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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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2Laboratoire Informatique d’Avignon EA 4128, Université d’Avignon, France
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Abstract

This paper proposes a comparison between rec-
tilinear and radio-concentric networks. Indeed,
those networks are often observed in urban ar-
eas, in several cities all over the world. One of
the interesting properties of such networks is de-
scribed by the straightness measure from graph
theory, which assesses how much moving from
one node to another along the network links de-
parts from the network-independent straightfor-
ward path. We study this property in both recti-
linear and radio-concentric networks, first by ana-
lyzing mathematically routes from the center to pe-
ripheral locations in a theoretical framework with
perfect topology, then using simulations for multi-
ple origin-destination paths. We show that in most
of the cases, radio-concentric networks have a bet-
ter straightness than rectilinear ones. How may this
property be used in the future for urban networks?

1 Introduction

We propose to study and to compare the straight-
ness of two very common networks: rectilinear
and radio-concentric networks. This measure, also
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called directness, is related to another index called
efficiency [24], and is the reciprocal of the tortu-
osity (a.k.a. circuity) [14] – see section 2.1 for a
formal definition. In a general meaning, a high
straightness reflects the capacity of a network to
enable the shortest routes. It is somehow an acces-
sibility assessment: the higher the straightness, the
shorter the distance (or moving time) on the net-
work, due to reduced detours.

First, we show a few pictures of old and current
networks observed in the real-world, to highlight
their peculiar structures [17]. Hippodamian or rec-
tilinear (also called Manhattan) networks are made
of rectangular polygons, while radio-concentric
networks show a center location and a series of ra-
dial and circular links.

Second, we model theoretical rectilinear and
radio-concentric networks. We introduce the math-
ematical formula of the straightness for center-to-
periphery routes, and we demonstrate that in most
of the cases, even with a low number of rays, radio-
concentric networks provide straighter paths.

Third, we empirically process the straightness of
all routes (any node to any node) using Dijkstra’s
shortest path algorithm [6]. The results confirm
that for any type of routes, radio-concentric struc-
ture has higher straightness.
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1.1 Some Rectilinear Networks

Rectilinear networks are very common all over the
world. They are also called Hippodamian maps
due to the Greek architect Hippodamos. These
networks are characterized by road sections cross-
ing at right angles. Built according to land reg-
istry and road construction efficiency in a process
of urban sprawl, they look like pure theoretical
shapes: a grid of squares of identical surface and
side length. Figure 1 shows an example of an old
hippodamian urban structure in the antique Egyp-
tian city of Kahun (pyramid of Sesostris).

Figure 1: The antique Egyptian city of Kahun
(pyramid of Sesostris); Wikipedia.

More recent rectilinear networks are illustrated
by the American cities of Chicago in 1848 (Fig-
ure 2), New-York with Manhattan (Figure 3),
Sacramento (Figure 4) and also the Asian city of
Hô Chi Minh in Vietnam (Figure 5).

1.2 Radio-concentric Networks and
Shapes

The second type of network we study is also very
common. It is very different in its shape, although
it presents basic polygonal entities of various sizes,
due to the radial structure. In these networks,
the center is somehow a fuzzy location, that of-
ten refers to the old part of the town. From this
supposed center, radial roads are drawn, crossing
a series of perpendicular ring roads, depending on
the surface of the city.

Figure 2: Chicago (USA) in 1848; Wikipedia.

Figure 3: The famous rectilinear network of Man-
hattan (USA); Google Maps.

These shapes were already visible in old maps
such as medieval Avignon (cf. Figure 6), espe-
cially in its intramuros part, which is surrounded
by battlements. In more recent urbanization, many
urban areas reveal concentric shapes. Figures 7, 8,
9, 10, 11 and 12 are good examples of how much
geometrical these shapes are. Indeed, as with rec-
tilinear networks, there exist many degrees of spa-
tial regularity in radio-concentric networks, from
very symmetric structures like amphitheaters (Fig-
ures 11 and 12, representing the European Parlia-
ment and the antique theater of Orange, respec-
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Figure 4: The very regular road network of Sacra-
mento (USA); Google Maps.

Figure 5: Road network of Hô Chi Minh (Viet-
nam); Google Maps.

tively) or circular cities (Figure 10, which de-
picts a series of connected perfectly circular vil-
lages constituting SunCity), to more asymmet-
ric urban shapes (Figure 7, showing the one-side
radio-concentric shape of Amsterdam) or graphs
with a more relaxed or degraded geometry (Fig-
ures 8 and 9, presenting Paris and Sfax, respec-
tively).

Figure 6: Medieval map of intramuros Avignon
(France).

Figure 7: Amsterdam (The Netherlands); Google
Maps.

Figure 8: Paris (France); Google Maps.
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Figure 9: Sfax (Tunisia); Google Maps.

Figure 10: Suncity in Arizona (USA); Google
Maps.

Figure 11: European Parliament in Strasbourg
(France); Photo-alsace.com.

1.3 Geographical Models of Rectilinear or
Radio-concentric Shapes

Networks are often studied in geography because
they depict the visible human mark of population

Figure 12: Ancient theater of Orange (France);
Avignon-et-provence.com.

life in their territories. Beyond monographs which
describe particular places, there exist a few typolo-
gies of urban networks and schemes generally ex-
plored and measured via topological structure or
functional dimensions of the cities [8, 9]. Concern-
ing the types of urban networks and graphs, Blan-
chard and Volchenkov [3] presented a simple-faced
classification of different types of route schemes,
including rectilinear networks (e.g. Manhattan),
organic towns (e.g. city of Bielefeld, North Rhine-
Westphalia in Germany), shapes of corals (e.g.
Amsterdam or Venice). In his book, Marshall elab-
orates different taxonomies of street patterns [18].
However, it is also possible to design very theo-
retical networks in order to study their properties,
other things being equal [22]. Nevertheless, there
is no consensual classification of the urban net-
works. Looking at the literature, it is interesting
to notice that the publications about network de-
sign are actually shared by different disciplines in-
volved in the field: (spatial) econometrics of trans-
portation [11], mathematical optimization [4], in-
formation and communication technologies [7] or
social networks [16]. These disciplines can be
advantageously complemented by the domain of
graph theory [2, 19, 1].

On the one hand, the main contribution of the
Manhattan networks in the domain of spatial mod-
eling and measuring is the rectilinear distance cal-
culation, which is related to the mathematical L1-
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norm [10], compared to the Euclidian distance
based on the L2-norm [13]. On the other hand,
the radio-concentric framework generated several
outstanding models. In 1924, E. Burgess proposed
the concentric zone model to explain urban social
structures [20], followed by Hoyt in 1939, who de-
fined the sector model based on the urban devel-
opment along centrifugal networks [12]. In paral-
lel, W. Christaller [5] and A. Lösch [15] designed
the central places theory to understand how cities
are organized in territory, according to the distri-
bution of goods and services to the population.
These models deal with access to facilities and are
based on network design and costs. In 1974, Per-
reur and Thisse defined the circum-radial distance
based on such structures [21]. Toblers law [23] and
the Newton gravity model also both indicate an in-
verse relation between the strength of a force Fij
and the distance dij separating two points i and j
in geographical space, giving to the center(s) a par-
ticular status in networks. All these spatial theo-
ries participate in defining and emphasizing radio-
concentric models and shapes; however they nei-
ther refute nor contradict rectilinear webs that can
also own centers in different ways.

2 Straightness in Theoreti-
cal Rectilinear and Radio-
concentric Networks for Center-
to-Periphery Routes

In this section, we focus on the straightness of
center-to-periphery routes, for both rectilinear and
radio-concentric theoretical networks. The results
are purely analytic, i.e. no simulation is involved.
The networks are theoretical and perfectly regular,
with pure geometric shapes. The proposed meth-
ods are specifically designed for these types of net-
works.

We call radius an edge starting at the center of a
radio-concentric network. An edge connecting two
radii is called a side. Unlike the rectilinear net-

work, the radio-concentric network is controlled
by a parameter θ: the angle formed by two consec-
utive radii. The constraint on θ is that there must
exist an integer k such that k = 2π/θ. We suppose
that k > 2, because with k = 1 the sides are not
defined, and with k = 2, both radii are mingled.
We call angular sector the part of the unit circle
between two consecutive radii. A half-sector is the
part of the unit circle between a radius and a neigh-
boring bisector (cf. Figure 14).

2.1 Definition of the Straightness

For a pair of nodes, the Straightness is the ratio
of the spatial distance dS as the crow flies, to the
geodesic distance dG obtained by following the
shortest path on the network:

S =
dS
dG

(1)

This measures ranges from 0 to 1, a high value
indicating that the graph-based shortest path is
nearly straight, and contains few detours.

Coming from graph theory, this property is inter-
esting in network assessment, because it measures
a part (in a certain meaning) of the ”accessibility”
capacity of a network. It is a kind of relative effi-
ciency to reach a point in a network. In our case,
edges have neither impedance, nor direction. We
do not consider any possible traffic jams in the flow
propagation. In our assumption, speed is the same
all over the graph and so time is proportional to
distance.

Let the center of the network be the origin of a
Cartesian coordinate system. In the rest of the doc-
ument, we characterize a center-to-periphery move
by an angle α, formed by the x axis and the seg-
ment going from the network center to the targeted
peripheral node. The angle vertex is the network
center, as represented in Figures 13 and 14. For
the rectilinear network, we consequently note the
straightness S(α) for the route of angle α. For
the rectilinear network, due to the presence of the
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parameter θ (the angle between two consecutive
radii), we denote the straightness by Sθ(α).

2.2 Simplifying Properties of the Consid-
ered Networks

2.2.1 Rotation

Both networks have certain rotation-related prop-
erties, which allow some simplifications. As men-
tioned before, in a radio-concentric network, two
consecutive radial sections of the network are sep-
arated by an angle θ. In a rectilinear network (see
Figure 13), a cell is a square. The angle between
two consecutive edges originating from the net-
work center is therefore θ = π/2. So, we can dis-
tinguish k = 4 angular sectors, corresponding to
the quadrants of our Cartesian coordinate system.

Figure 13: A perfect rectilinear network, with θ =
π/2 and α in [0, π/4].

Both types of networks can be broken down to
k angular sectors, which are all similar modulo a
rotation centered at the network center. So, with-
out loss of generality, we can restrict our analy-
sis to the first angular sector, i.e. to the interval
α ∈ [0; θ].

2.2.2 Homothety

An additional simplification comes from the ho-
mothetic nature of both studied networks. Indeed,
in these networks, a center-to-periphery route can
go either through the edges originating from the
network, or through those intersecting with these

Figure 14: A perfect radio-concentric network,
with θ separating two radial sections, and α in
[0, θ/2]..

edges, as represented in Figures 15 and 16. Let us
consider a move from p1 to p4. In both cases, h is
parallel to H , so we can deduce that:

l

L
=

d

D
=

h

H

Then we obtain:

l ·D = L · d ; d ·H = D ·h ; l ·H = L ·h

We can set:

l ·D + l ·H = L · d+ L · h

That is to say S is the same whether the destination
point is located on the closest or the farthest edge
to the network center, for both types of networks:

S =
l

d+ h
=

L

D +H
(2)

Consequently, without any loss of generality, we
can therefore restrict our analysis to the first mesh
of the network, i.e. to the first square for the recti-
linear network and to the first triangle for the radio-
concentric network.

2.2.3 Symmetry

The last simplification comes from a symmetry
property present in both networks, as illustrated by
Figure 17 for radio-concentric networks. Observe
that when α is smaller than θ/2, the shortest paths
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Figure 15: Geometry of a rectilinear network.

Figure 16: Geometry of a radio-concentric net-
work.

go through the first radius (p1p3), whereas as soon
as α exceeds this threshold, they go through the
second one (p1p′3). Also note that the line corre-
sponding to this angle θ/2 is the bisector of the
angle formed by both radii.

Figure 17: Basic paths followed on a radio-
concentric geometric network.

Let us now consider the shortest path to p4,

which corresponds to an angle α < θ/2. We
wish to calculate the shortest path to some other
point p′4, corresponding to an angle α′ > θ/2, and
such that the travelled distance is the same as for
p4. We know that [p1; p3] and [p1; p

′
3] have the

same length, so the distance to travel on the side
is the same for both routes, i.e. H = H ′. More-
over, the angles formed by each radius and the side
are equal by construction: it is β. Let us now
consider the triangles (p1, p3, p4) and (p1, p

′
3, p
′
4).

We have two pairs of equal consecutive sides and
the angles they form are equal; they are both β.
So, both triangles are congruent, and we have:
̂p3, p1, p4 = ̂p′3, p1, p′4. By definition, ̂p3, p1, p4 =

α and ̂p′3, p1, p4 = θ − α′, so we get α = θ − α′,
and finally α′ = θ − α. For the same reason (con-
gruence), L = L′, meaning that the distances as
the crow flies are identical for p4 and p′4.

Since both distances (on and off the network) are
the same for p4 and p′4, their straightness are also
equal. In other words: Sθ(α) = Sθ(θ − α). We
can conclude that, without any loss of generality,
we can focus our study on the first half of the first
angular sector, i.e. the interval α ∈ [0; θ/2]. The
same proof can be applied to the rectilinear net-
work, which displays the same type of symmetry.
Consequently, the same simplification holds.

2.3 Analytic Expression of the Straight-
ness

In the previous section, we showed that, due to cer-
tain properties of rotation, homothety and symme-
try, we can restrict our analysis of the straightness
to only the interval α ∈ [0; θ/2] for both networks.
For the rectilinear network, note that θ = π/2.
So, in this specific case, we consider the interval
[0, π/4]. Let us now give the expression of the
straightness for each type of network.

For the rectilinear network, we have from Fig-
ure 15:

sinα =
h

l
; cosα =

d

l
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Then, from (2), we obtain:

S(α) =
l

d+ h
=

1

cosα+ sinα
(3)

For the radio-concentric network, let us observe
Figure 17. Note that p2 is the projection of p4 onto
the first radius. We obtain two rectangular triangles
containing p2: (p1; p2; p4) and (p4; p2; p3). This
allows us to write the following equations:

cosα =
D

L
; cosβ =

d

H

sinα =
h

L
; sinβ =

h

H

tanα =
h

D
; tanβ =

h

d

By removing h we get

L · sinα = D · tanα = H · sinβ = d · tanβ,

and hence we obtain:

D =
L · sinα
tanα

d =
L · sinα
tanβ

H =
L · sinα
sinβ

We substitute these values into (1), then simplify
and obtain:

Sθ(α) =
L

D + d+H
(4)

=
1

cosα+ sinα
tan π−θ

2

+ sinα
sin π−θ

2

(5)

Note that these formulas are valid only for the
interval α ∈ [0; θ/2]. The other values can be de-
duced by symmetry and/or rotation, as explained
earlier.

2.4 Comparison of Networks

With the analytic expression of the straightness
for both types of networks, we can now compare
their performance for center-to-periphery routes.
Figure 18 represents the straightness obtained for
the different network types and parameter values.
The x- and y-axis represent the angle α and the
straightness S calculated using the different previ-
ous formula, respectively. The optimal straightness
value is represented by the black dotted horizontal
line f(α) = 1. The closer the graphical represen-
tation of a network is to this line, the better the
network is in terms of straightness.

Figure 18: Straightness S of different networks de-
pending on the angle α of motion: 1 rectilinear net-
work and 4 radio-concentric networks from 3 to 16
radii ; α ∈

[
0; π4

]
.

For the radio-concentric network, we consider
several values of the parameter θ, corresponding to
k = 3, 4, 8, 16, represented in purple, blue, green,
and cyan, respectively. The rectilinear network is
represented in red. The x-axis ranges only from
α = 0 to π/4, which is enough, regarding the sim-
plifications we previously described: we know all
the plotted lines have a periodic behavior, which
directly depends on θ.
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For all lines, we have S(0) = 1, which corre-
sponds to a straightforward move on the first ra-
dius (or horizontal edge, for the rectilinear net-
work). Then, the straightness decreases when α
gets larger, since the destination point gets farther
from this radius, and therefore from an optimal
route. This corresponds to the lower route, rep-
resented in red in Figure 17. The decrease stops
when α reaches θ/2 (i.e. the bisector): the straight-
ness then starts increasing again, until it reaches 1.
This is due to the fact that the shortest path is now
the upper route, represented in blue in Figure 17.
The maximal value is reached when α = θ, i.e.
when the destination point lays on a radius, allow-
ing for an optimal route. The same ripple pattern
is then repeated again, and appears k times.

As mentioned before, the periodicity directly de-
pends on θ: the smaller the angle, the larger the
number of radii, which means the number of rip-
ples increases while their size decreases. In other
words, and unsurprisingly, the straightness of a
radio-concentric network increases when its num-
ber of radii increases. More interesting is the fact
that most of the time, 8 (a very small number) radii
are sufficient to make radio-concentric networks
better than rectilinear ones.

2.5 Boundary Condition

Let us now consider a radio-concentric network
with infinitely small θ. From the definition of k, we
know this would result in an infinitely large num-
ber of radii:

lim
θ→0

k = lim
θ→0

2π

θ
= +∞

The radii of such a network would cover the
whole surface of a disk. Since we focus our study
on the first angular half-sector, α is itself bounded
from above by θ/2. So, if θ tends towards 0, α
does too. From (5), we consequently get:

lim
θ→0

Sθ(α) = lim
θ→0

1

cosα+ sinα
tan π−θ

2

+ sinα
sin π

2
− θ

2

(6)

We have:

lim
θ→0

cosα = lim
α→0

cosα = 1

lim
θ→0

tan
π − θ
2

= +∞

lim
θ→0

sinα = lim
α→0

sinα = 0

lim
θ→0

sin
π − θ
2

= 1

We finally obtain the boundary for the straight-
ness of a radio-concentric network with an infinite
number of radii:

lim
θ→0

Sθ(α) = 1

This result is obvious and consistent with the
case where the complete route goes along a radius.
Indeed, with an infinite number of radii, we can al-
ways find a radius to move directly from the center
to the destination. Figure 18 confirms this result:
increasing the number of radii reduces the period
and the amplitude of the ripples, eventually leading
to the optimal horizontal straight line of the equa-
tion S = 1.

Between the two extreme cases of 3 radii and
an infinite number of radii, we should remind
the reader that 8 radii are enough for the radio-
concentric network to become better than the rec-
tilinear one in terms of straightness of center-to-
periphery routes. Let us see now how it goes for
multi-directional moves.

3 Simulation of the Average
Straightness for All Routes

Studying analytically the straightness for all possi-
ble moves (other than center-to-periphery) would
be too time-consuming, so we switched to simu-
lation. We used the statistical software R to sim-
ulate the motions on both rectilinear and radio-
concentric networks. The shortest paths are pro-
cessed using Dijkstra’s algorithm [6], for all pairs
of nodes (see Figures 19 and 20).
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Figure 19: A perfect rectilinear graph.

Figure 20: A perfect radio-concentric graph.

These results are very interesting and confirm
our theoretical findings, as well as our observations
regarding the good straightness of radio-concentric
networks, thrifty in number of radii, compared to
rectilinear networks. Figure 21 shows that, even
when increasing the granularity of the grid form-
ing a rectilinear network, the average straightness
is constant, at a value lower than 0.8. This is con-
sistent with our remark regarding the homothety
property of this network.

Regarding the radio-concentric network, Fig-
ure 22 shows that the average straightness over-
takes the rectilinear threshold (0.8) when the num-
ber of radii is about 8 or 10. It is interesting to
notice that the number of sides does not affect the
straightness much. This was expected for center-
to-periphery routes, as for the rectilinear network.
However, the routes considered here are more gen-
eral, going from anywhere to anywhere, and more-
over, the radio-concentric network is not a tessel-
lation like the rectilinear one, so it is surprising to

Figure 21: Average straightness S (and standard
deviation) for a rectilinear network, as a function
of its size (expressed in number of squares by side).

make this observation: further inquiry will be nec-
essary to provide some explanations.

Figure 22: Average straightness S (and standard
deviation) for a radio-concentric network, as a
function of its number of radii, and for different
number of sides (see colors).
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4 Conclusion

In this paper, we first presented a few urban net-
works based on rectilinear versus radio-concentric
structures. Then, in a theoretical framework, we
showed the superiority of the radio-concentric net-
work compared to the rectilinear network, in terms
of straightness. It was first demonstrated analyti-
cally in the particular case of center-periphery mo-
tions and then simulated on paths with multiple
origins and destinations, using the statistical soft-
ware R. To our knowledge, these results are new
and original. They show that, straightness-wise,
whatever the density of rectilinear networks, those
cannot efficiently compete with radio-concentric
networks, because their straightness is bounded by
construction, at least within a theoretical frame-
work.

However, this exploratory study does not take
into account several factors that must be now stud-
ied to complete these first results. It will be inter-
esting to find exactly over which number of radii
a radio-concentric network has a better straight-
ness than a rectilinear one. Knowing this thresh-
old, we shall then be able to calculate the to-
tal length of both networks to fill an equivalent
average straightness on similar surfaces to drain.
What will be the most thrifty network in terms of
length of ”cables”? On another aspect, these cal-
culations and simulations consider very theoreti-
cal networks. Geographers, architects and town
planners may be interested in understanding the
real straightness of urban, rectilinear versus radio-
concentric networks, in real conditions (popula-
tion mobility, congestion). This is also one of
the further researches developed in theUrbi&Orbi
project.

ACKNOWLEDGMENTS

We would like to thank the CNRS (PEPS MoMIS)
and the University of Avignon for supporting this
research.

References

[1] M. Barthélemy. Spatial networks. Physics
Reports, 499(1-3):1–101, 2011.
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