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‡ Université Paris-Saclay, ISP, ENS Cachan, CNRS, 94235 Cachan, France

Abstract— Since the early 2000’s, the Internet topology has
been an attractive and important research topic, either for
developing data collection mechanisms, and for analyzing and
modeling the network. Beside traditional aspects of the Inter-
net topology (i.e., IP interface, router, and AS levels), recent
researches focused on intermediate promising visions of the
topology, namely Point-of-Presence (PoP) and subnets (i.e., a set
of devices that are located on the same connection medium and
that can communicate directly with each other at the link layer).

This paper focuses on network subnet discovery by proposing
a new tool called TreeNET. One of the key aspects of TreeNET
is that it builds a tree representing the way subnets are located
with respect to each other. This tree allows TreeNET to obtain
additional information on the network, leading to better analysis
of the collected data. In this paper, we demonstrate the potential
of TreeNET through the evaluation of its key algorithmic steps
and the study of measurements collected from the PlanetLab
testbed.

I. INTRODUCTION

The Internet is made of a vast set of heterogeneous and
interconnected entities enabling the communication between
millions of machines. Typically, this network is described as
a graph where nodes refer to IP interfaces, routers, or au-
tonomous systems (ASes) and edges depict their relations [1].
For now fifteen years, advanced mechanisms have been devel-
oped to collect data revealing the topology of the Internet at
those different levels [2]. However, recent researches have sug-
gested to extend the view of the traditional Internet topology
to Point-of-Presence (PoP) [3], [4] and sub-networks [5], [6],
[7], [8]. This paper follows this line of research by proposing a
new tool named TreeNET dedicated to the Internet topology
discovery integrating sub-network information.

A sub-network (or, simply, subnet) refers to a set of devices
that are located on the same connection medium and that can
communicate directly with each other at the link layer [9].
The subnet level is a way to enrich router level maps with
subnet level connection information [5]. Subnet discovery
presents some similarities with alias resolution [10]. Indeed,
alias resolution follows the goal of aggregating several IP
addresses (appearing in various traces) of a router into a
single identifier. Similarly, subnet detection aims at identifying
multiple links (appearing to be separate) and at combining
them to represent their single hop connection medium (point-
to-point or multi-access) [7]. Considering subnet maps instead
of classical IP interfaces, routers, or ASes level maps is a
way to deepen our understanding of the Internet topology, in
particular topological features of ISP networks.

Previously, techniques have been proposed to obtain infor-
mation on subnets. One can cite for instance IGMP prob-

ing [11] that can be used to detect subnets [12]. But due to
filtering done by operators, it becomes less and less usable
in practice [13], making this inference technique outdated.
The most promising approach proposed recently relies on
TraceNET [5]. This tool works as traceroute [14] in the
sense that it detects subnets on a given path between a source
and a destination. Building on this tool, the same authors
developed ExploreNET [8] in order to improve TraceNET
by discovering individual subnets rather than subnets on an
end-to-end path. ExploreNET also presents techniques for
sampling subnets in a targeted domain and inferring their
global characteristics (such as mean subnet degree, subnet
prefix length distribution, etc.) [6]. However, ExploreNET
does not provide any guarantee on the soundness of the
inferred subnets or any metric to evaluate them. Furthermore,
it tends to fragment large subnets into several smaller (and
incomplete) ones.

In this paper, we introduce TreeNET, a new tool dedi-
cated to the collection and manipulation of subnet topology
information.1 This tool overcomes the issues mentioned above
by introducing a refinement phase and a classification of the
inferred subnets for qualitative evaluation purposes. Moreover,
TreeNET also introduces a tree-like structure able to show
how subnets are located with respect to each other with the
help of Paris traceroute [15]. Using specific interfaces
found in subnets and the way they are located in the network,
our tool is also able to achieve router inference through alias
resolution techniques, eventually leading to a complete router
– subnet representation of the targeted network.

In order to assess the performance of TreeNET, we thor-
oughly study a private academic ground truth network and sev-
eral ASes. All networks are analyzed with both TreeNET and
ExploreNET for the sake of comparison and we demonstrate
that TreeNET provides more accurate results than the state of
the art. In addition to this comparative study, we also assess our
alias resolution method on a publicly available dataset [16].

The remainder of this paper is organized as follows: Sec. II
describes in details TreeNET, our tool for discovering sub-
network topology of a targeted domain; Sec. III evaluates the
performance of TreeNET and compares it to the state of the
art tool (i.e., ExploreNET); finally, Sec. IV concludes this
paper by summarizing its main achievements and discussing
potential future research directions.

1Available at https://github.com/JefGrailet/treenet. Data
discussed in this paper is also available at https://github.com/
JefGrailet/treenet/tree/master/v2/Measurements



Fig. 1. Illustration of Contra-Pivot, Pivot, and Neighborhood notions.

II. TREENET

This section introduces TreeNET, our new tool for re-
vealing subnets. We first provide a broad overview of how
TreeNET works (Sec. II-A), before introducing the vocab-
ulary associated to the tool (Sec. II-B). We also detail in
the remaining sections the four different steps of TreeNET,
namely the network pre-scanning (Sec. II-C), the subnet in-
ference (Sec. II-D), the tree construction (Sec. II-E), and the
router inference (Sec. II-F).

A. Overview

TreeNET is a topology discovery tool that infers the
subnets of a targeted network and relies on them to infer
the whole topology (at the router and subnet level), or more
precisely the whole visible topology (i.e., containing all the
interfaces that are responsive to probes). To do so, it follows
four steps that we briefly describe in the next paragraphs.

First of all, TreeNET performs a network pre-scanning
which consists in listing every potential IP interface of the
targeted domain, using its IPv4 prefix as input. All listed
interfaces are then probed in order to only consider respon-
sive interfaces during the subsequent steps for the sake of
efficiency.

Then, TreeNET moves to the subnet inference step which
aims at identifying the subnets inside the targeted domain.
These subnets typically encompass all the IP interfaces which
were responsive during pre-scanning. To do so, TreeNET re-
lies on the inference mechanisms provided by ExploreNET
in order to list all potential subnets. In addition, TreeNET
performs refinements over the measured subnets in order to
ensure their soundness when they seem incomplete or partial.
Both approaches require additional probing, hence the need
for filtering only responsive IP interfaces in the first step. The
subnet inference step ends when all responsive IP addresses
from the previous step have been considered.

Next, during the tree construction step, TreeNET builds
a tree depicting the way subnets are located with respect to

each other. This tree is built using Paris traceroute [15]
towards every inferred subnet, as a set of traceroute paths
from a same vantage point typically forms a directed acyclic
graph (at worst) or a tree (at best). The tree is rooted at the
traceroute vantage point and the leaves are the inferred
subnets themselves.

Finally, the router inference step relies on the location
details obtained thanks to the tree structure to apply alias
resolution techniques [10], eventually leading to the discovery
of routers providing access to the measured subnets.

At the end, the tree with inferred routers describes
the full router – subnet topology discovered by
TreeNET when targeting the initial domain. The
code of TreeNET is freely available at https:
//github.com/JefGrailet/treenet.

B. Terminology

From the perspective of a single vantage point, a subnet
can be seen as a set of N responsive interfaces (all being
part of a continuous block of M hypothetical interfaces) made
of three important components, all of them being depicted in
Fig. 1. First, the Ingress router refers to the last router crossed
by a packet before reaching the subnet of interest. Second,
the Contra-Pivot interface is the IP interface belonging to
the subnet that is located on the Ingress router (black circles
on Fig. 1). Finally, the Pivot interface refers to any other IP
interface in the subnet, all located at the same hop count (gray
squares on Fig. 1).

By definition, the Contra-Pivot interface is located at the
hop count required to reach a Pivot interface minus one. As
such, the Contra-Pivot interface demarcates the subnet under
exploration. Finally, in order to ease the subnets location, we
introduce the notion of Neighborhood as a location bordered
by a set of subnets located at, at most, one hop from each
other. From a physical point of view, subnets bordering a same
neighborhood should be connected through one router or a
mesh of Layer-2/Layer-3 devices.

C. Network Pre-scanning

The very first step of TreeNET consists in listing all IP
addresses of the targeted domain, either provided as single
addresses, either as IPv4 prefixes. After a shuffling step, which
prevents TreeNET from probing consecutive addresses during
the next steps (to mitigate network delays), each listed address
is probed to check its liveness. Multi-threading is used to make
this step as fast as possible.

Due to networking issues, some addresses might not reply
during this first probing phase. This is why TreeNET con-
ducts a second pre-scanning phase during which the timeout
delay used in the first phase is doubled to get as many re-
sponsive addresses as possible. An optional third pre-scanning
phase can also be conducted.

When a probed address replies within the expected delay, it
is saved in a structure we will refer to as the IP dictionary. It
stores all responsive IP interfaces and related data, such as the
timeout delay which was used when it first replied. All next



probes targeting this interface will use this timeout delay to
guarantee new responses.

As unresponsive IP interfaces do not appear in the dictio-
nary, they will not be probed again during the next TreeNET
steps, such as subnet inference, where all potential IP in-
terfaces of a subnet under exploration are considered, one
at a time. Therefore, by listing only responsive IPs with
a preliminary multi-threaded step, TreeNET buys time for
subsequent algorithmic steps.

D. Subnet Inference and Refinement

After the end of the pre-scanning phase, TreeNET infers
all subnets containing the IP addresses in the IP dictionary
by relying on the subnet inference techniques implemented
in ExploreNET. The algorithm starts by probing a given
target address (with ICMP ECHO requests, naked or wrapped
in UDP or TCP) and estimating its distance from the vantage
point as a TTL value. Then, it builds a small subnet (/31 or /30)
which encompasses it, sending additional probes on close IP
addresses (e.g., which differs by one bit in the two last bits)
with the same TTL as the one required to reach the initial
target. This first step also considers adjustments of the TTL
value used while probing IP addresses other than the target in
case the initial target address was a Contra-Pivot interface.

The next step consists in growing the initial subnet by
iteratively decrementing its prefix length while checking that
the new addresses are indeed part of it. This verification
step involves additional probing during which the TTL of the
probe packets varies to confirm the position of the targeted IP
addresses. ExploreNET eventually stops growing a subnet
in two distinct scenarios. In the first scenario, ExploreNET
discovers that a new address is not part of the subnet (e.g.,
second Contra-Pivot interface, interface located at the Pivot
TTL plus one, etc.). In such a case, it increments the subnet
prefix length by one and returns it together with the list of its
responsive interfaces. The second scenario happens when, at a
given iteration, the total amount of responsive interfaces within
the new subnet is below a threshold value that depends on
the current prefix length. Then, ExploreNET stops iterating
and returns the subnet with its prefix length incremented by
one and the list of its responsive interfaces. Upon receiving
the final subnet as inferred by ExploreNET, TreeNET also
merges the result with previously inferred subnet(s) which
cover(s) the same address ranges to ensure the uniqueness of
each subnet at the end of the inference.

It is important to understand that, when a large subnet
lacks of responsive interfaces, ExploreNET tends to frag-
ment it into several smaller subnets containing groups of
responsive interfaces with only one of them containing a
valid Contra-Pivot interface, meaning that only this subnet can
be considered as sound. To overcome this issue, TreeNET
introduces a refinement phase which aims at ensuring any
inferred subnet features a valid Contra-Pivot interface. The
idea of the refinement phase is the following: TreeNET takes
subnets that miss a Contra-Pivot and adjusts their sizes in order
to find it. This consists in iteratively decrementing the prefix

Fig. 2. Topology from Fig. 1 seen as a tree – horizontal arrows highlights
the subnets acting as links between two routers.

length of the incomplete subnet and probing the new addresses
with the TTL that matches the hypothetical hop count of the
Contra-Pivot interface. This refinement by expansion stops as
soon as one or several Contra-Pivot candidates are found,
or when the subnet starts overlapping other measured sound
subnets whose TTL to reach Pivot interfaces is different from
the one to reach a Pivot in the subnet being expanded. It also
stops when the subnet becomes larger than a /20, as no /19
were observed with neither ExploreNET neither TreeNET.
The fact that a subnet can have several Contra-Pivot candidates
can be due to networking issues (e.g., redirections) or network
policies, such as routers having a back-up interface for a subnet
in case the first one failed. The absence of visible Contra-Pivot
interface is most probably due to networking issues. In a sense,
TreeNET applies a best effort policy while refining subnets.

The fact that a subnet can feature a single, several, or
no Contra-Pivot motivates the introduction of a classification
which can be used to assess the accuracy and soundness of
the measurements. It is worth noticing here that IP addresses
can respond with TTL that does not match the expected Pivot
TTL or Contra-Pivot TTL. We will refer to such addresses as
outliers and our classification takes into account such cases.
Each subnet is therefore labeled as Accurate (i.e., it features
a single Contra-Pivot interface and no outlier), Odd (i.e., it
features two or more Contra-Pivot interfaces and/or some
outliers), or Shadow (i.e., no valid Contra-Pivot interface could
be found, with or without outliers).

Furthermore, when a subnet is classified as Accurate, each
missing IP address that was responsive during pre-scanning is
added to this subnet in order to have a list of live interfaces as
complete as possible for each subnet. Finally, Shadow subnets
are expanded until they collide with sound (i.e., Accurate or
Odd) subnets at the very end of the subnet inference. The
purpose of this last refinement is to obtain an upper bound on
their size.

E. Tree Construction

Once the targeted domain has been completely analyzed,
TreeNET performs Paris traceroute measurements to-
wards each inferred subnet, using a Pivot interface as des-
tination.



Having routes to every subnet provides knowledge on how
they are located with respect to each other. Taking benefit
of such an additional information, TreeNET builds a tree
rooted at the vantage point and whose leaves are the measured
subnets. Each internal node of depth N is labeled with an
interface that appears at the N th position in one or several
traces. The immediate result of this construction is that internal
nodes actually represent Neighborhoods. Moreover, the labels
of internal nodes can be used to identify the subnets that act
as a link between two routers: one has simply to check that
a label belongs to a subnet occurring at the same depth. To
illustrate this construction, Fig. 2 shows the same topology
as shown in Fig. 1 but as a tree, with the horizontal arrows
highlighting the subnets acting as links between two routers.

In order to be faithful to the measured topology, the tree
should reduce the impact of routing issues caused by traffic
engineering (e.g., load balancing [17]). For example, several
subnets sharing the same Ingress router should have routes
of the same length with the same last replying interfaces,
but differences can still occur on the rest of the routes. As
a consequence, the tree could feature several branches for
these subnets and partial representation of their Neighborhood,
rather than having a single branch at the end of which one
can obtain a complete representation of the Neighborhood
bordering those subnets. To avoid this situation, TreeNET
allows internal nodes to have more than one label in such a
way that the Neighborhood information in deeper nodes is not
lost. As a result, internal nodes with multiple labels constitute
no longer a single Neighborhood but rather a superposition
of several Neighborhoods. For the sake of simplicity, we will
refer to these nodes as multi-label nodes. Post-processing of
the fully built tree can however isolate Neighborhoods of a
multi-label node from each other.

The process of the tree construction is fully described in
Algorithm 1. Starting with an empty tree, the algorithm inserts
sequentially new subnets in two steps. The first one consists
in finding the insertion point defined as the deepest internal
node that shares a common label (line 11). In TreeNET, this
step is efficiently implemented using additional data structures
to avoid visiting the whole tree. Once the insertion point has
been found, all missing internal nodes (if any) and the leaf
corresponding to the subnet are inserted (lines 3 – 10). The
second step consists in moving from the insertion point to the
root of the tree while inserting new labels whenever the route
differs from current information stored in the tree (lines 12
– 23). In particular, for each node, if the label from the route
of the new subnet already appears in another internal node of
the tree at the same depth, it is merged with the current node
(lines 19 – 21). The final result is a tree in which every label
should appear only once.

Fig. 3 illustrates the tree construction on a toy exam-
ple. Given the topology shown in Fig. 3(a), possible Paris
traceroute to subnets S1, S2, and S3 could be {1, 2, 4},
{1, 3, 5}, and {1, 3, 4, 6} respectively. The insertion of S1 and
S2 is then rather simple, as Fig. 3(b) shows. Fig. 3(c) and 3(d)
illustrates how the insertion of S3 occurs. The insertion point

Algorithm 1 Insertion of a subnet in the tree
Require: N , root node of the tree

1: procedure INSERT(Node N , Subnet S)
2: R ← S.getRoute()
3: if N .getNextChild(R[N .getDepth() + 1]) == ∅ then
4: Prev ← N
5: for i ← N .getDepth() : R.getLength() do
6: New ← new Node(R[i])
7: Prev.addChild(New)
8: Prev ← New
9: Prev.addChild(new Node(S))

10: return
11: I ← INSERTIONPOINT(N , R)
12: INSERT(I , S)
13: P ← I .getParent()
14: while P 6= ∅ do
15: L ← R[P .getDepth()]
16: if L 6= P .getLabel() then
17: P .addLabel(L)
18: set ← NODESATDEPTH(N , P .getDepth())
19: for M ∈ set do
20: if L ∈ M .getLabels() then
21: P .merge(M )
22: P ← P .getParent()
23: return

is obviously the node having the label 4. As the parent node
does not have the label 3, such a label is added; however, label
3 already appears in the tree, therefore the branch is merged
with the node containing both labels 2 and 3. In the final tree,
all non-null (i.e., not 0.0.0.0) labels appear only once.

As implied in the previous paragraph, the routes obtained
with Paris traceroute are not always complete, i.e., they
feature 0.0.0.0 interface(s) along the way. As TreeNET does
not consider these labels while looking for the insertion point,
this leads to one branch per distinct interface following a
0.0.0.0 interface. While this does not affect deeper internal
nodes, this can lead to splitting a large internal node into
several ones. Specially when the interface is labeled as 0.0.0.0
due to a delay or a black-listing of the vantage point by that
interface, preventing it from replying to any subsequent probe.
This typically occurs with the first hops to a remote network
(which are often common to all routes): some routes will
feature the proper interface(s) while others will not.

To mitigate this issue, TreeNET always starts building the
tree using only subnets that feature a complete route (i.e.,
with no occurrence of 0.0.0.0). Then, before inserting any
subnet with an incomplete route, TreeNET finds the most
similar route already stored in the tree and replaces 0.0.0.0
interface(s) of the incomplete route with the interface(s) at the
same index(es) in the selected route.

F. Router Inference

A fully built tree provides a good knowledge of the
topology, as it gives an idea of how many interfaces border



(a) Example topology (b) Insertion of S1, S2 (c) Insertion of S3 (d) Insertion of S3 (2)

Fig. 3. Example of the tree constructed by Algorithm 1 on a toy example.

an internal node, which is either a Neighborhood, either a
superposition of Neighborhoods. Given #L the amount of
labels of a node, #S the amount of children subnets, #I
the total amount of labels from child internal nodes, and #C
the amount of crossed subnets (i.e., subnets which contain the
label of a child internal node), the amount N of interfaces an
internal node is given by

N = #L+#I +#S −#C. (1)

The amount of labels #L can be assimilated to the number
of interfaces through which packets enter the Neighborhood(s),
while #I + #S − #C refers to the number of outgoing
interfaces.

Not only the tree provides an idea of the number of
interfaces of each internal node, but it also gives some of these
interfaces. The labels themselves are interfaces, but moreover,
subnets classified as Accurate during subnet inference feature
a valid Contra-Pivot interface which, by definition, is the
interface of a router. Odd subnets also feature at least one
valid Contra-Pivot. Therefore, for each internal node, one can
list all labels and each Contra-Pivot of each child Accurate or
Odd subnet. Then, one can use an alias resolution technique
on them to infer one or several routers. After that, internal
nodes do not need to be abstracted as Neighborhoods (or
superimpositions) any longer, and one can build a full router –
subnet topology of the measured network. The alias resolution
also helps to disambiguate multi-label nodes, as interfaces
of routers belonging to distinct (superposed) Neighborhoods
should never be associated together.

In TreeNET, the router inference consists in a combination
of three different alias resolution techniques: Ally [18], IP-
ID counter velocity check (which is reminiscent of Radar-
Gun [19]), and reverse DNS association.

For every interface of an internal node/Neighborhood,
TreeNET collects i IP-IDs (i is at least three) and evaluates
the wall clock time (in microseconds) between the acquisition
of each ID, leading to i - 1 delays. While the wall clock
time might not be necessarily faithful to the delay between
the generation of two IP-IDs on a remote device, it is a

Fig. 4. Schematic view of the data used for the velocity range technique.

reasonable and exploitable estimation. In addition to the IP-
IDs and delays, the reverse DNS for each IP address is also
retrieved when available.

Once all the aforementioned data has been collected for
every interface, the association process starts. When IP-IDs
and associated delays are available, TreeNET first considers
association by Ally. The idea of Ally is very simple: one
probes a first interface, retrieves an IP-ID x, then obtains
another IP-ID y from a second interface, and a third ID z
from the first one. If the inequality x < y < z with z - x
being reasonably small is verified, one can assume both probed
interfaces actually belong to the same router. Therefore, in the
context of TreeNET, one just has to find a triplet of IP-IDs
from two distinct interfaces which form a succession to use
Ally. To locate IP-IDs chronologically, each collected ID has
an associated token, an integer unique to each probe that is
given by a counter incremented each time a token is drawn.

However, the IP-ID counters can evolve quite fast, therefore
mitigating the efficiency of Ally in many cases. To overcome
this issue, the second technique implemented in TreeNET
rather estimates the velocity of each counter for each interface
(the three IP-ID mentioned above) and associates interfaces
together when their velocity is similar, which is the same idea
as RadarGun [19]. This is why delays between getting each
IP-ID are being collected.

However, the velocity of a counter is not constant and
fluctuates, and to model this, TreeNET does not compute
a single velocity per interface but rather a range of velocities,
with a velocity being computed for every pair of consecutive
IP-IDs. Moreover, as IP-ID counters are encoded on 16 bits,
they can rollover on a regular basis, and it is not unlikely to
have two or more rollovers for interfaces belonging to routers
dealing with large traffic. For every pair of consecutive IP-IDs
(denoted as i and i+1 and the delay between those IP-IDs is



denoted di), we consider a variable xi to model the amount of
rollovers. In Fig. 4, we illustrate the data involved in our alias
resolution technique based on IP-ID counter velocity and the
variables for each pair of consecutive IP-IDs.

To be able to compute coherent velocities, one must find a
value for every xi such that the velocities are reasonably close
to each other. Our approach consists in assigning a value from
0 to a maximum (e.g., 50) to x0 and, for each value, resolving
i − 2 equations to find every xi with i being greater than 0.
The equation is the following

i1 − i0 + 65535× x0

d0
=

ii+1 − ii + 65535× xi

di
. (2)

As it is possible to have the inequality ii+1 < ii due to a
rollover between the first IP-ID of the pair and the second one,
we replace−ii by +(65535−ii) when this occurs to accurately
express the amount of times the counter was incremented.

Since it is extremely rare to find an integer, non-zero
solution for every xi, we rather solve such equations in the real
domain and round the results afterwards. If all solutions are
positive and if the rounding error (i.e., the difference between
the rounded result and the real value) is below a threshold (e.g.,
0.35), the rounded solutions are kept, otherwise the next value
for x0 is being considered until the maximum. If the maximum
value is reached without finding a solution, we consider the
counter to have an infinite velocity, represented by the range
[0, 65535].

If an integer value is found for every xi, the velocities are
obtained with the following formula:

vi =
ii+1 − ii + 65535× xi

di
. (3)

Of course, if ii is greater than ii+1, the term −ii is again
replaced with +(65535− ii).

The final step consists in retrieving the maximum and
minimum velocity obtained for the IP addresses. Afterwards,
interfaces are associated if their respective ranges of velocity
overlap. As we observed several ranges being very close
to each other without overlapping, we added a tolerance
value (e.g., 0.3) which slightly extends the largest range such
that it overlaps close ranges. Finally, it is worth noting we
always associate together interfaces for which the velocity is
computed as infinite (i.e., [0, 65535]).

If neither Ally nor the velocity range technique can be used,
reverse DNS association is considered. It is worth noting that if
IP-IDs are available and if the two previous techniques rejected
the association, reverse DNS is not considered. In other words,
reverse DNS is the last resort technique. The technique itself is
very simple: splitting the DNS of two IP interfaces at dots, they
will be associated if and only if they have the same amount
of components and if only the first ones differ between both
IP addresses. We did not elaborate our reverse DNS technique
further because of the need for additional inputs, such as the
naming conventions found in a particular network.
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Fig. 5. Preliminary performance results for our alias resolution scheme.

III. EVALUATION

In this section, we evaluate the performance of TreeNET.
We first provide preliminary results for our three alias res-
olution scheme (Sec. III-A) and, next, we compare subnet
inference of TreeNET with ExploreNET (Sec. III-B) on
a ground truth and several ASes. We also mention some
preliminary results which could guide future study of the mea-
sured ASes (Sec. III-C). Subnets and aliases collected during
our measurement campaign are freely available: https://
github.com/JefGrailet/treenet/tree/master/
v2/Measurements

A. Alias Resolution

To assess our alias resolution scheme described in Sec. II-F,
we relied on a dataset provided by iPlane [16]. It is made of a
list of 57,806 routers with their aliases as observed in iPlane
traceroute. Aliases are determined by using standard IP-
ID technique and identical return TTLs when probed at the
same time. It should be noted that this dataset is updated
every two months and that our GitHub repository provides the
dataset which was available at the time of our measurements.

For each alias (given as a list of interfaces), we run our
resolution technique and define an accuracy rate, i.e., the size
(i.e., amount of interfaces) of the largest alias inferred by
TreeNET for this list divided by the number of responding
interfaces from that list. As a consequence, a value of 1 means
that we obtain the same results as iPlane with respect to
responsive interfaces. On the contrary, a value of 0 means that
we are not able to identify the listed interfaces as aliases at all.
Measurements were done on November 19th, 2015, collecting
four IP-IDs for each responsive interface.

On the set of 57,806 routers, 26% of them were not
responding to our probes. No accuracy rate has been computed
on those routers. The accuracy rate for the remaining 74%
of the routers is given, as a cumulative distribution function,
on Fig. 5. The most important result here is that, in 55% of
the cases, our alias resolution provides the same results as
the iPlane dataset. The second main result is that, for a bit
more than 70% of the dataset, we have an accuracy rate of
at least 50%. Those results are promising and we leave as a
future work a better characterization of our alias resolution
technique and potential improvements of it. In particular, we



plan to elaborate on the amount of collected IP-IDs and the
effects of other parameters of our velocity-based technique we
previously mentioned.

B. Subnet Inference

In order to evaluate the subnet inference proposed by
TreeNET with respect to ExploreNET, we implemented
a slightly edited version of ExploreNET using the same
input/output schemes as TreeNET and targeted different ASes
as well as a ground truth network (an academic network for
which we have access to the actual topology – access to
that network topology is, obviously, not allowed outside the
campus) with both of them.

We decided to conduct measurements on three ASes:
AS224, AS5400 and AS30781. The first two are comparable
regarding the amount of hypothetical IP addresses (a bit more
than one million in both cases) but have a different role in
the Internet topology: AS224 is a stub AS (i.e., all traffic
coming in and out of it goes through a single path) while
AS5400 is a transit AS (i.e., it acts as a link between other
ASes). AS30781, on the other hand, is another transit AS
but of a much smaller scale (with a maximum of 45,824
hypothetical IP addresses), which is interesting for a com-
parison with AS5400. The datasets we obtained from them
are available on https://github.com/JefGrailet/
treenet/tree/master/v2/Measurements.

In the case of the ground truth, we were able to check the re-
sults with a network administrator, and discovered that 86.3%
of our measured subnets were correct in terms of prefix with
respect to the actual topology, the problematic results being
caused by very specific cases. These difficult cases notably
included loop-back interfaces from distinct subnets (sometimes
/32 subnets) whose TTL were similar and for which the IPv4
addresses were consecutives, and were therefore considered
to be on the same subnet. The inferred routers were also
confirmed by the actual network, therefore demonstrating the
relevancy of the tree structure and proving again the accuracy
of our alias resolution scheme.

To assess the soundness of subnets measured by TreeNET,
we introduce the notion of credibility of a subnet. A subnet is
considered as credible if less than 10% of its listed interfaces
are Contra-Pivot candidates and more than 70% of them are
Pivot interfaces, as we consider a subnet cannot be sound if
more than 20% of its interfaces are outliers. These numbers are
however arbitrary and could be adapted for specific networks
where the amount of outliers is assumed to be high. The
purpose of this metric is to evaluate if an Odd subnet is a
good measurement, an Accurate subnet being de facto credible
while Shadow subnets are never considered as credible.

Finally, we also use two additional metrics on datasets ob-
tained through ExploreNET: redundancy and encompassed
ratios. The redundancy ratio denotes how many subnets in the
datasets are equivalent with previously listed subnets, since
ExploreNET does not merge similar subnets like TreeNET
does. The encompassed ratio, on the other hand, quantifies how
many subnets inferred by ExploreNET are strictly smaller

than overlapping subnets obtained by TreeNET, in order to
check if the latter handles large subnets better than the former.

Our results are presented in Table I. One can immediately
notice a striking improvement due to TreeNET. It is indeed
remarkable how TreeNET is able to infer a smaller amount
of subnets than ExploreNET while covering much more ad-
dresses and having a high proportion of Accurate subnets. The
ratios of incomplete, redundant, and encompassed subnets for
each network further demonstrate that the refinements operated
by TreeNET over the results of ExploreNET drastically
improves the inferred subnets regarding both credibility (in
the broad sense) and coverage of the measured networks.

Furthermore, the introduction of Odd subnets in TreeNET
overcomes a limitation of ExploreNET: indeed, the latter
assumes that a subnet necessarily owns a single Contra-Pivot
interface. Therefore, ExploreNET can stop the inference
when it discovers two potential Contra-Pivot interfaces at
once. Unfortunately, this prevents it from properly inferring
a large subnet when there is, for example, a back-up Contra-
Pivot interface. It also tends to ignore outliers (e.g., an IP
interface located at the Pivot TTL + 1, which can occur due to
specific network policies), that could appear in measurements
conducted by TreeNET due to subnet merging. Thus, not
only the refinements help to find sounder subnets, but they
also relax the definition of a subnet to some extent and allows
the discovery of more exotic network configurations.

C. Preliminary results

Even if the focus of this paper is the description and
evaluation of TreeNET, we can already provide directions for
future analysis of the networks measured with it. In particular,
the datasets we collected can be analyzed to compute the
distribution of the subnet prefix lengths in each AS and our
ground truth. A first look at Fig. 6 already highlights an
interesting property: the proportion for each prefix length
varies from one network to another, and while /31 and /30
subnets are inevitably the most common ones (as already
observed with ExploreNET [8]), other prefix lengths are not
used in the same manner by each network.

For example, /24 subnets are particularly common in our
dataset from AS224, which is a stub AS. An interesting
perspective for future research would be to compare the results
obtained by TreeNET on several stub ASes to determine if
the proportion of /24 subnets is a common feature of stub
ASes or an AS224 specificity.

However, an in-depth analysis of the data would require
more metrics and modeling formalisms suited for router –
subnet topologies, which are left for future work.

IV. CONCLUSION

In this paper, we introduced TreeNET, a new tool collect-
ing and manipulating subnet topology information to discover
the router – subnet topology of a target network. Using as a
basis ExploreNET, a state of the art subnet inference tool,
TreeNET adds subnet refinement mechanisms along with a
tree-like structure which not only gives an overview of the



AS224 AS30781 AS5400 Ground truth
TreeNET ExploreNET TreeNET ExploreNET TreeNET ExploreNET TreeNET ExploreNET

# hypothetical IPs 1,115,392 45,824 1,385,472 5,888
# inferred subnets 3,053 68,635 1,195 6,606 1,769 7,398 124 1,024
# covered IPs 446,750 200,021 21,408 8,228 104,468 11,055 3,956 1,818
Accurate subnets 69.9% 36.7% 76.1% 45.6% 74.0% 39.8% 75.8% 45.3%
Odd subnets 23.8% / 20.0% / 12.3% / 17.7% /
Shadow subnets 6.3% / 3.9% / 13.7% / 6.5% /
Credible subnets 88.2% 36.7% 88.0% 45.6% 79.8% 39.8% 84.7% 45.3%
Incomplete subnets / 63.3% / 54.4% / 60.2% / 54.7%
Redundant subnets / 56.3% / 57.7% / 42.8% / 49.9%
Encompassed subnets / 72.5% / 66.3% / 63.0% / 54.3%

TABLE I
Comparison between TreeNET and ExploreNET for several ASes and our ground truth.
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Fig. 6. Distribution of the subnet prefix length in the observed networks.

network but also eases router discovery via alias resolution
techniques.

We were able to demonstrate the benefits of TreeNET
regarding subnet inference through a comparative study with
ExploreNET on a ground truth network and several ASes.
We also obtained promising results for the alias resolution
scheme currently implemented in TreeNET, both on our
private ground truth and a publicly available dataset provided
by iPlane. The datasets we obtained from the mentioned ASes
and the aliases list provided by iPlane we used are pub-
licly available on https://github.com/JefGrailet/
treenet along with the sources of TreeNET.

Future works involve in-depth evaluation of TreeNET (in
particular the efficiency of the pre-scanning phase and the alias
resolution scheme compared to RadarGun), large-scale mea-
surement campaigns and in-depth study of our datasets through
modeling formalisms suited for router – subnet topologies.
We are also planning to use TreeNET to elaborate Layer-2
devices inference techniques in the long term.
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