvement resulting from the use of the nominal compander across

temperature for LUT sizes of 32 and 128 entries.

For an LUT size of 128 entries, the EVM improvement quickly drops from 18 dB to

9 dB as the temperature changes by ±10∘C. The EVM improvement is less sensitive to

temperature for an LUT size of 32 entries. It is important to note that the LUT with 32

entries is sufficient to reduce the EVM to less than −60 dB. In this case the single, nominal

optimal compander can maintain the EVM improvement above 10 dB over a wide range of

operating temperatures.
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Figure 4.10: Impact of temperature on EVM of fixed, nominally-derived optimal com-
pander.

4.3 Complex Companding

In Section 4.2, we derived an optimal compander that maps the input amplitude domain

to the address of the complex-gain LUT predistorter. In practice, the complex-gain predis-

torter is implemented by a parallel combination of two sub-tables representing the real and

imaginary parts of the complex gain. However, both the real and imaginary tables share

the same lookup address and consequently have the same spacing scheme.

If a uniformly-distributed input signal is considered, a first-order approximation of the

optimal spacing of a real-valued LUT consists of having a density of entries that is propor-

tional to the second-order derivative of the curve. It can therefore be intuitively assumed

that, if the shapes of the real and imaginary parts of the complex-gain curve possess signifi-

cantly different characteristics, the residual distortion could be better reduced by individu-

ally optimizing the spacing of the two tables. This could be achieved by using two separate

companders that jointly optimize the spacing of the two tables, as illustrated in Figure 4.11.

This approach is termed complex companding in this work. Finding two jointly-optimal

companders is mathematically cumbersome. A simplified approach is to find two separate

companders that minimize the individual error contribution of the two tables.

If the accuracy of the imaginary-gain table is assumed to be perfect, then the linear
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approximation error in (4.2) is purely real and is given by

"re =
"r("r − dre)

2
ℜ
[
f ′′(ro)

]
.

ref
)(re rcr

)(im rc
imf

)( )()( imre rfjrfrf +=
x y

)( || pxg

Figure 4.11: Predistorter LUT implementation using a complex compander.

In the previous equation, dre is the width of the current bin of the real-gain table.

Following the same procedure developed in Section 4.2, the error at the output of the

transmitter is given by

"y =
"r(dre − "r)

2
 re(r),

where

 re(r) =
f∗(r)− j rℑ

[
f ′(r)

]

∣f(r)∣2 + rℜ
[
f∗(r)f ′(r)

]ℜ
[
f ′′(r)

]
x. (4.13)

From the above equation and the derivation in Section 4.2, the optimal compander for the

real-gain table is given by

c′re(r) =
w

1
5
re(r)

∫ 1
0 w

1
5
re(r) dr

, (4.14)

with

wre =

∣
∣
∣
∣
∣

f∗(r)− j rℑ
[
f ′(r)

]

∣f(r)∣2 + rℜ
[
f∗(r)f ′(r)

]ℜ
[
f ′′(r)

]
x

∣
∣
∣
∣
∣

2

p(r).

Similarly, if the accuracy of the real-gain table is assumed to be perfect, then the optimal

compander for the imaginary-gain table is given by

c′im(r) =
w

1
5

im(r)
∫ 1
0 w

1
5

im(r) dr
, (4.15)
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with

wim =

∣
∣
∣
∣
∣

f∗(r) + rℜ
[
f ′(r)

]

∣f(r)∣2 + rℜ
[
f∗(r)f ′(r)

]ℑ
[
f ′′(r)

]
x

∣
∣
∣
∣
∣

2

p(r).

To assess the effectiveness of the complex companding method, the resulting residual dis-

tortion is compared to the previously obtained results using the unified optimal compander.

Figure 4.12 shows that the EVM improvement resulting from the use of complex companding

is relatively small even with a highly-compressed memoryless class-E amplifier. However,

the difference between the two approaches may turn out to be more significant for other

classes of high-power amplifiers.
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Figure 4.12: Performance comparison of complex and unified companding schemes.

4.4 Physical Implementation of LUT Spacing

Once the benefits of optimal spacing have been studied, the next logical step is to factor

in the additional complexity associated with the compander implementation. In practice,

the compander is itself implemented as an LUT. It is therefore critical that the additional

memory requirements do not offset the gains obtained from using optimal spacing. In the

following study, the compander is implemented as a uniformly-spaced, linearly-interpolated

LUT of size L, forming a piece-wise linear function. Table 4.1 shows the resulting EDGE

EVM for different values of L, with the predistorter LUT size set to 24 entries.
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Table 4.1: EDGE EVM for different compander LUT size L.

Spacing EDGE EVM (dB)

Uniform −48.50

Optimal

L = 8 −56.31

L = 16 −58.24

L = 32 −58.73

L = 64 −58.87

L = ∞ −58.96

These results show that a compander LUT with as little as eight entries improves the

EVM by 8 dB as compared to uniform spacing. Increasing the size (L) to 16 entries further

reduces the EVM by an additional 2 dB. To design a uniformly-spaced LUT with similar

performance, the number of entries must be increased to at least 128. In this comparison, it

is also important to note that the entries of the predistorter LUT are complex, whereas the

compander LUT is real. These two configurations (optimally spaced LUT with 32 entries

and uniformly spaced LUT with 128 entries) were implemented in VHDL and synthesized

with the Synopsys Design Compiler. The resulting gate counts are summarized in Table 4.2.

Table 4.2: Gate count resulting from hardware synthesis.

Uniform spacing a Optimal spacing b

LUT memory 11, 883 2, 997

Predistorter logic 6, 663 5, 241

Compander
memory — 775

logic — 456

Total gate count 18, 546 9, 469

a Using a single linearly-interpolated complex-gain LUT of size 128.
b Using a linearly-interpolated complex-gain LUT of size 32 with a 16-entry compan-

der LUT.

This design uses an amplitude approximation method similar to the one presented in [23].

The results in Table 4.2 show that, in this example, the use of optimal spacing reduces

the total predistorter gate count by half, despite the additional memory and logic used to

implement the optimal compander. This reduction in the total gate count directly translates
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into both area and power reduction.

A predistorter adaptation block based on the indirect-learning architecture [53] was also

synthesized. The adaptation block trains a replica of the feedforward predistorter using

an LMS-like algorithm. The gate count of the adaptation block is about 21 kgates for the

uniformly-spaced predistorter and 12 kgates for the optimally-spaced LUT predistorter (this

gate count includes replication of the feedforward predistorter). In addition to the area and

power savings, the smaller complex-gain LUT size allows faster convergence of this LUT

training algorithm. Figure 4.13 illustrates the error convergence of the adaptation algorithm

for the two cases. The results show that the smaller, optimally-spaced LUT predistorter

converges four times faster than the larger, uniformly-spaced one.
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Figure 4.13: Training convergence of uniformly and optimally spaced LUT predistorters.

It is important to note that the compander must be reloaded with adequate values for

every signal envelope probability density. The envelope probability density of a WCDMA

signal, for example, strongly depends on the number of simultaneous channels being trans-

mitted. In this case, it might be impractical to derive and externally store an optimal LUT

spacing for each possible probability density profile. To circumvent this issue, a signal-

independent compander can be derived by adapting the approach outlined in [6] to the

LIN-LUT. If memory size and convergence speed are not critical for the design, a simpler

approach is to use uniform spacing and increase the LUT size to meet the same performance.
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4.5 Conclusion

In this chapter, the optimal spacing of a linearly-interpolated LUT predistorter has been

studied. The theoretically-derived optimal compander is a function of the probability den-

sity of the input signal and the nonlinear characteristics of the power amplifier. The theo-

retical results have been validated through simulations, using the extracted nonlinear char-

acteristics of a class-E amplifier at different temperature settings. A variety of test signals

have been used to measure the effectiveness of the proposed optimal spacing method. Error

vector magnitude (EVM) improvements of 10 dB to 15 dB were observed, over the use of the

simpler, but generally less effective, uniform spacing. The effects of characteristic variations

caused by changes in temperature have also been studied. A practical implementation that

leads to significant performance improvement has been illustrated. It is demonstrated that

optimal spacing is far more beneficial in the case of a linearly-interpolated LUT predistorter

than in the case of its non-interpolated counterpart. A practical implementation with sig-

nificantly reduced gate count and faster convergence of the LUT training algorithms can be

achieved, if only a limited number of signal probability densities must be supported.
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CHAPTER V

POWER CONTROL AND LUT SPACING

It has been shown in the previous chapters that significant performance improvement can

be achieved by using a compander to optimally space the LUT entries. Such a compan-

der depends on the nonlinear characteristics of the amplifier as well as the input signal’s

statistics. To maximize the battery life of mobile devices and efficiently manage the scarce

spectral resources, modern wireless standards implement advanced power control schemes.

Power control is often achieved by simply scaling the input signal, which in turn changes

its statistics. Therefore, a given compander would only be optimal for a given input backoff

setting. It is shown in [11] that a few decibels of power back-off will result in a significant

decrease in the performance of the initially optimal LUT spacing. Optimal performance

across all power levels would require a redefinition of the LUT spacing and an update of the

entries for each power level, which is obviously a very unpractical solution. As the input

power is decreased, only a small portion of the LUT is effectively active. This effect is

illustrated in Figure 5.1.

0r 1r
K

kr Nr

0f 1f kf Nf

K

K

K

Figure 5.1: Probability density function of the amplitude of a WCDMA backoff by 5dB.

The amplitude of the input WCDMA signal backed off by 5 dB covers less than half of

the LUT entries. This amounts to using a smaller LUT size as the input signal is backed off.
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Therefore, the distortions resulting from larger LUT approximation errors will decrease the

SNR and reduce the predistorter’s performance unless the LUT size is greatly increased.

5.1 Constant-SNR Spacing

To prevent a huge increase in memory space requirements, a non-uniform spacing scheme

for linearly-interpolated LUTs can be designed to yield constant SNR across the entire

supported power dynamic range. This will allow the use of a single low-resolution, fixed-

range LUT predistorter to provide adequate correction across a relatively large range of

input power backoff. The �-law compander [24] was developed to achieve such a goal for

the quantization of speech signals. The �-law compander is mathematically given by

c�(r) =
ln(1 + � r)

ln(1 + �)
. (5.1)

For speech signal quantization, � is often chosen to be equal to 256 (eight bits). But for

the polar predistorter, our experiments show that a value between 32 and 64 provides a

better performance balance across an input backoff dynamic range of up to 40 dB. For the

complex-gain predistorter, � should be set to a value between 8 and 16. The resulting

spacing d(r) can be derived from equation (3.9):

d(r) ≈ 1

N c′�(r)

≈ 1�

N ln(1 + �)
(1 + � r). (5.2)

Note that the spacing between LUT entries increases linearly with the input amplitude.

This effect improves the performance when the input signal is backed off by providing an

even better predistorter resolution at low amplitudes.

5.1.1 Constant-SNR Spacing in Polar Predistorters

In Chapter 3, an optimal spacing scheme for polar LUT predistorters was derived for a given

input backoff setting. Using those previously obtained results, a compander that yields a

constant SNR across all amplitude regions can be derived. From (3.7), the SNR of the kth
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interval of the amplitude table can be approximated by

SNR�(r) =
r2

E(er2)

=
120N4 r2 c′�(r)

4 f ′(rk)
2

V 4 f ′′(rk)
2 . (5.3)

Using equation (5.3), a constant SNR across all amplitudes can only be obtained if

c′�(r) = ��

∣
∣
∣
∣
∣

f ′′� (r)

rf ′�(r)

∣
∣
∣
∣
∣

1/2

, (5.4)

where �� is a constant. Similarly for the phase LUT, the SNR is constant across amplitudes

if

c′�(r) = ��

∣
∣
∣
∣

f ′′� (r)

r

∣
∣
∣
∣

1/2

. (5.5)

The corresponding amplitude and phase LUT companders are given below:

c�(r) = ��

∫
∣
∣
∣
∣
∣

f ′′� (r)

rf ′�(r)

∣
∣
∣
∣
∣

1/2

dr and c�(r) = ��

∫ ∣
∣
∣
∣

f ′′� (r)

r

∣
∣
∣
∣

1/2

dr. (5.6)

�� and �� are chosen such that c�(1) = 1 and c�(1) = 1. Practically, c� and c� can be

numerically estimated.

5.1.2 Constant-SNR Spacing in Complex-Gain Predistorters

The optimal compander for a linearly-interpolated complex-gain predistorter was derived in

Chapter 4. Those previously obtained results can be used to derive a constant-SNR spacing

for the complex-gain predistorter. The individual bin contribution to the overall residual

distortion was given by (4.6) as

E" = �d4 ∣ (r)∣2,

where

� =
1

120
and  (r) =

f ′′(r)f∗(r) + j rℑ
[
f ′∗(r)f ′′(r)

]

∣f(r)∣2 + rℜ
[
f∗(r)f ′(r)

] x.

Using the relation between the bin spacing and the compander d(r) =
1

Nc′(r)
, the signal

to noise ration across the bin can be approximated by

SNR(r) ≈ N4r2c′4(r)

�∣ (r)∣2 .
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The constant SNR condition is satisfied if

c′(r) = �

∣
∣
∣
∣

 (r)

r

∣
∣
∣
∣

1/2

.

The constant-SNR compander is given by

c(r) = �

∫ ∣
∣
∣
∣

 (r)

r

∣
∣
∣
∣

1/2

dr,

where � is chosen so that c(1) = 1.

Simulation experiments were carried out using the amplifier characteristics previously

shown in Figure 3.5. The input signal backoff is varied from zero to −30 dB. The signal

to noise and distortion ratio (SNDR) is measured for uniform, �-law, and constant-SNR

spacings. The experiment was carried out for both the polar and complex-gain predistorter

configurations and the results are shown in Figure 5.2(a) and Figure 5.2(b), respectively.

−25 −20 −15 −10 −5 0

30

40

50

60

70

80

Backoff (dB)

S
N

D
R

 (
d

B
)

 

 

uniform spacing

µlaw spacing

cnst−SNR spacing

(a)

−30 −25 −20 −15 −10 −5 0

40

50

60

70

Backoff (dB)

S
N

D
R

 (
d

B
)

 

 

uniform spacing

µlaw spacing

cnst−snr spacing

(b)

Figure 5.2: Signal to noise and distortion ration (SNDR) vs. input power backoff for
uniform, �-law and constant-SNR spacings. (a) Polar predistorter. (b) Complex-gain pre-
distorter.
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The �-law spacing parameter is set to 64 in the polar configuration and 16 in the

complex-gain predistorter. These values are set to balance the performance between the

low and high amplitude regions. In both experiments the LUT size is set to 64 entries. It

can be observed that the proposed constant-SNR spacing results in a balanced performance

over all power levels as opposed to the uniform spacing, which suffers severe performance

degradation at large input power backoffs. The simpler �-law compander also improves the

supported dynamic range but is less effective than the constant-SNR spacing in the case of

the polar predistorter. The performance of the �-law spacing approaches the constant-SNR

spacing when the LUT size is further increased. The main advantage of the �-law spacing

is its independence with respect to signal statistics and amplifier nonlinear characteristics,

whereas the constant-SNR spacing must be updated for signals with different probability

densities.

In practical implementations, the compander itself must be approximated with a lookup

table, adding additional memory requirements to the design. To linearly interpolate the

LUT predistorter, the inverse of the bin width must be calculated. For both the �-law and

constant-SNR spacings, computing the inverse of the bin width on the fly is not practical

for hardware implementation. Therefore, the inverse bin width must be pre-calculated and

stored. This further increases the memory requirements. To circumvent these issues and

minimize the memory requirements, an alternative approach that is well suited to practical

hardware implementation is presented in Section 5.2.

5.2 Low-Complexity LUT Spacing

The �-law spacing results in good predistorter performance across a large range of input

power backoffs. It is independent from signal statistics unlike the theoretically derived

constant-SNR spacing, which has better performance. Meanwhile, the computational com-

plexity of the ideal �-law address calculation makes it difficult to meet the high speed

requirements of 3G and 4G transceivers. An alternative low complexity spacing scheme is

therefore proposed in this section. This spacing scheme is designed to meet the following

requirements:
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∙ Closely approach the dynamic range and performance of the �-law spacing.

∙ Provide low-complexity, fast address calculation that is easily amenable to hardware

implementation.

∙ Simplify the computation of the linear interpolation.

This is achieved by approximating the �-law spacing with a base-2 logarithm instead

of the natural logarithm. For this reason the proposed method will termed B2 spacing.

For an LUT size L, the proposed spacing scheme divides the signal range into N inter-

vals with exponentially increasing width. For simplicity, each interval contains exactly M

uniformly spaced entries. It is also assumed that the intervals are numbered from low to

high amplitudes. Let Wk = �2k be the width of the kth interval with � a real constant

and k ∈ {0, 1, ⋅ ⋅ ⋅ , N − 1}. The width of the intervals increases exponentially with k. The

number of entries per interval is M = L/N.

L, M and N should be powers of two to simplify the implementation, but this is not a

necessary condition. Let us consider an amplitude resolution of 12 bits. Let us also assume

an LUT of size L = 128 is used and N and M are set to 8 and 16, respectively. The

binary representation of the amplitude signal is b11b10b9b8b7b6b5b4b3b2b1b0. The LUT

is addressed by log2(L) = 7 address bits: a6a5a4a3a2a1a0. The B2 spacing nonlinearly

maps the amplitude bits bn to the address bits am. The proposed mapping is illustrated in

Figure 5.3.

8910 bb111b789 bb110b678 bb101b...

11b

10b

9b

Figure 5.3: Mapping of address bits in B2 spacing.
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The position of the most significant non-zero bit (if any) among the N − 1 = 7 most

significant bits (MSB) is used to select the corresponding interval, and consequently de-

termine the first log2(n) = 3 bits of the LUT address a6a5a4. The remaining address bits

a3a2a1a0 are equal to the amplitude bits immediately following the most significant non-

zero bit among the seven MSBs. If the first seven MSBs are all equal to zero, then the

remaining address bits are equal to the amplitude bits immediately following the first seven

MSBs: a3a2a1a0 = b4b3b2b1. This will result in the first two intervals having equal width.

Thereafter, the interval width will increase as a power of two. A logical truth table for the

address calculation is shown in Table 5.1.

Table 5.1: Practical implementation of optimal spacing.
Amplitude bits Address bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 a6 a5 a4 a3 a2 a1 a0

1 − − − − − − − − − − − 1 1 1 b10 b9 b8 b7
0 1 − − − − − − − − − − 1 1 0 b9 b8 b7 b6
0 0 1 − − − − − − − − − 1 0 1 b8 b7 b6 b5
0 0 0 1 − − − − − − − − 1 0 0 b7 b6 b5 b4
0 0 0 0 1 − − − − − − − 0 1 1 b6 b5 b4 b3
0 0 0 0 0 1 − − − − − − 0 1 0 b5 b4 b3 b2
0 0 0 0 0 0 1 − − − − − 0 0 1 b4 b3 b2 b1

The calculated address corresponds to the LUT entry immediately below (or equal to)

the amplitude value. An example implementation is presented in Figure 5.4.

It is important to note that the spacing between two consecutive entries is always a

power of two. This facilitates linear interpolation. In fact the interpolation factor can be

readily obtained from the amplitude bits. Table 5.2 shows a truth table that generates a five-

bit interpolation factor c4c3c2c1c0. The address and interpolation factor calculation circuits

were implemented in VHDL and synthesized with the Synopsys Design Compiler. The

synthesis resulted in a total of just 141 nand2-equivalent gates for an amplitude resolution

of 16 bits and an interpolation factor of 6 bits. The number of intervals was set to N = 8

and the number of entries per interval was set to M = 16. The VHDL code for the B2

address calculation is provided in AppendixB.
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Figure 5.4: B2 spacing address calculation circuit.

The performance of the B2 spacing was also simulated and compared to the uniform

and �-law spacings. A complex-gain predistorter is used with a WCDMA signal as input.

The results are shown in Figure 5.5.

These results show that the B2 spacing closely approaches the performance of the �-law

spacing while allowing simple low-complexity hardware implementation. The performance

of uniform spacing decreases almost linearly with the input power backoff. The B2 spacing

maintains good predistorter performance even with a −30 dB backoff. The B2 spacing

example presented here uses equal number of entries M for each interval. In general the

number of intervals N and the number of entries in each interval Mk should be optimized

with respect to the considered nonlinear characteristics, the target dynamic range, and the

LUT size to provide the best performance across the supported range of power backoff.
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Table 5.2: Practical implementation of optimal spacing.
Amplitude bits Interpolation factor

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 c4 c3 c2 c1 c0

1 − − − − − − − − − − − b6 b5 b4 b3 b2
0 1 − − − − − − − − − − b5 b4 b3 b2 b1
0 0 1 − − − − − − − − − b4 b3 b2 b1 b0
0 0 0 1 − − − − − − − − b3 b2 b1 b0 0

0 0 0 0 1 − − − − − − − b2 b1 b0 0 0

0 0 0 0 0 1 − − − − − − b1 b0 0 0 0

0 0 0 0 0 0 1 − − − − − b0 0 0 0 0
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Figure 5.5: Signal to noise and distortion ratio (SNDR) across different backoffs for
uniform, �-law, and B2 spacing.
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CHAPTER VI

AMPLITUDE APPROXIMATION FOR DIGITAL PREDISTORTERS

The nonlinear gain and phase distortions of RF amplifiers is a function of the input signal’s

envelop. Consequently, the digital baseband predistorter must also be a function of the

amplitude. In the case of the complex-gain LUT predistorter, the amplitude signal’s most

significant bits (MSBs) are ideally used to address an LUT predistorter. For example, the

first seven MSBs are used to address an LUT with 128 entries. The accurate computation

of amplitude requires a square-root function, which is not amenable to efficient hardware

implementation, especially at very high processing rates. To circumvent this issue, practi-

cal digital-baseband predistorters have traditionally been implemented as a function of the

instantaneous envelope power I2+Q2. The resulting, often unintended effect is a concen-

tration of the LUT entries around the higher amplitude region [11]. This power indexing

scheme is suitable for class-A and mild class-AB amplifiers since their characteristics are

mostly linear until close to saturation. However, this is not well suited to amplifiers with

higher power efficiency, such as deep class-AB, class-B, C, E, etc., which exhibit significant

nonlinear amplitude and phase distortions across the entire amplitude range.

Furthermore, if a certain level of digital power backoff must be supported (e.g. for the

purpose of adaptive power control), the power indexing scheme will require a significantly

larger LUT size to meet the same performance as the amplitude-indexed LUT. For example,

when the input signal is backed off by 6 dB, the signal range covers half of the entries in the

amplitude-indexed LUT, but only one quarter of the entries in the power-indexed LUT. The

latter will therefore result in a coarser quantization of the predistorter and higher levels of

residual distortion. This effect is illustrated in Table 6.1. These results are obtained using a

complex-gain LUT with 64 entries to predistort a class-E amplifier. The amplitude indexing

is shown to consistently outperform the power indexing scheme for all backoff settings and

the performance gap increases as the input signal is further backed off.
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Table 6.1: WCDMA EVM and ACLR for amplitude and power indexing.

Backoff Indexing EVM ACLR1 ACLR2
(dB) (dB) (dBc/Hz) (dBc/Hz)

0.0
Amplitude −66.94 −70.37 −74.93

Power −50.90 −59.83 −60.46

3.0
Amplitude −63.60 −68.99 −71.68

Power −44.71 −53.60 −53.86

6.0
Amplitude −60.42 −67.09 −68.55

Power −38.28 −46.88 −48.09

6.1 A Low-Complexity Amplitude Approximation

Simple linear amplitude approximation techniques have been extensively studied in the

context of radar detection applications [7, 22,23,40]. Most of the methods presented result

in relatively coarse approximations, even though their precision is within the tolerance of

the targeted applications. But since the digital baseband predistorter is located in the

direct transmit path, such large amplitude approximation errors would severely limit the

performance of the predistorter, resulting in both residual EVM degradation and spectral

distortions.

A common general approach to amplitude approximation consists in rotating the com-

plex input X = I + j Q so that its phase lies in [0, �
4 ], then compute a linear combination

of the real and imaginary parts of the rotated signal Y = Ir + j Qr. The rotated vector Y

is given by

Ir = max (∣I∣, ∣Q∣) Qr = min (∣I∣, ∣Q∣) . (6.1)

It can be easily observed that the magnitude of the rotated vector Y is equal to the mag-

nitude of the initial vector X:

∣Y ∣ =
√
[
max (∣I∣, ∣Q∣)

]2
+

[
min (∣I∣, ∣Q∣)

]2

=
√

I2 +Q2 = ∣X∣.

The approximated amplitude is obtained by a linear combination of the real and imaginary
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parts of Y :

R̂ = a Ir + bQr.

In [23], the approximation accuracy is improved by further dividing the angular interval

[0, �
4 ] into two intervals, and using two different sets of coefficients (ak, bk), k ∈ {1, 2} that

are optimized for their corresponding intervals. The precision of the approximation can be

arbitrarily improved by increasing the number of angular intervals N . In the kth angular

interval, the amplitude approximation is given by

R̂ = ak Ir + bkQr, if �k−1 ≤ � < �k,

where � = arctan
(
Qr

Ir

)

and �k are the threshold angles delimiting the angular intervals

(k ∈ {1, N}, �0 = 0 and �N = �
4 ). Figure 6.1 illustrates the use of two and three equal

angular intervals.
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Figure 6.1: Linear amplitude approximations. (a) Two angular intervals. (b) Three
angular intervals.

The amplitude error in the kth angular interval is given by

R− R̂ = R−
(
akIr + bkQr

)

= R−R
(
ak cos � + bk sin �

)

= R
(
1− ak cos � − bk sin �

)
. (6.2)

The relative amplitude error " is given by

" = 1− ak cos � − bk sin �
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The coefficients (ak, bk) must be chosen to minimize a given error metric for each angular

interval delimited by the angles �k−1 and �k. Assuming that the input angle � is uniformly

distributed, we can obtain a closed-form solution for the coefficients (ak, bk) that minimizes

the mean square of the relative amplitude error ". The mean squared error J can be

evaluated as follows:

J = E
[

"2
]

= p0

∫ �k

�k−1

"2 d�. (6.3)

The optimal coefficients are obtained by setting the partial derivatives of J with respect to

the coefficients ak and bk to zero. Taking the partial derivative of the mean squared error

J with respect to the coefficient ak gives

∂J
∂ak

= p0

∫ �k

�k−1

∂"2

∂ak
d�

= p0

∫ �k

�k−1

2"
∂"

∂ak
d�

= 2p0

∫ �k

�k−1

ak cos
2 � + bk cos � sin � − cos � d�

= p0

∫ �k

�k−1

ak(1 + cos 2�) + bk sin 2� − 2 cos � d�

=
p0
2

[

ak(2Δ� + sin 2�k − sin 2�k−1) + bk(cos �k−1 − cos �k) + 4(sin �k−1 − sin �k)
]

.

(6.4)

Similarly, taking the partial derivative with respect to bk gives

∂J
∂bk

=
p0
2

[

bk(2Δ� − sin 2�k + sin 2�k−1) + ak(cos �k−1 − cos �k) + 4(cos �k − cos �k−1)
]

,

where Δ� = �k − �k−1. Setting the partial derivatives to zero yields

⎡

⎢
⎣

2Δ� + � �

� 2Δ� − �

⎤

⎥
⎦

⎡

⎢
⎣

ak

bk

⎤

⎥
⎦ = 4

⎡

⎢
⎣

c1

c2

⎤

⎥
⎦ ,

with

� = sin 2�k − sin 2�k−1 c1 = sin �k − sin �k−1

� = cos 2�k−1 − cos 2�k c2 = cos �k−1 − cos �k

.
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The optimal coefficients for the kth angular interval are obtained by solving the above

system of linear equations:

⎡

⎢
⎣

ak

bk

⎤

⎥
⎦ =

2

2Δ�2 + cos(2Δ�)− 1

⎡

⎢
⎣

(2Δ� + �)c1 − � c2

(2Δ� − �)c2 − � c1

⎤

⎥
⎦ . (6.5)

For any angular interval delimited by the angles �k−1 and �k, the relatively simple closed-

form solution (6.5) can be evaluated to find the optimal coefficients (ak, bk) in the mean

squared error sense. Figure 6.2 shows the mean squared and peak errors as the number of

angular intervals is increased from one to eight.
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Figure 6.2: Mean squared and peak errors as a function of the number of angular intervals.

These results show that the use of three angular intervals is sufficient to decrease the

mean square of the relative amplitude error to below −50 dB. As shown by these results, an

arbitrary amplitude approximation accuracy can be achieved by selecting a large enough

number of angular intervals. But a larger number of angular intervals will result in a more

complex decision process and the approximation is useful only if it is amenable to efficient

implementation. The latter aspect is further addressed in Section 6.2. It should be noted

that the optimal coefficients obtained here are based on the assumption that the phase of

the input signal is uniformly distributed. This assumption applies very well to most signal

modulations. In the special case of a skewed phase probability density, the true optimal

coefficients can be better approached by using unequal angular intervals.
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6.2 Practical Implementation and Performance

For the purpose of practical implementation, the approximation based on three angular

intervals is chosen. The intervals are equally spaced to minimize the peak error. The

threshold angles are �1 = �
12 , and �2 = �

6 . For each input sample (Ir + jQr), the corre-

sponding angular interval is determined by comparing Qr to Ir × tan(�k) since tan(⋅) is a

monotonic function in the interval [0, �
4 ]. For efficient hardware implementation, we select

tan(�1) = 1
4 and tan(�2) = 9

16 . The coefficients obtained from (6.5) are quantized to six

bits of resolution. For best results, the quantized coefficients ak are used to generate new

sub-optimal coefficients bk, which are in turn quantized. This two-step process results in a

slightly better performance than the direct quantization of the coefficients ak and bk. The

coefficients and error characteristics of the floating-point and quantized amplitude approx-

imations are summarized in Table 6.2. Even though the fixed-point approximation is more

practical, its performance is very close to that of the floating-point approximation.

Table 6.2: Coefficients and error for an amplitude approximation with three intervals.

Parameters & errors Floating-point Fixed-point

[a1 a2 a3] [0.994 0.927 0.796] [ 1 60/64 51/64]

[b1 b2 b3] [0.131 0.384 0.610] [6/64 23/64 39/64]

tan(�1) 0.268 1/4

tan(�2) 0.577 9/16

"peak(%) 0.572 0.712

"mean(%) 0.001 0.082

"rms(%) 0.256 0.306

The performance of the fixed-point amplitude approximation was simulated with a pre-

distorted transmitter using a WCDMA signal as input. A linearly-interpolated complex-

gain predistorter with an LUT size of 64 entries was used. The transmitter features a highly

nonlinear class-E amplifier. The input signal (I/Q) resolution was set to 13 bits and a 3 dB

backoff was selected. Table 6.3 shows the resulting error vector magnitude (EVM) and the

adjacent channel leakage ratios at 5MHz offset (ACLR1) and 10MHz offset (ACLR2). The

EVM resulting from the use of the amplitude indexing is 8 dB lower than that of the power
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indexing, and only 2 dB higher than that of the ideal amplitude indexing. The ACLR1

measurements are very close with a maximum difference equal to 0.5 dB. The ACLR2 mea-

surements show a 6 dB improvement when using the amplitude approximation instead of

the power indexing.

Table 6.3: Performance of amplitude approximation: WCDMA EVM and ACLR.

Indexing EVM ACLR1 ACLR2
dB dBc/Hz dBc/Hz

Power −44.71 −53.60 −53.86

Amplitude
approx −61.57 −67.86 −69.95

ideal −63.60 −68.99 −71.68

Figure 6.3 shows the WCDMA PSD resulting from the above experiment. The higher

spectral floor resulting from the power indexing shows that it suffers from stronger residual

nonlinear distortions.
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Figure 6.3: Performance of amplitude approximation: WCDMA PSD.

The fixed-point coefficients and angular thresholds are chosen to minimize the hardware

implementation complexity while maintaining an approximation error close to the optimum

value. The diagram of Figure 6.4 illustrates a possible implementation.

This design requires two conditional 2’s complement operations to implement the abs(⋅)

function, three comparators, and four two-to-one multiplexers. The coefficients were chosen

to minimize the complexity of the scaling operations. To achieve a fair comparison, the
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Figure 6.4: Implementation of the amplitude approximation with three angular intervals.

implementation complexity of the amplitude approximation must be compared to that of

the instantaneous power computation
(
I2+Q2

)
. Both options were implemented in VHDL

and synthesized with the Synopsys Design Compiler. The resulting nand2-equivalent

gate count is obtained for different resolutions of the input quadrature components (I/Q).

The synthesis results are summarized in Figure 6.5.

It is clear from these results that the amplitude approximation design results in lower

gate count for the considered range of input resolutions. The gap rapidly increases as

the resolution is increased from 8 to 20 bits. For input resolutions lower than 8 bits, the

power computation results in a slightly lower gate count. But at such low resolutions,

the performance is limited by the I/Q quantization error. In this case, the resolution of

the (ak, bk) coefficients can be reduced to 5 or 4 bits to further reduce the gate count of

the amplitude approximation block. For most wireless transmitters, an I/Q resolution of

more than 10 bits is required to meet the standard specifications. Therefore, the proposed

amplitude approximation design has a clear advantage both in terms of total design area

and performance.
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Figure 6.5: Nand2-equivalent gate count for power index computation and amplitude
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6.3 Conclusion

In this chapter, an amplitude approximation suitable for digital baseband predistorters

is proposed. A closed-form solution is derived to determine the optimal parameters for

any arbitrary angular interval. A quantized amplitude approximation with three angular

intervals is implemented in VHDL and synthesized with the Synopsys Design Compiler.

It is shown to be very close to the ideal amplitude computation and outperforms the power-

indexing in both design area and rejection of residual distortion.
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CHAPTER VII

EFFICIENT LUT PREDISTORTER ADAPTATION

The nonlinear characteristics of power amplifiers display significant variations when the

operating temperature fluctuates and as the device ages. To maintain the effectiveness of

the predistorter and minimize the residual distortions, an adaptive predistorter should be

used. For resource-constrained mobile devices, the computational complexity of the chosen

adaptation algorithms and the number additional components must be minimized.

In this chapter, an efficient LMS-based [51] adaptation technique for LUT predistorters

is presented as well as its optimization for low complexity hardware implementation. The

identification of the inverse nonlinearity is based on the indirect learning architecture [20].

7.1 Adaptation of Complex-Gain LUT Predistorters

The indirect learning architecture is illustrated in Figure 7.1. A replica of the feedforward

predistorter is trained in the feedback as the post-inverse of the amplifier nonlinearity. The

updated LUT is periodically copied to the feedforward predistorter. This configuration has

the advantage of decoupling the transmit path from the update branch. The transmitted

signal is therefore isolated from any impulse noise in the feedback path at the cost of

replicating the predistorter.

The LUT is an array of L complex-gain entries F [n] corresponding to input amplitude

indexes rn = ∣yn∣. If the LUT is not interpolated, the nth LUT entry is selected for all

feedback signals yk in the interval defined by

yn + yn−1

2
≤ yk <

yn + yn+1

2
.

For every signal sample yk in this interval, an error signal ek is generated:

ek = zk − F [n]yk.
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Figure 7.1: Adaptation of complex-gain LUT predistorters using the indirect learning
architecture.

The nth entry F [n] can be updated using the LMS algorithm as follows:

F
[n]
k+1 = F

[n]
k − �

∂e∗kek
∂F [n]

. (7.1)

The gradient with respect to the complex gain F [n] is obtained by taking the partial deriva-

tives with respect to real and imaginary parts:

∂e∗kek
∂F [n]

=
∂e∗kek

∂ℜ{F [n]} + j
∂e∗kek

∂ℑ{F [n]} , (7.2)

where ℜ{⋅} and ℑ{⋅} respectively designate the real and imaginary parts of the argument.

Substituting (7.2) in (7.1) and carrying out the partial derivatives gives

F
[n]
k+1 = F

[n]
k + 2�y∗kek. (7.3)

Considering a single interval at a time allows to simplify the problem by reducing it to finding

an approximate inverse of the average amplifier complex gain within the considered interval.

For each incoming feedback sample, only the corresponding entry, which is addressed by

its magnitude, is updated. The update operation requires two complex multiplies (one

to compute the error e and one to evaluate the gradient), two additions and the scaling

by �, which can be simplified if it is restricted to powers of two. The update system is

stable provided that 0 < � < 1
�2
n
, with �2 being equal to E[∣yk∣2] for all yk falling in the

nth interval. If the LUT size is large, the samples yk can be assumed to have a uniform

distribution across the interval. In this case, the expectation can be approximated by the
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square of the average magnitude, which is the point located at the center of the interval:

�2n ≈ ∣yn∣2.

If the regular LMS update equation (7.3) is used, the convergence speed will vary across

the table entries. The upper entries will converge significantly faster than lower entries. To

avoid this issue, the normalized LMS algorithm [27] can be used:

F
[n]
k+1 = F

[n]
k + 2

�

∣yk∣2
y∗k ek. (7.4)

The normalized LMS (NLMS) update of (7.4) results in faster and uniform convergence

of the entries across the LUT. But its direct implementation has two limitations:

∙ For very low values of ∣yk∣ the system becomes very susceptible to the noise in the

feedback path, potentially driving the update system into instability.

∙ The scaling by the magnitude is an expensive operation that is not directly amenable

to efficient hardware implementation.

An approximation of the normalized LMS similar to the clipped LMS algorithm [15,

37, 50] is proposed. This approach termed low-complexity normalized LMS (LCNLMS) is

suitable for efficient hardware implementation and maintains the fast convergence of the

normalized LMS. First, the update equation of (7.4) can be reformulated as follows:

F
[n]
k+1 = F

[n]
k + 2

�

∣yk∣
y∗k
∣yk∣

ek

= F
[n]
k + 2�k e

j�k ek,

where �k = ∕ y∗k is the complex argument of y∗k and �k =
�

∣yk∣
. It is clear from this incremen-

tal update that the normalized LMS is equivalent to using a variable update coefficient that

is inversely proportional to the input amplitude ∣yk∣ and replacing the complex multiply

with a rotation of the error by �k. The computational complexity of the rotation operation

can be greatly simplified by quantizing the angle �k. To do so, let us define the sign function

sgn(⋅), corresponding to the sign bit in the two’s complement representation as:

sgn(x) =

⎧

⎨

⎩

+1, if x ≥ 0

−1, if x < 0

.
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Let S
I
and S

Q
respectively be the signs of the real and imaginary parts of the feedback

signal yk:

SI = sgn(ℜ{yk}) SQ = sgn(ℑ{yk}).

The quantization of the angle �k can be achieved by using the following update equation:

F
[n]
k+1 = F

[n]
k + 2�k

(
SI − jSQ

)
ek

= F
[n]
k + 2�k(±1± j)ek

= F
[n]
k + 2

√
2�ke

jm�
4 ek, (7.5)

with

m = SQ
(
SI − 2

)
.

The phase �k is therefore quantized to four possible values, i.e. �k ∈ {±�
4 ,±3�

4 }, thus ef-

fectively eliminating one complex multiplier (four real multipliers). The phase quantization

affects the convergence trajectory but has little effect on the convergence speed. This effect

is illustrated in Figure 7.2, where the Normalized LMS is shown to take a direct path to the

optimal solution, while the phase quantization causes the value of F [n] to oscillate around

the shortest path.
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Figure 7.2: Convergence paths of NLMS and LCNLMS.

The amplitude-dependent coefficient �k could be implemented as a lookup table with

one coefficient per table entry. To minimize the required memory space and further reduce
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the implementation costs, �k can be constrained to powers of two and generated from the

magnitude ∣yk∣ as follows :

uk = 2�k with �k = min
{
− ⌈log2(∣yk∣)⌉, �0

}
,

where ⌈⋅⌉ stands for the ceil(⋅) rounding function and �0 is an arbitrary integer. In the

above expression, it is assumed without loss of generality that the signal is normalized such

that ∣yk∣ < 1. The base-two exponent �k can be very efficiently generated with the simple

combinatorial circuit illustrated in Figure 7.3. Forcing the maximum exponent to �0 sets a

maximum value for �k to prevent any instability caused by the sensitivity to noise at low

amplitudes.

Figure 7.3: Circuit that generates the base-two exponent �k.

In the circuit implementation of Figure 7.3, the amplitude is represented with 12 bits

of resolution and the exponent �k is represented with a three-bit binary word. This is

equivalent to setting �0 = 7. The scaling by �k can be implemented by a simple binary

shifter.

The combinatorial implementation of the amplitude-dependent update coefficient lacks

flexibility since the update speed cannot be changed. This issue can be tackled by intro-

ducing an additional coefficient �a that is programmable:

F
[n]
k+1 = F

[n]
k + 2�a�k(SI − jSQ)ek.
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It should be noted that this low complexity update is even simpler to realize in hardware

than the regular LMS, which requires two complex multipliers and has a much slower

convergence speed. Figure 7.4 compares the convergence of the regular LMS, the normalized

LMS (NLMS), and the proposed low complexity update method (LCNLMS).
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Figure 7.4: Convergence speed of LMS, NLMS, and LCNLMS.

This experiment is based on a linearly interpolated complex-gain LUT predistorter of

size L = 64 entries that linearizes a class-E power amplifier. The LUT is updated at a

sample rate of 30.76MHz. Figure 7.4 shows the instantaneous mean squared error MSE
LUT

between the updated LUT F and an optimal reference LUT H obtained by using least-

square approximations in each interval.

MSE
LUT

=
1

L

L∑

n=1

∣
∣
∣F [n] −H [n]

∣
∣
∣

2

These results show that the proposed LCNLMS achieves the same convergence speed as

the normalized LMS and has an implementation complexity even lower than the regular

LMS, which suffers from a very slow convergence of lower table entries. To achieve a fair

comparison, the update coefficient of the low complexity normalized LMS was normalized

so that the additional factor of
√
2 in (7.5) is canceled.

7.2 Updating a Linearly-Interpolated LUT

Linear interpolation greatly reduces the LUT approximation errors and enables significant

reduction of the required LUT size. If linear interpolation is used, for each feedback sample
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magnitude ∣yk∣ falling between addresses n and n+ 1, the interpolated complex-gain is

Fk = F [n] + �k
(

F [n+1] − F [n]
)

,

where �k is the interpolation factor. For the purpose of practical implementation, the

address n and the interpolation factor �k are readily obtained from the amplitude bits:

amplitude bits (∣yk∣) =⇒ a11a10a09a08a07a06
︸ ︷︷ ︸

address bits (n)

a05a04a03a02a01a00
︸ ︷︷ ︸

interpolation factor(�)

.

It should be noted that for each input sample, two consecutive LUT entries must be

fetched from memory and interpolated to compute the complex-gain. The hardware imple-

mentation and the sequencing of operations can be greatly simplified by using a dual-port

memory. In general, dual-port memories are more expensive and larger in size than single-

port memories of same capacity. But in the case of the LUT interpolation, the two entries

to be fetched are always located at consecutive addresses. Consequently, a dual-port mem-

ory of size N can be emulated from two single-port memory blocks of size
N

2
and simple

additional logic. One of the blocks stores the entries located at even addresses and the other

one store the entries at odd addresses. See Figure 7.5 for an illustration.
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din
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5MSBs

0

1

0

1

dout_1

dout_2

LSB 1
unused

Figure 7.5: Pseudo dual-port memory to implement a linearly-interpolated LUT.

This process allows the implementation of a pseudo dual-port memory at the same cost

as a single-port memory. The only limitation is that simultaneous read/write operations
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require one address to be odd and the other to be even. In the case of a linearly-interpolated

LUT, this requirement is always satisfied because the addresses n and n+1 are consecutive.

If linear interpolation is used in the feedback path (adapted LUT), the error signal ek is

given by

ek = zk − Fk yk

= zk −
[

(1− �)F [n] − �F [n+1]
]

yk. (7.6)

Since two entries are used to generate the interpolated complex-gain, both entries should

be updated with each new data sample. The application of the same LMS algorithm by

alternatively computing the gradients with respect to F [n] and F [n+1] results in the following

update equations:

F
[n]
k+1 = F

[n]
k + �(1− �) y∗k ek

F
[n+1]
k+1 = F

[n+1]
k + �� y∗k ek.

It should be noted that both the nearest neighbor and linear interpolation adaptations

converge to the same solution. The linearly interpolated case has lower LUT approximation

errors and therefore results in a slightly better steady state performance. The nearest

neighbor method can generally match that performance if the update coefficient is reduced,

at the cost of slower convergence. For practical implementations, the nearest neighbor

approach is more attractive in the feedback path since it requires only one memory read

and write for each data sample. On the other hand, the linearly interpolated adaptation

requires two memory reads and writes per data sample, putting more stringent timing

requirements on the adaptation hardware. It is therefore judicious to restrict the use of

linear interpolation to the feedforward predistorter, where the approximation errors are

directly reflected in the transmitted signal.

7.3 Limitations of Direct Learning

In the direct learning architecture illustrated in Figure 7.6, the feedforward predistorter is

directly updated. Since a secondary feedback predistorter is not needed, the direct learning
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architecture requires fewer additional components than the indirect learning architecture.

GF

dτ

Figure 7.6: Direct learning architecture.

Using the same approach as above, the update equations can be computed by considering

a single LUT bin at a time, so that the predistorter reduces to a simple average complex

factor across that bin. The error signal is

ek = xk − yk

= xk − F [n]gkxk, (7.7)

where gk is the average of the amplifier’s complex gain across the considered signal values,

normalized by the real linear gain K. The complex-gain gk includes any phase-shift in the

feedback path. Applying the LMS algorithm we get

F
[n]
k+1 = F

[n]
k + 2� g∗k x

∗
k ek.

The complex factor gk is unknown a priory and cannot be used for the update. Since

its magnitude is positive, it can be ignored as long as an appropriate update coefficient � is

selected to guaranty stability. Its phase can also be ignored provided that −�
2
< ∕ gk <

�

2
.

This will result in the following simplified update equation:

F
[n]
k+1 = F

[n]
k + 2�x∗k ek.

A necessary condition for the convergence of the above update equation is −�
2
< ∕ gk <

�

2
.

The total phase-shift across the feedback loop depends on many varying factors such as
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the matching conditions, the amount of delay in the RF path or the feedback oscillator

synchronization etc.. Therefore, an adaptive phase-shifter is required in the feedback to

guaranty that the convergence condition is always met.

In addition to this limitation, the direct learning architecture exposes the transmit path

to potential impulse noise in the feedback. Any temporary disruption in the loop is reflected

in the transmitted signal, potentially causing a violation of the spectral requirements. Ad-

ditionally, wideband modulated signals require a feedforward predistorter operated at a

very high sampling rate. In this case, reading the LUT at very high speed for the purpose

of predistortion and updating it simultaneously might result in difficult timing challenges

in a practical implementation. For all the reasons enumerated above, the indirect learning

method appears to be more suitable to the design of an adaptive predistorter.

7.4 Conclusion

An adaptive predistortion algorithm with efficient hardware implementation is proposed in

this chapter. An optimized LMS adaptation based on the indirect learning architecture is

presented. The proposed adaptation has a convergence speed that is comparable to the

normalized LMS and lends itself to very efficient hardware implementation. Finally the

indirect learning and direct learning architectures are compared and the shortcomings of

the latter are exposed.
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CHAPTER VIII

PREDISTORTION AND QUADRATURE IMBALANCES

It has been shown in [9] that quadrature (I/Q) gain and phase imbalances severely limit the

effectiveness of adaptive complex-gain predistorters in mitigating the effects of transmitter

nonlinearity. In this chapter, it is shown that the transmitter nonlinearity can also affect the

identification and compensation of the quadrature imbalances. This relatively strong inter-

action between predistortion and I/Q mismatch (IQM) compensation makes it difficult to

individually address these two issues, one at a time. The 2D mapping predistorter proposed

by Nagata [39] is a comprehensive solution that simultaneously linearizes the transmitter

and compensates I/Q imbalances and DC offsets. But the high memory requirements and

slow training convergence makes it an unattractive solution that is unsuitable to low-cost

resource-constrained wireless handsets.

In this chapter, two alternative solutions are studied. First, a method alternating I/Q

mismatch correction (IQMC) and predistorter identification is presented. The second solu-

tion is a novel predistorter structure that has lower computational complexity than the com-

bination of a complex-gain predistorter plus a separate IQMC. This new solution requires

twice the memory space of the complex-gain predistorter, but is still far more memory-

efficient than the mapping predistorter. Furthermore, its convergence speed is similar to

that of the complex-gain predistorter.

8.1 Interactions Between IQ Imbalance and Nonlinearity

The effects of I/Q imbalances (IQM) on the effectiveness of the complex-gain predistorter

were studied in great details in [9, 12]. In these previous studies, it is shown that even

carefully-designed modulators with relatively low levels of IQM could erase the benefits of

the predistorter and make its adaptation very challenging.

Let us consider the simplified transmitter modeled in Figure 8.1. The amplifier’s char-

acteristic is modeled as the product of a real, constant gain K and an amplitude-dependent
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complex gain component g(r), which emulates the amplifier’s nonlinear behavior.

( )δθγ ,










2221

1211

ww

wwx z
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Figure 8.1: Transmitter configuration with predistorter and IQM corrections.

The quadrature gain and phase imbalances can be modeled in many different but equiv-

alent ways [9, 10]. Without loss of generality, we model the imbalance as a set of complex

coefficients
(

�ej�1 , �ej�2
)

that respectively scale the in-phase (I) and quadrature (Q) com-

ponents of the complex baseband input signal. Using vector notation, the IQMC can be

modeled as a 2×2 matrix that transforms the 2D input signal vector x = [xi xq]
T
:

z =Mx,

with

M =

⎡

⎢
⎣

� cos �1 −� sin �2

� sin �1 � cos �2

⎤

⎥
⎦ .

Adopting the terminology in [12], we define the dimensionless gain ratio  = �/� and

the gain imbalance " =  − 1, expressed in percentage. The phase mismatch is represented

by �� = �1 − �2. To distinguish between a power change and pure I/Q imbalance, the

condition �2 + �2 = 2 must be satisfied [12]. The magnitudes of x and z are related as

follows:

r2z = �2x2i + �2x2q + 2��xixq sin(�1 − �2)

= �2
[

r2x + (1/2 − 1)xq + 2��xixq sin ��
]

, (8.1)

with r2x = x
T
x and r2z = z

T
z. The amplifier will scale the signal z with the complex gain

Kg(rz). Combining this result with (8.1) shows that the nonlinearity is now a function of
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both the magnitude and phase of the input signal x. Therefore, an amplitude-dependent

complex-gain predistorter cannot fully mitigate the amplifier’s nonlinearity, unless and an

IQM correction is inserted in the transmitter. As noted in [12], even the envelopes of

constant-magnitude signals (CW tone, GMSK signal, etc..), known for their immunity to

amplifier nonlinearity, will be modulated by I/Q imbalances causing the appearance of

unexpected spectral regrowth. If a CW input of frequency fo is considered, the RF output

of an ideal mixer would be:

vz = cos[2�(fc + fo)t+ �o],

where fc is the carrier frequency and �o an arbitrary phase shift. The input of the amplifier

is then a single tone at frequency fc + fo, which is immune to nonlinear distortions. In the

presence of I/Q imbalance, the modulator output would be:

ṽz = A1 cos[2�(fc + fo)t+ �1] +A2 cos[2�(fc − fo)t+ �2],

with

A1 =

√

1 + 2 cos �� + 2

2(1 + 2)
A2 =

√

1− 2 cos �� + 2

2(1 + 2)

�1 = arctan

(
� sin �1 + � sin �2
� cos �1 + � cos �2

)

�2 = arctan

(
� sin �1 − � sin �2
� cos �1 − � cos �2

)

.

Because of the I/Q imbalance, the output of the modulator now contains a residual

image tone at frequency fc−fo. When transmitted through the nonlinear amplifier, spurious

intermodulation products will be generated. This is illustrated by the simulations results in

Figure 8.2, showing the PSD of the amplifier’s output for an input CW tone at f0 = 250 kHz

offset. The gain and phase mismatches are respectively " = 5% and �� = 6∘. Figure 8.2(a)

shows that the modulation of a CW tone by the quadrature imbalances interacts with the

amplifier nonlinearity causing undesired inter-modulation products at frequencies fc+(2k+

1)f0, with k ∈ {±1,±2,±3, ⋅ ⋅ ⋅ }.

The transmission of a constant-envelope GMSK input signal under the same imbalance

conditions is illustrated in Figure 8.2(b). It is apparent from these results that a relatively

low level of I/Q imbalance makes the constant-envelope GMSK signal vulnerable to amplifier

nonlinearity causing non-negligible levels of spectral regrowth.
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Figure 8.2: PSD of PA output, when " = 5% and �� = 6∘. (a) CW tone input at 250 kHz
offset. (b) GMSK input.

8.1.1 Effect of Nonlinearity on IQM Correction

It was shown above that the I/Q imbalance significantly reduce the effectiveness of a previ-

ously trained predistorter. Similarly, the nonlinearity of the amplifier will negatively impact

the identification of the IQM correction (IQMC).

For the purpose of the IQMC identification, we assume that the predistorter is set to

the identity mapping. We also assume an input signal xk = [xik xqk]
T

with a corresponding

baseband output signal yk = [yik yqk]
T
. It is assumed that yk is ideally down-converted,

delay-matched, and normalized by the linear gain of the amplifier K. If the amplifier is
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memoryless, the input/output relationship can be summarized by

yk = ℎkPkMxk + nk,

where ℎk is the amplifier’s gain variation obtained from (8.1):

ℎk =
∣
∣
∣g
[
�2x2ik + �2x2qk + 2��xikxqk sin(��)

]
∣
∣
∣ .

Pk is a rotation matrix combining the amplitude-dependent phase-shift of the amplifier and

any arbitrary phase-shift in the feedback path. nk is assumed to be a zero-mean additive

noise signal. The IQM correction matrix can be estimated by finding the least-squares

solution of the post-inverse equation:

WY = X,

with

Y = [y1 y2 ⋅ ⋅ ⋅ yN ] and X = [x1 x2 ⋅ ⋅ ⋅ xN ] .

The least-squares solution to the above equation is given by

W = XY
T

(Y Y
T

)−1.

With a large number of samples N , the additive noise nk will have little to no effect on the

estimation of the IQM correction matrix W . But the multiplicative correlated distortion

term ℎk and the signal-dependent rotation matrix Pk will negatively affect the accuracy of

the estimated IQM correction matrix W . If the correction is accurate, then the residual

matrix R = MW will, in the general case, correspond to a constant rotation matrix. If all

phase-shifts in feedback loop have been compensated before the estimation of W , then R

would reduce to an identity matrix. If the IQM estimation is not accurate, R will correspond

to a residual I/Q imbalance matrix.

This IQM correction estimation has been simulated with a class-E amplifier for various

gain and phase mismatch settings. To reduce the effect of nonlinearity, a random input

signal with constant amplitude and uniformly distributed phase is used. Table 8.1 shows

the residual gain and phase mismatch ̃ and ��̃ after pre-compensation with a correction

matrix W estimated from N = 1000 samples.
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Table 8.1: Effect of nonlinearity on IQM correction estimation.

Initial I/Q imbalance Residual I/Q imbalance

 (%) �� (o) ̃ (%) ��̃ (o)

3.0 3.0 1.6 1.1

5.0 6.0 2.7 2.2

8.0 9.0 4.3 3.7

These results show that even with a constant envelope input, the amplifier nonlinearity

significantly degrades the estimation accuracy of the IQ imbalance correction matrix. An

accurate IQMC estimation requires the compensation of the nonlinear distortion in the

output data samples yk. In other words, the samples yk should be post-distorted before

estimating the matrix W . On the other hand the accuracy of the post-distorter estimated

from the data samples {xk, yk} is deteriorated by the quadrature gain and phase imbalances.

It appears from the previous results that the nonlinearity and I/Q imbalances cannot be

easily corrected individually, unless the amplifier can be bypassed or operated in a relatively

linear region. But high-efficiency amplifiers exhibit severe nonlinear distortion across their

entire amplitude range and a amplifier-bypass capability is not always a feasible solution.

8.1.2 The Mapping Predistorter

The two-dimensional mapping predistorter was proposed by Nagata in [39]. It is a two-

dimensional complex LUT that is indexed by the complex baseband input’s in-phase (I)

and quadrature (Q) components. The two-dimensional nature of the mapping predistorter

enables the simultaneous correction of the amplifier nonlinearity and I/Q imbalances. Un-

like the complex-gain predistorter, the mapping predistorter is an additive correction. As a

result, it is also capable of correcting the undesired DC offsets. The mapping predistorter is

illustrated in Figure 8.3. Nagata also proposed a low-complexity training algorithm to build

the 2D LUT and track the characteristic variations. The main downside of the mapping

predistorter is its very high memory requirements. To achieve the same approximation ac-

curacy as a 1D complex-gain LUT with N entries, a mapping predistorter of more than 4N2

entries must be used. This also results in a very slow convergence of training algorithms [8].
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Additionally, the adaptation of the mapping predistorter is very sensitive to phase-shifts in

the feed-back path and therefore, requires a fast adaptive phase correction function.

x

Ix

Qx

),( QI xxF

Figure 8.3: Mapping predistorter [39].

The performance of the mapping predistorter proposed by Nagata can be improved

with a multiplicative correction, effectively making it a 2D complex-gain predistorter. Even

though the DC offset correction capability will be lost, a significant reduction in the required

memory size and can be achieved.

8.1.3 Iterative IQMC Estimation

The above results showed that separate identification of the IQM correction and the inverse

nonlinearity is difficult from the set of data samples {xk, yk}. A possible solution is to

iteratively estimate and apply IQM corrections of increasing accuracy. For each iteration

step the data samples {xk, yk} are measured and used to estimate an incremental IQM

correction, which will be combined with the previous feedforward correction. The process

is then repeated until a satisfactory accuracy of the feedforward IQMC is achieved. The

iterative IQMC estimation is summarized in Figure 8.4. Table 8.2 shows the residual gain

and phase imbalances for the first five iteration steps, when the initial gain and phase

imbalances are respectively  = 8% and �� = 9∘.

The results in Table 8.2 show that the residual gain and phase imbalances are respectively

reduced to 0.46% and 0.05∘ after just three iterations. The accuracy is further improved

with five iterations. Icreasing the number of iterations above five has no noticeable effect.

The iterative IQM correction method is experimentally shown to converge. It also has
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lower memory requirements than the mapping predistorter. But the high computational

complexity of the multiple iterative least-squares estimations is a major limitation.

? Nn=

ky

kx

δW

δWWW ⋅=

Figure 8.4: Iterative IQM correction.

Table 8.2: Iterative IQMC Estimation.

Iteration number Residual I/Q imbalance

k ̃ (%) ��̃ (o)

0 8.00 9.00

1 5.72 2.51

2 1.95 0.49

3 0.46 0.05

4 0.08 0.02

5 0.01 0.01

8.2 2×2 Transform Predistorter

In the previous sections the mapping predistorter and the iterative IQMC estimations were

shown to successfully correct I/Q mismatches in the presence of amplifier nonlinearity. But

the high memory requirements of the mapping predistorter and the high computational
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complexity of the iterative IQMC estimation make these methods unpractical for resource-

limited mobile devices. An alternative method is derived in this section.

The complex-gain predistorter f(r) = f
I
(r) + jf

Q
(r) can be reformulated as a real

2×2 transform F that is applied to the input signal vector [xi xq]
T
:

F =

⎡

⎢
⎣

f
I
(r) −f

Q
(r)

f
Q
(r) f

I
(r)

⎤

⎥
⎦ .

The equation above shows that the complex multiplication can be written as a special case

2×2 transform. The combination of the predistorter F and IQM correction W is computed

as follows:

WF =

⎡

⎢
⎣

w
11
f
I
(r) + w

12
f
Q
(r) w

12
f
I
(r)− w

11
f
Q
(r)

w
21
f
I
(r) + w

22
f
Q
(r) w

21
f
I
(r)− w

22
f
Q
(r)

⎤

⎥
⎦ .

We see from this result that by generalizing the complex-gain predistorter to an arbitrary

amplitude-dependent 2×2 transform, the predistorter will be able to correct I/Q imbalances.

The generalized predistorter is

F =

⎡

⎢
⎣

f
11
(r) f

12
(r)

f
21
(r) f

22
(r)

⎤

⎥
⎦ ,

where the functions fkj(r) can be represented with polynomial functions or with lookup ta-

bles. It must be noted that even though the generalized 2×2 transform predistorter has twice

the memory requirements of the complex-gain predistorter, it remains far more memory-

efficient than the mapping predistorter, while providing better IQM correction accuracy.

The mapping predistorter has the advantage of correcting DC offsets, but this capability

cannot justify the difference in memory requirements since the DC offset correction can be

separately implemented at a much lower cost.

It is also worth noting that the 2×2 transform requires four real multiplies and two

additions. Therefore, it has the same computational complexity as a complex multiplier.

Additionally, by combining predistortion and IQM correction into a single operation, the

2×2 transform predistorter has lower overall complexity than the combination of a complex-

gain predistorter and a separate IQM correction.
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Figure 8.5 illustrates the training of a 2×2 transform predistorter implemented as a set

of LUTs indexed by the most significant bits of the signal’s amplitude. The training of

Figure 8.5 uses the indirect learning architecture [20].
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Figure 8.5: Training of 2×2 transform predistorter.

To minimize the implementation complexity, the least mean-squares (LMS) algorithm

can be used to minimize the cost function

J = E
[

∣e∣2
]

= E
[

e
T

e
]

, (8.2)

with the error signal signal e given by

ek = zk − F [n]yk,

where F [n] is the nth entry indexed by ∣yk∣. For every new set of samples {zk,yk}, the LUT

is updated as follows:

F
[n]
k+1 = F

[n]
k + �

∂ ∣ek∣2
∂F [n]

= F
[n]
k + 2�eky

T

k . (8.3)

Figure 8.6 shows the EDGE PSD for a complex-gain predistorter(CGP), a mapping pre-

distorter (MAP), a 2×2 transform predistorter (PD2×2 ), and the combination of a complex-

gain predistorter and an IQM correction (CGP+IQMC) obtained after four iterations.
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Figure 8.6: EDGE PSD for a complex-gain (CGP), a mapping (MAP), 2×2 transform
predistorters (PD2×2 ) and a combination complex-gain predistorter and the iteratively
trained IQM correction (CGP+IQMC).

The mapping predistorter uses a 32×32 2D LUT, with additive correction and the other

configurations use an LUT size of 32 entries. The gain and phase imbalances are respectively

set to  = 5% and �� = 6∘. The 2×2 transform predistorter achieves the best performance

followed by the combination of a complex-gain predistorter and a IQM correction. Despite

a very large LUT size, the mapping predistorter is less effective than the CGP+IQMC and

PD2x2 configurations.

It must be noted that the CGP+IQMC has a good performance as long as the calibrated

IQM correction remains accurate. In the situation where the I/Q imbalances vary during the

operation of the device (e.g. temperature related variations), the IQM correction must be

updated. The iterative IQM correction presented requires a special constant-envelope train-

ing signal and therefore cannot necessarily be used during the device operation. In this case

the PD2×2 represents an attractive solution that can be trained with the transmitted mod-

ulated signal to adaptively linearize the transmitter and correct the temperature-dependent

quadrature imbalances.
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8.3 Conclusion

In this chapter, the interactions between amplifier nonlinearity and quadrature imbalances

(IQM) were studied. A novel predistorter configuration that simultaneously linearizes the

transmitter and compensates the quadrature gain and phase imbalances is proposed. The

complex-gain predistorter is highly vulnerable to I/Q mismatches. Even relatively low levels

of quadrature gain and phase imbalances can significantly reduce the effectiveness of the

adaptive complex-gain predistorter.

It is shown that the proposed method is more robust than the complex-gain predis-

torter and can compensate for high levels of quadrature gain and phase imbalances. Even

though it requires twice as much memory as the complex-gain predistorter, the proposed

method combines linearization and I/Q imbalance correction in a single operation, resulting

in lower computational complexity than a complex-gain predistorter followed by separate

IQM correction. The proposed configuration with a simple adaptation algorithm, which

tracks both types of impairments, is also a more attractive arrangement than two separate

adaptation loops for the predistorter and IQM corrections. It should also be noted that the

proposed method requires only a fraction of the memory of the 2D mapping predistorter by

Nagata [39], which also provides IQM and DC offset correction.
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CHAPTER IX

EFFECT OF VSWR ON PREDISTORTER ADAPTATION

The predistorter adaptation relies on the feedback signal to identify the inverse nonlinearity

and track characteristic changes caused by temperature variations. Impedance mismatches

in the RF transmit chain cause distortions to both the transmitted wave and the feedback

signal sensed at the coupler. Furthermore, the matching conditions (mainly at the antenna)

are subject to frequent variations depending on the handset position and its proximity to

certain real life surfaces and objects. It is therefore necessary to measure the impact of such

distortions on the predistortion adaptation and determine the VSWR conditions under

which adaptative predistortion compensation is feasible.

9.1 Effect of Varying Antenna Impedance

The impedance matching between two elements is generally characterized by the reflection

coefficient Γ. Figure 9.1 illustrates the reflections in the connection between the amplifier’s

output stage the and the antenna.

1Γ 2Γ

PA
Z

l

ANT
Z

Figure 9.1: Impedance mismatch and reflections at the antenna connection.

The mismatch between the impedance of the amplifier’s output stage ZPA and the

characteristic impedance of the transmission line Z0 is measured by the reflection coefficient
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Γ1 given by

Γ1 =
Z

PA
− Z0

Z
PA

+ Z0
.

Similarly, the mismatch at the antenna connection is measured by the reflection coefficient

Γ2 given by

Γ2 =
Z

ANT
− Z0

Z
ANT

+ Z0
.

The impedance mismatches cause the appearance of a standing wave across the transmission

line. The voltage standing wave ratio (VSWR) is defined as the ratio between the maximum

and minimum amplitude of this standing wave. It is related to the reflection coefficient by

VSWR =
1− ∣Γ∣
1 + ∣Γ∣ .

Part of the RF signal transmitted by the amplifier is reflected at the antenna connection

and travels back to the amplifier output where it is again reflected. This process is repeated

indefinitely. The signal that is measured at the coupler is the sum of all those incident and

reflected signals. The baseband equivalent signal measured at the coupler is calculated as

follows:

vc = v
PA

(

1 + Γ2 + Γ1Γ2 + Γ1Γ
2
2 + Γ2

1Γ
2
2 + Γ2

1Γ
3
2 + ⋅ ⋅ ⋅

)

= v
PA

(1 + Γ2)
(

1 + Γ1Γ2 + Γ2
1Γ

2
2 + Γ3

1Γ
2
3 + ⋅ ⋅ ⋅

)

= v
PA

1 + Γ2

1− Γ1Γ2
︸ ︷︷ ︸

H

(9.1)

For integrated circuits, the length of the transmission line is insignificant when compared

to the signal’s wavelength. Therefore the phase-shift terms ejk�ℓ are neglected. The effect

of impedance mismatches is a complex factor H multiplying the baseband feedback signal

as shown in (9.1). This complex factor does not affect the predistorter adaptation as long as

it is constant. As previously stated, the antenna impedance changes during the operation of

the device causing the variation of H. Even a change of the phase of Γ2 can result in several

dBs of gain changes. Figure 9.2(a) and Figure 9.2(b) respectively show the variations of the

gain and phase of H, when the reflection coefficient at the antenna Γ2 changes.
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Figure 9.2: Variations of the complex factor H when the antenna matching conditions
change. (a) Magnitude of ∣H∣. (b) Angle of ∣H∣.

If the changes of complex gain H are not compensated, the predistorter will try to com-

pensate for it, causing unnecessary repeated re-convergences, with a performance degrada-

tion during those transient convergence periods.

9.2 Adaptive Loop Gain Normalization

The complex-gain predistorter update mechanism presented in Chapter 4 is very sensitive

to the gain and phase variations in the feedback path. Any change in the gain of the loop

will be reflected in the updated predistorter. Therefore, it is necessary to have an accurate

normalization of the complex loop gain during adaptation. An initial normalization factor

Gloop is computed from the different gain settings in the feedback loop (amplifier, LNA etc..).

Since the gains of the different components in the feedback loop vary with temperature, the

calculated normalization factor is at best a rough estimate and is not expected to be very

accurate (intractable temperature variations etc..).

More importantly, the antenna impedance variations discussed in Section 9.1 can cause

significant and relatively fast gain and phase variations. In the absence of an equally fast and

accurate adaptive correction, the predistorter update algorithm will attempt to compensate

for these variations, potentially creating LUT curve discontinuities since the updates are

local (only the active entries are updated). In addition to creating discontinuities, the

accuracy of open-loop power control could be severely degraded. To avoid these effects,

an adaptive gain and phase normalization block is proposed to improve the normalization
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accuracy and closely track the potential variations of the feedback loop gain.

The process of adaptive normalization is illustrated in Figure 9.3. A complex factor

� = �
I
+ j�

Q
is adapted such that ∣E(xp − yo)∣2 is minimized. xp is the output of the

feedforward predistorter, and yo is the baseband feedback signal. When the initial loop

correction factor Gloop is inaccurate, � will converge to an incremental complex correction

to compensate for the inaccuracies.

QI αα j+

loopG

px

oy

loopG

Figure 9.3: Adaptive loop gain normalization.

The proposed update equation for � is similar to the predistorter update. The LUT is

simply replaced by a register containing �. The feedback error is first computed as follows:

ek = xp − �k yo

Then the LMS update of � is given by

�k = �k−1 + � y∗o

It is important to note that the predistorter update calculation hardware can be reused

for the adaptive gain normalization, since the predistorter adaptation should be activated
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only after correct loop normalization is achieved. It should be noted that the convergence

of � is several orders of magnitude faster than the predistorter LUT convergence, since

all signal samples are used to update a register, as opposed to a single LUT entry being

updated per sample. Figure 9.4 shows a flow diagram of the adaptive gain normalization

and illustrates the hardware sharing between predistorter adaptation and adaptive loop

gain normalization.

loop

loop

loop

Figure 9.4: Adaptive loop gain normalization and hardware sharing flow chart.
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CHAPTER X

CONCLUSIONS

In this dissertation, an adaptive digital baseband predistortion system targeted to resource-

constrained cellular handsets was studied. The results of the study contribute to the de-

sign of highly power-efficient transceivers for mobile devices by proposing a low-complexity

adaptation scheme that lends itself to efficient hardware implementation. By combining

the proposed adaptative predistorter with a highly nonlinear but power-efficient amplifier

(e.g. class-E and above), significant power savings can be achieved while meeting the strict

standard performance requirements.

10.1 Contributions

This thesis considered many different aspects of adaptive predistorter design. The primary

contributions are summarized below:

∙ The optimal spacing of linearly-interpolated LUT predistorters was thoroughly stud-

ied. The LUT entries can be arbitrarily spaced by preceding the predistorter with a

compander [11]. Optimal companders were derived for both the polar and complex-

gain predistorter configurations. It was shown that the combination of linear interpo-

lation and optimal spacing results in significant reduction in required memory space.

∙ A theoretically-derived constant-SNR compander that increases the supported dy-

namic range of LUT predistorters was also proposed. The use of this compander

results in constant performance across a large input backoff range. A low-complexity

approximation of the constant-SNR spacing is also proposed and its implementation

in hardware is presented.

∙ An LMS-based complex-gain predistorter adaptation using the indirect learning ar-

chitecture is presented. The update equations are optimized for efficient hardware

99



implementation. An amplitude approximation with efficient hardware implementa-

tion is also presented.

∙ A novel predistorter configuration based on a generalization of the complex-gain pre-

distorter is proposed. This new predistorter adaptively compensates the quadrature

imbalances and linearizes the amplifier, while requiring the same computational com-

plexity as the complex-gain predistorter.

∙ The effects of varying matching conditions on the predistorter adaptation are studied.

An adaptive gain and phase normalization algorithm that mitigates these effects is

presented. The proposed design reuses the predistorter update hardware to minimize

the implementation costs.

Additionally, the proposed adaptive predistorter is implemented in VHDL and syn-

thesized with the Synopsys Design Compiler. The VHDL source code is provided in

AppendixB.

10.2 Future Research

This dissertation can be extended in a number of different directions, including:

∙ The predistorter with quadrature imbalance correction presented in Chapter 8 can be

extended to mitigate frequency-selective I/Q mismatches. This capability could be

required for very wideband modulations (e.g. 20MHz LTE signal).

∙ Even though the proposed adaptive predistorter is targeted to resource-constrained

handsets, it could be adapted to high-power base station transceivers by adding mem-

ory effects mitigation capabilities.

∙ The predistorter adaptation schemes proposed in this thesis and most studies in the

literature require an auxiliary receiver to provide a feedback signal. A potential area of

future research is the design of a predistorter adjustment technique based on temper-

ature feedback. Since temperature measurement capabilities are already available in

most transceiver systems, this approach could potentially result in significant savings

to the cost of implementation of adaptive digital predistorters.
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APPENDIX A

LINEAR INTERPOLATION ERROR

The purpose of the following derivation is to come up with a closed-form expression for the

linear interpolation error between two reference points.

Let f(x) be a doubly differentiable function that is evaluated at points (xi, yi) with

yi = f(xi), i ∈ 1, 2, ⋅ ⋅ ⋅ , N . The closed-form expression of the interpolation error within

the interval [xk, xk+1] will be derived, for 1 < k < N . Let us assume that the interval

considered is small enough that f(x) can be approximated by a second order polynomial

within the ktℎ interval. This is equivalent to neglecting the error terms above the second

order term in a Taylor series expansion. Consequently, the second order derivative of f(x)

can be considered as a constant within the interval. The previous assumption is reasonable

here since otherwise a linear approximation of f in that interval would yield a very inaccurate

approximation. f(x) is therefore given by

f(x) = ax2 + bx+ c for xk ≤ x ≤ xk+1. (A.1)

After a few trivial algebraic manipulations, the coefficients a, b, and c can be calculated

from the two reference points as functions of f ′′(x), xk, xk+1, yi and yk+1:

a =
f ′′(x)

2

b =
yk − yk+1

xk − xk+1
− f ′′(x)

2
(xk + xk+1)

c =
xi × yk+1 − xk+1 × yk

xi − xk+1
+
f ′′(x)

2
(xk × xk+1).

The linear approximation of f(x) in the ktℎ interval can be formulated as follows:

f̃(x) = �x+ , (A.2)

101



where � and  can also be expressed as a function of xk, xi+1, yk and yk+1:

� =
yk − yk+1

xk − xk+1

 =
xk × yk+1 − xk+1 × yk

xk − xk+1
. (A.3)

The interpolation error between f(x) and f̃(x) for xk < x < xk+1 can be calculated as

follows:

ei(x) = f(x)− f̃(x)

=
f ′′(x)

2
+ x(b− �) + c− 

...

=
f ′′(x)

2
(x− xk)(x− xk+1). (A.4)

Let "x be the deviation between x and xk, and dk the width of the ktℎ interval:

"x = x− xk and dk = xk+1 − xk

The expression of the linear interpolation error can then be rewritten as follows:

ei(x) = f ′′(x)
"x ("x − dk)

2
(A.5)
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APPENDIX B

VHDL CODE FOR HARDWARE SYNTHESIS

This appendix lists the VHDL code used to simulate and synthesize different hardware

blocks proposed in this thesis.

B.1 Base-2 spacing VHDL Code

The code in ListingB.1 implements the base-2 addressing, for an amplitude resolution of

16 bits and an interpolation factor of 6 bits. The number of intervals and the number of

entries per interval are N = 8 and M = 16, respectively.

1 −− b2addr . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4

5 en t i t y b2addr i s
6 gene r i c (
7 DW : i n t e g e r := 7 ;
8 AW : i n t e g e r := 16 ;
9 NI : i n t e g e r := 8 ;

10 IW : i n t e g e r := 6) ;
11 port (
12 en : in s t d l o g i c ;
13 amp : in s t d l o g i c v e c t o r (AW−1 downto 0) ; −− amp l i tude in

14 addr : out s t d l o g i c v e c t o r (DW−1 downto 0) ; −− addre s s out

15 i n t : out s t d l o g i c v e c t o r (IW−1 downto 0) ) ;
16 end ;
17

18 a r ch i t e c t u r e addr arch o f b2addr i s
19 −− Logic OR o f t he b i t s in a s t d l o g i c v e c t o r

20 f unc t i on o r b i t s ( va l : s t d l o g i c v e c t o r ) return s t d l o g i c i s
21 va r i ab l e r e s u l t : s t d l o g i c := ’ 0 ’ ;
22 begin
23 f o r i in val ’ low to val ’ high loop
24 r e s u l t := r e s u l t or va l ( i ) ;
25 end loop ;
26 return r e s u l t ;
27 end o r b i t s ;
28

29 begin −− a r c h i t e c t u r e

30 add ca l c : proce s s (amp, en )
31 va r i ab l e CI : s t d l o g i c v e c t o r (NI−1 downto 0) ;
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32 va r i ab l e cum : s t d l o g i c := ’ 1 ’ ;
33 va r i ab l e n : i n t e g e r := 0 ;
34 begin
35 i f en = ’1 ’ then
36 −−−−−−−−−−−− In t e rmed i a t e S i gna l C −−−−−−−−−−−−−

37 cum := ’ 1 ’ ;
38 f o r i in 1 to NI−1 loop
39 CI (NI − i ) := cum and amp(AW−i ) ;
40 cum := cum and ( not amp(AW − i ) ) ;
41 end loop ;
42 CI (0 ) := cum ;
43 −−−−−−−−−−−−−−−−−−− Compute addre s s −−−−−−−−−−−−−−−−−−−−

44 addr (6 ) <= o rb i t s (CI (7 downto 4) ) ;
45 addr (5 ) <= o rb i t s (CI (7 ) & CI (6 ) & CI (3 ) & CI (2 ) ) ;
46 addr (4 ) <= o rb i t s (CI (7 ) & CI (5 ) & CI (3 ) & CI (1 ) ) ;
47 addr (3 ) <= o rb i t s (CI and (amp(14 downto 8) & amp(8) ) ) ;
48 addr (2 ) <= o rb i t s (CI and (amp(13 downto 7) & amp(7) ) ) ;
49 addr (1 ) <= o rb i t s (CI and (amp(12 downto 6) & amp(6) ) ) ;
50 addr (0 ) <= o rb i t s (CI and (amp(11 downto 5) & amp(5) ) ) ;
51 −−−−−−−−−−−− Compute i n t o l a t i o n f a c t o r −−−−−−−−−−−−−

52 i n t (5 ) <= o rb i t s (CI and (amp(10 downto 4) & amp(4) ) ) ;
53 i n t (4 ) <= o rb i t s (CI and (amp(09 downto 3) & amp(3) ) ) ;
54 i n t (3 ) <= o rb i t s (CI and (amp(08 downto 2) & amp(2) ) ) ;
55 i n t (2 ) <= o rb i t s (CI and (amp(07 downto 1) & amp(1) ) ) ;
56 i n t (1 ) <= o rb i t s (CI and (amp(06 downto 0) & amp(0) ) ) ;
57 i n t (0 ) <= o rb i t s (CI and (amp(05 downto 0) & "00" ) ) ;
58 e l s e
59 addr <= ( other s => ’ 0 ’ ) ;
60 i n t <= ( other s => ’ 0 ’ ) ;
61 end i f ;
62 end proce s s ;
63 end addr arch ;

Listing B.1: Synthesizable VHDL code for the base-2 address calculation.

B.2 Amplitude Approximation Code

The code in ListingB.2 illustrates the VHDL implementation of the amplitude approxima-

tion method developed in Chapter 6.

1 −− amp approx . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4 use i e e e . numer ic std . a l l ;
5

6 en t i t y amp approx i s
7 gene r i c (IQ W : i n t e g e r :=13) ;
8 port (
9 d a t a i n i : in s igned (IQ W−1 downto 0) ;

104



10 data in q : in s igned (IQ W−1 downto 0) ;
11 amp : out unsigned (IQ W−1 downto 0) ) ;
12 end ;
13

14 a r ch i t e c t u r e r t l o f amp approx i s
15 constant cns t 11 : unsigned (3 downto 0) := "1011" ;
16 constant cns t 29 : unsigned (4 downto 0) := "11101" ;
17 constant cns t 53 : unsigned (5 downto 0) := "110101" ;
18 constant cns t 37 : unsigned (5 downto 0) := "100101" ;
19 s i g n a l absI , absQ : unsigned (IQ W−1 downto 0) ;
20 s i g n a l x , y : unsigned (IQ W−1 downto 0) ;
21 s i g n a l amp1 : unsigned (IQ W−1 downto 0) ;
22 s i g n a l amp2 : unsigned (IQ W+5 downto 0) ;
23 begin
24 absI <= unsigned ( abs ( d a t a i n i ) ) ;
25 absQ <= unsigned ( abs ( da ta in q ) ) ;
26 x <= absI when absI > absQ e l s e absQ ;
27 y <= absQ when absI > absQ e l s e absI ;
28 amp1 <= x + s h i f t r i g h t ( y+4, 3) ;
29 amp2 <= s h i f t r i g h t ( cns t 53 ∗ x + cns t 37 ∗ y + 32 , 6) ;
30 amp <= amp1(IQ W−1 downto 0) when cns t 11 ∗x > cns t 29 ∗y e l s e
31 amp2(IQ W−1 downto 0) ;
32 end ;

Listing B.2: Synthesizable VHDL code for the amplitude approximation with three
angular intervals.

B.3 Predistorter Code

The code in ListingB.3 shows the VHDL implementation of a predistorter using a uniformly

spaced LUT.

1 −− p l u t . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4 use i e e e . numer ic std . a l l ;
5

6 en t i t y p lut i s
7 gene r i c ( ADDRW : i n t e g e r := 7 ;
8 IQ W : i n t e g e r := 13 ;
9 GAINW : i n t e g e r := 8) ;

10 port ( c l k : in s t d l o g i c ;
11 en : in s t d l o g i c ;
12 d i n i : in s igned (IQ W−1 downto 0) ;
13 din q : in s igned (IQ W−1 downto 0) ;
14 wr : in s t d l o g i c ; −− t o i n i t i a l i z e MEM from ou t s i d e

15 addr0 in : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
16 addr1 in : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
17 l u t 0 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ;
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18 l u t 1 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ;
19 dout i : out s igned (IQ W−1 downto 0) ;
20 dout q : out s igned (IQ W−1 downto 0) ) ;
21 end ;
22

23 a r ch i t e c t u r e a r ch p lu t o f p lut i s
24 constant AMPW : i n t e g e r := IQ W−1;
25 constant NTRPW : i n t e g e r := AMPW−ADDRW;
26 constant MADR : s t d l o g i c v e c t o r (ADDRW−1 downto 0) :=( other s

=> ’1 ’) ;
27 constant DATAW : i n t e g e r := 2∗GAINW;
28 s i g n a l amp : unsigned (IQ W−1 downto 0) ;
29 s i g n a l addrn : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
30 s i g n a l addr0 amp : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
31 s i g n a l addr1 amp : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
32 s i g n a l addr0 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
33 s i g n a l addr1 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
34 s i g n a l ntrp : s i gned (NTRPW downto 0) ;
35 s i g n a l ntrp d : s igned (NTRPW downto 0) ;
36 s i g n a l dde l ay i : s i gned (IQ W−1 downto 0) ;
37 s i g n a l dde lay q : s igned (IQ W−1 downto 0) ;
38 s i g n a l l u t 0 : s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
39 s i g n a l l u t 1 : s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
40 s i g n a l xtrp : s t d l o g i c ;
41 s i g n a l xtrp d : s t d l o g i c ;
42 s i g n a l mem en : s t d l o g i c ;
43 −−

44 component amp approx i s
45 gene r i c (IQ W : i n t e g e r ) ;
46 port ( d a t a i n i : in s igned (IQ W−1 downto 0) ;
47 data in q : in s igned (IQ W−1 downto 0) ;
48 amp : out unsigned (IQ W−1 downto 0) ) ;
49 end component ;
50 −−

51 component ram 2p i s
52 gene r i c (ADDRW : i n t e g e r ; DATAW : i n t e g e r ) ;
53 port ( c l k : in s t d l o g i c ;
54 en : in s t d l o g i c ;
55 addr0 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
56 addr1 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
57 rw : in s t d l o g i c ;
58 data0 in : in s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
59 data1 in : in s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
60 data0 out : out s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
61 data1 out : out s t d l o g i c v e c t o r (DATAW−1 downto 0) ) ;
62 end component ;
63

64 begin
65 −− Amplitude approx imat ion

66 amp approximation : amp approx
67 gene r i c map(IQ W => IQ W)
68 port map( d a t a i n i => d in i ,
69 data in q => din q ,
70 amp => amp) ;

106



71 −− ADDR CALC

72 addrn <= s t d l o g i c v e c t o r (amp(AMPW−1 downto AMPW−ADDRW) ) ;
73 ntrp <= signed ( ’0 ’ & amp(AMPW−ADDRW−1 downto 0) ) ;
74 xtrp <= ’1 ’ when addrn=MADR e l s e ’ 0 ’ ;
75 −−− Set Addresses f o r i n t e r p o l a t i o n or x t r p o l a t i o n

76 addr0 amp <= addrn when xtrp= ’0 ’ e l s e s t d l o g i c v e c t o r ( unsigned (
addrn )−1) ;

77 addr1 amp <= addrn when xtrp= ’1 ’ e l s e s t d l o g i c v e c t o r ( unsigned (
addrn )+1) ;

78 −−

79 addr0 <= addr0 amp when wr= ’0 ’ e l s e addr0 in ;
80 addr1 <= addr1 amp when wr= ’0 ’ e l s e addr1 in ;
81 −− Memory

82 mem en <= en or wr ;
83 MemDual : ram 2p
84 gene r i c map(ADDRW => ADDRW, DATAW => DATAW)
85 port map( c l k => c lk ,
86 en => mem en ,
87 addr0 => addr0 ,
88 addr1 => addr1 ,
89 rw => wr ,
90 data0 in => l u t 0 i n ,
91 data1 in => l u t 1 i n ,
92 data0 out => lut0 ,
93 data1 out => l u t 1 ) ;
94 −− p r e d i s t o r t

95 p r e d i s t o r t : proce s s ( en , c l k )
96 va r i ab l e g r e : s i gned (GAIN W−1 downto 0) ;
97 va r i ab l e g im : s igned (GAIN W−1 downto 0) ;
98 va r i ab l e g0 r e : s i gned (GAIN W−1 downto 0) ;
99 va r i ab l e g0 im : s igned (GAIN W−1 downto 0) ;

100 va r i ab l e g1 r e : s i gned (GAIN W−1 downto 0) ;
101 va r i ab l e g1 im : s igned (GAIN W−1 downto 0) ;
102 va r i ab l e dg re : s i gned (GAINW+NTRPW downto 0) ;
103 va r i ab l e dg im : s igned (GAINW+NTRPW downto 0) ;
104 va r i ab l e dtmp i : s i gned (GAINW+IQ W−1 downto 0) ;
105 va r i ab l e dtmp q : s igned (GAINW+IQ W−1 downto 0) ;
106 begin
107 i f en = ’1 ’ then
108 i f r i s i n g e d g e ( c l k ) and wr= ’0 ’ then
109 ntrp d <= ntrp ; −− l a t c h i n t e r p o l a t i o n f a c t o r

110 dde l ay i <= d i n i ;
111 dde lay q <= din q ;
112 xtrp d <= xtrp ;
113 −− r e t r i e v e r e a l and img pa r t s ga in s from pr e v i ou s s i g n a l

114 g0 r e := s igned ( lu t0 (DATAW−1 downto GAINW) ) ;
115 g0 im := s igned ( lu t0 (GAIN W−1 downto 0) ) ;
116 g1 r e := s igned ( lu t1 (DATAW−1 downto GAINW) ) ;
117 g1 im := s igned ( lu t1 (GAIN W−1 downto 0) ) ;
118 dg re := ntrp d ∗ ( g1 r e − g0 r e ) + (2∗∗NTRPW−1) ;
119 dg im := ntrp d ∗ ( g1 im − g0 im ) + (2∗∗NTRPW−1) ;
120 i f xtrp d = ’0 ’ then −− l i n e a r i n t e r p o l a t i o n

121 g r e := g0 r e + dg re (GAINW+NTRPW−1 downto NTRPW) ;
122 g im := g0 im + dg im (GAINW+NTRPW−1 downto NTRPW) ;
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123 e l s e −− l i n e a r x t r p o l a t i o n

124 g r e := g1 r e + dg re (GAINW+NTRPW−1 downto NTRPW) ;
125 g im := g1 im + dg im (GAINW+NTRPW−1 downto NTRPW) ;
126 end i f ;
127 −− Complex mu l t i p l y + Rounding

128 dtmp i := dde l ay i ∗ g r e − dde lay q ∗ g im + (2∗∗ (GAIN W−1)
−1) ;

129 dtmp q := dde l ay i ∗ g im + ddelay q ∗ g r e + (2∗∗ (GAIN W−1)
−1) ;

130 dout i <= dtmp i (IQ W+GAIN W−2 downto GAIN W−1) ;
131 dout q <= dtmp q (IQ W+GAIN W−2 downto GAIN W−1) ;
132 end i f ;
133 e l s e −−− en =0

134 dout i <= ( other s => ’ 0 ’ ) ;
135 dout q <= ( other s => ’ 0 ’ ) ;
136 end i f ;
137 end proce s s ;
138

139 end a r ch p lu t ;

Listing B.3: Synthesizable VHDL code for the predistorter using uniform LUT spacing.

The code in ListingB.4 shows the VHDL implementation for a predistorter using an

optimal compander.

1 −− p lu t comp . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4 use i e e e . numer ic std . a l l ;
5

6 en t i t y plut comp i s
7 gene r i c ( ADDRW : i n t e g e r := 5 ;
8 IQ W : i n t e g e r := 12 ;
9 GAINW : i n t e g e r := 12 ;

10 CMPADDRW : i n t e g e r := 4) ;
11 port ( c l k : in s t d l o g i c ;
12 en : in s t d l o g i c ;
13 d i n i : in s igned (IQ W−1 downto 0) ;
14 din q : in s igned (IQ W−1 downto 0) ;
15 wr ram : in s t d l o g i c ; −− t o i n i t i a l i z e MEM from ou t s i d e

16 wr cmp : in s t d l o g i c ; −− t o i n i t i a l i z e CMP from ou t s i d e

17 addr0 in : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
18 addr1 in : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
19 l u t 0 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ;
20 l u t 1 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ;
21 dout i : out s igned (IQ W−1 downto 0) ;
22 dout q : out s igned (IQ W−1 downto 0) ) ;
23 end ;
24

25 a r ch i t e c t u r e a r ch p lu t o f plut comp i s
26 constant AMPW : i n t e g e r := IQ W−1;
27 constant NTRPW : i n t e g e r := AMPW−ADDRW;
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28 constant MADR : s t d l o g i c v e c t o r (ADDRW−1 downto 0) :=( other s
=> ’1 ’) ;

29 constant DATAW : i n t e g e r := 2∗GAINW;
30 s i g n a l amp : unsigned (IQ W−1 downto 0) ;
31 s i g n a l amp cmp : unsigned (AMPW−1 downto 0) ;
32 s i g n a l addrn : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
33 s i g n a l addr0 amp : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
34 s i g n a l addr1 amp : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
35 s i g n a l addr0 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
36 s i g n a l addr1 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
37 s i g n a l ntrp : s i gned (NTRPW downto 0) ;
38 s i g n a l ntrp d : s igned (NTRPW downto 0) ;
39 s i g n a l dde l ay i : s i gned (IQ W−1 downto 0) ;
40 s i g n a l dde lay q : s igned (IQ W−1 downto 0) ;
41 s i g n a l l u t 0 : s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
42 s i g n a l l u t 1 : s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
43 s i g n a l xtrp : s t d l o g i c ;
44 s i g n a l xtrp d : s t d l o g i c ;
45 s i g n a l mem en : s t d l o g i c ;
46 −− Amplitude Approximation

47 component amp approx i s
48 gene r i c (IQ W : i n t e g e r ) ;
49 port ( d a t a i n i : in s igned (IQ W−1 downto 0) ;
50 data in q : in s igned (IQ W−1 downto 0) ;
51 amp : out unsigned (IQ W−1 downto 0) ) ;
52 end component ;
53 −− Companding

54 component companding i s
55 gene r i c (AMPW : i n t e g e r ; ADDRW : i n t e g e r ) ;
56 port ( c l k : in s t d l o g i c ;
57 en : in s t d l o g i c ;
58 amp in : in unsigned (AMPW−1 downto 0) ;
59 wr : in s t d l o g i c ; −− t o i n i t i a l i z e MEM

60 l u t 0 i n : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
61 l u t 1 i n : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
62 amp out : out unsigned (AMPW−1 downto 0) ) ;
63 end component ;
64 −− Two−Port RAM

65 component ram 2p i s
66 gene r i c (ADDRW : i n t e g e r ; DATAW : i n t e g e r ) ;
67 port ( c l k : in s t d l o g i c ;
68 en : in s t d l o g i c ;
69 rw : in s t d l o g i c ;
70 addr0 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
71 addr1 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
72 d0 in : in s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
73 d1 in : in s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
74 d0 out : out s t d l o g i c v e c t o r (DATAW−1 downto 0) ;
75 d1 out : out s t d l o g i c v e c t o r (DATAW−1 downto 0) ) ;
76 end component ;
77

78 begin
79 −− Amplitude approx imat ion

80 amp approximation : amp approx
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81 gene r i c map(IQ W => IQ W)
82 port map( d a t a i n i => d in i ,
83 data in q => din q ,
84 amp => amp) ;
85 −− Companding

86 comp : companding
87 gene r i c map(AMPW => AMPW, ADDRW => CMPADDRW)
88 port map( c l k => c lk ,
89 en => en ,
90 wr => wr cmp ,
91 amp in => amp(AMPW−1 downto 0) ,
92 l u t 0 i n => l u t 0 i n (AMPW−1 downto 0) ,
93 l u t 1 i n => l u t 1 i n (AMPW−1 downto 0) ,
94 amp out => amp cmp) ;
95 −−−−−−−−−−−−−−−−−−−− ADDR CALC −−−−−−−−−−−−−−−−−−−−−

96 addrn <= s t d l o g i c v e c t o r (amp cmp(AMPW−1 downto AMPW−ADDRW) ) ;
97 ntrp <= signed ( ’ 0 ’ & amp cmp(AMPW−ADDRW−1 downto 0) ) ;
98 xtrp <= ’1 ’ when addrn=MADR e l s e ’ 0 ’ ;
99 −− Set Addresses f o r i n t e r p o l a t i o n or x t r p o l a t i o n

100 addr0 amp <= addrn when xtrp= ’0 ’ e l s e s t d l o g i c v e c t o r ( unsigned (
addrn )−1) ;

101 addr1 amp <= addrn when xtrp= ’1 ’ e l s e s t d l o g i c v e c t o r ( unsigned (
addrn )+1) ;

102 addr0 <= addr0 amp when wr ram= ’0 ’ e l s e addr0 in ;
103 addr1 <= addr1 amp when wr ram= ’0 ’ e l s e addr1 in ;
104 −− Memory

105 mem en <= en or wr ram ;
106 MemDual : ram 2p
107 gene r i c map(ADDRW => ADDRW, DATAW => DATAW)
108 port map( c l k => c lk ,
109 en => mem en ,
110 addr0 => addr0 ,
111 addr1 => addr1 ,
112 rw => wr ram ,
113 d0 in => l u t 0 i n ,
114 d1 in => l u t 1 i n ,
115 d0 out => lut0 ,
116 d1 out => l u t 1 ) ;
117 −− p r e d i s t o r t

118 p r e d i s t o r t : proce s s ( en , c l k )
119 va r i ab l e g r e : s i gned (GAIN W−1 downto 0) ;
120 va r i ab l e g im : s igned (GAIN W−1 downto 0) ;
121 va r i ab l e g0 r e : s i gned (GAIN W−1 downto 0) ;
122 va r i ab l e g0 im : s igned (GAIN W−1 downto 0) ;
123 va r i ab l e g1 r e : s i gned (GAIN W−1 downto 0) ;
124 va r i ab l e g1 im : s igned (GAIN W−1 downto 0) ;
125 va r i ab l e dg re : s i gned (GAINW+NTRPW downto 0) ;
126 va r i ab l e dg im : s igned (GAINW+NTRPW downto 0) ;
127 va r i ab l e dtmp i : s i gned (GAINW+IQ W−1 downto 0) ;
128 va r i ab l e dtmp q : s igned (GAINW+IQ W−1 downto 0) ;
129 −−

130 begin
131 i f en = ’1 ’ then
132 i f r i s i n g e d g e ( c l k ) and wr ram= ’0 ’ then
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133 ntrp d <= ntrp ; −− l a t c h i n t e r p o l a t i o n f a c t o r

134 dde l ay i <= d i n i ;
135 dde lay q <= din q ;
136 xtrp d <= xtrp ;
137 −− r e t r i e v e r e a l and img pa r t s ga in s from pr e v i ou s s i g n a l

138 g0 r e := s igned ( lu t0 (DATAW−1 downto GAINW) ) ;
139 g0 im := s igned ( lu t0 (GAIN W−1 downto 0) ) ;
140 g1 r e := s igned ( lu t1 (DATAW−1 downto GAINW) ) ;
141 g1 im := s igned ( lu t1 (GAIN W−1 downto 0) ) ;
142 dg re := ntrp d ∗ ( g1 r e − g0 r e ) + (2∗∗NTRPW−1) ;
143 dg im := ntrp d ∗ ( g1 im − g0 im ) + (2∗∗NTRPW−1) ;
144 i f xtrp d = ’0 ’ then −− l i n e a r i n t e r p o l a t i o n

145 g r e := g0 r e + dg re (GAINW+NTRPW−1 downto NTRPW) ;
146 g im := g0 im + dg im (GAINW+NTRPW−1 downto NTRPW) ;
147 e l s e −− l i n e a r x t r p o l a t i o n

148 g r e := g1 r e + dg re (GAINW+NTRPW−1 downto NTRPW) ;
149 g im := g1 im + dg im (GAINW+NTRPW−1 downto NTRPW) ;
150 end i f ;
151 −− Complex mu l t i p l y + Rounding

152 dtmp i := dde l ay i ∗ g r e − dde lay q ∗ g im + (2∗∗ (GAIN W−1)
−1) ;

153 dtmp q := dde l ay i ∗ g im + ddelay q ∗ g r e + (2∗∗ (GAIN W−1)
−1) ;

154 dout i <= dtmp i (IQ W+GAIN W−2 downto GAIN W−1) ;
155 dout q <= dtmp q (IQ W+GAIN W−2 downto GAIN W−1) ;
156 end i f ;
157 e l s e −−− en =0

158 dout i <= ( other s => ’ 0 ’ ) ;
159 dout q <= ( other s => ’ 0 ’ ) ;
160 end i f ;
161 end proce s s ;
162 end a r ch p lu t ;

Listing B.4: Synthesizable VHDL code for the predistorter using an optimal compander.

The code in ListingB.5 implements the optimal compander used in the predistorter

VHDL code (ListingB.4).

1 −− companding . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4 use i e e e . numer ic std . a l l ;
5

6 en t i t y companding i s
7 gene r i c (AMPW : i n t e g e r := 12 ; ADDRW : i n t e g e r := 8) ;
8 port ( c l k : in s t d l o g i c ;
9 en : in s t d l o g i c ;

10 amp in : in unsigned (AMPW−1 downto 0) ;
11 wr : in s t d l o g i c ; −− t o i n i t i a l i z e MEM from ou t s i d e

12 l u t 0 i n : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
13 l u t 1 i n : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
14 amp out : out unsigned (AMPW−1 downto 0) ) ;
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15 end ;
16

17 a r ch i t e c t u r e arch comp o f companding i s
18 constant NTRPW : i n t e g e r := AMPW−ADDRW;
19 constant MADR : s t d l o g i c v e c t o r (ADDRW−1 downto 0) := ( other s =>

’ 1 ’ ) ;
20 s i g n a l addr0 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
21 s i g n a l addr1 : s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
22 s i g n a l ntrp : unsigned (NTRPW−1 downto 0) ;
23 s i g n a l ntrp d : unsigned (NTRPW−1 downto 0) ;
24 s i g n a l l u t 0 : s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
25 s i g n a l l u t 1 : s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
26 s i g n a l xtrp : s t d l o g i c ;
27 s i g n a l xtrp d : s t d l o g i c ;
28 s i g n a l mem en : s t d l o g i c ;
29

30 −− Memory component

31 component ram 2p i s
32 gene r i c (ADDRW : i n t e g e r ; DATAW : i n t e g e r ) ;
33 port ( c l k : in s t d l o g i c ;
34 en : in s t d l o g i c ;
35 addr0 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
36 addr1 : in s t d l o g i c v e c t o r (ADDRW−1 downto 0) ;
37 rw : in s t d l o g i c ;
38 data0 in : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
39 data1 in : in s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
40 data0 out : out s t d l o g i c v e c t o r (AMPW−1 downto 0) ;
41 data1 out : out s t d l o g i c v e c t o r (AMPW−1 downto 0) ) ;
42 end component ;
43

44 begin
45 −− ADDR CALC

46 addr0 <= s t d l o g i c v e c t o r ( amp in (AMPW−1 downto AMPW−ADDRW) ) ;
47 addr1 <= s t d l o g i c v e c t o r ( unsigned ( addr0 )+1) ;
48 ntrp <= amp in (AMPW−ADDRW−1 downto 0) ;
49 xtrp <= ’1 ’ when addr0=MADR e l s e ’ 0 ’ ;
50 −− Memory

51 mem en <= en or wr ;
52 MemDual : ram 2p
53 gene r i c map(ADDRW => ADDRW, DATAW => AMPW)
54 port map( c l k => c lk ,
55 en => mem en ,
56 addr0 => addr0 ,
57 addr1 => addr1 ,
58 rw => wr ,
59 data0 in => l u t 0 i n ,
60 data1 in => l u t 1 i n ,
61 data0 out => lut0 ,
62 data1 out => l u t 1 ) ;
63 −− p r e d i s t o r t

64 p r e d i s t o r t : proce s s ( en , c l k )
65 constant MS : unsigned (AMPW−1 downto 0) := ( other s => ’ 1 ’ ) ;
66 va r i ab l e s : unsigned (AMPW−1 downto 0) ;
67 va r i ab l e s0 : unsigned (AMPW−1 downto 0) ;
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68 va r i ab l e s1 : unsigned (AMPW−1 downto 0) ;
69 va r i ab l e ds : unsigned (AMPW+NTRPW−1 downto 0) ;
70 begin
71 i f en = ’1 ’ then
72 i f r i s i n g e d g e ( c l k ) and wr= ’0 ’ then
73 xtrp d <= xtrp ;
74 ntrp d <= ntrp ; −− l a t c h i n t e r p o l a t i o n f a c t o r

75 −− r e t r i e v e prev r e a l & img pa r t s ga in s

76 s0 := unsigned ( lu t0 ) ;
77 i f xtrp d = ’0 ’ then −− i n t e r p o l a t i n g

78 s1 := unsigned ( lu t1 ) ;
79 e l s e
80 s1 := MS; −− x t r p o l a t i n g

81 end i f ;
82 ds := ntrp d ∗ ( s1−s0 ) + 2∗∗NTRPW−1;
83 s := s0 + ds (AMPW+NTRPW−1 downto NTRPW) ;
84 amp out <= s ;
85 end i f ;
86 e l s e −− en =0

87 amp out <= ( other s=> ’0 ’) ;
88 end i f ;
89 end proce s s ;
90 end arch comp ;

Listing B.5: Synthesizable VHDL code for the LUT compander.

B.4 Predistorter Adaptation Code

The code in ListingB.6 shows the VHDL implementation of the low complexity adaptation

algorithm proposed in Chapter 7.

1 −− adapt . vhd

2 l i b r a r y i e e e ;
3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
4 use i e e e . numer ic std . a l l ;
5

6 en t i t y pd adapt i s
7 gene r i c (ADDRW: i n t e g e r :=7; IQ W: i n t e g e r :=13; AMPW: i n t e g e r

:=12;
8 SC AMPW: i n t e g e r :=21; NTRPW: i n t e g e r :=6; GAINW: i n t e g e r

:=12) ;
9 port ( en : in s t d l o g i c ;

10 en update : in s t d l o g i c ;
11 c l k 1 : in s t d l o g i c ; −−

t y p i c a l 30Mhz

12 c l k 2 : in s t d l o g i c ; −−

h a l f o f c l k 1 f r e q

13 d a t f f i : in s igned (IQ W−1 downto 0) ; −−

From FF Path
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14 d a t f f q : in s igned (IQ W−1 downto 0) ; −−

From FF Path

15 d a t f b i : in s igned (IQ W−1 downto 0) ; −−

From FB Path

16 da t fb q : in s igned (IQ W−1 downto 0) ; −−

From FB Path

17 l u t 0 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ; −−

From LUTMEM UNIT

18 l u t 1 i n : in s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ; −−

From LUTMEM UNIT

19 mu adapt : in unsigned (3 downto 0) ; −−

update f a c t o r

20 rw : out s t d l o g i c := ’0 ’ ; −−

To LUTMEM UNIT

21 addr0 out : out unsigned (ADDRW−1 downto 0) ; −−

To LUTMEM UNIT

22 addr1 out : out unsigned (ADDRW−1 downto 0) ; −−

To LUTMEM UNIT

23 l u t 0 ou t : out s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ; −−

To LUTMEM UNIT

24 l u t 1 ou t : out s t d l o g i c v e c t o r (2∗GAIN W−1 downto 0) ) ; −−

To LUTMEM UNIT

25 end ;
26

27 a r ch i t e c t u r e arch adapt o f pd adapt i s
28 s i g n a l p l u t o u t i : s i gned (IQ W−1 downto 0) ;
29 s i g n a l p lu t ou t q : s i gned (IQ W−1 downto 0) ;
30 s i g n a l ntrp : s i gned (NTRPW downto 0) ;
31 s i g n a l c l k 3 : s t d l o g i c ;
32 begin
33 c l k 3 <= not c l k 2 ;
34 rw <= c l k 3 ;
35 p l u t f b : en t i t y work . pd plut
36 gene r i c map(ADDRW=>ADDRW, IQ W=>IQ W, AMPW=>AMPW, SC AMPW=>

SC AMPW,
37 NTRPW=>NTRPW, GAINW=>GAIN W, KPW=>KPW)
38 port map( en => en ,
39 c l k => c lk 1 ,
40 d a t i n i => da t f b i ,
41 da t i n q => dat fb q ,
42 −− in from mem

43 l u t 0 i n => l u t 0 i n ,
44 l u t 1 i n => l u t 1 i n ,
45 −− out to mem

46 addr0 out => addr0 out ,
47 addr1 out => addr1 out ,
48 −− out to ppa

49 da t ou t i => p l u t ou t i ,
50 dat out q => p lut out q ,
51 ntrp out => ntrp ) ;
52 −− compute e r ro r and app l y update f a c t o r mu

53 l a t c h e r r : proce s s ( c l k 3 )
54 va r i ab l e e r i , e r q : s i gned (IQ W−1 downto 0) :=( other s

=> ’0 ’) ;
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55 va r i ab l e d i , d q : s i gned (IQ W−1 downto 0) :=( other s
=> ’0 ’) ;

56 va r i ab l e d0 i , d0 q : s igned (IQ W−1 downto 0) :=( other s
=> ’0 ’) ;

57 va r i ab l e d1 i , d1 q : s igned (IQ W−1 downto 0) :=( other s
=> ’0 ’) ;

58 va r i ab l e s c d i , s c d q : s igned (IQ W+NTRPW downto 0) :=(
other s => ’0 ’) ;

59 va r i ab l e s s i , s s q : s i gned (1 downto 0) := "00" ;
60 va r i ab l e s i g n i , s i gn q : s igned (IQ W−1 downto 0) :=( other s

=> ’0 ’) ;
61 va r i ab l e newg0 i , newg0 q : s igned (GAIN W−1 downto 0) :=( other s

=> ’0 ’) ;
62 va r i ab l e newg1 i , newg1 q : s igned (GAIN W−1 downto 0) :=( other s

=> ’0 ’) ;
63 va r i ab l e r r i , r r q : s i gned (1 downto 0) := "01" ; −−{1 or

−1}

64 begin
65 i f r i s i n g e d g e ( c l k 3 ) then
66 e r i := s h i f t r i g h t ( d a t f f i − p l u t ou t i , t o i n t e g e r (mu adapt

) ) ;
67 e r q := s h i f t r i g h t ( d a t f f q − p lut out q , t o i n t e g e r (mu adapt

) ) ;
68 s i g n i := ( other s => d a t f b i (IQ W−1) ) ;
69 s i gn q := ( other s => da t fb q (IQ W−1) ) ;
70 s s i ( 0 ) := d a t f b i (IQ W−1) ;
71 s s q (0 ) := da t fb q (IQ W−1) ;
72 −− r o t a t e by k∗ p i /4 r e p l a c e mult w i th 2 ’ s complements

73 d i := ( ( e r i xor s i g n i ) + s s i ) + ( ( e r q xor s i gn q ) +
s s q ) ;

74 d q := ( ( e r q xor s i g n i ) + s s i ) − ( ( e r i xor s i gn q ) +
s s q ) ;

75 −− s c a l e d i and d q by update f a c t o r f o r LUT(n+1) update

76 s c d i := d i ∗ ntrp ;
77 s c d q := d q ∗ ntrp ;
78 d1 i := s c d i (IQ W+NTRPW downto NTRPW+1) ;
79 d1 q := sc d q (IQ W+NTRPW downto NTRPW+1) ;
80 −− avo id m u l t i p l i e s by us ing s u b t r a c t i o n i n s t e a d o f mu l t i p l y by (1−ntrp

)

81 r r i ( 1 ) := d i (IQ W−1) ; −− s i gn b i t

82 r r q (1 ) := d q (IQ W−1) ; −− s i gn b i t

83 d0 i := s h i f t r i g h t ( d i+r r i , 1 ) − d1 i ;
84 d0 q := s h i f t r i g h t ( d q+rr q , 1 ) − d1 q ;
85 −− Computes upda te s a t addre s s n

86 newg0 i := s igned ( l u t 0 i n (2∗GAIN W−1 downto GAINW) ) + d0 i (
IQ W−1 downto IQ W−GAINW) ;

87 newg0 q := s igned ( l u t 0 i n ( GAIN W−1 downto 0) ) + d0 q (
IQ W−1 downto IQ W−GAINW) ;

88 −− Computes upda te s a t addre s s n+1

89 newg1 i := s igned ( l u t 1 i n (2∗GAIN W−1 downto GAINW) ) + d1 i (
IQ W−1 downto IQ W−GAINW) ;

90 newg1 q := s igned ( l u t 1 i n ( GAIN W−1 downto 0) ) + d1 q (
IQ W−1 downto IQ W−GAINW) ;

91 −− ouput new updated e n t r i e s
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92 i f en update = ’1 ’ then
93 l u t 0 ou t <= s t d l o g i c v e c t o r ( newg0 i ) & s t d l o g i c v e c t o r (

newg0 q ) ;
94 l u t 1 ou t <= s t d l o g i c v e c t o r ( newg1 i ) & s t d l o g i c v e c t o r (

newg1 q ) ;
95 e l s e
96 l u t 0 ou t <= lu t 0 i n ;
97 l u t 1 ou t <= lu t 1 i n ;
98 end i f ;
99 end i f ;

100 end proce s s ;
101 end arch adapt ;

Listing B.6: Synthesizable VHDL code for the predistorter update logic.
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