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SUMMARY 

 

High strength secondary hardening lath martensitic steel is a strong candidate for high 

performance and reliable transmission systems in aircraft and automotives. The fatigue 

resistance of this material depends both on intrinsic microstructure attributes, such as fine 

scale (M2C) precipitates, and extrinsic attributes such as nonmetallic primary inclusions.  

Additionally, the aforementioned attributes are affected by processing history.  The 

objective of this research is to develop a computational framework to quantify the 

influence of both extrinsic (primary inclusions and residual stresses) and intrinsic 

(martensite laths and carbides) microstructure attributes on fatigue crack formation and 

the early stage of microstructurally small crack (MSC) growth that dominate high cycle 

fatigue (HCF) lifetime.  

To model the fatigue response at various microstructure scales, a hierarchical approach 

is adopted. A simplified scheme is developed to simulate processing effects such as shot 

peening that is suitable to introduce representative residual stresses prior to conducting 

fatigue calculations. Novel strategies are developed to couple process route (residual 

stresses) and microstructure scale response for comprehensive analysis of fatigue potency 

at critical life-limiting primary inclusions in gear steels. Relevant microstructure-scale 

response descriptors that permit relative assessment of fatigue resistance are identified. 

Fatigue crack formation and early growth is highly heterogeneous at the grain scale. 

Hence, a scheme for physically-based constitutive models that is suitable to investigate 

crack formation and early growth in martensitic steel is introduced and implemented. An 

extreme value statistical/probabilistic framework to assess the influence of variability of 



 xvii

various microstructure attributes such as size and spatial distribution of primary 

inclusions on minimum fatigue crack formation life is devised. Understanding is sought 

regarding the relative role of microstructure attributes in the HCF process, thereby 

providing a basis to modify process route and/or composition to enhance fatigue 

resistance. Parametric studies are conducted to assess the effect of hot isostatic pressing 

and introduction of compliant coatings at debonded inclusion-matrix interface on 

enhancement of fatigue resistance.  

A comprehensive set of 3D computational tools and algorithms for hierarchical 

microstructure-sensitive fatigue analysis of martensitic gear steels is developed as an 

outcome of this research; such tools and methodologies will lend quantitative and 

qualitative support to designing improved, fatigue-resistant materials and accelerating 

insertion of new or improved materials into service. 
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CHAPTER 1 

INTRODUCTION 

  

1.1 Introduction 

   Rising power density requirements in transmission gear applications demand 

significant technological innovation. In 2004, representative leaders of the gear industry, 

including members from the United States Army, Boeing, General Motors and John 

Deere, prepared the Gear Industry Vision to outline a way of addressing these needs, 

specifically defining strategic goals to be met by the year 2025 [1] . Among the stated 

objectives were ambitious goals for enhancing gear performance, calling for 25% 

increases in power density every 5 years as well as a 50% increase in power transfer 

efficiency. Such lofty aims will soon surpass the performance gains that can be obtained 

through gear redesign alone; success will ultimately depend on better gear materials. The 

Gear Industry Vision identifies clean steels that are heat treatable to ultra-high hardness 

levels (RC70+) as leading candidate materials, and the continuing development of such 

steels as a “key technological challenge” that must be addressed. Evidently, enhancing 

the fatigue resistance of the gear steels will be a major challenge to be addressed in order 

to accomplish long term goals.  

Building on the design methodology demonstrated at Northwestern University [2], 

QuesTek Innovations LLC (Evanston, IL) has integrated modeling of process-structure-

property-performance relations in several major design programs for over a decade, with 

emphasis on proprietary high performance alloys suited to advanced gears and bearings 

and stainless steels for landing gear applications.  In developing the next generation high 
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strength steels, they utilized the system-based computational materials design approach 

[3]. Systems-based materials design focuses on the various interacting subsystems 

ultimately responsible for material performance. Drawing upon the existing knowledge 

base of various materials systems, targeted microstructures can be engineered for specific 

applications through the iterative feedback between theoretical modeling of these 

subsystem interactions and state-of-the-art analysis of prototype alloys.  

While the methods and tools of parametric materials design are now well established 

and undergoing wide application under QuesTek’s commercial design services, the 

broadening application of computational materials engineering in the materials-aware 

manufacturing context of both Accelerated Insertion of Materials (AIM) qualification 

and Integrated Computational Materials Engineering (ICME) concurrent engineering 

practices drives the demand for even higher fidelity integrated simulation and 

characterization tools. A new level of science-based modeling accuracy is now being 

achieved under the ONR/DARPA "D3D" Digital Structure consortium [4]. A suite of 

advanced 3D tomographic characterization tools is being used to calibrate and validate a 

set of high fidelity explicit 3D microstructure simulation tools spanning the hierarchy of 

microstructure scales. The QuesTek-led university consortium component of the D3D 

program focuses on design of fatigue and fracture resistant high strength steels.  This 

program is integrated with other aspects of D3D, including visualization systems, 

statistical analysis of distributed microstructure, integration of an archival 3D 

microstructure “atlas” at the Naval Research Laboratory, and ultimate iSIGHT-based 

integration of the full toolset in both computational materials design and AIM 

qualification. The principal role of Georgia Institute of Technology, under the 
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supervision of Prof. McDowell, is to develop a suite of 3D process path and 

microstructure-sensitive fatigue modeling tools to understand and enhance the fatigue 

resistance of high strength martensitic steels.  

 

1.2 Fatigue crack formation and growth 

Fatigue is the process of progressive damage accumulation in engineering components 

subjected to repeated cyclic loading. The fatigue life is composed of two components; 

crack formation (nucleation and early growth) life and crack propagation life. Crack 

formation is further decomposed into crack nucleation or incubation, microstructurally 

small crack (MSC) growth and physically small crack (PSC) growth [5, 6]. In steels, 

crack formation (nucleation and early growth) accounts for a significant portion of 

fatigue life under high cycle fatigue (HCF) loading [7].  The crack formation and MSC 

growth stages depend on microstructure heterogeneities such as inclusions and grain 

boundaries [8-11]. Nonmetallic inclusions and pores often play an important role in 

limiting HCF life in high strength steels [12-17]. The mechanisms of crack formation 

from an inclusion involve either cracking of the inclusion or debonding of the 

inclusion/matrix interface, with the inclusion serving as a notch to concentrate cyclic 

plastic strain in the surrounding metal matrix [12, 18, 19]. Additionally, the presence of 

secondary precipitates (~3-100 nm) formed during heat treatment can influence the crack 

formation and small crack growth behavior in the vicinity of primary inclusions [20]. 

Residual stresses generated during processing play a critical role in dictating the service 

life by altering the mean stress in steel structures [21]. 
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Microstructure attributes at different length scales (in the form of inclusions, and 

secondary precipitates) affect fatigue crack formation in martensitic steels [22-26]; 

however, computational models that correlate these attributes to variability in fatigue 

crack formation life have been very limited. Additionally, processing effects (for e.g., 

shot peening, carburization) play a crucial role in deciding the fatigue performance of 

martensitic steels. Since process variability results in microstructure variability, an 

integrated modeling strategy is imperative in predicting the expected fatigue life. 

Currently, no computational models are available to address the aforementioned 

challenge, and the objective of the proposed research is to utilize fully three-dimensional 

finite element approaches to devise methodologies that couple the effects of 

microstructure features and process routes in order to understand HCF response of 

martensitic steels. Fatigue crack formation in the HCF regime is highly heterogeneous at 

the grain (block) scale [10], and due to a hierarchy in microstruture of lath martensite at 

that scale it is impossible to develop an all-inclusive model coupling process effects and 

microstructure features at different scales; instead, a hierarchical approach will be more 

suitable and computationally efficient to investigate the process of crack formation and 

early growth in martensitic steels. It is important to study the overall cyclic stress-strain 

response and the plastic strain distribution for the local material heterogeneities during 

processing and service and to correlate these parameters with microstructure descriptors 

that permit assessment of relative fatigue resistance. This should facilitate the evaluation 

of variability in fatigue life with respect to the microstructure and process parameters and 

it should help in obtaining improved fatigue life estimates. Additionally, such a study (i) 

would be beneficial in designing the material microstructure to maximize fatigue 
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resistance and (ii) assist in devising improved process routes to extend the service life of 

components.    

 

1.3 Plan of study 

This work aims at developing 3D finite element based strategies to model HCF 

behavior of high strength martensitic gear steels. Specifically, attention is devoted 

towards formulating simplified algorithms to simulate effects of heat treatment and 

surface treatment on fatigue crack formation and early growth behavior at critical life-

limiting attributes such as nonmetallic primary inclusions. More emphasis will be placed 

on using computational tools to facilitate comparison between microstructure attributes 

with the goal of design or specification of material microstructure. A hierarchical 

approach is undertaken while identifying relevant microstructure scales and developing 

suitable constitutive models to simulate the microstructure scale response in fatigue. The 

utility of the algorithms and material models are demonstrated through parametric studies 

considering idealized inclusion geometries. Based on the knowledge gained through such 

studies, modified process routes that enhance fatigue resistance are computationally 

investigated.    

In Chapter 2, a brief summary of the microstructure and processing details of the lath 

martensitic steels is presented. Furthermore, salient observations from the experimental 

bending fatigue studies performed by Tiemens [27] is reported. In Chapter 3, a 

computational strategy to characterize the fatigue crack formation potency at subsurface 

primary inclusions in carburized and shot peened martensitic gear steels is developed and 

demonstrated. A simplified scheme to induce compressive residual stresses mimicking 
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the shot peening process is developed which is suitable to initialize residual stresses prior 

to conducting fatigue calculations. Parametric studies are performed to investigate the 

transition of critical crack formation site to subsurface inclusions in the presence of 

residual stresses as observed in experiments. In Chapter 4, a 3D FE based methodology to 

investigate relaxation of compressive residual stresses is presented. Using a three-

dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a 

simplified scheme is adopted to simulate the effects of shot peening to induce initial 

compressive residual stresses.  The model is utilized to investigate the subsequent cyclic 

relaxation of compressive residual stresses in shot peened lath martensitic gear steel in 

the HCF regime. Chapter 5 presents a strategy to model the sensitivity of fatigue 

resistance of secondary hardening martensitic gear steels to variability in extrinsic 

inhomogeneities such as primary inclusions, and pores, coupled with intrinsic 

microstructure variability such as variation in polycrystalline matrix grain orientation. A 

simplified approach is developed to quantify the variability of fatigue indicator 

parameters (FIPs) in the matrix at nonmetallic inclusions and pores in lath martensitic 

gear steels using a three-dimensional crystal plasticity constitutive model. In Chapter 6, a 

3D dislocation density based crystal plasticity constitutive model is developed that is 

suitable to investigate the effects of sub-micron scale M2C precipitates on fatigue 

resistance of martensitic gear steels. The model is utilized to couple intrinsic variability 

arising due to variation in polycrystalline matrix grain orientation and M2C precipitate 

volume fraction with extrinsic variability due to size and spacing of primary inclusions. A 

statistical framework to estimate the minimum life for crack formation is adopted. In 

Chapter 7, the capabilities of an elastic interphase material adhered to the inclusion 
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surface to alter the FIP in the matrix is computationally explored. By varying the elastic 

stiffness of the encapsulating interphase, the stresses and cyclic plastic strains are 

examined in the matrix in the proximity of a partially debonded inclusion, a worst case 

scenario for formation. In Chapter 8, a three-dimensional finite element based framework 

to assess the effect of hot isostatic pressing (HIPping) on void closure at partially 

debonded nonmetallic primary inclusion in high strength martensitic gear steels is 

developed. The effect of HIPping on fatigue crack formation potency at nonmetallic 

primary inclusion is evaluated. Chapter 9 summarizes the research outcomes and their 

relevance to computational design of fatigue resistant martensitic steels. Finally, 

recommendations are made for future research efforts. 
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CHAPTER 2 

BACKGROUND 

 

This chapter summarizes the microstructure and processing details of the secondary 

hardening martensitic steel used as a model material to develop fatigue modeling tools. 

Furthermore, a brief summary of the experimental bending fatigue studies performed by 

Tiemens [27] is reported. The experimental efforts and observations motivate certain 

aspects of the development of microstructure-sensitive fatigue models. The results and 

observations are utilized to develop suitable fatigue evaluation models and to support 

certain model predictions discussed in the subsequent chapters.  

2.1 Secondary hardening steels 

To address rising power density requirements, steels must exhibit superior hardness to 

resist localized contact and bending stresses while at the same time sustain adequate 

toughness for sufficient flaw tolerance. One family of steels that has demonstrated the 

highest combination of strength and toughness is high-alloy secondary hardening 

martensitic steels [28, 29]. Secondary hardening steels get their name from a secondary 

hardening response exhibited by these alloys when aged at Stage IV (450-600°C) 

tempering temperatures. This hardening behavior arises from the formation of fine alloy 

carbide dispersions that replace coarse cementite particles during tempering. Because 

these alloy carbides are stable at higher temperatures, secondary hardening steels were 

first utilized as tool steels in order to maintain hardness at elevated temperatures, a 

phenomenon called “hot-hardness” or “red-hardness”. The superior combination of 

strength and toughness afforded through the fine alloy carbide dispersion was then 
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utilized in high-strength high toughness structural steels, leading to commercial alloys 

such as Aermet100 and AF1410. It is this same optimized combination of strength and 

toughness that makes secondary hardening alloys well suited for high power density gear 

applications. 

 

2.2 System structure 

    The systems flow block diagram, or Olson diagram, of secondary hardening steels is 

shown in Fig. 2.1. The two primary performance objectives are the limiting failure 

modes, namely, bending fatigue and sliding/rolling contact fatigue. Bending fatigue is 

observed to be the limiting failure mode when attempting to achieve elevated power 

densities in transmission gear applications. In addition to optimizing the hardness and 

toughness of the steel, the fatigue resistance is enhanced through surface treatments and 

stabilizing the strengthening dispersions. Ultimately, a hard and wear resistant carburized 

case with a high toughness core is achieved, suitable for high power density applications.  

    Once the actual gear is manufactured from the raw material through cast ingot, direct 

casting, or powder metallurgy, it is typically heat treated to harden the surface through 

processes such as carburization. Carburization treatment consists of solutionizing to an 

austenitic state to dissolve primary carbides and enhance carbon solubility. The gear is 

quenched following carburization and subsequently subjected to cryogenic treatment to 

achieve complete martensitic transformation. Tempering treatments are then performed to 

achieve secondary hardening through precipitation of alloy carbides (M2C). Shot peening 

is employed to impart beneficial compressive residual stresses to enhance fatigue 
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resistance. Surface finishing such as honing, grinding, and burnishing is performed to get 

rid of stress elevating asperities.  

 

2.3 Matrix 

2.3.1. Microstructure 

The base microstructure of Ni-Co secondary hardening steels typically consists of a 

tempered lath martensite matrix, with Ni and Co in solid solution. The lath structure is 

formed upon quenching the FCC austenite phase through a diffusionless shear 

transformation, resulting in highly dislocated substructure due to accommodation of the 

transformation strains [23, 30]. The fine structure of lath martensite combined with high 

dislocation density provides excellent combination of strength and toughness.  

Suspended in solid solution within the lath martensite microstructure are both the Ni 

and Co alloying additions. Ni is a common alloying elements utilized in steels to enhance 

toughness [20, 31, 32]. Co addition enables precipitation of finer, stable and more 

efficient M2C carbides and maximizes secondary hardening response. It is noted that 

given sufficient tempering time, the coarse cementite particles are dissolved during 

secondary hardening as finer alloy carbides are precipitated. In order to resist grain 

coarsening during high temperature heat treatments, fine submicron secondary 

dispersions are often introduced to pin grain boundaries. Small additions of Ti are 

frequently added to form TiC and TiN; these grain refining precipitates can serve as sites 

for microvoid formation during fracture [33].  
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 2.3.2 M2C carbide precipitation and strengthening 

Secondary hardening steels garner most of their strength through a fine dispersion of 

alloy carbides. The level of precipitation strengthening achieved is highly dependent on 

the interaction mechanism between a gliding dislocation and a precipitate. When 

precipitates are small and coherent with the surrounding matrix, dislocations are able to 

cut into and shear the precipitate given sufficient driving force. Depending on the 

particular system, the resistance to particle shearing and the associated strengthening is 

due to several mechanisms, including coherency strains between precipitates and matrix 

(coherency strengthening), disruption of atomic ordering within precipitates (order 

strengthening) and additional surface area created from particle shearing (chemical 

 

Figure 2.1: Olson diagram of high power density gear applications. 
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strengthening). With all of these strengthening mechanisms, larger particles provide more 

resistance to shearing than smaller ones, resulting in the general strengthening behavior 

for particle shearing illustrated in Figure 2.2 [34].  

 

 

 

 

 

 

 

 

 

With continued growth, precipitates become increasingly difficult to shear due to their 

larger size as well as loss of coherency with the surrounding matrix. Eventually particles 

become non-shearable and gliding dislocations must bow around the particles. The 

Orowan bypass regime than dominates where a gliding dislocation must bow completely 

around a particle until touching to form a contained loop, thereby allowing the remaining 

reconnected dislocation segment to continue gliding. Unlike particle shearing, Orowan 

bypass resistance is governed by interparticle spacing; increasing the number of obstacles 

impedes dislocation motion. For a given particle volume fraction, fewer larger 

precipitates are less efficient Orowan strengtheners than a larger number of smaller 

precipitates. The particle size dependence for strengthening through particle shearing and 

by particle bypass results in the maximum precipitation strengthening occurring at the 

Figure. 2.2. Schematic representation of precipitation 
strengthening of particle size at constant volume fraction. 
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transition between these two mechanisms, as also shown schematically in Figure 2.2. 

Optimization of precipitation strengthening thus requires the refinement of the utilized 

precipitate strengthening dispersion to a sufficiently fine size scale. 

Ni-Co secondary hardening steels achieve very fine dispersions of alloy carbides in 

part due to their large Co alloying additions. As previously discussed, the added temper 

resistance provided by the Co allows for increased heterogeneous nucleation sites for 

alloy carbides. By easing nucleation, the driving force for precipitates is increased 

resulting in finer precipitate dispersions. Additionally, the type of carbide utilized in 

precipitation also plays a vital role. Carbides capable of maintaining high coherency with 

BCC Fe are able to precipitate at a much finer size scale. These carbides correspond to 

close packed structures, namely the FCC MC carbide (M=Nb, Ta, Ti, V) and HCP M2C 

carbide (M=Fe, Cr, Mo, W) [35]. 

The precipitate dispersions of choice in Ni-Co secondary hardening steels are M2C 

alloy carbides, where strong carbide forming elements (M) include Cr, Mo, V and W. 

Although metastable, M2C carbides exhibit the strongest driving force for precipitation 

from martensite as well as display the aforementioned coherency with the BCC tempered 

martensite matrix, resulting in the ability to form exceedingly fine strengthening 

dispersions. The transition between particle shearing and particle bypass marking the 

point of maximum precipitation strengthening has been shown to occur at an M2C 

precipitate diameters of about 3 nm. In order to reach dispersions on such a fine size 

scale, the thermodynamic driving force and kinetics for precipitation are controlled 

through alloying to compose mixed alloy carbides of (Cr, Mo, V, W)2C. Due to the 

increased stability of Mo2C over Cr2C, Mo increases the precipitation driving force when 
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substituted for Cr but is ultimately limited for solidification segregation considerations. 

Small additions of V and W also greatly increase the driving force for M2C precipitation; 

however both are also constrained due to limited solubility in FCC Fe. 

 

2.4 Current alloys 

  A family of ultra-high strength, secondary hardening carburized steels were chosen 

as the candidate materials to address high power density gear applications due to their 

optimized combination of strength and toughness. Using the systems-based materials 

design approach, the first prototypes of these alloys were developed by John Wise at 

Northwestern University [34], successfully achieving case hardness of 69 HRC. These 

prototypes were further developed and commercialized as GearMet® C69 and C67 by 

QuesTek Innovations in Evanston, IL. Designed for maximized case hardness, this alloy 

has proven to be superior to M50 bearing steel in NTN ball-on-rod rolling contact fatigue 

(RCF) screening tests and superior to X53 gear steel in full gear test by NASA Glenn 

[36]. Subsequently, QuesTek developed additional secondary-hardening steel, for 

conventional gear steel surface hardness levels (58-61 HRC) with a harder and flaw-

resistant core. Termed GearMet® C61 steel, this alloy has successfully been implemented 

in racing applications at reduced gear widths with limited impact on performance. This 

research will focus on developing a microstructure-sensitive FE modeling approach to 

evaluate the fatigue resistance of the C61 class of secondary hardening steels. 
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2.5. Experimental investigation of fatigue failure in martensitic steel 

The material of investigation in this work is GearMet® C61 alloy gear steel (referred 

to as C61 steel) [36] with the composition listed in Table 2.1 [27]. Heat treatment of this 

steel involves carburization at either 950°C, 1000°C or 1050°C followed by cryogenic 

treatment in a liquid nitrogen bath to obtain complete martensitic transformation at the 

surface. This is followed by tempering at 482°C for 15 hours to achieve the desired case 

strength. Shot peening is a standard dual peening employed in GM power trains and is 

performed by the Metal Improvement Company at their Romulus, MI facility. Dual 

peening consists first of a high-intensity application of peening media to maximize and 

deepen compressive residual stress at the target surface, followed by a less-intense 

saturation of softer media intended to smooth out asperities and to raise the compressive 

stress at the near surface. The measured variation in compressive residual stress with 

depth is shown in Figure 2.3, and the experimentally measured Vickers microhardness 

variation with depth is shown in Figure 2.4.  

 

To assess the bending fatigue performance of secondary hardening ultra-hard steels, 

single tooth bending fatigue tests on GearMet C61 spur gear were conducted at the GM 

Powertrain Gear Center in Wixom, MI. The use of standard GM performance validation 

techniques is important as it allows for comparison with existing unpublished data as well 

as incorporates relevant gear manufacturing processes that ultimately affect material 

        
Table 2.1. Composition of C61 martensitic steel (wt %). 
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performance. Additionally, the utilization of such accepted practices to demonstrate the 

performance of perceived “nontraditional” gear steels provides a visible and practical 

example to industry on the merits of such materials and the design 

methodology.

 

 
With the increase of case depth, the carbon content decreases, as does the microhardness. 

As measured by X-ray diffraction, initial compressive residual stress exists after shot 

peening within a thickness of 0.5 mm in the surface layer and reaches a maximum value 

of -1400 MPa at a depth of around 75 to 100 μm. The S-N curve for different surface 

conditions of C61 spur gear is shown in Figure 2.5. Shot peening was observed to 

enhance fatigue performance substantially when compared with as-heat treated 

specimens.  
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 Figure 2.3. Measured variation of compressive residual stress with 
depth after shot peening. 
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A common life-limiting failure mode observed in the bending fatigue tests was 

inclusion initiated cracks. On the fracture surface, the “fisheye” morphology was 

observed to radiate outward from each failure-initiating subsurface inclusion. The cracks 
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Figure 2.4. Measured variation of Vickers microhardness after heat 

treatment (carburization and tempering) with depth. 
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Figure 2.5. Stress-life curves for different surface condition of C61 spur gear. 
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were observed to originate at subsurface inclusions at a depth of 100-300 μm below the 

surface. Two classes of inclusions were observed as verified qualitatively by energy 

dispersive spectroscopy (EDS): Alumina (Al2O3) inclusions in shot peened C61 spur 

gears and lanthanum oxy-sulfide (La2O2S) inclusions in shot peened C61 and C67 spur 

gears. The switch from Al2O3 to La2O2S inclusions is a direct result of La additions to 

C61 (0.003 wt%) alloys to specifically getter impurities. 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.6. Measured depth of subsurface fatigue crack formation at 
nonmetallic inclusions in different grades of lath martensitic steels. (a) C61, (b) 

C61, (c) C69, and (d) C69. 
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    Figures 2.6 a-d shows the measured depth of subsurface fatigue crack formation in 

different grades of shot peened martensitic steels. Figures 2.7 and 2.8 show SEM 

micrographs of both classes of inclusions, as seen on the tooth fracture surfaces, as well 

as the corresponding mating fracture surfaces of the failed spur gear. Both Al2O3 and 

La2O2S inclusions were composed of clusters of individual particles aligned along the hot 

working direction of the billets from which the gears were manufactured. Individual 

inclusion particles composing Al2O3 and La2O2S cluster were all between 1-10 μm in 

diameter. The cluster morphology was very different between Al2O3 and La2O2S. Al2O3 

clusters (see Figure 2.7) were generally composed of only a couple individual inclusion 

particles tightly concentrated along a single line. In contrast, La2O2S clusters were 

composed of numerous particles and had a much larger cluster width. Experimental 

investigations revealed La2O2S to be most severe with regard to limiting fatigue 

performance. All La2O2S inclusions which caused failure occurred at much shallower 

depths where the compressive residual stress values were near their maximum values. In 

contrast, Al2O3 inclusions were only observed to form fatigue cracks at depths where 

compressive residual stress levels reduced by 75%. Although the overall size of the 

inclusion clusters was not significantly different for Al2O3 and La2O2S inclusions, the 

nature of the individual particles within them did show significant differences. As shown 

in Figure 2.8, La2O2S particles are located on both mating fracture surfaces with 

individual particles primarily de-cohering from the opposing fracture surface leaving 

behind a concavity. It is unclear if numerous clustered particles are in fact separate or the 

fractured remnants of a larger particle, and some single particles did show signs of 
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fracture, such as the annotated particle 4 in Figure 2.8. Al2O3 particles, in contrast, were 

primarily located and tightly bonded on only one mating fracture surface, displaying de-

cohesion from the opposing surface with no discernable signs of particle fracture. The 

size and spatial distributions of the inclusions affect the fatigue crack formation potency 

and it is of prime importance to discern the relative potency of different inclusion types 

considering the intrinsic and extrinsic factors that affect the fatigue performance. This 

research will develop the means to perform the aforementioned investigations that will 

contribute towards designing fatigue-resistant microstructure and devising modified 

process routes to enhance the fatigue performance.  

 

 

 

 

 

Figure 2.7. Backscatter SEM image of crack initiation zone showing 
characteristic Al2O3 inclusion sizes, cluster and debonding of inclusion-matrix 

interfaces.
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Figure 2.8. Backscatter SEM image of crack initiation zone showing 
characteristic lanthanum oxy-sulfide inclusion sizes, cluster , debonding of 

inclusion-matrix interfaces and cracking of inclusions. 
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Chapter 3  

MODELING EFFECTS OF PROCESS ROUTE ON FATIGUE 

CRACK FORMATION POTENCY AT PRIMARY INCLUSIONS 

 
In this chapter a computational strategy is developed to characterize the fatigue crack 

formation potency at subsurface primary inclusions in carburized and shot peened 

martensitic gear steels. Experimental investigation revealed minimum fatigue strength to 

be controlled by subsurface fatigue crack formation at inclusion clusters under cyclic 

bending. An algorithm is presented to simulate residual stress distribution induced 

through the shot peening process following carburization and tempering. A methodology 

is developed to analyze potency of fatigue crack formation at subsurface inclusions. Rate-

independent 3-D finite element analyses are performed to evaluate plastic deformation 

during processing and service at room temperature. The specimen is subjected to reversed 

bending stress cycles with R = 0.05, representative of loading on a gear tooth. The matrix 

is modeled as an elastic-plastic material with pure nonlinear kinematic hardening. The 

inclusions are modeled as isotropic, linear elastic. Idealized inclusion geometries 

(ellipsoidal) are considered to facilitate parametric study of the fatigue crack formation 

potency at various subsurface depths. Three distinct types of second-phase particles 

(perfectly bonded, partially debonded, and cracked) are analyzed. Parametric studies are 

conducted to quantify the effects of inclusion size, orientation and clustering on 

subsurface crack formation in the HCF or very high cycle fatigue (VHCF) regimes. The 

nonlocal average value of the maximum plastic shear strain amplitude and Fatemi-Socie 

(FS) parameter calculated in the proximity of the inclusions is considered as the fatigue 
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indicator parameters (FIP) for fatigue crack formation and microstructurally small crack 

growth. The simulations indicate a strong propensity for crack formation at subsurface 

depths in agreement with experiments in which fatigue cracks formed at inclusion 

clusters, still in the compressive residual stress field. It is observed that the gradients from 

the surface of residual stress distribution, bending stress, and carburized material 

properties all play a pivotal role in fatigue crack formation at subsurface primary 

inclusions. The fatigue potency of inclusion clusters is greatly increased by prior 

interfacial damage during processing. Additionally, systematic parametric studies are 

conducted to investigate the spatial interaction of inclusions with the objective of framing 

a methodology to estimate the critical inclusion spacing for minimal interaction in 

fatigue. Furthermore, parametric studies are performed to explore the effect of variation 

of orientation of ellipsoidal inclusions in a cluster with respect to loading axis and free 

surface on fatigue crack formation potency. The primary aim is to identify the least 

damaging orientation, thereby provide basis for efforts to pursue modified process routes 

to achieve enhanced fatigue performance. 

 

 3.1. Introduction 

  Due to the highly localized nature of the bending stresses in gear teeth with maxima 

at the surface, the most pertinent processing parameters for bending fatigue relate to 

various surface treatments. Of particular interest in this research is the residual stress 

fields induced through the shot peening process. Shot peening is perhaps the most widely 

used mechanical treatment to modify the surface state of metallic materials, and it is often 

used for the specific purpose of improving the fatigue resistance. Compressive residual 
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stresses of high magnitudes are induced at and near the surface layer of the specimen 

during shot peening by virtue of constrained plastic deformation. Such treatment benefits 

fatigue resistance of the gear [37]. Extensive experimental observations have been 

reported, elaborating on the advantages of heat treatments including carburization and 

surface treatment such as shot peening with regard to improving fatigue resistance of 

steel components [38-42]. The fact that the bending fatigue strength of steel gear teeth is 

increased considerably by carburizing and shot peening has been widely utilized in 

industry [43-49]. 

3.2. Survey of modeling approaches  

3.2.1. Simulation of shot peening process 

        Residual stresses are an inescapable consequence of manufacturing and fabrication 

processes, with magnitudes that can be a high proportion of the yield strength. 

Additionally, residual stresses are induced intentionally through heat and surface 

treatments to enhance fatigue resistance, as discussed in the previous section. In the 

absence of residual stresses induced by shot peening, cracks tend to form at the surface of 

the specimen during fatigue [50-52]. With carburization and shot peening, crack 

formation is observed to shift from the surface toward the subsurface of the carburized 

gears [27]; this is primarily due to the presence of high compressive residual stress and 

comparatively high hardness at the surface. It is well known that crack formation in the 

subsurface occurs preferentially at nonmetallic inclusions and other inhomogeneities. 

Such second phase particles often serve as fatigue crack formation sites in a variety of 

metallic materials [5, 12, 14, 53-55]. Extensive experimental observations have been 

reported earlier on similar subsurface crack formation [13, 56-61].  
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     Modeling shot peening is a challenging task. The process of shot peening involves 

bombarding the surface of the component with small spherical shots made of hardened 

cast-steel, conditioned cut-wire, glass, or ceramic beads at a relatively high impingement 

velocity (40–70 m/s). The major focus of such modeling has been devoted to predicting 

the residual stress pattern which can be utilized to optimize the actual shot peening 

process. Empirical models based on experimental data have been suggested by a few 

authors [62, 63] to predict the residual stress distribution following shot peening. The 

earliest effort to model shot peening was undertaken by Shaw and De Salvo [64], where 

they performed quasi-static analyses of single and twin shots on plastic strain 

distribution. Similar approaches were undertaken by many authors [65, 66] to understand 

the effect of a single shot on the stress and strain distribution at the specimen’s surface. 

The dynamic modeling of a single shot was initially conducted by Johnson [67] and Iida 

[68].  With the advent of high performance computing facilities in addition to the 

availability of multiple commercial FE codes, dynamic 2-D and 3-D FE simulations of 

shot peening have been successful in predicting the residual stress distribution in a 

variety of metallic materials [69-75]. 

     Although much progress has been made with regard to modeling surface treatments, 

detailed FE studies of fatigue crack formation and small crack growth behavior in such 

processed materials have been very limited. This is due to the vast disparity in the scales 

between the specimen dimensions (> 1mm) at which process parameters are framed and 

the underlying microstructure attributes such as nonmetallic inclusions (~5 μm) that 

dictate the HCF performance of the gear steels. The microstructure has even lower 

characteristic scales ranging from several nanometers to the order of 1 μm. Due to the 
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highly localized nature of fatigue crack formation occurring at fatigue critical ‘hot spots’ 

within the material, it is computationally prohibitive to perform fully coupled analysis of 

process routes and fatigue crack formation in martensitic steels. The microstructure 

hierarchy exhibited by lath martensite microstructure, in addition to the presence of 

submicron size carbides, demands a robust hierarchical computational framework to 

couple the extrinsic and intrinsic factors influencing the fatigue resistance of lath 

martensitic steels.  

3.2.2. Review of approaches to couple process routes and fatigue life prediction 

     Historically, relatively simple macroscopic fatigue parameters have been used in 

stress-based criteria for HCF, with constants and parametric forms specialized to each 

alloy system [10]. The resulting idealizations based on pure metals, both experimentally 

and theoretically, tend to support the empirical Coffin-Manson power law relation [76] 

for the number of cycles to fatigue crack formation and growth in the MSC regime. 

However, fatigue at the microstructure scale is a complex, evolutionary process with 

stages of formation and growth that depend on the hierarchical morphology of phases and 

grains, as well as on the presence of primary nonmetallic inclusions in high strength 

steels. Additionally, it is critical to understand the role of residual stresses developed 

during processing in the vicinity of primary inclusions.     

      Toyada et al. [13] performed a series of rotating-bending fatigue tests on shot peened 

Cr-Mo steels and estimated the influence of the inclusions on the fatigue strength, 

employing the projected area  approach suggested by Murakami and Endo [14], with 

necessary modifications to incorporate the residual stress effects. They showed that there 

exists a critical inclusion size that initiates subsurface failure within the specimen. Linear 
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elastic fracture mechanics (LEFM) based approaches to fatigue resistance typically 

assume an initial crack with size determined by inclusion size, regardless of the mode of 

crack formation or the condition of inclusion matrix interfaces. In this case, crack arrest is 

posed to occur if either the apparent LEFM KΔ is less than the small crack threshold 

value, thKΔ , or if the crack driving force, KΔ , reduces as the crack grows from the 

inclusion or due to development of roughness and/or plasticity induced closure to levels 

below the long crack thKΔ . Hence, the effects of inclusion size and subsurface depths are 

considered in the context of LEFM KΔ  and concept of threshold thKΔ . The semi-

empirical Murakami and Endo model has successfully predicted upper and lower bounds 

on service lives for specimens containing inclusions.  

The LEFM approach has been widely applied for the bending fatigue analysis of 

carburized components and steels [77-79]. Kim and co-workers [77] studied the effect of 

residual stress near the surface on the fatigue life using LEFM. The influence of residual 

stress on fatigue life was quantified by analyzing the change in stress intensity factor due 

to residual stress. Sharma and co-workers [78] presented a detailed study of various 

factors influencing K1c of case steels including alloying elements, retained austenite and 

carbon content. Lin et al. [79] investigated the general methodology of bending fatigue 

life prediction using strain life and fracture mechanics approaches for SAE 8620 steel. 

Both approaches were reported to compare reasonably well with experimental data on 

fatigue life, although the strain life approach proved to be more conservative in its 

predictions. The life prediction models employed in these previous numerical and 

analytical studies are insufficient to understand the detailed mechanistic and 

microstructure-related causes of crack formation at nonmetallic inclusions or to compare 
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more detailed scenarios in terms of inclusion type, interface condition, and so forth. 

Furthermore, the influence of the damage state of the second phase particles on fatigue 

crack formation would be essential to devise methods to mitigate such phenomena. In 

order to develop models for fatigue crack formation at inclusions, detailed and accurate 

information regarding the local deformation and stress conditions in the proximity of 

inclusions is imperative. 

      Mackaldener and co-workers [80] developed a two-dimensional plane strain gear 

tooth FE model and studied the stress state history at every point within the tooth during a 

single contact load cycle.  The residual stress induced through case hardening was 

simulated by applying a thermal load cycle and the McDiarmid critical plane approach 

[81] was employed to project the fatigue crack formation at various depths, with 

necessary modifications to incorporate shot peening effects. They reported that 

development of tensile residual stresses due to case hardening led to high risk of fatigue 

crack formation in the interior of the tooth. Although their method was computationally 

effective and considered various aspects of surface treatment in the macroscopic analysis, 

it was not able to describe the root cause for crack formation occurring beneath the 

surface region where the residual stresses are still compressive and it may not be 

sufficient to describe the role of microstructural inhomogenieties and interfacial damage 

conditions of inclusions in such failure scenarios. Borbeley et al. [82] attempted to study 

the cause for subsurface failures initiating from pores in AZ91 magnesium alloys through 

3D FE simulations. The results of local stresses and plastic strains in the vicinity of the 

pores showed that critically sized pores present just beneath the surface have maximum 

tendency to form fatigue cracks. Melander and Gustavsson [18] performed 2-D FE based 
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investigation of short cracks growing from nonmetallic inclusions in AISI 51200 

martensitic bearing steel under the influence of thermal residual stresses generated during 

heat treatment. The thermal stresses were introduced by virtue of CTE mismatch between 

the inclusion and the steel matrix and fatigue calculations were performed by introducing 

stationary cracks in the vicinity of primary inclusions. The crack driving force was 

measured in terms of cyclic crack tip opening displacement. The authors reported that the 

crack driving force was significantly reduced by increasing the thermal misfit between 

matrix and inclusions. Furthermore, the crack driving force in the vicinity of a pore was 

observed to be significantly higher than that in the vicinity of a hard intact alumina 

inclusion. Although the aforementioned findings are relevant to understanding the effect 

of thermal residual stresses on fatigue crack formation, the FE framework is an over-

simplification of the complex transformation process that occurs during heat treatment.   

     Clearly, residual stresses play a pivotal role in influencing fatigue crack formation and 

early MSC propagation within the material. Significant portion of the service life is 

consumed in fatigue crack formation and MSC growth on the order of the nonmetallic 

inclusions in HCF [16]. Considerable effort has been made to accurately model the 

residual stresses and thereby to understand their influence on the service life of the 

component [83-90]. When analyzing the fatigue failure initiating at nonmetallic primary 

inclusions, it is essential to consider the effects of damaged particles or inclusions and 

their influence on fatigue crack formation [5, 18, 19, 91-93]. 

The aim of the present study is to quantify the potency for fatigue crack formation 

from damaged subsurface inclusions using FIPs in carburized and shot peened gear 

steels. Detailed FE analyses of the failure scenarios described above has been very 
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limited. This work presents initial efforts to develop a 3D modeling strategy for 

estimating fatigue potency of martensitic gear steels with Al2O3 inclusions. A new 

algorithm is presented to account for representative residual stresses induced via plastic 

deformation due to shot peening. Case hardening (carburization and tempering) is 

considered by varying the material properties from surface to core. To determine 

quantitative relationships between local cyclic plastic strains and far-field loading, 

representative 3D finite element meshes are constructed which contain inclusions 

surrounded by carburized matrix. Cracked and debonded inclusions are considered, 

consistent with experimental findings as reported in Chapter 2. Nonlocal average values 

of plastic shear strain range [19, 92, 93] and the Fatemi-Socie parameter [94] are 

considered as the FIPs. The fatigue crack formation potency at various case depths is 

compared with experimental findings. Additionally, a methodology is presented to 

estimate the critical inclusion spacing to achieve negligible interaction in fatigue. 

Furthermore, effect of orientation of inclusions in a cluster with respect to loading axis 

and free surface is systematically investigated with the intention of identifying the 

desirable orientation for enhanced fatigue resistance. All simulations were performed 

using ABAQUS [95] .  

 

3.3. Characterization of mechanical properties of matrix and inclusions 

        Three-dimensional FE analyses were performed to understand the mechanisms of 

fatigue crack formation and early growth within the tempered martensite matrix. Detailed 

description of heat treatment, surface treatment and composition of the material is 

presented by Tiemens [27].  The inclusions were assumed to be isotropic, linear elastic  
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with Young’s modulus E = 400 GPa and Poisson’s ratio ν = 0.2.  The matrix was 

modeled as a rate-independent elastic-plastic material with a nonlinear kinematic 

hardening law cast in a hardening minus dynamic recovery format.  After carburization, 

the variation of carbon content from the surface to core has significant influence on local 

mechanical properties of the material.  Elastic modulus, yield strength and work 

hardening rate depend on carbon content.  Donzella et al. [96] and Pedersen et al. [97] 

presented an empirical relation between yield strength and micro-hardness for case 

hardened steel. Elghazal et al. [98] and Vincent et al. [99] presented a novel technique to 

characterize the local elasto-plastic properties of surface hardened steels through nano-

indentation measurements and surface hardness profile. Considering the experimental 

observations and applying the empirical relations to the micro-hardness values presented 

in Figure 2.4, the material parameters of martensitic gear steel were obtained for FE 
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Figure 3.1. Simulated monotonic tension stress-strain behaviors as a function of depth 

from surface. Depth of core is 1.2 mm below surface.  
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analyses. Figure 3.1 shows the corresponding simulated monotonic tension stress-strain 

curves at various depths for the material considered*.  

 

3.4. Elasto-plastic framework 

The rate-independent plasticity model with kinematic hardening for the matrix 

employs the simple Mises yield surface 

  
2( ) yF f σ χ σ= − −                                                                                                          (3.1) 

 
with F = 0 during plastic flow, and   

                                                     

( ) ( ) ( ) ( ) ( )3 3:
2 2 ij ij ij ijf S S S Sσ χ χ χ χ χ′ ′ ′ ′− = − − = − −  (3.2) 

 
 
Here, S is the deviatoric stress tensor, σ  is the stress tensor, χ  is the back stress tensor 

and  χ′  is its deviatoric component. The uniaxial cyclic yield strength is defined by yσ .  

The associative plastic flow rule is given by 
 
 

1
3 3 3
2 2 2

p p p p SF F N
S

χ
ε ε ε ε

σ σ χ

− ′−∂ ∂
= = =

∂ ∂ ′−
 (3.3) 

 
 

                                                 

 
 
* While estimating the cyclic yield strength of the case layer, the material was assumed to significantly 
soften (~35%) in fatigue ( [100] Boller C, Seeger T. Materials Data for Cyclic Loading, Part B: Low Alloy 
Steels. New York: Elsevier, 1987).  However, such as assumption was not validated with experiments for 
the lath martensitic steel modeled in this study. It is noted that based on the hardness values reported in 
Figure 2.4 the corresponding yield strength will be considerably higher. Hence, the simulations conducted 
in this Chapter are primarily intended to present the algorithm and framework to conduct fatigue analyses 
considering the effects of compressive residual stresses.  
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where pε the plastic strain rate tensor and pε  is the equivalent plastic strain rate, defined 

by 

 
2 :
3

p p pε ε ε=   (3.4) 

 
 
The evolution equation for the back stress tensor χ  is expressed as [101] 
 

( ) p p

y

c rχ σ χ ε χε
σ

= − −   (3.5) 

 
where c and r are material parameters.  Here, c is the initial kinematic hardening modulus 

and r determines the rate of dynamic recovery of the back stress with increasing plastic 

deformation. Isotropic hardening is neglected in view of the desire to simulate cyclically 

stable response in parametric studies with pure kinematic hardening.  

The elastic response is given by 

 

:σ = εeC   (3.6) 

 
where eε  denotes the elastic strain tensor, and C  is the isotropic elastic stiffness tensor. 

It is assumed that room temperature response is modeled, so temperature and rate effects 

are neglected.  

 

3.4.1. Relations in connection with the return mapping scheme 

To estimate the increment in the hydrostatic part of the back stress we re-write 

Equation (3.5) in the incremental form as shown below,  



 34

( ) p p

y

cd d r dχ = σ − χ ε − χ ε
σ

                                  (3.7)   

 
 Principal components in Equation (3.7) can be written as,   

 

( ) p p
ii ii ii ii

y

cd d r dχ = σ − χ ε − χ ε
σ

                                   (3.8) 

 
The bar over indices indicates no summation. The incremental hydrostatic part of the 

back stress tensor is obtained from Equation (3.8),  

( )h h h p h p

y

cd d r dχ = σ − χ ε − χ ε
σ

  (3.9) 

where 
3

h ii=
σσ  and 

3
h iiχχ =  

The back stress tensor is additively decomposed into its deviatoric and hydrostatic parts, 

i.e., 

h
ij ij ijd d d′χ = χ + χ δ                                 (3.10) 

 
 
Applying Equation (3.7), Equation (3.10) can be re-written as,  

 

  ( ) p p h
ij ij ij ij ij

y

cd d r d d′χ = σ − χ ε − χ ε − χ δ
σ

                                                  (3.11) 

 

Inserting Equation (3.9) into Equation (3.11) we obtain, 

 

( ) p p
ij ij ij ij

y

cd S d r d′ ′ ′χ = − χ ε − χ ε
σ

  (3.12) 



 35

 
3.4.2. Backward Euler discretization 

If we consider the interval from a state n to 1n +  , the fully implicit backward Euler 

method allows Equations  (3.1) to (3.6) to be discretized as follows [102]                            

                       

1 1 1
e p

n n n+ + +ε = ε + ε                    (3.13) 

 

1 1
p p p
n n n+ +ε = ε + Δε   (3.14) 

 

( )1 1 1: p
n n nC+ + +σ = ε − ε   (3.15) 

 

1 1 1
3
2

p
n n nN+ + +Δε = Δλ     ( λ - plastic multiplier)             (3.16) 

 

1 1
1

1

3
2

n n
n

n

S
N + +

+
+

′− χ
=

σ
  (3.17) 

 

( ) ( ) 2
1 1 1 1 1

3 :
2n n n n n yF S S+ + + + +′ ′= − χ − χ − σ               (3.18) 

 

1 1 1 1( ) p p
n n n n n

y

c d r d+ + + +χ = χ + σ − χ ε − χ ε
σ

    (3.19) 

 
3.4.3. Nonlinear scalar equations 

     Given the constitutive variables at n  and the total strain increment 1n+Δε , we need to 

obtain 1n+σ , satisfying the discretized relations given in Equations (3.13)-(3.19). To solve 
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for 1n+σ  we perform return mapping, which consists of elastic predictor and plastic 

corrector. The elastic predictor stress is given by            

                                    

( )1 1: p
n n nC∗

+ +σ = ε − ε   (3.20) 

 
The yield condition is then checked using the yield function 

 

( ) ( )* * 2
1 1 1

3 :
2n n n n n yF S S∗

+ + +′ ′= − χ − χ − σ   (3.21) 

 
If 1 0nF∗

+ ≤ , 1n
∗

+σ  is accepted as 1n+σ . If 1 0nF∗
+ > , *

1n+σ  is brought on the yield surface 

1 0nF + =  as follows :  

Substituting Equations (3.14) and (3.20) into Equation (3.15) gives 

 

1 1 1: p
n n nCσ σ ε∗

+ + += − Δ   (3.22) 

 
where 1: p

nC ε +Δ  is the plastic corrector. Taking the deviatoric part of the above relation 

and noting that 1 1: 2p p
n nC Gε ε+ +Δ = Δ  (G -shear modulus) we obtain 

 

1 1 1 1 12 p
n n n n nS S Gχ ε χ∗

+ + + + +′ ′− = − Δ −   (3.23) 

 
To evaluate 1nχ +′  we use Equation (3.12) and perform implicit integration, i.e., 

( )1 1 1 1 1 1n n n n n n n
y

c S rχ χ χ λ λ χ
σ+ + + + + +′ ′ ′ ′− = − Δ − Δ  (3.24) 
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where 1 1

p
n ndλ ε+ +Δ = . Simplifying Equation (3.24) we obtain, 

 

( )1 1 1

1

11

n n n
y

n

n
y

c S

c r

χ λ
σ

χ

λ
σ

+ + +

+

+

′ + Δ
′ =

⎛ ⎞⎛ ⎞
+ Δ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (3.25) 

 
Equation (3.25) can be rewritten as 

 

( )1 1 1 1 1n n n n n
y

c Sχ χ λ
σ+ + + + +

⎛ ⎞
′ ′= Ξ + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
  (3.26) 

 

where  1

1

1

1
n

n
y

c rλ
σ

+

+

Ξ =
⎛ ⎞⎛ ⎞

+ Δ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  

 

Similarily, the hydrostatic part of the back stress tensor can be obtained using Equation 

(3.9), i.e., 

 

( )1 1 1 1
h h h
n n n n n

y

cχ χ σ λ
σ+ + + +

⎛ ⎞
= Ξ + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
  (3.27) 

 
In Equation (3.22), 1

p
nε +Δ  is eliminated using Equations (3.16) and (3.17), i.e., 

 

1 1
1 1 1 1 1

1

3 n n
n n n n n

n

S
S S G

χ
χ λ χ

σ
+ +∗

+ + + + +
+

′−⎛ ⎞
′ ′− = − Δ −⎜ ⎟

⎝ ⎠
 (3.28) 
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Equation (3.28) can be simplified using Equation (3.25) to obtain 

 

( )1 1 1 1 1

1 1
1 13

n n n n n n
y

n n
n n

cS S

S
G

χ λ σ
σ

χ
σ λ

∗
+ + + + +

+ +
+ +

⎛ ⎞⎛ ⎞
′− Ξ + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠′− =

+ Δ
                                (3.29) 

 

In the absence of isotropic hardening the following relation holds,            

  

1n yσ σ+ =   (3.30) 

 
Substituting Equations (3.29) and (3.30) into Equation (3.19) we obtain the final form for 

equivalent plastic strain increment, i.e., 

 

( ) ( )* ( ) * ( )
1 1 1 1 1 1 1 1

( 1)
1

3 :
2

3

k k
n n n n n n n n n n y

y yk
n

c cS S S S

G

χ λ χ λ σ
σ σ

λ
+ + + + + + + +

+
+

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
′ ′−Ξ + Δ −Ξ + Δ −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦Δ =   (3.31) 

 

Equation (3.31) is solved using method of successive substitution to obtain 1n+Δλ . A 

flow chart is presented in Figure 3.2 elaborating on the numerical scheme employed to 

obtain 1n+Δλ . In Equation (3.31) the superscript k and 1k + correspond the number of 

substitutions in the method of successive substitution. A convergence criterion is set as 

shown in Equation (3.32). 
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( )
1
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k

n
k

n

λ
λ

+
−+

+

Δ
− ≤

Δ                                                    (3.32)    
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Figure 3.2 Flow diagram for radial return mapping scheme with successive substitution. 
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3.5. Imposition of residual stress: modeling the effect of shot peening process 

During processing, heat treatment (carburization and tempering) and surface 

treatment (shot peening) introduce a compressive residual stress field near the surface.  

Comparatively, the residual stress introduced by carburization and tempering (-100 MPa 

to -300 MPa) is much lower than that introduced through shot peening, especially close 

to the surface layer of the specimen [27, 103].  A series of thermo-mechanical processes, 

such as diffusion, phase transformation, dynamic elastic-plastic deformation, and 

deformation-induced phase transformation are involved during carburization, tempering 

and shot peening.  As a result, it is quite complex to simulate the evolution of residual 

stress based on the physical mechanisms. Although mechanism-based FE simulation of 

residual stress is effective for two-dimensional calculations, three-dimensional 

D 

Direction of impact during shot 
peening 

R Surface 

Plastic zone 

Surface 

Subsurface element 

d 

Figure 3.3. (a) A schematic showing a metallic ball impacting the specimen 
surface during shot peening, causing constrained plastic deformation to a depth 

D below surface, and (b) an equivalent volume element of the plastic zone 
divided into several subsurface elements, each corresponding to a depth d below 

the surface where shot peening and fatigue simulations are performed. 

(a) 

(b) 

L2 
d
D

< 1 

Y 
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simulations become computationally more demanding. Alternatively, a simplified scheme 

is followed to impose the measured residual stresses. 

After carburization, the mechanical properties vary only with the depth. The 

bombardment of metallic balls on the specimen surface during shot peening gives rise to 

constrained and concentrated plastic deformation at and near the surface.  Kobayashi and 

co-workers [104] reported that the shot peening process effectively induces equi-biaxial 

residual compressive stresses within the specimen by virtue of plastic deformation.  It is 

reasonable to assume that the residual stress in the steel matrix at and near the surface 

layer after shot peening is also equi-biaxial. Figure 3.3a shows a schematic of the shot 

peening process and the region below the surface of depth D experiencing plastic 

deformation is denoted as the ‘plastic zone’. Figure 3.3b shows an equivalent volume 

element of the plastic zone divided into multiple ‘subsurface element’, each 

corresponding to a depth d below surface. The dimensions of the ‘subsurface element’ are 

L1, L2, and L3 in directions X, Y, and Z, respectively.  The residual elastic strains 

present within the deformed region are associated with compressive stresses; the self-

equilibrating nature of the residual stresses results in development of tensile stress state 

deeper in the interior.  
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During shot peening all principal stresses remain compressive. With the 

aforementioned observations regarding shot peening, a methodology is developed to 

simulate compressive residual stresses within the material with the constraint that all 

normal components of the stress tensor remain compressive during shot peening in the 

surface coordinate system XYZ (Figure 3.4). The procedure is summarized as follows: 

1. Consider a homogeneous matrix subsurface element of the specimen at a depth d 

below surface, initially without inclusions, as shown in Figure 3.4a. The 

carburized material properties corresponding to the depth d is assigned to the 

subsurface element.  

Figure 3.4. Methodology to simulate shot peening process. (a) Schematic showing 
a subsurface element on which the strains are imposed, (b) yyσ vs yyε response in 

the subsurface element during shot peening simulation, and (c) variation of elastic 
and plastic strain in X and Z directions in the subsurface element during shot 

peening. 

L1 
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L3 
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Z 

X 

ux= 0 on planes X = 0, L1. 
uy= 0 on plane Y = 0.  
uz= 0 on planes Z = 0, L3. 
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2. Imposing the boundary conditions shown in Figure 3.4, the subsurface element is 

subjected to uniaxial compression in direction Y to strain levels calculated from 

the elastoplastic constitutive relations, in connection with the following step 

( load
yyε in Figure 3.4b). The total strain components (elastic plus plastic) in the X 

and Z directions are assumed as zero at each stage of the process, in accordance 

with overall constraints. 

3. The compression is followed by unloading in direction Y ( final
yyε in Figure 3.4b) to 

elastic strain levels that match the measured macroscopic residual stress 

distribution in the material as a function of depth (Figure 3.4c). 

4. The resulting strain-time history is then applied as boundary conditions on the 

same subsurface element with embedded inclusions that are intact, debonded or 

cracked to assess the local residual stresses and strains in the vicinity of inclusions 

as initial conditions for subsequent fatigue simulations.  This is repeated for each 

subsurface depth of interest. 

 

     In the above algorithm, a ‘subsurface element’ is a volume element representing the 

steel matrix with dimensions in μm (L1, L2, and L3 in Figure 3.4a). While considering 

the embedded inclusion of size δ , the dimensions of the subsurface element are chosen 

to be sufficiently large that the inclusion experiences negligible boundary interaction 

effects, i.e., , and 1
L1 L2 L3
δ δ δ  with L2<<D. The above methodology mimics the shot 

peening process, and is suitable for initializing residual stresses prior to conducting 
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fatigue calculations. The following direction convention holds for all subsequent 3-D 

calculations: 

• Direction of impact (shot peening) – along Y direction 

• Equibiaxial residual stress state – along X and Z directions 

• Cyclic loading  – along Z direction  

In reality, the localized high strain rate deformation at and near the surface of the 

specimen during shot peening can result in cracking and debonding of inclusions. Plastic 

strains of very high magnitude at the point of impact during shot peening can alter the 

matrix microstructure (e.g., dislocation density) at the case layer. The plastic strain 

magnitudes vary with the depth from the free surface. Also, the local equivalent plastic 

strain magnitudes in the vicinity of debonded and cracked primary inclusions can be 

significantly higher (> 6 %) than that in the far-field and will be demonstrated later. 

Furthermore, formation of local free surface during decohesion of inclusion-matrix 

interface can result in significant softening of matrix encompassing the debonded 

inclusion.  In this study, we pursue the strategy of simulating inclusions that are assumed 

to be already cracked or debonded at the beginning of the shot peening process as a 

means of assessing their influence on the local residual stress state and the fatigue crack 

formation potency at the inclusion. 

 

3.6. Elasto-plastic relations relevant to imposing compressive residual stresses 
 

The stress state at any subsurface depth after shot peening is given by (see Figure 3.4) 
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                         (3.33) 

 

During plastic deformation (shot peening), the following quantities and their differential 

increments always satisfy 

0

0

1
2

p p p
xy xz yz

p p p
xx yy zz

p p p
xx zz yy

ε ε ε

ε ε ε

ε ε ε

= = =

+ + =

= = −

 and 

0

0

1
2

p p p
xy xz yz

p p p
xx yy zz

p p p
xx zz yy

d d d

d d d

d d d

ε ε ε

ε ε ε

ε ε ε

= = =

+ + =

= = −

(incompressibility)                  (3.34) 

 
During the shot peening process the shear strain components are zero in the XYZ 

principal coordinate frame, i.e.,  

 

0xy yz zxε = ε = ε =                                                        (3.35) 

 
Expanding the yield function in Equation (3.2) gives 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

2 6 0

xx xx yy yy zz zz zz zz xx xx yy yy

yy yy xx xx zz zz y

F ⎡ ⎤ ⎡ ⎤= σ − χ − σ − χ − σ − χ + σ − χ − σ − χ − σ − χ +⎣ ⎦ ⎣ ⎦

⎡ ⎤σ − χ − σ − χ − σ − χ − σ =⎣ ⎦

  (3.36) 

 
 
Due to equi-biaxial deformation, the following relationships hold during the entire 

process of shot peening: 

 

,

xx xx zz zz

xx xx zz zz
p p p p
xx zz xx zz

S S

σ − χ = σ − χ

′ ′− χ = − χ

ε = ε ε = ε

                  (3.37) 
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Inserting Equation (3.37) into Equation (3.36) the yield function reduces to 

 

( ) ( ) 2 2 0xx xx yy yy yF ⎡ ⎤= σ − χ − σ − χ − σ =⎣ ⎦                  (3.38)   

 

Using the relation in Equation (3.9) the increment of equivalent plastic strain is given by, 

2p p p
yy xxd d dε = ε = ε                                             (3.39) 

 

Using the three-dimensional Hooke’s law, the elastic and plastic strains at the end of shot 

peening process can be obtained by applying the boundary conditions shown in Figure 

3.4, i.e.,  

 

( )

( )

( )
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, ,

,

1

1

2

res
e final p final
xx xx

res
e final p final
zz zz

e final res
yy

E

E

E

σε ν ε

σε ν ε

νε σ

= − = −

= − = −

−
=

                                    (3.40) 

 

Here, the superscript ‘ final ’ corresponds to final strain state at the end of shot peening. 

Coupling Equations (3.34), (3.39), and (3.40), the final strain component along direction 

Y after unloading can be obtained as  

 

 ( ) ,2 2final res e final
yy xxE

νε σ ε−
= +                                    (3.41) 



 47

 

In order to obtain the peak uniaxial compressive strain to be imposed along direction 

Y ( )load
yyε  to induce the target residual stress level, the above equations coupled with the 

nonlinear kinematic hardening relation described in Equation (3.5) are solved 

numerically. We employ the method of successive substitution (see Section 3.4) along 

with an interval-halving scheme to iteratively solve the set of equations. Additionally, a 

closed form solution to estimate the compressive strains is derived in [105]. We do note 

that, a closed form solution is not possible for more complex elasto-plastic constitutive 

relations. For example, while considering isotropic hardening a numerical scheme such as 

the approach illustrated in this work will be more useful. 

 

3.7. Modeling fatigue crack formation under cyclic loading 

 

 

Three-dimensional FE simulations were performed to quantify FIPs at depths 75μm to 

300 μm below the surface. Idealized shape inclusions (ellipsoidal and spherical) were used 

 
aε  

Figure 3.5. Cross-section of FE mesh through the center of inclusion with 
refinement close to the inclusion. 
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to pursue parametric computational study of FIPs to evaluate relative potency of subsurface 

crack formation.  Figure 3.5 shows a cross-section of a 3-D FE mesh with closely spaced 

inclusions. A fine mesh is employed close to the inclusion(s) for detailed investigation of 

inelastic deformation and stress state in the proximity of the inclusions. All simulations 

were performed using 4-node 3D tetrahedral elements (C3D4) in ABAQUS. Reduced 

integration is employed. 

 It was assumed that the inclusion sizes are small compared to the overall specimen 

dimensions and hence the gradient of applied stress and residual stress over an inclusion is 

negligible. With this assumption, the stress state is imposed at discrete depths within each 

subsurface inclusion-matrix volume element and the stresses and plastic strains around the 

inclusion(s) are examined. Figure 3.6 shows the variation of peak applied uniaxial 

compressive strain load
yyε  and the strain after unloading final

yyε with depth for the martensitic 

gear steel during the shot peening simulation. The residual stress simulation is followed by 

three cycles of strain-controlled loading with Rε = 0.05 (applied strain ratio). Since the 

remote loading is within the elastic limit, Rε is effectively Rσ. Figure 3.7 shows a plot of 

peak applied strain during cyclic bending and its variation with depth. FIPs for crack 

formation are calculated over the third load cycle. Two FIPs, namely the nonlocal average 

maximum shear plastic strain range, *
maxΔ pγ , and Fatemi-Socie (FS) parameter, ΔΓ , are 

considered.  The latter parameter also includes limited consideration for small crack 

propagation [106].  The FS parameter considers the effect of the maximum normal stress, 

max
nσ , perpendicular to the plane of maximum cyclic plastic shear strain, and has proven to 

be a very effective correlative parameter for multiaxial fatigue [107]. It has been 

generalized by McDowell [6] and Shenoy et al. [108] to form the basis for microstructure-
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sensitive small crack  growth laws (microstructural fracture mechanics), with the latter 

study using computational micromechanics to compute the FS parameter. Several 

successful experimental correlations have been obtained on fatigue lives of different 

metallic materials using the FS critical plane approach (cf. [109-115]). The FS parameter is 

defined by                                                     

max**

1
2

p
n

y

K σγΔΓ
σ

⎛ ⎞Δ
= +⎜ ⎟⎜ ⎟

⎝ ⎠
                 (3.42) 

where, K = 0.6  is a material parameter that is assigned a value used for 1045 steel [94]. 

The superscript ‘*’ denotes a nonlocal average value described later. 

 

       The cyclic plastic shear strain amplitude in the matrix is essential to the evaluation of 

potency of inclusions with regard to fatigue crack formation. In local FE analyses, the 

micronotch root maximum plastic shear strain amplitude is mesh-sensitive; it is therefore 

necessary to introduce a nonlocal volume averaging procedure over integration points in 
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Figure 3.6. Variation of the peak compressive strain ( )load
yyε and the strain after 

unloading ( )final
yyε  along direction Y during shot peening simulation with depth.   
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the mesh to (i) effectively remove mesh dependence and also (ii) to accord with the 

physical process zone for crack formation (typically on the order of a micron). Motivated 

by earlier work [19, 92], the maximum plastic shear strain amplitude is averaged over a 

volume of 31 mμ (unit cube), which corresponds to 9.5% of the inclusion volume (for 

inclusion of minimum size), and is selected as that volume at the notch root that 

maximizes the the nonlocal plastic shear strain amplitude. We employ this nonlocal 

volume ( )31V mδ = μ  for all the cases examined in this parametric computational study. 

Naturally, such a small volume is considered in terms of evaluating the probability to 

form a crack, and larger domains would be necessary to consider propagation resistance. 

 

  At every integration point lying within the nonlocal averaging region, we compute 

the plastic shear strain p
θγ on the plane-θ by projecting onto it the plastic strain tensor p

ijε at 

each integration point, i.e., 
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Figure 3.7. Peak applied strain ( )zzε  as a function of depth (bending) during 
cyclic loading. 
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1
2

p
p

i ij jn t Nθγ ε θ= = …                  (3.43) 

 

where in  and jt  are the unit normal and tangent vectors, respectively, on the plane- θ, 

and N is the number of discrete planes. Discrete set of tangent vectors are screened on 

any given plane-θ  to estimate the plastic shear strain. The nonlocal average plastic shear 

strain is then calculated by averaging over the volume Vδ of the nonlocal region, i.e., 

 

* 1p p

V

dV
V

δ

θ θ
δ

γ γ= ∫   (3.44) 

 
The nonlocal cyclic plastic shear strain range for every plane is calculated over the third 

load cycle of the simulation. The nonlocal maximum cyclic plastic shear strain range, is 

defined by                                        

   

( )* *
max maxp p

θθ
γ γΔ = Δ   (3.45) 

 
Once the critical plane and nonlocal maximum plastic shear strain range are determined, 

ΔΓ  is calculated using Equation (3.42) at every integration point on the critical plane 

(determined by *
max
pγΔ )  and a volume average is performed in the nonlocal region similar 

to Equation (3.44); this effectively results in a nonlocal FS parameter. A simple local 

form of Coffin-Manson law can be used to correlate the number of cycles for formation 

of fatigue cracks with each choice of FIP [10, 93] .  
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3.8. Results: effect of residual stresses 

3.8.1. Cracked inclusion analyses 

      Cracked ellipsoidal inclusions, embedded in the elastoplastic matrix, were subjected 

to residual compressive stresses from simulated shot peening followed by three cycles of 

loading (strain controlled). Simulations were also performed with intact particles and 

results showed negligibly small FIPs for all case depths below the surface in this case. 

Similar observations were reported by Gall and co-workers [19]  for A356 aluminum 

alloy. This may be due to the fact that the peak applied bending stress is below the elastic 

limit of C61 gear steel ( ≤ 0.8 ysσ ). Also, localization of stresses and plastic strains in the 

matrix around intact particles are not as intense as those observed near damaged particles. 

In addition to the aforementioned observations, it is important to note that fatigue crack 

formation in the HCF regime is highly heterogeneous at the grain scale [10]. 

Investigation of the potency of intact particles to form fatigue cracks while operating 

close to the fatigue limit of the specimen demands rigorous scale-dependent and discrete 

dislocation plasticity simulations and the J2 plasticity assumption may not be sufficient to 

capture such failure scenarios. Accordingly, this ideal case study focuses on cracks 

forming at damaged particles such as cracked and partially debonded inclusions where 

substantial cyclic plastic strains are predicted using a J2 plasticity assumption.  

       Figure 3.8 illustrates the three-dimensional boundary conditions and orientation of a 

cracked particle with respect to the loading direction and the surface. It is assumed that 

inclusions tend to crack when the major axis of the ellipsoidal particle is oriented parallel 

to the loading direction. Table 3.1 summarizes the list of cases considered while 

analyzing the effect of cracked particle on fatigue crack formation in the matrix at 
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subsurface depths. In Tables 3.1 and 3.2, 2a and 2b represent the major and minor axis 

dimensions of the ellipsoidal inclusion, respectively; 2c and 2d represent that of the 

neighboring inclusion. L represents the longitudinal spacing between the inclusions, 

chosen to be 1μm in this limited parametric study. More detailed investigation of the 

effect of inclusion spacing will be presented later. For convenience, all cases and results 

presented in the subsequent sections will be addressed with the ‘case pointer’ listed in 

Table 3.1. Figure 3.9a shows the equivalent plastic strain contour plot around the cracked 

inclusions located at 250μm below surface, at the end of the third loading cycle for case 

R1, for example. 

  

 

Figure 3.8.  Cross-sectional views of the 3-D section with embedded inclusion 
showing the debonded and cracked surfaces, boundary conditions, and cyclic 
loading direction in bending. Views across (a) XY, (b) XZ, and (c) YZ cutting 

planes through the center of the inclusion.
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Case 

pointer 

No of 

inclusions 

Shape of 

inclusion 

 

2a 

 

2b 

 

2c 

 

2d 

 

L 

P1 1 Ellipsoidal 5 2 - - - 

Q1 2 Ellipsoidal 5 2 5 2 1 

R1 2 Ellipsoidal 5 2 10 4 1 

(all dimensions in μm) 

  

 Plastic strain intensification is observed to occur in the matrix at the intersection of the 

cracked particle with the matrix. The severity of stresses and cyclic plastic strain 

localization was observed to depend on the size of the inclusion and inclusion spacing. 

Evidently, the highest values of stresses and plastic strains were observed in case R1 as 

compared to case P1 and Q1 in the vicinity of cracked particle. Stress intensification 

arising due to interaction of inclusions could magnify the FIPs relative to the case of a 

single inclusion. A detailed investigation of the effect of particle shape, alignment, 

spacing and configuration on local stress distribution under cyclic loading can be found 

elsewhere [116].  

 Figure 3.10 shows the variation of the *
maxΔ pγ /2 and ΔΓ  with depth for case P1. 

Interestingly, the maximum value of these FIPs occurs at a depth of about 250 µm below 

surface, which falls within the depth range observed in experiments for C61 gear steels. 

Also, observing the values close to the surface, it can be seen that the FIPs are negligibly 

small at depths between 75 to 150 µm, even though the applied strain amplitude is higher 

close to the surface. Shot peening suppresses the FIPs at the surface and shifts the critical  

Table 3.1. List of cases analyzed in the study of cracked inclusions. 
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crack formation site to subsurface depths. The critical depth shows strong dependence on 

residual stress distribution, applied load and property gradients. Presence of other 

inhomogeneities such as pores and soft inclusions (sulfide particles) could alter the 

favorable site for crack formation depending on the intensity of localization around such 

inclusions.  

 

 

 

(a) 

Y 

Z 

aε  
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(b) 

Figure 3.9. Contour plot of the equivalent plastic strain at the end of third 
loading cycle at a depth of 250μm below surface: (a) case R1 and (b) case E1. 
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 Figure 3.11. Variation of nonlocal maximum cyclic plastic shear strain 

amplitude and FS parameter with depth for case Q1. 
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 Figure 3.10. Variation of nonlocal maximum cyclic plastic shear strain 

amplitude and FS parameter with depth for case P1. 
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The nonlocal maximum plastic shear strain amplitude and FS parameter were also 

calculated for cases with two closely spaced cracked inclusions (case Q1and R1); results 

are shown in Figure 3.11 and Figure 3.12, respectively. The trends were similar to that of 

the single cracked inclusion (case P1), but the values are an order of magnitude higher 

due to size and interaction of inclusions. Increase in FIPs with increase of inclusion size 

(case R1 compared to case Q1) supports the observation reported by Toyoda and co-

workers [13] relating the inclusion size to fatigue strength. Also, the sensitivity of fatigue 

crack formation life to the size and number of particles (clustering) is most pronounced at 

lower stress levels than at stress levels above macroscopic yielding [93]. Several other 

factors in addition to the inclusion size and spacing affect the HCF crack formation life 

including the shape and orientation of the inclusion [5, 91, 116]. However, detailed 

Figure 3.12. Variation of nonlocal maximum cyclic plastic shear strain 
amplitude and FS parameter with depth for case R1. 
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investigation of all the factors influencing subsurface fatigue crack formation in shot 

peened C61 steel is beyond the scope of this limited parametric study.  

 

3.8.2. Partially debonded inclusion analyses 

 Three-dimensional FE analyses were performed involving partially debonded 

inclusions (ellipsoidal) embedded in an elasto-plastic matrix. McDowell et al. [5] showed 

for A356-T6 Al alloy that partially debonded inclusions offer the most conservative 

scenario among various damaged particles for assessment of fatigue potency. Figure 3.13 

describes the convention followed to represent ellipsoidal inclusion orientation in XY 

plane, denoted by φ. More detailed study exploring the effect of varying the orientation 

of inclusions in a cluster will be presented later. In all cases, the ellipsoidal inclusions 

were aligned such that the major axis of the inclusion was perpendicular to the loading 

direction. Figure 3.8 shows cross section views of the 3-D domain, elaborating on the 

boundary conditions, loading direction, and debonded surface of the inclusions 

considered in the parametric study.  

The inclusion-matrix volume element was subjected to similar loading conditions as 

described in cracked inclusion analyses. Table 3.2 summarizes the different cases of a 

partially debonded inclusion analyzed in the parametric study. All the cases presented in 

the following plots and discussion will be addressed with the ‘case pointer’ listed in 

Table 3.2.  Figure 3.9b shows the equivalent plastic strain contour plot for case E1 at the 

end of the third loading cycle, for example. Intensified plastic strains at the intersection of 

the debonded and bonded surfaces of the matrix (debond termination) can be observed 

from the contour plot. The intensification is due to the crack-like nature of the tip of the 
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debond seam coupled with the constraint and contact of embedded inclusions. It was 

mentioned by Gall et al. [5, 19] that high stresses around cracked inclusions will 

invariably facilitate debonding at the particle matrix interface. It was also shown that 

once a cracked particle begins to debond, the local plastic strains are intensified in the 

matrix with the same order of magnitude as a crack-free but partially debonded inclusion. 

Similar to cracked inclusion analyses, the severity of stress and plastic strain localization 

was influenced by particle size and spacing. Evidently, the magnitudes of plastic strains 

and stresses in the matrix encompassing the partially deboned alumina inclusion were 

highest in cases D1 and E1 compared to all other cases listed in Table 3.2.  

 

 

 

Case 

Pointer 

# of 

Inclusions 

Shape of 

inclusion 

 

2a 

 

  2b 

 

  2c 

 

  2d 

   

   L 

     1ϕ  2ϕ  

A1 1 Ellipsoidal 5 2 - - - 0° - 

B1 2 Ellipsoidal 5 2 5 2 1 0° 0° 

C1 2 Ellipsoidal 5 2 5 2 1 90° 90° 

D1 2 Ellipsoidal 5 2 10 4 1 0° 0° 

E1 2 Ellipsoidal 5 2 10 4 1 90° 90° 

( 1ϕ and 2ϕ represent the orientation of inclusion 1 and inclusion 2, respectively) 
(all dimensions in μm) 

Table 3.2 List of cases analyzed in the study of partially debonded inclusions. 
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Figure 3.14. Variation of nonlocal maximum cyclic plastic shear strain 
amplitude and FS parameter with depth for case A1. 
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Figure 3.13. Convention followed to represent the orientation of inclusion. 
Angle φ is measured with respect to X axis (loading axis along Z direction). 



 61

 

 

 

 

Figure 3.16.  Variation of nonlocal maximum cyclic plastic shear strain 
amplitude and FS parameter with depth for case C1. 
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Figure 3.15. Variation of nonlocal maximum cyclic plastic shear strain 
amplitude and FS parameter with depth for case B1. 
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Figure 3.18.  Variation of nonlocal maximum cyclic plastic shear strain 
amplitude and FS parameter with depth for case E1. 
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Figure 3.17. Variation of nonlocal maximum cyclic plastic shear strain amplitude 
and FS parameter with depth for case D1.

Depth (μm)
50 100 150 200 250 300

FI
P 

(x
 1

0-5
 )

0

10

20

30

40

50

60

70

80

(Δγ p* )max / 2

ΔΓ

 
 

1μm 
4μm 

10μm 

5μm 
2μm 

Y 

X 



 63

Figure 3.14 shows the variation of nonlocal maximum plastic shear strain amplitude 

and nonlocal FS parameter with depth for the case A1. Similar to the results obtained in 

the cracked inclusion analyses, the critical depth for fatigue crack formation trends 

towards 250 µm. The debonded inclusion was observed to facilitate higher plastic strains 

under monotonic loading, which in turn leads to higher local stress states. Consequently, 

reversed yielding occurs more readily near debonded inclusions. Consistent results were 

obtained for all the cases listed in Table 3.2 (see Figures 3.14-3.18) where the predicted 

critical depth for subsurface fatigue crack formation was in accordance with experimental 

observation. Size and spacing of partially debonded inclusions are observed to play a 

significant role in fatigue crack formation potency at subsurface depths.  Case E1 is 

observed to be most detrimental under cyclic loading among all cases analyzed in this 

parametric study. This is due to the presence of a large partially debonded inclusion 

coupled with intensification arising due to interaction with neighboring inclusion. The 

variations arising due to spatial alignment of individual inclusion in a cluster (comparing 

case D1 and case E1) will be addressed later. The predictions and observations reported 

in this parametric study emphasize the importance of the inclusion-matrix interface 

character on fatigue crack formation potency. Comparing the single cracked particle 

results (case P1) in Figure 3.10 and single partially debonded inclusion results (case A1) 

in Figure 3.14, where the inclusion size is equal, the FIPs are relatively higher in the 

presence of partially debonded inclusions. Similar observations can be made by 

comparing different cases of partially debonded and cracked inclusions with equal size 

and spacing; it is evident that a cracked inclusion does not localize plastic strains and 

stresses in the matrix as severely as the partially debonded inclusion.  
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       The choice of ellipsoidal inclusion in this parametric study facilitates assessment of 

the effect of individual inclusion alignment in a cluster with respect to loading direction 

on fatigue crack formation. Although partially debonded inclusions were aligned such 

that the major axis of the ellipsoid was perpendicular to loading direction, some disparity 

in the FIPs arises by varying the relative alignment of individual inclusions in the XY 

plane. The differences were significant between case D1 (Figure 3.17) and case E1 

(Figure 3.18). The FIPs are relatively higher at subsurface depths for case E1. Since the 

plastic strain localization is most severe at the inclusion notch root for an ellipsoidal 

particle, the magnitudes of FIPs are expected be relatively higher when the inclusions are 

aligned such that the major axis of individual inclusion coincides (as in case E1). 

Comparing cases B1 and C1 as shown in Figures 3.15 and 3.16, the difference in the 

magnitudes of FIPs are relatively small. This observation suggests that the effect of 

relative spatial alignment of individual inclusion in a cluster on fatigue crack formation is 

more pronounced in presence of large inclusion ( ≥ 10μm). The disparity in fatigue 

response arising due to variations in spatial arrangement of inclusions in a cluster is a 

major contributor to the scatter in HCF lives observed in experiments. It is also evident 

from cases D1, E1 and R1 that the presence of large inclusions has more detrimental 

effect under cyclic loading. This is widely acknowledged from the perspective of initial 

flaw size, treating the inclusion as a crack starter for application of fracture mechanics.  

 

3.8.3. Investigation of the residual stress fields in the proximity of primary inclusions 

It is informative to study the distribution of residual stress fields in the vicinity of 

primary inclusion at the selected case depths below the surface. Figures 3.19, 3.20 and 
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3.21 show the nonlocal average values of residual stress fields in the proximity intact, 

cracked and partially debonded particle, respectively. For comparison, the far field 

residual stresses are plotted along with the local fields.  The residual stresses are 

estimated at the end of the shot peening process. The residual stresses along X and Z 

directions are denoted as RS11 and RS33, respectively. The nonlocal averaging region 

corresponds to the fatigue critical zone demonstrating highest FIPs described in Sections 

3.8.1 and 3.8.2. The results of the cracked particle correspond to case P1 in Table 3.1 and 

that of the partially debonded inclusion correspond to case A1 in Table 3.2. The intact 

particle is the same as case A1 with completely bonded surface.  

 

Figure 3.19. Residual stress distribution around single intact 
ellipsoidal inclusion (RS11=σxx and RS33= σzz). 
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Figure 3.20.  Residual stress distribution around single cracked 

ellipsoidal inclusion (RS11=σxx and RS33= σzz). 

Figure 3.21.  Residual stress distribution around single partially 
debonded ellipsoidal inclusion (RS11=σxx and RS33= σzz). 
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 The modest variation in the residual stress magnitude between the far field and the 

near inclusion zone is due to property mismatch, coupled with the constraint and contact 

of the embedded inclusion.  Furthermore, comparing the local residual stress magnitude 

between the cracked, debonded, and intact particle, the differences are not significant. 

Evidently, high magnitudes of compressive residual stress around debonded or cracked 

particle at depths 75 to 100 μm would oppose interface separation during fatigue cycling. 

Consequently, plastic strain intensification is suppressed during cyclic loading, leading to 

negligibly small FIPs at those depths as observed in Figures 3.10-3.12, 3.14-3.18. It is 

well known that high compressive residual stresses suppress crack formation and growth 

potency in fatigue. The FS parameter utilized in this study accounts for such local stress 

effects while estimating the fatigue potency at primary inclusions. At depths of 200 μm 

and below, low magnitude of near inclusion residual stresses superimposed with the 

applied tensile stress during cyclic bending permits relatively larger interfacial 

separation. This leads to higher FIPs at subsurface depths of 200 μm and below.  

 

3.8.4. Fatigue crack formation potency in the absence of compressive residual stresses 

 To illustrate the effect of residual stresses, variation of ΔΓ  with depth for case A1 

(single partially debonded ellipsoidal inclusion) simulated without compressive residual 

stresses is shown in Figure 3.22, for example. Gradients in elasto-plastic properties and 

applied bending stress were considered. The simulation result corresponds to an 

unpeened material. Evidently, the potency for fatigue crack formation is highest close to 

the surface where the applied bending stress is the highest. Comparing the magnitudes of 

ΔΓ  in Figures 3.14 and 3.22, we observe substantial reduction in FIP at depths of 75 to 
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180 μm. At depths of 200 μm and below, however, the FIPs are comparable. This result 

supports the observation that shot peening suppresses crack formation potency at the 

surface and shifts the critical site for crack formation to subsurface inclusions.  

 

 

 

3.9. Estimation of critical spacing between inclusions for minimal interaction in 

fatigue 

The parametric studies involving compressive residual stresses substantiated the 

importance of inclusion interaction in fatigue. Understanding the severity of interaction 

of inclusions and devising process routes to achieve minimal interaction would 

significantly enhance the service life of the components. Here, we conduct systematic 

parametric study involving two inclusions to understand the effect of inclusion 

interaction. For simplicity, residual stresses are neglected. Case E1 (see Table 3.2) is 
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Figure 3.22. Variation of nonlocal FS parameter with depth for case A1 

without compressive residual stresses. 
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modeled to investigate the effect of inclusion spacing. The objective of this study is to 

estimate the critical spacing between inclusions that demonstrates negligible interaction. 

The spacing between the inclusions, L , is varied from 1 μm to 8 μm and the nonlocal 

FIPs are evaluated over the third loading cycle in the proximity of the largest inclusion. 

Additionally, simulations are performed involving single large isolated inclusion; in this 

case L = ∞ . Simulations are conducted for several remote applied strain ranges ( )rε .   

 

Figure 3.23 shows the variation in nonlocal FIP with inclusion spacing for several 

applied strain ranges. Interestingly, we observe a drastic reduction in FIP for L > 1μm. 

Evidently, as the spacing between the inclusions is increased the FIP converges to the 

value of the order of single isolated inclusion. Also, there is a nonlinear dependence of 

FIP on inclusion spacing with increasing applied strain amplitude. Based on the results 

the critical spacing between the inclusions ( )crL  that demonstrates negligible inclusion 
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Figure 3.23. Variation of ΔΓ (log scale) with longitudinal spacing between 

the inclusions. 

Rε = 0.05 
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interaction is approximately 8 μm. If incD  denotes the largest dimension of the inclusion 

which in this case is about 10 μm, then crL  is on the order of incD  1cr

inc

Lor
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ .   

 

3.10. Effect of orientation of ellipsoidal inclusions on fatigue resistance  

 Clusters of primary inclusions are often observed on fracture surface (e.g., Figure 

2.6). During manufacturing such as primary forging the inclusions tend to get aligned 

along the forging (flow) direction. This results in variation (or anisotropy) in fatigue 

response with applied loading direction and is a significant contributor to scatter in HCF 

lives [117, 118]. However, it is possible to leverage such preferential alignment of 

inclusions to enhance the fatigue resistance. Identifying the least damaging orientation of 

the inclusions in a cluster with respect to the loading axis and the free surface and 

devising modified process routes to achieve desirable orientation could significantly 

enhance the fatigue resistance. The orientation of inclusions depends on the deformation 

processing history and is potentially controllable. Due to highly localized nature of the 

fatigue crack formation process such investigations are feasible through computational 

modeling.  

 Here, we attempt to model the effect of orientation of inclusions in a cluster on 

fatigue resistance of martensitic steels. The objective is to identify the least damaging 

orientation in fatigue. A schematic illustrating the convention followed to represent the 

orientation of an ellipsoidal inclusion in 3D space with respect to loading axis is shown in 

Figure 3.24. In Figure 3.24, θ  represents the zenith angle, and φ  represents the azimuth 

angle. The normal to the free surface is parallel to Y-axis and the cyclic loading direction 



 71

is parallel to the Z-axis. In this study, θ  and φ  are varied from 0° to 90° independently in 

the increments of 45° resulting in seven different orientations.   

 

 

Three-dimensional FE mesh comprising of seven closely spaced ellipsoidal inclusions of 

equal size are constructed using ABAQUS script [95]. Dimensions of the major and 

minor axis of the ellipsoidal particle are 5 μm and 2 μm, respectively. A schematic of the 

simulated inclusion cluster is shown in Figure 3.25 elaborating on the spacing between 

the inclusions which is consistent for all the orientations investigated in this study. For 

the case of 90θ = ° and 90φ = ° , the spatial arrangement of the inclusions in the cluster 

were chosen such that the inclusions experience minimal shielding effect [119] during 

cyclic loading. Figures 3.26a-d illustrates four different orientations of the inclusion 

cluster with respect to the loading axis, for example. Figure 3.26d shows the spatial 

arrangement of inclusions chosen for 90θ = ° and 90φ = °  orientation. The edge to edge 

spacing between the inclusions when projected onto the XY plane is same as that shown 
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Figure 3.24. Convention followed to represent the orientation of inclusion in 3D 

space. θ  is the zenith angle measured between the Y-axis and the major axis of the 
inclusion. φ  is the azimuth angle on the X-Z plane. Normal to the free surface is 

parallel to the Y-axis. Cyclic loading direction is parallel to Z-axis. 
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in Figure 3.25. The dimensions of the inclusion-matrix volume element are chosen such 

that the inclusions experience negligible boundary interactions. Elasto-plastic properties 

corresponding to a depth of 75 μm below surface was assigned to the matrix. Residual 

stresses are not considered. Intact inclusions are considered since specifying the 

debonding inclusion-matrix interface for various orientations is tedious.  The inclusion-

matrix volume element is subjected to three cycles of loading with remote applied strain 

range of 1.5% and Rε = 0.0. Nonlocal average value of the FIP is computed over the third 

loading cycle. The averaging volume is selected as that volume in the proximity of the 

inclusion that maximizes the nonlocal FIP.  
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Figure 3.25. Schematic showing the size of the inclusions and the spacing between 
them in a cluster. 
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Figure 3.26. Three different orientations of inclusion cluster with respect to 
loading direction and free surface shown for the purpose of illustration  (a) 
0 , 0θ φ= ° = ° , (b) 90 , 45θ φ= ° = °  (c) 45 , 90θ φ= ° = ° , and (d) 90 , 90θ φ= ° = °  . 
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Figure 3.27 shows the variation in nonlocal FIP with the orientation of inclusions. 

Interestingly, ellipsoidal inclusions with major axis oriented perpendicular to the loading 

axis ( )0 , 0θ φ= =  demonstrate the worst case scenario for fatigue crack formation and 

inclusions with major axis oriented parallel to loading axis ( )90 , 90θ φ= =  were the 

least damaging in fatigue. At least 10% difference in the FIP is observed between the two 

extreme orientations which could project to a significant difference in the fatigue life. 

This difference can also be justified through the projected area  approach [53]. An 

ellipsoidal inclusion with major axis aligned parallel to the loading axis would exhibit 

minimum projected area, leading to longer fatigue life. The aforementioned observation 

of anisotropy in fatigue response arising due to variation in orientation of second phase 

particles has supporting experimental evidence in literature (cf. Ott and Mughrabi [117], 
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Figure 3.27. Variation of nonlocal FIP with 3D orientation of inclusion 
with respect to loading axis and free surface. 
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and Mughrabi et al.[120]).  They considered elongated raft-like γ ′  precipitate (life-

limiting feature) morphologies in addition to the usual cuboidal structure in Ni-base 

superalloy. Two types of elongated precipitates were considered, one with its long axis 

oriented perpendicular to the loading axis and the other with its long axis aligned with the 

loading axis. It was observed that the fatigue life was highest for the microstructure with 

the elongated precipitates aligned with the loading direction and was lowest for the case 

for which elongated precipitates were aligned perpendicular to the loading direction. For 

microstructures with cuboidal precipitates aligned perpendicular to loading direction, it 

was easier for the fatigue crack to find a contiguous path normal to loading direction. On 

the other hand, for the microstructure with precipitates aligned parallel to the loading 

direction, the precipitates acted as obstacles to deflect the crack; in this case, the crack 

propagation rate was considerably reduced for this microstructure, leading to a longer 

fatigue life. 

 

3.11. Summary and conclusions 

Finite element modeling can be used to study the effects of microstructure attributes 

on the fatigue performance. Parametric studies of the type undertaken in this work can 

facilitate exploration of the effects of variation of single features of microstructure 

holding other features fixed, which is generally not possible in experimental studies. 

Simple computational algorithms developed here such as the methodology to simulate 

shot peening and the procedure to explore its effect on fatigue crack formation at 

subsurface primary inclusions can aid in design of fatigue resistant material systems. The 

critical contributions and findings of this work are summarized below: 
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1)  A new algorithm is presented to simulate residual stress distribution arising from the 

shot peening process that is suitable for initializing residual stresses prior to conducting 

both 2-D and 3-D finite element based fatigue calculations. 

2)  An integrated methodology is developed to analyze the fatigue indicator parameters 

at three-dimensional subsurface inclusions in carburized and shot peened gear steels 

under the influence of compressive residual stresses. The methodology was applied to 

predict the favorable site for fatigue crack formation in a martensitic gear steel. The 

simulation results indicate a strong propensity for crack formation at the subsurface at 

depths in accordance with experiments [27] . This work has been submitted to archival 

journals as part of my thesis research and has appeared in 2009  [121]. 

3) Under the given external loading, material model, and the selected fatigue crack 

formation criterion, partially debonded inclusions were most severe with regard to fatigue 

crack formation. 

 4) The subsurface fatigue crack formation potency depends on the size and clustering of 

inclusions. Interaction of inclusions in a cluster was observed to magnify the FIPs. Based 

on the analyses conducted on spatial interaction of inclusion, it was concluded that the 

minimum spacing between inclusions to achieve negligible interaction in fatigue was of 

the order of the largest dimension of the inclusion.  

5) Fatigue response depends on the orientation of the inclusions with respect loading 

axis. It was observed that ellipsoidal inclusions whose major axis was aligned 

perpendicular to the loading axis were most severe with regard to fatigue crack 

formation. On the other hand, ellipsoidal inclusions with major axis oriented parallel to 

loading axis were least damaging (highly desirable).  
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Chapter 4 
 

POLYCRYSTAL PLASTICITY MODELING OF CYCLIC 

RESIDUAL STRESS RELAXATION IN SHOT PEENED 

MARTENSITIC STEEL 

 
 

In this Chapter, a FE based methodology to investigate relaxation of compressive 

residual stresses is presented. Using a three-dimensional crystal plasticity model for 

cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate 

the effects of shot peening on inducing initial compressive residual stresses.  The model 

is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses 

in shot peened lath martensitic gear steel in the HCF regime. A strategy is identified to 

model both shot peening and cyclic loading processes for polycrystalline ensembles. 

Relaxation of the residual stress field during cyclic bending is analyzed for strain ratios 

Rε = 0 and -1 for multiple realizations of polycrystalline microstructure.  Cyclic 

microplasticity in favorably oriented martensite grains (blocks) is the primary driver for 

the relaxation of residual stresses in HCF.  For the case of Rε = -1, cyclic plasticity occurs 

throughout the microstructure (macroplasticity) during the first complete loading cycle,  

resulting in substantial relaxation of compressive residual stresses at the surface and 

certain subsurface depths. The initial magnitude of residual stress is observed to influence 

the degree (percentage) of relaxation. The necessity of describing the differential yielding 

among grains of the model to capture the experimentally observed trends of residual 

stress relaxation is noteworthy.  
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4.1 Introduction 
 

It is well known that mechanical surface treatments, such as deep rolling, shot peening 

and laser shock peening, can significantly improve the fatigue behavior of highly-stressed 

metallic components, as discussed in earlier chapters. These stresses enhance the service 

life of the component by resisting fatigue crack formation and growth on and near the 

surface of the specimen. The residual stresses can relax significantly due to subsequent 

mechanical and/or thermal loading even under normal operating conditions. 

Measurements and effects of residual stresses have proven difficult to interpret in relation 

to influence on fatigue life. To a large extent, this uncertainty arises from the limitations 

associated with the surface measurements of residual stresses through the depth of the 

shot peened layer.  There is also a lack of knowledge of the effect of fatigue cycling on 

such stresses since it is difficult to measure residual stress changes during cycling. 

Computational modeling such as finite element analysis offers a convenient platform to 

investigate the effects of process history (including residual stresses) on fatigue resistance 

of components. There is considerable interest in developing improved fatigue life 

prediction models that incorporate residual stress effects [37, 122, 123]. 

Extensive experimental studies have been performed to understand the relaxation of 

compressive residual stresses induced through shot peening [124-127].  Accordingly, the 

relaxation during fatigue cycling can be divided into two stages: abrupt relaxation during 

the first cycle and gradual change in the following cycles [128]. It is conventionally held 

that residual stress relaxation due to mechanical loading occurs when the superposition of 

applied stress and residual stress exceeds the macroscopic yield strength of the material. 

Also, decrease in the yield strength with increase in temperature can promote residual 
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stress relaxation. During service, cyclic hardening or softening due to repeated loading 

can alter the residual stress distribution [129].  The present work explores how short-

range microplastic deformation during cyclic loading promotes relaxation of residual 

stresses at remote stress amplitudes well below the yield strength of the material which is 

typical of HCF loading conditions. Almer et al. [130] pointed out that microstresses 

within grains relax rapidly during fatigue while macroscopic stress relaxes less rapidly; 

this can significantly influence fatigue crack formation and growth behavior in HCF.  

Several dynamic 2-D and 3-D FE simulations of shot peening have been successful 

developed to predict the residual stress distribution in a variety of metallic materials [69, 

70, 72, 74, 75].  However, it is tedious to conduct such dynamic FE simulations using 

polycrystal plasticity models. This is due to the vast disparity between the specimen scale 

(>1 mm) where the process parameters are framed and the underlying microstructure 

such as the lath martensite grains (<10 μm). Furthermore, the microstructure hierarchy 

exhibited by lath martensite at the grain scale aggravates the issue of computational 

efficiency. We overcome this issue by adopting a simplified multiscale modeling 

approach to simulate the shot peening effects and cyclic stress relaxation. 

Modeling efforts to investigate the shot peened residual stress relaxation have been 

very limited. Jhansale and Topper [131] proposed a logarithmic relationship between 

mean stress relaxation and the number of cycles. The relationship was suitable to model 

relaxation of residual stress after the first loading cycle [132]; however, the first loading 

cycle can result in significant relaxation of residual stress fields. In an effort to model 

residual stress relaxation, Smith et al. [133] and Zhuang and Halford [127] conducted FE 

analyses using different material models. However, they used empirical relations to 
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model peening-induced residual stress distributions.  Meguid et al. [88] devised a 

dynamic FE methodology to simulate shot peening process through bombardment of 

metallic balls on the target specimen surface and investigated the residual stress 

relaxation due to overloads during cyclic loading in AISI 4340 steel. Although, the 

methodology is suitable to examine the relaxation when the remote applied stress is of the 

order of macroscopic yield strength, it is insufficient for low strain amplitudes for which 

relaxation is primarily due to heterogeneous microplasticity in favorably oriented grains. 

There have been no computational studies utilizing crystal plasticity constitutive model to 

investigate the cyclic relaxation of residual stresses in shot peened materials.  

 

 4.2 Lath martensite microstructure 
 
The lath martensite structure is composed of fine “packets” or groups of laths with almost 

the same habit plane, and “blocks” which contain a group of laths with the same 

orientation, as shown schematically in Figure 4.1 [134-138] .  A prior austenite grain is 

divided into several martensite packets that are further subdivided by blocks, forming a 

hierarchical structure. It is also observed that blocks are further divided by sub-blocks 

(variants) with interlath misorientation less than 10°. The packet and block sizes are 

observed to depend on the prior austenite grain size and considerable efforts have been 

made to refine prior austenite grain size to achieve high strength and wear resistance. 

Morito et al. [136] explored the dependence of packet size and block width on prior 

austenite grain size in Fe-0.2C-Mn steel. Lath martensite formed during the carburization 

process tends to have BCT crystal structure, which has limited ductility. Tempering of 

steels is performed to achieve the desired case strength and enhance ductility after 
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carburization. The heat treatment process results in precipitation of iron carbides and 

alloy carbides of submicron size which act as strengthening agents by pinning 

dislocations. During the process of tempering, the tetragonality of martensite is reduced 

and the resulting lath martensite is close to BCC structure [139]. Since both the block and 

packet boundaries are high angle boundaries, they are expected to act as barriers of 

moving dislocations during deformation of the lath martensite structure. However, in 

early studies on the strength of the lath martensite, the packet size measured on optical 

micrographs was often taken as the effective grain size for a Hall–Petch type analysis of 

the martensite strength [20, 23, 140]. This is because martensite blocks cannot always 

been revealed clearly in optical microscopy, and more importantly the blocks are planar 

structure (plate-like) and a precise measurement of block width requires information 

about the inclination of block boundary planes with respect to the observation surface, 

which is impossible to obtain with optical microscopy. However, recent work by Morito 

and co-workers demonstrated block size to be a key structural parameter when analyzing 

the strength-structure relationship of lath martensite [141]. 

 Based on the aforementioned observations, the following assumptions are made:  

1. Tempered lath martensite has BCC crystal structure with 48 slip systems [142]. 

2. A block of lath martensite within a prior austenite grain constitutes a single grain 

for purposes of assigning orientation distribution of grains in polycrystal 

plasticity. 

3. A random orientation distribution of grains is assigned.  
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4.3. Crystal plasticity framework 
 

The crystal plasticity algorithm with the numerical implementation applied here is 

described elsewhere [143, 144], and is an extension of the fully implicit technique 

discussed in [145]. In the algorithm, the kinematics of crystal plasticity [146] are 

employed with the multiplicative decomposition given by  

 

e pF F F= ⋅                                                                                                                      (4.1) 
 
 
where F is the total deformation gradient, eF is the elastic deformation gradient 

representing elastic stretch and rigid rotation, and pF is the plastic deformation gradient 

that describes the collective effect of dislocation glide along crystallographic planes 

relative to the fixed lattice in the reference configuration.  
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Figure 4.1.  Hierarchical lath martensite microstructure. 
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The kinetics of dislocation glide is formulated by the relationships between the 

resolved shear stress and the shearing rate along the slip system.  The plastic shearing rate 

( αγ ) on the thα  slip system is assumed to follow the power law form  

 

( )0 sgn
m

g

α α
α α α

α

τ χγ γ τ χ−
= −                                                                                    (4.2) 

 
 
In Equation (4.2), 0

αγ  is a reference shearing rate, m  is the flow exponent (or inverse 

strain-rate sensitivity exponent), gα  is a reference shear stress, αχ  is the back stress on 

the thα  slip system, and the resolved shear stress is given by ( ): s nα α ατ σ= ⊗ , where σ  

is the Cauchy stress tensor. The stress tensor is evaluated using linear elasticity in the 

intermediate configuration and then is pushed forward to the current configuration.  A 

hardening minus dynamic recovery form is assumed for evolution of gα  [147], i.e.,  

 

1 1

N N

g H q Rgα αβ β α β

β β

γ γ
= =

= −∑ ∑                                                                         (4.3) 

 

Here, H and R are the direct and dynamic recovery coefficients, respectively, and 

( )( )1q h lhrαβ
αβ αβδ δ= + − .  In this work, h = 1.1 and lhr = 1. The back stress αχ on each 

slip system evolves according to a nonlinear kinematic hardening rule of the Armstrong-

Frederick type [148, 149], i.e., dA Aα α α αχ γ χ γ= − , where A  and dA are the direct and 

dynamic recovery coefficients, respectively. In contrast to evolution of gα , no 
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interactions are assumed among slip systems in evolution of αχ ; it is purely self-

hardening in nature. 

 

 

 

4.4 Simulating the effect of shot peening process: Inducing compressive residual 

stresses 

The algorithm presented in Section 3.5 is used to induce compressive equi-biaxial 

residual stresses.  The strains yy ,loadε and yy , finalε  (see Figure 3.4) are estimated iteratively 

using incremental polycrystal plasticity calibrated to the macroscopic stress-strain 

response of C61 steel.  This is valid provided the ratio of subsurface layer depth L2 (see 

Figure 3.4) to grain/block size is suitably large and the orientation distribution of grains is 

random. Such a scheme permits a computationally efficient means to perform three-
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Figure 4.2. Measured variation of residual stress ( )0 0
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zz , xx ,,σ σ  with depth after 

shot peening. 
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dimensional crystal plasticity simulations of residual stress relaxation.  Material property 

gradients due to heat-treatments such as carburization are neglected in this study, 

although they play a secondary role in the actual problem; the effects of carburization are 

reflected to first order in the overall C61 gear stress stress-strain behavior to which the 

polycrystal plasticity model is calibrated.  

 

4.5. Methodology 

The experimentally measured variation in compressive residual stress with depth is 

shown in Figure 4.2. The crystal plasticity model is implemented as a User Material 

subroutine (UMAT) in ABAQUS. The elastic constants ( )11 12 44C ,C ,C for the martensite 

crystal are obtained from Ref. [150]. The reference shearing rate oγ  is set to 0.001 s-1. 

The remaining material parameters in connection with Equations (4.1)-(4.3) are obtained 

by fitting the homogenized stress-strain response of a periodic representative volume 

element (RVE) comprised of 500 randomly oriented polycrystalline lath martensite grains 

to quasistatic room temperature experimental uniaxial tension stress-strain curves 

( )3 110~ sε − − of lath martensitic steel. This is reasonable since we propose to study the 

relaxation of residual stresses during the initial few cycles following shot peening.  

Periodic boundary conditions were imposed on the RVE.  Resulting material constants 

are listed in Table 4.1 and the simulated monotonic tensile stress-strain curve is shown in 

Figure 4.3.   
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Table 4.1. Material parameters in the  
crystal plasticity constitutive model. 

         
C11 (GPa) 268 
C12 (GPa) 110 
C44 (GPa) 78 

m 75 

ogα  (MPa) 705 

H (MPa) 100 
R 0.1 

A (MPa) 100 

dA  10 

qαβ  (h , lhr) 1.1, 1 

 

 

In the relaxation simulations for each subsurface volume element, a polycrystalline 

subsurface volume element is cast as a three-dimensional FE mesh with 784 lath 

martensite grains, as shown in Figure 4.4. Each lath martensite grain (or block) is cubic 
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Figure 4.3. Simulated monotonic tensile stress-strain response of the 
martensitic steel. 
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and is divided into eight three dimensional eight node brick elements (C3D8R).  The size 

of individual lath martensite grain is 1.5 μm [141]. Although the FE model of 

polycrystalline microstructure may not be represent the realistic shape and size of 

individual lath martensite grains, it suffices for purposes of the intergranular interactions 

necessary for residual stress relaxation in the HCF regime. More detailed digital 

representations of microstructure may not provide additional useful information in this 

class of model in view of the lack of detailed consideration of the role of block and 

packet boundaries in slip transfer.  

 

A polycrystalline volume element at each depth is subjected to shot peening followed 

by fifteen cycles of quasistatic strain-controlled cycling ( )3 110~ sε − − . Accordingly, the 

measured initial residual stresses and the remote loading and boundary conditions 

corresponding to each subsurface depth are imposed.  The applied cyclic bending strain 

range is shown in Figure 4.5 as a function of depth. Simulations were performed for two 

different strain ratios, Rε = 0 and -1, corresponding to respective peak surface bending 

L2= 6 μm 

 
Single martensite 

grain (block) 

Cyclic loading x 

y 

z 

L1= 21 μm L3= 21 μm 

 Figure 4.4. A typical finite element mesh of microstructure within a simulated 
subsurface volume element. 



 88

strains of 0.55% and 0.275%.  The following convention holds with regard to directions 

of shot peening followed by cyclic bending strain: 

• Direction of impact (shot peening) – Y direction 

• Equibiaxial initial residual stress state prior to cyclic loading – X and Z 

directions 

• Cyclic bending stress  – applied along Z direction  

For purposes of comparison, the residual stresses are reported at the point 0zzε =  for 

each loading cycle.  
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Figure 4.5. Applied strain range as a function of depth during cyclic bending. 
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4.6. Results  

Figure 4.6 shows the relation between peak applied compressive strain during shot 

peening, yy ,loadε  and the strain after unloading, yy ,unloadε  from simulations. The maximum 

compressive stress occurs at a depth corresponding to the peak residual stress magnitude 

(75 μm) [151].  Multiple microstructure realizations of the subsurface volume elements 

were considered in estimating the shot peening strain levels required to match measured 

initial residual stress distribution, and the difference in the responses among realizations 

were negligible. This indicates that 784 grains are sufficient to consider the 

polycrystalline ensemble as a RVE for purposes of estimating residual stress.  Depths 

considered in this study range up to 250 μm below the surface.  
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Figure 4.6.  Relation between the peak compressive strain ( )yy ,loadε and 

the strain after unloading ( )yy ,unloadε  along surface normal direction Y 
during the shot peening simulation with depth. 
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Figure 4.7.  Relaxation of residual stress components at different depths 
during cyclic bending (normalized by their respective initial values after 
shot peening) for Rε = 0 case and for realization 1 along (a) Z direction 
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Figure 4.8.  Relaxation of residual stress components at different depths during 
cyclic bending (normalized by their respective initial values after shot peening) for 

Rε = 0 case and for realization 2 along (a) Z direction and (b) X direction. 
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The residual stresses introduced from shot peening simulation serve as initial 

conditions for subsequent cyclic loading which commences at 0zzε = .  Figures 4.7a and 

4.8a shows the variation of the normalized residual stress in the Z direction with number 

of cycles for Rε = 0 for two different polycrystalline orientation distributions 

(realizations); the residual stresses are normalized by their respective initial values 

( 0
res
zz ,σ , see values in Figure 4.2) to illustrate the percentage reduction in the magnitude.  

A modest variation between different realizations is observed. Relatively significant 

relaxation occurs during the first loading cycle, followed by gradual relaxation with 

subsequent cycling; this is observed in experiments [124].  Maximum relaxation occurs at 

subsurface depths corresponding to the highest values of initial residual stress. 

Approximately 2% reduction (relaxation) in residual stress magnitude is observed at the 

surface and about 5% relaxation is observed at 75 μm below the surface after the first 

loading cycle even though the applied stress is highest at the surface during bending. The 

degree of relaxation depends on the initial magnitude of residual stress. Although the 

percentage relaxation is modest, it is still relevant to evaluating the fatigue crack 

formation potency since the distribution of slip within grains is heterogeneous [10, 152]. 

Detailed discussion on the significance of such a study will be presented later. Relaxation 

is not observed at depths below 170 μm. The residual stress in the lateral direction (X 

direction) exhibits similar relaxation trends, as shown in Figures 4.7b and 4.8b.  

Microplasticity occurring in favorably oriented grains promotes the relaxation of residual 

stress fields during fatigue cycling. Detailed investigation of the first cycle relaxation will 

be considered later. It is recognized that self-equilibrating nature of residual stresses will 

result in alteration of residual stress profile from surface to core after relaxation. 
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However, validating the stabilized residual stress profile requires supporting experimental 

evidence. Moreover, experimental estimation of the residual stress profile at regular 

interval in HCF is tedious. 
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Figure 4.9.  Relaxation of residual stress components at different depths 
during cyclic bending (residual stresses are normalized by their respective 

initial values after shot peening) for Rε = -1 case and realization 1 along (a) 
Z direction and (b) X direction. 
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It is generally believed that relaxation less than 10% is negligible; however, such 

variations in residual stresses contribute to variability in fatigue crack formation and 

small crack growth at the grain scale. Fatigue crack formation could consume a 
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Figure 4.10.  Relaxation of residual stress components at different depths 
during cyclic bending (residual stresses are normalized by their respective 

initial values after shot peening) for Rε = -1 case and realization 2 along (a) Z 
direction and (b) X direction. 
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significant portion of service life under HCF loading [16] . Due to lack of sufficient 

experimental data, we attempt to investigate the salient points with regard to residual 

stress relaxation by plotting the variation in normalized residual stress values with fatigue 

cycling and subsequently draw potential implications.  

In the case of Rε = -1, for the same remote applied strain range, we observe substantial 

relaxation of residual stresses during the first loading cycle along X and Z directions, as 

shown in Figures 4.9 and 4.10; the results are shown for two different realizations. 

Approximately, 30% reduction in residual stress magnitude is observed during the first 

loading cycle at depths ranging from the surface to 125 μm. Relaxation beyond 200 μm 

depth is negligible. Maximum relaxation (~33%) is observed at 75 μm below the surface, 

similar to the Rε = 0 case, indicating the dependence of relaxation on the initial residual 

stress magnitudes.  

Figure 4.11 shows the zzσ versus zzε  response at different depths during the first 

loading cycle following shot peening for Rε= 0 and -1, shedding light on relaxation of 

residual stress zzσ .   For Rε = 0 at a depth of 75 μm below the surface, reverse yielding 

was observed during unloading. This is evident from the plot shown in Figure 4.11a. 

During tensile loading (loading sequence 1-2 in Figure 4.11a) the response is observed to 

be predominantly elastic; however, during unloading, the onset of macroplasticity is 

observed near the end of the cycle. This is illustrated in the enlarged inset of the stress-

strain response shown in Figure 4.11a.  At a depth of 170 μm, the stress-strain response is 

observed to be predominantly elastic without appreciable reduction of the residual stress 

magnitude.  For Rε= -1 at a depth of 75 μm below the surface, dramatic relaxation occurs 

during the first loading due to reverse macroscopic yielding occurring during 
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Figure 4.11. Stress-strain response(realization 1) along cyclic bending stress 

direction (Z) at different subsurface depths during the first loading cycle 
following shot peening for (a) Rε = 0 and (b) Rε = -1. 
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compressive half cycle, as shown in Figure 4.11b.  Cyclic plasticity occurs throughout the 

microstructure, and subsequent unloading results in significant reduction of the residual 

stress magnitude, as illustrated in Figure 4.11b. Such reduction in residual stress 

magnitude is not observed at a depth of 200 μm below the surface as illustrated in Figure 

4.11b. 

 

4.7. Discussion 
 

The distribution of localized cyclic plastic deformation in the microstructure (cyclic 

microplasticity) plays a key role in modeling HCF resistance. Unlike effective properties 

such as elastic stiffness, fatigue is manifested by extremal microstructure attributes that 

promote slip intensification. Cyclic microplasticity depends on numerous factors which 

include grain orientation, presence of inclusions, and processing effects (e.g., residual 

stresses). The modeling strategy pursued here facilitates a computational micromechanics 

investigation of variability in fatigue resistance due to microstructure variability [108, 

153] that accounts for the influence of residual stress. For example, this framework can 

be utilized to evaluate the fatigue crack formation potency in the vicinity of primary 

inclusions that are of the order of the representative grain size. Since the process of HCF 

crack formation occurs through localized plastic deformation in the matrix near the 

inclusion, the strength of residual stress gradients at such fatigue critical “hot spots” may 

not be significant, such that the present algorithm is sufficient, provided the ratio of L2 

(see Figure3.4) to inclusion diameter is sufficiently large. Furthermore, the local Rε in the 

vicinity of primary inclusions could significantly differ from the remote loading 

conditions [19]; this in turn can influence the local relaxation and redistribution of 
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residual stresses, and can contribute to variability in fatigue resistance. Additionally, this 

framework can be utilized to investigate surface to subsurface transition of sites for 

fatigue crack formation [154] in the presence of compressive residual stresses, accounting 

for relaxation of such beneficial residual stresses. The relaxation trends obtained through 

this computational study provide useful insight to support robust process route design. 

Although the percentage relaxation in residual stress for Rε = 0 was small, a single 

compressive overload during a fatigue history can significantly reduce the beneficial 

compressive residual stress. This is evident from the results obtained for Rε = -1 loading 

case. Compressive overloads can occur for many reasons such as human errors during 

maintenance, improper fixturing of components, component usage, etc.  In addition, 

variable amplitude loading, operating environment, etc. can influence residual stress 

relaxation behavior.    

An important point of the present study is that polycrystal plasticity is essential to 

capture the cyclic stress relaxation as the applied strain amplitude is decreased.  

Microplasticity occurs within favorably oriented grains well below the macroscopic yield 

strength, resulting in relaxation.  Furthermore, since fatigue crack formation processes 

often start at the scale of grains, modeling the distribution of slip and residual stress 

relaxation is a significant aspect in the HCF regime. 

 
 
4.8. Conclusions 
 

A three-dimensional polycrystal plasticity model for cyclic deformation of lath 

martensitic gear steel is employed in a simplified scheme to simulate the effect of shot 

peening on residual stress distribution. The model was utilized to investigate the 



 99

relaxation of compressive residual stresses during cyclic bending in the HCF regime. 

Simulations were performed for two different applied bending strain ratios. The 

normalized trends of residual stress relaxation obtained through finite element 

simulations agree fairly well with experimental trends. Detailed investigation of the first 

cycle relaxation was performed. Residual stress relaxation in HCF is primarily attributed 

to the cyclic microplasticity occurring in favorably oriented grains. Furthermore, for Rε = 

-1, extensive cyclic plasticity throughout the microstructure during the compression half 

cycle led to substantial relaxation in the first cycle. The initial magnitude of residual 

stress was observed to influence the degree of relaxation. Potential applications of the 

proposed computational framework were discussed, including the influence of residual 

stress on fatigue crack formation at primary inclusions.  This work has been submitted as 

journal manuscript in 2009 and is in review [155]. 
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Chapter 5 
 

SIMULATED EXTREME VALUE FATIGUE SENSITIVITY TO 

INCLUSIONS AND PORES IN MARTENSITIC STEELS 

 
This chapter presents a strategy to model the sensitivity of fatigue resistance of 

secondary hardening martensitic gear steels to variability in extrinsic inhomogeneities 

such as primary inclusions, and pores, coupled with intrinsic microstructure variability at 

scales on the order of block or grain size. A simplified approach is developed to quantify 

the variability in the FIPs in the matrix at nonmetallic inclusions and pores in lath 

martensitic gear steels using a three-dimensional crystal plasticity constitutive model. 

Several remote loading conditions are considered in the HCF regime relevant to 

applications. Idealized inhomogenieties (spherical) in the form of stiff (Al2O3), elastically 

compliant and plastically soft inclusions (La2O2S), and pores are systematically 

investigated. Relations between remote loading conditions and local plasticity are 

discussed as a function of stress amplitude and microstructure. The maximum plastic 

shear strain range is used in the modified form of Fatemi-Socie parameter evaluated at 

the grain scale as FIP. Multiple realizations of the polycrystal microstructure are 

considered to obtain a statistical distribution of this fatigue indicator parameter (FIP). The 

results are used to construct an extreme value Gumbel distribution of the FIPs for the 

selected microstructures. Subsequently, a computational micromechanics based 

minimum-life estimate that corresponds to 1% fatigue crack formation probability is 

calculated. 
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5.1. Introduction 

Improved knowledge of critical life-limiting factors that govern the HCF response of 

lath martensitic gear steels will aid in design of new process routes to mitigate severity of 

damage during fatigue cycling. Of particular interest is the fatigue crack formation 

(nucleation plus early growth) at nonmetallic primary inclusions and pores in steel 

structures.  HCF crack formation and microstructurally small crack growth is highly 

heterogeneous at the grain scale [10, 152, 156], and significant variability in fatigue 

response is realized in HCF. Much effort has been devoted to characterize the correlative 

relations in terms of statistical distributions of fatigue life or fatigue strength. 

Computational micromechanics schemes have been increasingly applied to gain more 

detailed understanding of HCF mechanisms and to shed light on the origins of scatter in 

HCF [108, 153, 157]. As pointed out by Ortiz [158] and McDowell [10, 159],  

computational micromechanics is still in a relatively early stage in addressing the 

nucleation of defects in crystals. Although formation of fatigue cracks is a tremendously 

complex, material-specific phenomenon, many aspects of fatigue of microstructures are 

amenable to relatively straightforward computation in order to gain insight into structure–

property relations and to build more accurate, predictive engineering models for HCF. 

    Steels have highly complex microstructures. There are a myriad of interactions 

between steel chemistry and heat-treatment processing that combine to produce desirable 

microstructures and properties for specific applications. The presence of inhomogenieties 

in the form of nonmetallic inclusions and pores affect the longevity of steel components. 

Moreover, in multiphase steels in the transition regime from HCF to VHCF, there is a 

competition between crack formation at internal defects such as inclusions and soft 
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phases such as austenite [160]. Inclusions and pores are the most important 

microstructure attributes in establishing the extent of the statistical variation in the HCF 

life of high strength steels [161]. It is important to characterize the distributions of plastic 

strain measures in the neighborhood of the local material heterogeneities during 

processing and service and to correlate these measures with microstructure descriptors 

that permit assessment of relative fatigue resistance. Unlike effective properties such as 

elastic stiffness, fatigue is manifested by extremal microstructure attributes that promote 

slip intensification.  

Several factors such as size, spacing, and spatial distribution of nonmetallic primary 

inclusions and orientation of grains contribute to the experimentally observed scatter in 

fatigue lives. Historically, fatigue damage occurring at nonmetallic inclusions and pores 

have been attributed to the extreme values of a single microstructure attribute (e.g., size 

of the inhomogenieties) [162-165]; however, there are several other factors such as 

residual stresses, matrix grain orientation in the vicinity of the inclusions, and interfacial 

damage (debonded or cracked inclusions) that contribute to minimum fatigue properties. 

Conventional extreme value statistical analyses rely on a sufficiently large number of 

costly and time-consuming experimental evaluations of fatigue failures [166]. 

Furthermore, assessment of individual factors such as the effects of spatial distribution of 

inclusions, process route (residual stresses), etc. on local inelastic response at fatigue 

critical inclusions is tedious to obtain from experiments. Both specimen scaling issues 

and measurement resolution are prohibitively problematic. Such issues are perhaps most 

effectively explored with computation [4, 167] as a means to leverage experiments.   
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In this work, the influence of variation in local polycrystalline matrix grain orientation 

on HCF crack formation at nonmetallic primary inclusions and pores is systematically 

investigated. We do note that pores are modeled as a limiting case of an elastically 

compliant inclusion; occurrence of pores is not a possibility in the secondary hardening 

martensitic steel investigated in the present study.  Three-dimensional statistical volume 

elements (SVEs) with an idealized spherical inclusion or pore embedded in the 

polycrystalline steel matrix are subjected to several fatigue cycles with strain ratio Rε = 0. 

Hard and soft inclusions (intact and partially debonded) and pores are considered. These 

SVEs are too small to be regarded as being statistically representative in terms of the 

distribution of localized plastic deformation. Hence, a number of SVE realizations or 

instantiations are necessary to build ensemble statistics. The target microstructure 

response (i.e., cyclic microplasticity) varies among each SVE realizations.  A crystal 

plasticity framework described in Section 4.3 is utilized to model the microstructure-scale 

elastic-plastic response of high strength martensitic gear steel. Grain scale averaged 

values of the Fatemi-Socie (FS) parameter is used as FIP. Multiple realizations of the 

polycrystalline matrix grain orientation distribution are considered and the peak value of 

FIP from each realization is utilized to construct an extreme value Gumbel distribution 

[168]. Consequently, the Gumbel distribution is utilized to estimate 1% probability of 

fatigue crack formation at the grain scale. It is important to clarify that the terms “hard” 

and “soft” are used to describe the plastic compliance of the inhomogeneity and the terms 

“stiff” and “compliant” are used to describe the elastic compliance of the inhomogeneity. 

Hard inclusions are brittle. For example, La2O2S inclusions are elastically more 

compliant and plastically softer compared to Al2O3 inclusions as illustrated later.  



 104

 

5.2. Methodology 

Statistical extremes of fatigue life distribution have been primarily based on 

extrapolation of large number of experimental data [169]. Furthermore, HCF crack 

formation and early growth depend mainly on a few key attributes (or set of attributes) 

such as the largest nonmetallic inclusion or the most favorably oriented grain for slip 

intensification. There is a significant scatter in the experimentally measured HCF life 

because attributes that govern minimum fatigue resistance lies in the tails of the joint 

distributions of attributes and responses, necessitating use of extreme value statistics. As 

pointed by Sasaki and co-workers [169], experimentally observed scatter in HCF is 

primarily due to formation and growth behavior of small cracks that cannot be adequately 

characterized through application of the traditional Paris crack growth law based on 

LEFM. The authors experimentally examined the effect of grain size on variability in 

fatigue crack formation and propagation lives in different metallic materials asserting the 

importance of characterizing different stages of fatigue crack formation and growth.  

Historically, the largest inclusion present in the fatigue critical regions was believed to 

govern the minimum fatigue life of the component, as summarized in the recent review 

by Atkinson [162]. However, the detrimental effects of a single large inclusion can be 

replicated by the interaction of relatively smaller inclusions closely spaced in a cluster. In 

addition to inclusion size, variation in the polycrystalline matrix grain size and 

orientation contribute to scatter in fatigue life [157, 170]. Such issues are perhaps more 

prominent in the HCF regime where cyclic microplasticity is confined to a low number 

density of fatigue critical “hot spots”.  
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     The present work focuses on characterizing the effect of variation in the 

polycrystalline matrix grain orientation in the vicinity of fatigue critical nonmetallic 

inclusions and pores on fatigue crack formation life of secondary hardening martensitic 

gear steel such as the C61 class of steel [36]. Experiments have revealed alumina (Al2O3) 

and lanthanum oxy-sulfide (La2O2S) inclusions to be the critical life-limiting attributes in 

C61 class of steels [27]. Here, we consider an idealized single spherical inclusion of 

diameter of 5 μm typical of the inclusion size observed on the fracture surface; Al2O3 

inclusions are modeled as isotropic, linear elastic with Young’s modulus, E=380 GPa, 

and Poisson’s ratio, ν =0.2. Elastic properties of La2O2S [171] and yield strength [172] 

estimated from the hardness values were taken from the literature. Due to insufficient 

experimental data, La2O2S is modeled as an elastic-perfectly plastic material. The elastic 

properties of La2O2S are E=200 GPa and ν =0.23; the yield strength is estimated as 1.2 

GPa. Two extreme interfacial conditions are considered, namely intact and partially 

debonded inclusion-matrix interfaces. In addition to the aforementioned inclusion types, 

we also model the effect of a spherical pore to evaluate the relative potency for fatigue 

crack formation. Table 5.1 lists the cases simulated in this study. For convenience, results 

for all cases presented in the subsequent sections will be identified with the ‘case pointer’ 

listed in Table 5.1. 

Figure 5.1 shows different cross sectional views of the 3D domain, elaborating on the 

dimensions of FE domain with the boundary conditions, and uniaxial loading direction 

enforced in the simulations. Additionally, we impose a multipoint constraints that the 

nodes on the faces x=L and y=L (L=50 μm) have the same displacement in directions x 

and y, respectively, during fatigue cycling. The dimensions of each SVE are chosen to be  
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Table 5.1. List of cases modeled to investigate the variability in fatigue resistance. 

Case pointer Inhomogeneity Interfacial 

condition 

A Al2O3 Intact 

B La2O2S Intact 

C Pore - 

D La2O2S Partially 

debonded 

E Al2O3 Partially 

debonded 

     

sufficiently large that the inclusion experiences negligible boundary interaction effects. 

We define a region, Vp , encompassing the inclusions and pores (see Figures 5.1a and b) 

in which the FIP is evaluated as an average value over each grain within the region. Such 

an approach is followed to locate the most favorably oriented grain undergoing cyclic 

microplasticity under the influence of the micronotch root stress field. Furthermore, a 

consistent FIP estimation procedure is necessary while investigating the fatigue response 

for different remote loading conditions. It is acknowledged that the grain adjacent to the 

inclusion or pore will experience peak stress (or strain) amplitude; however, since the 

size of individual grain ( )~ 2 mμ  is small relative to the size of the 

inhomogeneity ( )5 mμ , the possibility that the second nearest neighbor is the most 

favorable site for crack formation cannot be completely ruled out. It is noted that the 
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distinction between “hard” and “soft” grain does not solely depend on the grain 

orientation but also on the neighboring grain orientations. Since random orientations are 

assigned to each grain in the present study, the aforementioned approach to estimate FIPs 

is justified.   

 

 

Figure 5.2 shows a cross-section of a 3-D FE mesh. A fine mesh is employed close 

to the inclusion (element size about 0.5 μm), fanning out with a coarse mesh away from 

the inclusion for computational efficiency. The region of fine mesh corresponds to the 
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Figure 5.1. Cross-sectional views of the 3-D section with embedded inclusion (or pore) 
elaborating on the debonded surface, boundary conditions for uniaxial loading and the 

direction of cyclic loading. Views across (a) XY, (b) XZ, and (c) YZ cutting planes 
through the center of the inclusion. 
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region Vp where each grain is comprised of several 3D four node tetrahedral elements. 

Reduced integration is employed. In the far field zone, more than one inclusion diameter 

away from the interface each finite element is assumed to represent a single lath 

martensite grain. Such an approach is adopted to enhance computational efficiency since 

3D crystal plasticity simulations with 48 slip systems are computationally intensive. 

Furthermore, since the remote loading conditions are within the HCF regime for which 

cyclic microplasticity is confined to fatigue critical regions such as near the interface of 

nonmetallic inclusions, the aforementioned meshing strategy is acceptable.  

 

Although there are several sources of strengthening in secondary hardening lath 

martensitic steels such as precipitation strengthening, solid solution strengthening, 

dislocation strengthening, and grain boundary strengthening [27], contributions from the 

individual sources are not distinguished in the present study. To model strengthening 

processes occurring at submicron scales, suitable scale-dependent constitutive models are 

imperative; however, the evolution of slip resistance and back stress is captured in an 

Figure 5.2.  Cross-section of the 3D FE mesh through the center of the 
inclusion, showing refinement close to the inclusion. Cyclic loading is in the 

Z direction. 

X 

Y 
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average sense through the crystal plasticity constitutive model in this case. Cyclic 

hardening occurs primarily due to large phase fraction of non-shearable M2C precipitates 

serving as Orowan obstacles in the secondary hardening martensitic gear steels [27]. The 

material constants relevant to secondary hardening C61 gear steel is presented in Table 

4.2. We may assert a nonlocal Coffin-Manson relation ( )q
iNΔΓ γ ′=  with constants 

estimated asγ ′ = 0.335 and q = -0.714. iN  is the number of cycles to form a crack of 

length of the order of block size (~2 μm) in the vicinity of inclusions and pores.  The 

region Vp (see Figure 5.1) is comprised of 110 cubic lath martensite grains with each 

grain discretized into at least four 3D tetrahedral elements. The average element size is 

meshed to be 0.5 μm. This is achieved by constructing the FE mesh with inclusion and 

subsequently sub-dividing the matrix portion of FE mesh into several grains. The block 

size of tempered lath martensite is too small to experience significant stress gradients 

across the grain. Furthermore, the element size of 0.5 μm adopted in this study is a 

limiting value for application of continuum crystal plasticity. Hence, a mesh convergence 

study which varies the element size below this value may not conform to requirements of 

continuum approximation.  Frictionless contact is assumed along debonded regions. A 

single FE mesh is sufficient for the present study since the variation in HCF response is 

achieved through assigning different random orientations to grains and modifying the 

inclusion material properties for each case investigated. In case C, the FE mesh 

corresponding to the inclusion is eliminated.  
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The ratio of peak remote applied uniaxial strain ( )maxε  to the strain at macroscopic 

proportional limit ( )0.7%yε ≈ is defined by max

y

εζ
ε

= . FIP distributions are computed for 

each case listed in Table 5.1 for several values of ( )0.7,0.85,1ζ =  with Rε=0.  A SVE 

representing a single realization of polycrystalline matrix grain orientation distribution is 

subjected to several quasistatic strain-controlled cycles ( )3 110~ sε − −  for a selected ζ and 

Rε to obtain a stabilized FIP response and the peak value of the FIP, ( )max i
ΔΓ , is 

recorded for each of N  instantiation, ( )1,2,...i N= . A sufficiently large number of 

realizations are necessary to construct a statistical ensemble. The distribution of 

( )max i
ΔΓ is used to construct an extreme value statistical distribution, as discussed in the 

next section.  

 

5.3. Extreme value statistical framework and minimum life estimation 

    Murakami and co-workers [165, 173] were the first to apply statistics of extremes to 

predict the maximum inclusion size in a selected volume of steel. The main premise of 

extreme value theory is that when a fixed number of data points following a basic 

distribution are collected, the maximum and minimum of each of these sets also follow a 

distribution. The extreme value Gumbel distribution function of maxima obtained from a 

number of simulations is used in the present study to characterize the extreme value 

response with the form 
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( ) exp exp zG z λ
ψ

⎛ ⎞⎛ ⎞⎛ ⎞−
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                            (5.1) 

Here, ( )G z  is the probability that the peak value of selected response or variable is not 

greater than z , and ψ  and λ  are the scale and location parameters, respectively. Recent 

investigation by Tiryakioglu [174] showed the Gumbel distribution function to be 

superior compared to other extreme value distribution functions in capturing size 

variability of critical defects in A356 castings.    

   If maxz = ΔΓ , the cumulative probability of maximum FIP, ( )iG z , can be calculated via 

mean rank statistics by 

 

( ) exp exp
1

i
i

i zG z
N

λ
ψ

⎛ ⎞⎛ ⎞−
= = − −⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

             (5.2) 

 

where iz is the thi value of ( )max i
ΔΓ which are classified, starting from the smallest, and 

ranked with 1,2,...i N=  according to 

 

( ) ( ) ( )max max max1 2
...

N
ΔΓ ≤ ΔΓ ≤ ≤ ΔΓ               (5.3) 

 

Plotting ( )max i
ΔΓ  against ( )( )( )ln ln iG zϖ = − − , and fitting a straight line we obtain the 

slope ψ  and intercept on the vertical axisλ . Once λ  and ψ  are determined, employing 

the nonlocal Coffin-Manson relation discussed in Section 5.2, we obtain probability of 

fatigue crack formation at the scale of a grain as 
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( )( ) 1 exp exp
q

i
formation i

N
P N

γ λ
ψ

⎛ ⎞⎛ ⎞′ −
⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                        (5.4) 

This relation is used to estimate the minimum life for each case listed in Table 5.1.  

 

5.4. Results 

 
      

Three-dimensional crystal plasticity simulations of SVEs comprising of single inclusion 

or pore embedded in a polycrystalline matrix were conducted for three values of 

( )0.7,0.85,1ζ = and R 0ε = . Twenty different realizations ( )20N =  of polycrystalline matrix 

grain orientations were considered to estimate the variability in the fatigue resistance for 
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Figure 5.3. Plot showing the variation of grain scale averaged FIP in the vicinity 
of primary inclusion for a selected polycrystal realization (realization 1) over 

several loading cycles and a plot of the envelope of peak FIP over several loading 
cycles for realizations 1, 2, and 3 for case A. 

Case A, 0.7ζ =  
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each case listed in Table 5.1 and to construct the corresponding extreme value Gumbel 

distributions. Figure 5.3 shows the variation in the grain scale averaged (nonlocal) FIP 

for a single realization evaluated during each loading cycle for Case A and 0.7ζ = , for 

example. The particular location of extreme value response (grain) in each case does not 

change with the loading cycles. Also shown in Figure 5.3 are the envelopes of peak FIP 

over each loading cycle for realizations 1, 2, and 3, illustrating the rapid reduction in the 

variability with loading cycles.  Such behavior is observed even when the remote applied 

strain is within the elastic limit and is primarily attributed to the isotropic hardening 

occurring in the grains undergoing plasticity in the vicinity of inhomogeneities.  

Furthermore, constitutive models utilized in the computational methods such as FE 

analyses require stabilized local stress-strain response which occurs over several loading 

cycles depending on numerous factors such as remote loading conditions, operating 

temperature, etc. While considering cyclic softening, the corresponding FIP response 

inverts relative to cyclic hardening in that the FIP increases with loading cycles and 

stabilizes after several loading cycles. 

     The FIP distributions were observed to stabilize after 11 loading cycles for all the 

cases considered in this study. Hence, the extreme value of the FIP for each realization is 

obtained after 11 loading cycles and utilized to construct the corresponding Gumbel 

distribution. Although time-consuming, such a strategy is essential to model the HCF 

resistance of metallic materials using crystal plasticity. This is because FIPs estimated 

prior to stabilization may lead to inaccurate estimates of variability. For example, after 

three loading cycles, we observe significant variation in the peak values of FIPs between 

each realization, as shown in Figure 5.3. Furthermore, such estimation will lead to overly 
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conservative predictions of crack formation probabilities while employing extreme value 

statistics.  In fact, more than 11 cycles would be desirable but are prohibitive for the 

present illustrative purposes. 
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Figure 5.4. Distribution of normalized FIP evaluated during 11th loading cycle 
for a single realization of polycrystalline microstructure (realization 1) for Case 

A: (a) ( )7
max0.7 7.19 10ζ ΔΓ −= = × , (b) ( )6

max0.85 5.15 10ζ ΔΓ −= = × , and 
(c) ( )4

max1 1.39 10ζ ΔΓ −= = × . 
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It is instructive to consider the simulated distribution of the normalized nonlocal ΔΓ  

among grains plotted after eleven loading cycles for variousζ , as shown in Figures 5.4 

(a)-(c). It is noted that only the results of Case A is plotted in Figure 5.4 for illustrative 

purposes. Comparatively, fewer grains experience cyclic plasticity at 0.7ζ = . At 

macroscopic yielding ( )1ζ = , in contrast, most grains undergo cyclic microplasticity. As 

the applied strain amplitude increases, slip heterogeneity decreases [148] and the shape of 

the distribution of ΔΓ shifts substantially. The tail of the distribution (maximum ΔΓ ) 

controls minimum fatigue crack formation life. This distribution of FIP can be used to 

project minimum crack formation life and its variability. Furthermore, as demonstrated 

by Shenoy et al. [108], such distributions can be utilized to predict the distribution of 

small cracks that form during fatigue of polycrystals, and are therefore useful for 
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Figure 5.4. Continued. 
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developing relations of variability of fatigue properties as a function of microstructure 

and applied loading conditions.  

Here, we consider 20 different realizations of the random polycrystalline matrix grain 

orientation distribution to characterize the variability in the fatigue resistance in the 

presence of inhomogenieties. The finite element mesh and grain size are the same for all 

realizations, with only the grain crystallographic orientation changed. For each case listed 

in Table 5.1, the peak value of FIP from each realization, ( )max i
ΔΓ in Figure 5.4, is utilized 

to construct the extreme value Gumbel distribution for each value ofζ . 
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Figure 5.5. Extreme value FIP distribution (vs. ( )( )( )ln ln iG zϖ = − − ) as estimated 

over the grain size averaging volumes for (a) 0.7ζ = , (b) 0.85ζ = , and (c) 1ζ =  
after 11 loading cycles. The extreme value FIP was selected to be the FIP with 

highest magnitude among all the grains. 
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Figure 5.5. Continued. 
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Table 5.2. The smallest and largest values of maxΔΓ  among realizations for each case 
investigated in this study.   

0.7ζ =  0.85ζ =  1ζ =   
( )max 1
ΔΓ  ( )max 20

ΔΓ  ( )max 1
ΔΓ  ( )max 20

ΔΓ  ( )max 1
ΔΓ  ( )max 20

ΔΓ  
Case A 6.88 x10-7 8.42 x10-7 5.01 x10-6 5.37 x10-6 1.18x10-4 1.57 x10-4 
Case B 8.72 x10-7 1.15 x10-6 5.18 x10-6 5.84 x10-6 0.97 x10-4 1.96 x10-4 
Case C 1.37 x10-6 1.78 x10-6 4.09 x10-5 4.72x10-5 5.19 x10-3 6.43 x10-3 
Case D 1.34 x10-6 1.76 x10-6 3.96 x10-5 4.55 x10-5 4.98 x10-3 6.61 x10-3 
Case E 1.35 x10-6 1.92 x10-6 4.25 x10-5 5.52 x10-5 5.78 x10-3 8.02 x10-3 
 

 

Figures 5.5 (a)-(c) show the distribution of peak FIP from each realization for Cases 

A-E listed in Table 5.1 and for several remote loading strain levels ( )0.7,0.85,1ζ = . The 

procedure outlined in Section 5.3 is used to construct the extreme value 

distribution ( )maxvsΔΓ ϖ . For clarity, the smallest and the largest values of the extreme 

value of FIP for each case simulated in this study are reported in Table 5.2; the subscripts 

‘1’ and ‘20’, denote the smallest and largest value of maxΔΓ  obtained from 20 different 

realizations, respectively.  This distribution is utilized to obtain the scale ( )ψ  and location 

( )λ parameters, relevant to the Gumbel distribution by fitting a straight line and 

estimating the slope and the intercept on the vertical axis, as described in Section 5.3; 

resulting values of ψ and λ are reported in Table 5.3. Also listed in Table 5.3 are the 

values of goodness of fit ( )2R . It can be seen from Table 5.3 that a reasonably good fit is 

obtained ( )2R 0.9>  for the various extreme value FIP distributions. Recently, Przybyla 

and McDowell [157] showed that 25 different realizations of polycrystalline matrix 

orientations were sufficient to capture the scale and location parameters with reasonable 
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accuracy. Once λ  and ψ  are determined, it is relatively straightforward to estimate the 

probability of fatigue crack formation employing Equation (5.4). 

 

Table 5.3. Values of λ ,ψ , and 2R  for various cases modeled in this study. 
 0.7ζ =  0.85ζ =  1ζ =  
 ψ  λ  2R  ψ  λ  2R  ψ  λ  2R  
Case A 4.6x10-8 7.4x10-7 0.96 8.4x10-8 5.2x10-6 0.95 8.7x 10-6 1.3x10-4 0.95 
Case B 6.5x10-8 9.8x10-7 0.96 1.7x10-7 5.4x10-6 0.97 2.2x 10-5 1.4x 10-4 0.91 
Case C 1.1x10-7 1.5x10-6 0.97 1.5x10-6 4.3x10-5 0.96 3.6x10-4 5.6x10-3 0.97 
Case D 1.3x10-7 1.5x10-6 0.98 1.4x10-6 4.2x10-5 0.94 4.5x10-4 5.4x10-3 0.97 
Case E 1.2x10-7 1.6x10-6 0.93 1.6x10-6 6.2x10-5 0.96 5.8x10-4 6.6x10-3 0.92 
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(a) 

Figure 5.6. Cumulative probability of fatigue crack formation versus the 
number of cycles to form a fatigue crack in secondary hardening martensitic 

steel for (a) 0.7ζ = , (b) 0.85ζ = , and (c) 1ζ = . 
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Figure 5.6. Continued. 
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    Figures 5.6 (a)-(c) show the cumulative probability of fatigue crack formation against 

the estimated formation life for cases A-E. Partially debonded inclusions are observed to 

be most severe with regard to crack formation, as reported by McDowell et al. [5]; the 

severity is relatively more prominent at high strain amplitudes. Interestingly, comparing 

Cases A and B, soft and compliant intact inclusions demonstrate relatively higher local 

FIP in fatigue. This is believed to be due to relaxation of constraints at the compliant 

inclusion-matrix interface, permitting reverse plasticity during unloading and 

consequently altering the local R-ratio in the vicinity of nonmetallic inclusions. Such 

effects of reverse plasticity, elastic constraints, and local stress redistribution often make 

the transition from far-field cyclic conditions to local cyclic conditions non-trivial. In-

depth investigation of the effect of local R-ratio can be found in Ref.[19].    

    As the elastic stiffness of the inclusion decreases, the extreme FIP reaches a limiting 

value comparable to that of a partially debonded inclusion, as demonstrated by the 

presence of the pore. A pore can be viewed as an extremely compliant inclusion. 

However, the presence of a pore creates a local free-surface effect which can lead to local 

softening in the matrix due to dislocation nucleation/annihilation. Similar local softening 

response is observed due to decohesion of inclusion-matrix interface [175]; however, 

formation and growth of voids at primary and secondary particles in fatigue and the 

resulting effect of softening on HCF resistance is still an active research topic. 

Additionally, it is realized that fatigue at the microstructure scale is a complex, 

heterogeneous evolutionary process with stages of formation and growth that depend on 

the hierarchy of microstructure features, and hence, does not conform to homogenization; 

this aspect introduces additional complexities with regard to developing suitable 
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constitutive models accounting for various aspects of mechanical response at different 

microstructure scales. Nevertheless, the application of crystal plasticity to capture the 

variability and the extreme scenario in HCF provides useful insights into structure-

property relations that can be utilized to develop fatigue resistant material systems and 

will be discussed later.  

   Comparing Cases D and E, we observe that in the event of inclusion-matrix interface 

decohesion, hard elastic particles (Al2O3) are relatively more severe than compliant and 

soft inclusions (La2O2S) with regard to fatigue crack formation, although the disparity 

becomes more prominent with increasing ζ . The stiffness mismatch between the 

inclusion and matrix, coupled with stress intensification at the debond seam, leads to 

higher localized stresses and plastic strains in the vicinity of alumina particles. The elastic 

stiffness of lanthanum oxy-sulfide particle is comparable to that of the matrix with the 

yield strength being lower than the macroscopic yield strength of the encompassing 

polycrystal matrix, and hence results in relatively lower magnitudes of stress 

intensification. Apparently, debonding of inclusion-matrix interface increases the 

propensity of fatigue crack formation at the partially debonded interface. Contact 

constraint experienced due to partial decohesion of inclusion-matrix interface and the 

debond seam acting as a crack-like defect invariably results in peak stress intensification 

at the intersection of the debonded and bonded portions of the matrix, as observed 

through simple J2 plasticity simulations; however, a grain situated adjacent to the debond 

seam may not always demonstrate minimum fatigue properties. Such an observation can 

be better understood by comparing the local maximum FIP obtained in Cases C, D, and 

E; a debond seam or contact constraint is absent in Case C (pore) and still the extreme 
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value FIP distributions and the minimum life estimates are comparable for all values ofζ  

investigated in the present study. It is necessary to clarify that we do not claim that 

fatigue cracks will not form in a grain adjacent to the debond seam;  however, estimating 

the fatigue resistance by investigating the cyclic plasticity occurring in such specific 

locations may not always demonstrate the extreme scenario relevant to HCF resistance. 

Since the lath martensite grain (or block) size ( )~ 1 2 mμ−  is relatively smaller than the 

size of the stress raiser ( )5 mμ , the effect of micronotch root stress fields can span over 

several grains away from the stress raisers. The potency for crack formation does not 

solely depend on the individual grain orientation but also on the neighboring grain 

orientations. Hence, the possibility of the second nearest neighbor grain (with respect to 

the inclusion) demonstrating highest fatigue potency cannot be completely ruled out 

especially when assigning random orientations to each grain. Hence, the approach 

followed in this work in which we screen for maximum FIP in all the grains 

encompassing the inhomogeneity at a distance of the order of the size of the stress raiser 

is perhaps more reasonable. Furthermore, such an approach accounts for the process zone 

over which small cracks nucleate and grow under the influence of microstructure barriers 

such as the grain boundaries. 
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It is important to investigate the role of plastic flow occurring in La2O2S inclusion in 

detail. Figure 5.7 shows the variation of equivalent plastic strain of intact and partially 

debonded La2O2S inclusion with ζ computed at the end of eleventh loading cycle for 

realization 1, for example. The equivalent plastic strain is estimate as a volume average 

within the La2O2S inclusion. In the case of intact particle, the volume average is 

performed over the elements within the inclusion lying at the inclusion-matrix interface. 

In the case the partially debonded particle, the volume average is performed over the 

finite elements within the inclusion lying at the debond seam (discontinuity). Evidently, 

the equivalent plastic strain is higher in partially debonded inclusion due to elevated 

stress levels at the debond seam. As stated earlier the plastic flow occurring within the 

La2O2S inclusion will reduce the severity of stress localization in the surrounding matrix; 
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Figure 5.7. Variation of equivalent plastic strain (volume average) in intact and 
debonded La2O2S inclusion with ζ computed at the end of 11th loading cycle for 

realization 1. 
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this results in lower values of ΔΓ  when compared to partially debonded Al2O3 inclusion 

(stiff and brittle particle). In the case of intact interface the equivalent plastic strains in 

La2O2S are negligibly small. In the absence of any discontinuity such as the debonded 

interface, the stress and plastic strain localization is primarily attributed to the modest 

property mismatch between the La2O2S inclusion and the matrix. However, the elastic 

compliance of La2O2S inclusions would permit reverse plasticity during unloading as 

described earlier. The aforementioned factor can be regarded as a second order effect 

which is more prominent at low stress concentration levels; this leads to relatively higher 

ΔΓ  at intact La2O2S inclusion when compared to intact Al2O3 inclusion.  

  Figure 5.8 shows the variation in the minimum life estimate corresponding to 1% 

formation probability with normalized peak applied strain ( )ζ for various cases listed in 

Table 5.1. Apparently, the disparity in the minimum-life estimate between intact and 

debonded particle is more prominent at high values ofζ . The local FIP estimated in the 

vicinity of the partially debonded inclusion and pore increases rapidly with increase in ζ  

[92], as shown in Table 5.4. Such a response is attributed to the discontinuity arising due 

to large interfacial separation at high values ofζ . Also, with an increase in the size of the 

inclusion, the disparity in the minimum life estimates could be more prominent even at 

low applied strain amplitude; however, such investigations are not performed in the 

present study.  
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The present results confirm the necessity to account for attributes such as interfacial 

conditions for inclusions in minimum life estimates. Also, a single microstructure 

attribute may be inadequate to characterize minimum fatigue properties of the material. It 

is worth mentioning that in addition to accounting for interactions between the most 

favorably orientated grain and the local stress raisers, the effect of interaction among the 

grains is intrinsically accounted for while estimating the peak FIP. Recently, Przybyla 

and McDowell [157] considered the influence of crystallographic orientation relative to 

fatigue crack formation in the P/M Ni-base superalloy IN100. In this work, they 

developed a correlation function utilizing the grain Schmid factor marked by the extreme 

value response to identify which correlated grain types are most likely to exist at the 

locations of estimated extreme value response. Such an approach may not be necessary in 

the present study since the location of fatigue critical “hot spots” such as the grains in the 

proximity of nonmetallic inclusions or pores is known a priori.  However, when 
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Figure 5.8. Normalized peak applied strain ( )ζ  versus crack formation life for 

1% probability of formation (minimum life) for different cases listed in Table 5.1. 
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considering larger volumes with multiple potential hot-spots (e.g., inclusions) such an 

approach could be applied to consider correlations between different phases and/or grain 

orientation to quantify which correlations between second phase nonmetallic inclusions 

and specific grain orientations are most probable at the locations of extreme value 

response. 

 

5.5. Discussion 

   While historically much work in modeling fatigue processes in metallic components 

focused on component life estimation, there is increasing interest in (i) designing 

microstructures with tailored resistance or (ii) components with microstructures that vary 

spatially in terms of composition and/or heat treatment to achieve location specific 

design. There is great financial and time pressure to compress overall material 

development and product design cycles, albeit retaining appropriate characterization of 

fatigue variability for the purpose of design for low probability of failure in HCF. 

Moreover, there is a need to better understand minimum fatigue life behavior of materials 

to address expensive and overly conservative early retirement of components. 

   There are several factors that contribute to variability in HCF.  In this study we have 

attempted to address a few of them such as inclusion stiffness, interfacial conditions and 

variations in polycrystalline matrix grain orientation. The goal of this study was to 

develop a microstructure-sensitive extreme value assessment framework that includes the 

effects of several microstructure attributes that control HCF resistance of martensitic gear 

steels. There are practical limitations to modeling and simulation, of course. Incomplete 

understanding of failure mechanisms, regimes of dominance of each failure mode, and 
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uncertainty in associated models highlight the continuing importance of experiments in 

guiding modeling and simulation. Detailed modeling of heterogeneous cyclic plasticity 

(slip bands) and the crack formation process is still in its very early stages. Alternatively, 

systematic parametric studies such as the present study can be used as guidance in 

framing critical experiments that investigate key microstructure attributes controlling the 

minimum fatigue properties. Such an approach would result in significant cost savings 

and also accelerate the insertion of modified and new materials to service [4].  

Constructing the extreme value distribution requires a significant number of 

simulations/experiments if they are to be considered statistically meaningful. 

Additionally, there are numerous factors that affect the fatigue response and an all-

inclusive simulation strategy is almost impossible. However, a simplified approach such 

as design of experiments [116] using a macroscopic (J2) plasticity model can be used to 

screen key microstructure features governing fatigue resistance before proceeding to 

apply intensive crystal plasticity calculations. However, microstructure-sensitive 

modeling using crystal plasticity simulations that focus on extreme statistics of potential 

sites for microplastic strain localization is essential to obtain meaningful estimates of 

minimum fatigue resistance. It is noted that fatigue is a cascade of processes of crack 

formation and growth that depends on the hierarchical morphology of phases and grains, 

as well as the presence of nonmetallic inclusions in high strength lath martensitic steels. 

Another critical aspect of HCF resistance, namely the growth of microstructurally small 

cracks out of the influence of the inclusion (or pore) micro notch root stress fields is not 

explicitly addressed in the present work; although the selected FIP (FS parameter) has 

limited consideration for small crack growth [107]. Formation and growth behavior of 
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small cracks is a significant contributor to variability in HCF [169]. Moreover, the issue 

of arrest of small cracks that form at isolated sites of cyclic plastic strain intensification is 

pertinent to the estimation of the fatigue limit. Typical fatigue experiments will not 

provide enough information to construct the extreme value distribution coupling effects 

of various microstructure attributes because such experiments consist of only a few data 

points at each stress/strain amplitude. In addition, experimentally, fatigue hot-spots are 

identified after failure and characterization of the sites of fatigue damage formation and 

their neighborhoods requires extensive resources, often involving destructive sectioning. 

We envision that this framework will be practically applied to simulations that are guided 

with limited experiments.  

This study has reinforced the necessity to account for the effect of damaged 

inclusions while investigating the minimum fatigue resistance of martensitic gear steels. 

Inclusions can crack or debond either during processing such as shot peening or during 

service and subsequently can serve to promote fatigue crack formation. Inclusions are 

inevitable consequence of any processing. Addition of elements such as lanthanum or 

aluminum for scavenging purpose in order to remove the detrimental residual oxygen and 

sulfur content during processing results in formation of different inclusion types such as 

alumina and lanthanum oxy-sulfide. The present study, considering the effect of inclusion 

types (La2O2S and Al2O3) and interfacial conditions, can assist in the selection of 

appropriate alloying elements that could enhance minimum fatigue resistance. For 

example, debonded hard elastic inclusions demonstrated the worst case scenario with 

regard to crack formation and intact hard particles were least severe. Recently, Garrison 

[176] investigated the effect of manganese sulfide, lanthanum oxy-sulfide and titanium 
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carbo-sulfide on fracture toughness of AF1410 steel and reported that titanium carbo-

sulfide demonstrated enhanced fracture toughness by virtue of superior interface strength 

and resistance to void nucleation. Similar studies on fatigue guided through simulations 

will be fruitful in developing fatigue resistant secondary hardening martensitic steels.  

 

5.6 Conclusions 

Computational simulations are employed to establish relations between remote 

loading conditions and microstructure-scale plasticity behavior by introducing the 

concept of FIPs to serve as computable response parameters that can facilitate 

comparisons of multiple microstructures via parametric studies. By identifying certain 

key microstructure attributes such as inclusion stiffness, interfacial conditions, 

polycrystalline matrix grain orientation, and remote loading conditions we have 

attempted to construct an extreme value statistical framework to estimate the minimum 

life for crack formation. The sole purpose of correlating with life was to rank order the 

severity of different attributes in fatigue and it is acknowledged that experimental data 

are essential to obtain actual fatigue lives. However, we assert that the degree of severity 

of different attributes can still be realized to be of the same order irrespective of the 

approach followed to estimate the crack formation life. Moreover, idealized cases were 

considered in the present study to facilitate parametric investigation.  Certain key 

findings are summarized below. 

 

1. While conducting crystal plasticity FE fatigue simulations, it is necessary to 

obtain a stabilized FIP response at fatigue critical “hot spots” by subjecting the 
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model to sufficient number of cycles. This is applicable even when the remote 

loading conditions are within the elastic limit and assists in avoiding overly 

conservative estimate of fatigue resistance. The number of cycles required to 

obtain stabilized FIP response depends on different factors: For example, while 

coupling the relaxation of residual stresses using the approach outlined in Chapter 

4 with fatigue crack formation potency at primary inclusions or pores, the number 

of cycles required to obtain stabilized FIP response will depend on the initial 

residual stress magnitude, size and spatial distribution of inclusion, etc.  

 

2. A single microstructure attribute such as the size of the inclusion may be 

inadequate to define minimum HCF response of high strength martensitic gear 

steels. As elaborated in this study, interfacial conditions such as presence of 

debonded inclusions are critical life-limiting factors that contribute towards 

defining minimum fatigue properties. The effect of variation in stiffness of 

inclusion is less significant when compared to interfacial conditions with regard 

to variability in fatigue response. 

 

 

3.         For the selected material model, inclusion size, inclusion stiffness, remote loading 

and interfacial conditions, partially debonded hard elastic inclusions (Al2O3) were 

the worst case scenario with regard to fatigue crack formation.  An intact hard 

elastic inclusion demonstrated highest fatigue resistance. While considering intact 

inclusions, as the stiffness is reduced, the magnitude of the peak grain scale 
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averaged FIP response reaches a limiting value on the order of a debonded 

inclusion in high strength steels, as demonstrated by the case of the pore.  

This research work has been submitted as a journal manuscript in 2009 and is in review 

[177]. 
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Chapter 6 

 
MODELING EFFECTS OF INTRINSIC VARIABILITY ON 

EXTREME VALUE FATIGUE SENSITIVITY AT PRIMARY 

INCLUSIONS 

 
 
 In the previous Chapter, we used a crystal plasticity framework to model the extreme 

value fatigue sensitivity to inclusions and pores. However, the effects of various intrinsic 

sources of strengthening were not distinguished. As stated in Chapter 2, the abundance of 

submicron size alloy carbides operating as Orowan obstacles can significantly influence 

the work hardening behavior and the fatigue crack formation potency at primary 

inclusions. Furthermore, there is a significant gradient in the fine scale precipitate volume 

fraction from the surface to the core. Multiscale computational models linking the fatigue 

response at various microstructure scales in secondary hardening steels are very limited.  

 In this Chapter, we introduce a computational framework that is suitable to investigate 

the effects of submicron size precipitates and other intrinsic sources of strengthening on 

fatigue crack formation potency at primary inclusions.  We demonstrate the linking of 

extrinsic (e.g., primary inclusions) and intrinsic (e.g., precipitate volume fraction, matrix 

grain orientation, etc.) microstructure variability to cyclic plasticity at the scale of the 

intrinsic microstructure of martensitic gear steel. A microstructure-based constitutive 

model for cyclic deformation of secondary hardening martensitic gear steel is developed 

and implemented. The matrix is modeled using a crystal viscoplasticity framework with 

dislocation density as an internal state variable. Using a homogenization scheme we 
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model the effects of several sources of strengthening, including Orowan strengthening 

due to fine scale non-shearable M2C (M=Fe, Cr, Mo, W) precipitates, solid solution 

strengthening, dislocation, and grain boundary strengthening on initial slip resistance and 

work hardening. This model is capable of capturing several important features of 

secondary hardening gear steels, namely, (i) effects of fine scale precipitates on work 

hardening and on localized plastic strains, and (ii) crystallographic orientation 

dependence represented by the crystal plasticity model. The physically-based hardening 

laws are employed to evolve dislocation densities in the matrix in each slip system with 

consideration of dislocation interaction mechanisms. The fatigue resistance of a 

martensitic gear steel depends both on intrinsic microstructure attributes, such as fine 

scale precipitates, and extrinsic attributes such as nonmetallic primary inclusions. It is of 

prime importance to assess the effects of individual microstructure attributes on the 

minimum fatigue resistance.  

We outline a philosophy to couple the variability in intrinsic microstructure attributes 

such as M2C volume fraction and extrinsic microstructure attributes such as size and 

spacing of nonmetallic primary inclusion. Idealized inclusion geometries (ellipsoidal) are 

considered to study the fatigue crack formation potency in HCF regime. Relevant 

microstructure-scale FIPs are identified. Parametric studies are conducted to discern the 

effects of size and spatial distribution of partially debonded primary inclusions on fatigue 

resistance of martensitic gear steels. Several remote loading conditions are considered in 

the HCF regime relevant to applications. Multiple realizations of the polycrystal 

microstructure are considered to obtain a statistical distribution of the FIP. The results are 

used to construct extreme value statistical distributions for the selected microstructure 
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attributes. Subsequently, a computational micromechanics based minimum-life estimate 

is obtained. 

 

6.1. Introduction 
 

Although there have been several studies exploring the mechanical properties of high 

strength secondary hardening steels [178, 179], experimental studies characterizing the 

scatter in the HCF life of secondary hardening martensitic gear steels have been limited. 

Furthermore, developing microstructure-sensitive computational models to investigate 

the fatigue response of such steels is an active research topic. The abundance of grain 

boundaries and precipitates providing obstacles to dislocation motion during plastic 

deformation generally leads to enhanced strength in secondary hardening steels. This 

work presents initial efforts to develop a 3D modeling strategy to characterize the effects 

of intrinsic and extrinsic variability on minimum life of martensitic gear steels. The 

approach presented in this study is suitable to qualitatively and quantitatively discern the 

effects of various microstructure attributes that control the HCF response of gear steels; 

such methodologies will lend support to designing improved, fatigue-resistant materials.  

 

6.2. Summary of processing of martensitic gear steel 

     The composition of C61 steel is listed in Table 1.1. Heat treatment of this secondary 

hardening steel involves carburization at either 950°C, 1000°C or 1050°C followed by 

cryogenic treatment in a liquid nitrogen bath to obtain complete martensitic 

transformation at the surface. This is followed by tempering (secondary hardening) at 

482°C for 15 hours to achieve the desired case strength. Secondary hardening steels get 
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their name from a secondary hardening response exhibited by these alloys when aged at 

Stage IV (450-600°C) tempering temperatures. This hardening behavior arises from the 

formation of fine alloy carbide dispersions that replace coarse cementite particles during 

tempering. Secondary hardening steels derive most of their strength through the fine 

dispersion of alloy carbides. The level of precipitation strengthening achieved is highly 

dependent on the interaction mechanism between a glide dislocation and a precipitate. 

Detailed discussion of the precipitate strengthening mechanism is provided in Chapter 1. 

The gradient in carbon content induces a gradient in the M2C volume fraction from the 

surface to the core, as shown in Figure 6.1.  

 

 
        Figure 6.1. Variation in M2C volume fraction from the case layer to the core with 

carbon content in the martensitic steel [180]. 
 
 
 
6.3. Overview of the simulation-based investigation 
 
 The objective of this work is to devise a computational framework to couple the 

effects of intrinsic variability and extrinsic variability on the minimum fatigue resistance 
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of the selected martensitic gear steel. Attention is devoted towards statistically 

quantifying the fatigue potency at partially debonded Al2O3 inclusions, a worst case 

scenario for fatigue crack formation (see Chapter 5). Inclusions are modeled as isotropic 

linear elastic. A microstructure-based constitutive model for cyclic deformation and HCF 

behavior of secondary hardening martensitic gear steel is developed and implemented. 

The strategy to model the microstructure hierarchy exhibited by BCC lath martensite at 

the grain scale as illustrated in Section 4.2 is employed. Each block of lath martensite 

with an average size of 2 μm ( )grd= is considered to be an effective grain with 48 

potentially active slip systems.  The matrix is modeled using a crystal viscoplasticity 

framework with dislocation density as an internal state variable. Effects on various 

sources of strengthening such as Orowan strengthening due to fine scale non-shearable 

M2C precipitates on initial slip resistance and work hardening are implicitly incorporated 

in the physically based evolution laws. The model is calibrated using limited experiments 

available for case hardened steels in literature. Subsequently, parametric studies are 

conducted to assess fatigue crack formation potency at primary inclusions. The 

microstructure attributes of interest include the size and spacing of primary inclusions, 

variation in polycrystalline matrix grain orientation, precipitate size and spacing. Grain 

scale averaged values of the Fatemi-Socie parameter (FS) (see Section 3.7)  and 

Mononukul and Dunne (MD) parameter [181] are used as the candidate FIPs in this 

study. Three-dimensional statistical volume elements (SVEs) with idealized ellipsoidal 

alumina particles embedded in the polycrystalline steel matrix are subjected to several 

fatigue cycles with Rε = 0. These SVEs are too small to be regarded as statistically 

representative in terms of the distribution of localized plastic deformation. Hence, a 
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number of SVE realizations or instantiations are necessary to build ensemble statistics. 

The target microstructure response (i.e., cyclic microplasticity) varies among each SVE 

realizations. Here, multiple realizations of the polycrystalline matrix grain orientation 

distribution are considered, and the peak values of FIP from each realization are utilized 

to construct extreme value distributions, namely Weibull, Gumbel and Frechet 

distributions [182]. An Anderson-Darling [183] goodness-of-fit test is conducted to 

identify the most suitable distribution among the selected extreme value distributions. 

Consequently, an estimate of the number of fatigue cycles for crack formation and early 

growth corresponding to 1% probability (minimum-life) is obtained. Although the crystal 

plasticity model developed in this work is capable of assessing the variability arising due 

to variations in the size and the spacing of fine scale precipitates, we do not model such 

effects due to insufficient experimental data to calibrate the material model. The 

variability in the extreme value FIP is primarily obtained by simulating several 

realizations of polycrystalline matrix grain orientations.  All three-dimensional FE 

simulations are performed using ABAQUS.  

 

6.4 Crystal plasticity framework 
 
     We adopt a physically-based crystal plasticity constitutive framework to model the 

steel matrix phase, homogenizing the effects of M2C precipitates along the lines proposed 

by Wang and co-workers [184]. The kinematics of the crystal plasticity [185] are 

employed, with the total deformation gradient tensor multiplicatively decomposed into 

elastic and plastic parts, i.e., e pF F F= ⋅ . The plastic deformation, produced by the 

collective motion of dislocations on the slip planes, does not result in lattice rotation, 
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whereas the elastic deformation leads to stretch and rigid body rotation of the lattice. The 

plastic velocity gradient on the thα slip system in the intermediate configuration is given 

by summation of the shearing rates, αγ  on all the slip systems, i.e., 

 

( )
sysN

p p p 1
0 0 0

1

L F F s mα α α

α

γ−

=

= ⋅ = ⊗∑                                                         (6.1) 

 

where 0sα  and 0mα
are unit vectors in the slip direction and normal to slip plane, 

respectively, in the intermediate, lattice invariant configuration. The resolved shear stress 

on the thα  slip system is given by  

 

( ): s mα α ατ σ= ⊗                              (6.2) 
 
where σ is the Cauchy stress tensor and sα  and mα are unit vectors in the slip direction 

and normal to slip plane, respectively, in the current configuration. In a rate-dependent 

formulation, all slip systems are considered to be active for stresses above the threshold, 

and the flow rule relating the shearing rates, αγ  to the resolved shear stress, ατ  is given 

by  

( )
m

o sgn
D

α α α
α α α

α

τ − χ − κ
γ = γ τ − χ                        (6.3) 

 
Here, αχ represents the kinematic hardening variable or back stress on the thα  slip 

system, Dα  is the drag stress which is assumed to be a constant, m  is the inverse strain-

rate sensitivity exponent, and 1
o 0.001 s−γ =  is the reference shearing rate. ακ  is the 

scalar threshold stress that accounts for various sources of strengthening in martensitic 

gear steels, as given by [141] 
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ss p d gr

ακ = κ + κ + κ + κ                                     (6.4) 
 
 
where ssκ , pκ , dκ , and grκ are terms accounting for solid solution, M2C dispersions, 

dislocation, and grain boundary strengthening, respectively. A detailed discussion 

regarding each of these sources of strengthening in secondary hardening gear steels will 

be presented later. The evolution of dislocation density ( )αρ on slip system α  consists of 

terms related to dislocation storage  and annihilation (dynamic recovery) mechanisms 

given by [186, 187] 

 

{ }o 1 2h Z k kα αβ α α α

β

ρ = + ρ − ρ γ∑                                          (6.5) 

 
 
In Equation (6.5), we introduce a term 0Z to model nonlocal (length scale) effects 

associated with the size and spacing of non-shearable M2C precipitates (Orowan 

obstacles); it effectively introduces the notion that dislocation pileups are introduced at 

the fine scale of non-shearable precipitates. Additionally, hαβ  is the hardening 

coefficient, 1k and 2k are the coefficients associated respectively with dislocation storage 

and annihilation. The term 0Z is estimated via [184] 

 

2 2

1 2
o

M C M C

Z
bS bL

ω ω
= + ,                                    (6.6) 

 
 
where 

2M CS and 
2M CL are the mean size (~3 nm) and spacing of M2C precipitates, 

respectively. Nondimensional constants 1ω and 2ω  are associated with the size and 
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spacing of precipitates, respectively, and b is the magnitude of Burger’s vector. The term 

oh Zαβ α

β

γ∑  is Equation (6.5) is interpreted as relating to the generation of geometrically 

necessary dislocations (GNDs) at the fine scale dispersions.  The back stress αχ accounts 

for the Baushinger effect arising due to interaction of dislocations with fine scale M2C 

precipitates, evolving according to 

 

( ){ }sgnGbα α α α α αχ = η ρ τ − χ − χ γ                       (6.7) 

 
 
Here, G  is the shear modulus, and coefficient ηestablishes the ratio of back stress 

amplitude relative to cyclic flow stress for various slip systems; its form is given by [184, 

188] 

 

1

o o

o

Z
Z k α

η
η =

+ ρ
                            (6.8) 

 
where oη is a parameter describing the contribution from the GNDs, and controls the 

saturation level of the back stress. Due to insufficient experimental data for the selected 

secondary hardening martensitic steels, we resort to literature to estimate the model 

parameters and the relevant material constants and will be described later. This is an 

initial effort to devise a framework to model extreme value fatigue sensitivity to intrinsic 

and extrinsic microstructure variability. In this work we do not attempt to develop a fully 

nonlocal crystal plasticity model; instead, we enforce limited nonlocality by introduction 

of length scale dependent terms (cf. 0Z term in Equation (6.5) and (6.7)). This facilitates 
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application of an otherwise local finite element method and averts issues of higher order 

boundary conditions inherent in nonlocal defect field mechanics.  

 

6.5. Modeling strength contribution from various intrinsic sources 

      The threshold stress is estimated through linear superposition of various strengthening 

sources in martensitic gear steels as shown in Equation (6.4). To estimate solid solution 

strengthening the model suggested by Labusch [189] is used, i.e., 

 

( )
2
34

130.0078 2ss G aG M
ς

κ ε ε −
⎛ ⎞

′= +⎜ ⎟
⎜ ⎟
⎝ ⎠

                              (6.9)    

    
where Gε ′ is the solute modulus misfit, aε is the solute size misfit at a specific solute 

atomic volume fraction denoted by ς , and M 2.9= [190] is the Taylor factor for BCC 

martensitic steels. This approach is used to account for matrix concentration of Co, Ni, 

Cr, and Mo.  Dislocation strengthening on the thα slip system is modeled using the Keh 

and Weissman [191] strength dependence relation on dislocation density αρ , i.e., 

 

d dGb ακ α ρ=                        (6.10) 

 
where 0.38dα =  [27] is a constant measuring the hardening efficiency of dislocations. 

Variable dκ evolves with dislocation density (Equation 6.5). The strengthening due to the 

high density of high angle grain boundaries observed in lath martensite is modeled using 

classical Hall-Petch expression [141] given by 
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0
HP

gr
gr

k
d

κ κ= +                         (6.11) 

 
where grd is the average size of the block, and HPk  is the Hall-Petch constant. The 

precipitate strengthening caused by M2C dispersions that act as Orowan obstacles is 

described using the Orowan-Ashby relation with combined screw and edge dislocation 

effects [192, 193]  

 

( )
2

2 2

2
1.68 ln

2 1 2
M C

p
oM C M C

rGb
rL r

⎛ ⎞
κ = ⎜ ⎟⎜ ⎟π − ν − ⎝ ⎠

                                                    (6.12) 

 
 
where 60.5 10or mm−= ×  [194] is the dislocation core radius, 

2 2
/ 2M C M Cr S=  is the 

average radius of M2C dispersions, and ν is the Poisson’s ratio of the matrix. It is 

important to clarify that except for dκ , the remaining components of the threshold stress 

do not evolve during cyclic loading. They are primarily used to estimate the initial value 

of the total threshold stress in the crystal plasticity simulations. However, evolution of 

dislocation densities and back stress accounts for precipitate size and spacing as 

illustrated in Equations (6.5) and (6.7). 

 
6.6 Fatigue crack formation potency at primary inclusions 
 
         A significant portion of the service life in HCF is consumed in fatigue crack 

formation at the scale microstructure feature (e.g. grain size) [10]. Several approaches 

have been formulated over the years to characterize crack formation and small crack 

growth as summarized in earlier chapters. In this study we utilize two parameters namely, 

the Mononukul and Dunne (MD) parameter shown in Equation (6.13) and the Fatemi-
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Socie (FS) parameter. The aforementioned parameters are evaluated as grain scale 

average (nonlocal) value.  

 
p* p*

cyc
cyc

2P D : D dt
3

= ∫                       (6.13) 

 
In Equation (6.13), pD is the plastic rate of deformation tensor. The superscript ‘*’ 

denotes grain scale averaged values. Readers are referred to the review article by 

McDowell [10, 152] for additional information regarding various microstructure scale 

FIPs. In HCF, plasticity is confined to local “fatigue critical” regions such as in the 

vicinity of primary inclusions and the grains situated at those locations demonstrate 

higher potency for crack formation. The approach described in Section 5.2 is utilized to 

evaluate the grain scale averaged FIPs. We assert a nonlocal Coffin-Manson relation, 

( )q
iNΔΓ γ ′=  (see Section 5.2) to estimate the number of cycles ( )iN  to form a crack of 

length on the order of block size ( )grd  in the vicinity of primary inclusion(s). The values 

of γ ′ , and q are presented in Section 5.2. 

 
6.7. Statistical framework to investigate extreme value fatigue sensitivity 

  An elaborate overview of extreme value statistics is presented in Section 5.3.  Here, 

we investigate three extensively employed extreme value statistical distributions for 

maxima, namely Weibull, Gumbel and Frechet distributions as listed in Equations (6.14), 

(6.15), and (6.16), respectively. The extreme value FIP distributions obtained from 

numerical simulations are fit to the aforementioned distributions. Such detailed analyses 

of different extreme value statistical distribution functions will be useful to rank order the 

superiority of the distributions with regard to reflecting the extreme scenario relevant to 
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fatigue. It is noted that our intention is to present a framework to model the extreme value 

fatigue sensitivity to microstructure variability and detailed analyses of all possible 

distributions is addition to the chosen statistical distributions is beyond the scope of this 

work.  

 

zP( z ) 1 exp
λ

ψ

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    (Weibull)                                (6.14) 

 
zP( z ) exp exp ϕ
ψ

⎛ ⎞⎛ ⎞−
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (Gumbell)                             (6.15) 

 

P( z ) exp
z

λψ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   (Frechet)                      (6.16) 

 
Here, ψ is the scale parameter, λ is the shape parameter, and ϕ is the location parameter. 

It is noted that only two-parameter distributions are studied in this work. The 

distributions listed in Equations (6.14)-(6.16) are fit using computer software package 

EasyFit [195]. In this study the response variable z is the peak grain scale averaged FIP 

obtained from 3D FE simulations for each realization.  

    The most common goodness-of-fit test is conducted using the coefficient of 

determination, 2R which often lacks any hypothesis testing. In this study we apply the 

Anderson-Darling goodness-of-fit test statistic, a quadratic test, to rank order various 

statistical distributions in capturing the extreme value distributions of FIPs. The 

aforementioned test demonstrates higher sensitivity to the tails of the distribution [174] 
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and it was shown by Stephens [183] to be superior to a majority of other goodness-of-fit 

tests for a variety of distributions. The test statistic, 2A is defined as 

 

( ) ( )( ) ( )( )( )
n

2
i n i 1

i 1

1A n 2i 1 ln P z ln 1 P z
n − +

=

⎡ ⎤= − − − + −⎣ ⎦∑                 (6.17) 

 
where ( )iP z is the cumulative probability of each data point, ( )i 1...n= . Low values 

of 2A demonstrates higher confidence that data follows the distribution being tested.  

 

6.8. Methodology 

      We consider idealized partially debonded ellipsoidal Al2O3 inclusions. Prior studies 

have revealed partially debonded inclusions to be most severe with regard to crack 

formation (discussed in Chapters 3 and 5). In addition to modeling the effects of intrinsic 

features such as fine scale dispersions we investigate the effects of inclusion size and 

spacing on fatigue crack formation and early growth. The elastic properties of Al2O3 are 

presented in Section 5.2. Table 6.1 lists the cases simulated in this parametric study. In 

Table 6.1, 2 inca and 2 incb  is the major axis and minor axis dimension of the ellipsoidal 

inclusion, respectively. incL is the longitudinal spacing between the inclusions. It is noted 

that we choose a single spacing of 2 μm which is equal to the size of a single martensite 

block. The objective is to compare the FIP enhancement due to interaction of inclusions 

with that of a single isolated inclusion in fatigue. For each case listed in Table 6.1, 3D FE 

simulations considering several realizations of polycrystalline matrix grain orientation are 

conducted to build ensemble statistics; this is done for each remote loading condition. 

Additionally, detailed investigation of several other microstructure attributes such as 
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inclusion stiffness, and interfacial conditions are presented in Chapter 5.  For 

convenience, results for all the cases presented in the subsequent sections will be 

identified with the ‘case pointer’ listed in Table 6.1.  
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Figure 6.2. Cross-sectional views of the 3-D section with embedded 
ellipsoidal inclusion elaborating on the debonded surface, boundary 

conditions for uniaxial loading and the direction of cyclic loading. Views 
across (a) XY, (b) XZ, and (c) YZ cutting planes through the center of the 

inclusion. 
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Table 6.1. List of cases modeled to investigate the variability in fatigue resistance. 

Inclusion 1 Inclusion 2 Case  

pointer 

# of 

inclusions ( )2 inca mμ
 

( )2 incb mμ  ( )2 inca mμ ( )2 incb mμ
 

 

( )incL mμ

 

A 1 5 2 - - - 

B 2 5 2 5 2 2 

C 1 10 4 - - - 

 

 

 

Section A-A 

A 

A 

Z X 

Y 

X 

Y 

Loading direction 

Figure 6.3.  Cross-section of the 3D FE mesh through the center of the 
inclusions, showing refinement close to the inclusion. Cyclic loading is in the 

Z direction.

Far field zone 
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Figure 6.2 shows different cross sectional views of the 3D domain, elaborating on the 

boundary conditions, and uniaxial loading direction enforced in the simulations. 

Additionally, we impose a multipoint constraint that the nodes on the faces x SVEL=  and 

y SVEL=  have the same displacement during fatigue cycling in directions x and y, 

respectively. The dimensions of each SVE ( )SVEL are chosen to be sufficiently large that 

the inclusion experiences negligible boundary interaction effects. We evaluate the FIP as 

a volume average value over each grain within the “fatigue critical” region (see Figure 

6.2a). Such an  approach is followed to locate the most favorably oriented grain 

undergoing cyclic microplasticity under the influence of the inclusion micronotch root 

stress field, the most potent site for crack formation [92]. Furthermore, a consistent FIP 

estimation procedure is necessary while investigating the fatigue response for different 

remote loading conditions. Figure 6.3 shows a cross-section of a 3-D FE mesh of case B, 

for example. The meshing strategy discussed in Section 5.2 is employed. The “fatigue 

critical” (see Figure 6.2) is comprised of atleast 20 cubic lath martensite grains with each 

grain discretized into at least four 3D tetrahedral elements (C3D4). Reduced integration 

is employed. A detailed discussion on estimation of material constants relevant to the 

crystal plasticity model is presented in the next section. 

The ratio of peak remote applied uniaxial strain ( )maxε  to the strain at macroscopic 

proportional limit ( )0.9%yε ≈ is defined by max

y

εζ
ε

= . FIP distributions are computed for 

each case listed in Table 6.1 for several values of ( )0.5,0.75,1ζ =  with Rε = 0.  A SVE 

representing a single realization of polycrystalline matrix grain orientation is subjected to 
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three quasistatic strain controlled cycles ( )3 110~ sε − −  for a selected ζ and Rε to obtain a 

stabilized FIP response and the peak value of the FIP, ( ) ( )max , cyci i
P⎡ ⎤ΔΓ⎣ ⎦ , is recorded for 

each of the n  instantiations, ( )1,2,...i n= . A sufficiently large number of realizations are 

necessary to construct a statistical ensemble. The distribution of peak value of FIPs is 

used to construct an extreme value statistical distribution.  

 

6.9. Model calibration and parameter estimation 

The crystal plasticity framework described in Section 6.4 is implemented as a User 

MATerial subroutine (UMAT) in ABAQUS. The constitutive model for the steel matrix 

employed in this work has several material-dependent parameters. It may not be possible 

to determine many of the material parameters using first principles calculations since 

these parameters represent much higher scale phenomena. Tiemens [27] developed a 

design model to estimate the strength contribution (in VHN) from various intrinsic 

sources (described in Section 6.5) in C61 class of steels employing the approach 

developed by Wise [34]. Initial value of the threshold stress components , ,gr ssκ κ  and dκ  

is estimated from the information provided by Tiemens [27]. He reported the contribution 

from solid solution, dislocation, and grain boundary strengthening to be approximately 30 

VHN, 100 VHN, and 65 VHN, respectively.  To estimate the threshold stress 

components, , ,gr ssκ κ  and dκ  at the grain scale, the values reported in VHN was 

converted to yield strength using the relation reported by Saha and Olson [196] for high 

strength steels, and subsequently, applying the Taylor factor ( )M , each slip system level 

components were determined.  Furthermore, utilizing the microhardness profile (see 
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Figure 2.4) of C61 steel, the value of pκ  is estimated for the case layer by subtracting the 

contribution from the other sources. The average case layer microhardness was taken to 

be 680 VHN which corresponds to M2C volume fraction of 0.07. Furthermore, the mean 

size ( )2M CS and spacing ( )2M CL of the precipitates and the initial value of the dislocation 

density, 0
αρ , were obtained from [27]. The initial dislocation density does not vary 

between slip systems.     

 

The elastic constants ( )11 12 44C ,C ,C for the martensite crystal are obtained from Ref. [150]. 

The magnitude of Burger’s vector ( )b  [194], dynamic hardening and recovery 

coefficients ( )1 2,k k [197] are also obtained from literature for tempered martensitic steel. 

It is assumed that the size of the M2C precipitate has minimal influence on the evolution 

of dislocation densities and back stress; hence, a negligibly small value is assigned to 1ω   
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Figure 6.4. Simulated cyclic stress-strain response of the case layer of 

martensitic gear steel. 
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Table 6.2. Constants and parameters of the constitutive model at room temperature. 

Parameters Symbol Value Units 
Elasticity matrix 
component 

C11 268 GPa 

Elasticity matrix 
component 

C12 110 GPa 

Elasticity matrix 
component 

C44 78 GPa 

Burger’s vector 
magnitude 

b  60.25 10−×  mm 

inverse strain-rate 
sensitivity exponent 

m  20 - 

Shear modulus of matrix G 78 GPa 
Poisson’s ratio of matrix ν  0.29 - 
Dislocation interaction 
coefficient 

hαβ : ,α β α β= ≠  0.1,0.1  - 

Mean spacing between 
precipitates 2M CL  63 10−×  mm 

Coefficient for size 
effect of precipitates 

1ω  251 10−×  - 

Coefficient for spacing 
effect of precipitates 

2ω  72 10−×  - 

Drag stress Dα  150 MPa 
Initial dislocation 
density 

0
αρ  91 10×  2mm−  

Coefficient of back 
stress 

0η  57 10×  - 

Dynamic 
hardening/recovery 
coefficients 

1 2,k k  55 10 ,15×  1,mm− −  

Initial components of 
the threshold stress 

, ,ss gr pκ κ κ  30, 75, 425 MPa, MPa, MPa 

Initial back stress 
0
αχ  0 MPa 

Size of precipitates 
2M CS  63 10−×  mm 

 

in Equation (6.6). Due to insufficient information, reasonable value is assigned to 2ω  in 

Equation (6.6) which is on the order of that used in Ref. [184]. Experimental information 

to characterize the cyclic stress-strain response of the case layer was not available for the 

selected martensitic gear steel. Hence, we utilized the quasistatic cyclic stress-strain data 

of the case layer of carburized and tempered martensitic steel presented in [198]; its case 

hardness is comparable to the martensitic steel modeled in this study. The parameters  0η  
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(Equation 6.8), and hαβ  (Equation 6.5) are obtained through fitting.   A 3D periodic 

representative volume element (RVE) comprising of 500 randomly oriented 

polycrystalline lath martensite grains was used to fit the cyclic stress-strain data.  The 

resulting constants and parameters are presented in Table 6.2 and the corresponding 

cyclic stress-strain response is shown in Figure 6.4.  

 
6.10. Results 
 

Three-dimensional crystal plasticity simulations of SVEs comprising of inclusion(s) in 

a polycrystalline matrix were conducted for three values of ( )0.5,0.75,1ζ = and R 0ε = . 

Twenty different realizations ( )20n =  of polycrystalline matrix grain orientations were 

considered to estimate the variability in the fatigue resistance for each case listed in Table 

6.1 and to construct the corresponding extreme value distributions. Each SVE was 

subjected to three loading cycles and the FIPs were estimated during the third loading 

cycle. The strategy of subjecting the SVE to several loading cycles (more than three) in 

order to obtain stabilized FIP response as illustrated in Section 5.4 was followed, and the 

results indicated three loading cycles to be sufficient to obtain stabilized FIP response for 

the present material model. Two FIPs namely the FS parameter and MD parameter are 

estimated and the extreme value FIP was selected to be the FIP ( )cycand PΔΓ  with 

highest magnitude among all the grains screened in the vicinity of the inclusion micro 

notch root for each realization. The grain demonstrating peak ΔΓ  and cycP  was the same 

for any selected realization. Furthermore, the grain demonstrating peak FIP did not 

change with loading cycle. Figures 6.5a-c shows the variation in extreme value FIP 
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(denoted as maxFIP ) versus the cumulative probability, ( )iP z , estimated via mean rank 

statistics, i.e.,  

( )
1i

iP z
n

=
+

                              (6.18) 

Here, ( )1..i n= is the rank of the data point in the ascending order. Each data point in 

Figures 6.5a-c represents the extreme value obtained from a single realization. 

 

 

 

(a) 

Figure 6.5. Extreme value FIP distribution ( ).
1i

ivs P z
n

⎛ ⎞=⎜ ⎟+⎝ ⎠
as estimated over the 

grain size averaging volumes for (a) 0.5ζ = , (b) 0.75ζ = , and (c) 1ζ =  after 3 loading 
cycles. The extreme value FIP was selected to be the FIP with highest magnitude 

among all the grains. 
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Figure 6.5. Continued. 
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As seen in Figures 6.5a-c, that significant variability is observed due to variation of 

microstructure attributes such as size and spatial distribution of the inclusions. 

Apparently, with the increase in ζ  the extreme value FIP increases by several orders of 

magnitude. Furthermore, large isolated partially debonded inclusion (case C) 

demonstrated highest FIP among the cases listed in Table 6.1. The purpose of estimating 

two microstructure scale FIPs is to compare the extreme value statistical distribution 

functions that reflect the variability in fatigue resistance. The peak FIPs shown in Figures 

6.5a-c are fit to the Weibull, Gumbel, and Frechet distributions. It has been shown by 

Castillo [182] that for the distributions of a single variable, and for large sample size, n  

the extreme value distributions converges to the aforementioned three types of the non-

degenerated distributions. The scale, location, and shape parameters are presented in 

Table 6.3 (for ΔΓ ) and Table 6.4 (for cycP ) for each case listed in Table 6.1. Also, shown 

in Tables 6.3 and 6.4 are the results of the Anderson-Darling goodness of fit statistic, 2A . 

The lowest value of 2A is highlighted to illuminate the statistical function that best fits the 

simulated extreme value FIPs. It can be seen from Tables 6.3 and 6.4 that on an average, 

Weibull distribution demonstrated superior capabilities in capturing the variability in the 

extreme value FIPs. This is evident for the selected microstucture scale FIPs. There were 

few cases for which the Gumbel distribution exhibited better capabilities in capturing the 

statistical variability. Frechet distribution was least favored in the present study. Once the 

most favorable extreme value distribution function is identified, the probability for crack 

formation ( )iP  for a given number of loading cycles can be calculated employing 

Equations 6.19-6.21. 
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Table 6.3: Values of the fitting parameters and 2A  of various selected statistical 
functions obtained utilizing the extreme value FS parameter ( )ΔΓ .  
  Weibull Gumbel Frechet 

Case 
Pointer 

ζ ψ  λ  2A ψ  ϕ  2A ψ  λ  2A
0.5 1.15E-05 8.98 1.56 1.20E-06 1.01E-05 0.32 1.02E-05 9.34 0.43 

0.75 1.03E-03 3.97 0.69 1.84E-04 8.50E-04 1.75 7.79E-04 3.52 1.90 
 

A 
1 5.54E-03 10.02 0.38 4.51E-04 5.08E-03 1.42 4.97E-03 9.13 1.16 

0.5 1.26E-05 8.89 1.61 1.31E-06 1.14E-05 0.47 1.12E-05 9.20 0.65 
0.75 1.18E-03 4.04 0.74 2.05E-04 9.81E-04 1.91 9.00E-04 3.57 1.96 

 
B 

1 6.72E-03 9.84 0.57 5.52E-04 6.15E-03 1.71 6.01E-03 8.95 1.32 
0.5 1.38E-05 12.02 0.28 9.95E-07 1.28E-05 0.68 1.26E-05 11.55 0.69 

0.75 1.67E-03 2.57 0.75 3.63E-04 1.28E-03 1.20 1.08E-03 2.24 2.04 
 

C 
1 8.86E-03 11.12 0.55 6.39E-04 8.18E-03 1.27 8.04E-03 10.45 0.92 

 
 
 
 
 
 
Table 6.4: Values of the fitting parameters and 2A  of various selected statistical 
functions obtained utilizing the extreme value MD parameter ( )cycP . 
  Weibull Gumbel Frechet 

Case 
Pointer 

ζ ψ  λ  2A ψ  ϕ  2A ψ  λ  2A
0.5 1.13E-05 11.85 0.88 1.02E-06 1.17E-05 0.30 1.16E-05 11.80 0.53 

0.75 1.17E-03 6.22 0.32 1.45E-04 1.02E-03 0.92 9.85E-04 5.79 0.87 
 

A 
1 3.81E-03 11.51 0.39 2.92E-04 3.53E-03 0.76 3.47E-03 10.80 0.84 

0.5 1.38E-05 11.72 0.84 1.11E-06 1.28E-05 0.39 1.26E-05 11.60 0.62 
0.75 1.34E-03 6.23 0.30 1.65E-04 1.17E-03 0.94 1.13E-03 5.80 0.89 

 
B 

1 6.50E-03 14.49 0.30 3.78E-04 6.11E-03 1.14 6.14E-03 13.60 1.08 
0.5 1.71E-05 13.95 1.40 1.28E-06 1.60E-05 0.70 1.58E-05 13.00 1.12 

0.75 1.82E-03 3.00 0.38 1.42E-03 4.40E-04 0.75 1.28E-03 2.89 0.80 
 

C 
1 8.46E-03 12.06 0.47 6.18E-04 7.86E-03 0.39 7.76E-03 12.00 0.42 

 
 
 

( )exp i
i

f N
P

λ

ψ

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (Weibull)                                          (6.19) 

 

( )1 exp exp i
i

f N
P

ϕ
ψ

⎛ ⎞−⎛ ⎞
= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (Gumbel)                                  (6.20) 
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( )
1 expi

i

P
f N

λ
ψ⎛ ⎞⎛ ⎞

⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   (Frechet)                                      (6.21) 

Here, ( ) ( )q
i if N Nγ ′=  is the function relating the grain scale averaged FIP to iN . 

Although we compute two different grain scale averaged FIPs ( ), cycPΔΓ , ΔΓ  parameter 

is used to estimate the crack formation life in the present study. It is intended to estimate 

the number of cycles to form a crack corresponding to 1% probability which signifies 

minimum life.  
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Figure 6.6. Estimated cumulative probability iP versus iN  for (a) Case A, (b) Case B, 
and (c) Case C. 



 159

 

 
 

Ni

101 102 103 104 105 106 107

P i(%
)

0.1

1

10

100

ζ=0.5
ζ=0.75
ζ=1

 

(b) 

Ni

101 102 103 104 105 106 107

P i (
%

)

0.1

1

10

100

ζ=0.5
ζ=0.75
ζ=1

(c) 

Figure 6.6. Continued. 
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Figure 6.6a-c illustrates the cumulative probability of crack formation versus the 

number of cycles to form a crack for various cases listed in Table 6.1. Such a plot would 

indicate the minimum life for the selected microstructure attribute. While estimating the 

cumulative probability for different cases, the best fit distribution shown in Table 6.3 is 

utilized.  The purpose of estimating the crack formation lives is to qualitatively discern 

the effects of various microstructure attributes on the microstructure scale fatigue 

potency. Formation and early growth behavior of small cracks is a significant contributor 

to variability in HCF [169].  

 Based on the nonlocal FIPs estimated for each case listed in Table 6.1, a normalized 

applied strain ( )ζ versus crack formation life can be plotted which corresponds to the 1% 

probability as shown in Figure 6.7. Apparently, case C demonstrates the worst case 

scenario for crack formation. The disparity in minimum life estimates between case A 
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1%iP =  

Figure 6.7. Normalized peak applied strain ( )ζ  versus crack formation life for 
1% probability of formation, for different cases listed in Table 6.1. 
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and case C increases rapidly with increase in ζ . Such a response is attributed to the 

discontinuity arising due to large interfacial separation at elevatedζ  coupled with the size 

effect of the stress raisers. Interestingly, significant reduction in fatigue life is realized 

due to interaction of inclusions (case B). The disparity in minimum life estimates 

between case A and case B also increases with increase in ζ . This observation supports 

the idea that a single microstructure attribute such as the size of the inclusion may be 

inadequate to define the minimum fatigue properties. For example, often we observe 

clusters of primary inclusions on the fracture surface (e.g., see Figure 2.8 in Chapter 2). 

Such clusters could be fractured remnants of a larger particle. Hence, the fatigue potency 

of a large particle could be aggravated through interaction with several smaller particles. 

Such local interactions will contribute to scatter in HCF. Additionally, the enhancement 

of FIPs due to inclusion interaction illustrates the potency of closely spaced inclusions to 

replicate the effect of a larger isolated inclusion.  

The framework developed in this chapter is suitable to qualitatively rank order the 

severity of various intrinsic and extrinsic microstructure attributes in HCF. Although, 

only partially debonded inclusions (worst case scenario) are considered in the present 

study, prior studies (see Chapter 5) revealed significant difference in the minimum crack 

formation life between debonded and intact particles. Hence, this study reinforces the 

importance of modeling effects of various microstructure attributes while designing 

materials for a specific fatigue application. It is worth mentioning that in addition to 

accounting for interactions between the most favorably orientated grain and the local 

stress raisers, the effect of interaction among the grains is intrinsically accounted for 

while estimating the peak FIP. Additional constitutive degrees of freedom introduced in 
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the microstructure-sensitive material model permits investigation of the effects of other 

intrinsic variability such as variation in block size on microstructure-scale FIP response at 

critical life-limiting attributes.  

 
6.11. Discussion 

There are several factors that contribute to variability in HCF.  In this study we have 

attempted to address a few of them such as inclusion size, spatial interaction, and 

variations in polycrystalline matrix grain orientation. The primary goal was to develop a 

microstructure-sensitive computation framework to couple the intrinsic variability at 

micron and sub-micron scales with the extrinsic attributes such as size and spacing of 

primary inclusions. Detailed modeling of heterogeneous cyclic plasticity (slip bands) and 

crack formation process is still in its very early stages. Alternatively, systematic 

parametric studies such as the present work can be used as guidance in framing critical 

experiments that investigate key microstructure attributes controlling the minimum 

fatigue properties. Such an approach would result in significant cost savings and also 

accelerate the insertion of modified and new materials to service [4]. The framework 

utilized in the present study affords the ability to explore the effects of variations of 

single features of microstructure holding other features fixed which is generally not 

possible in experimental study. With this approach, the effects of extreme variations of 

microstructure on material properties can be studied. For example, the effects of higher 

length scale inclusions can be neglected in the computational simulation if the aim is to 

isolate the effects of M2C precipitates on the intrinsic fatigue resistance of the 

microstructure. However, experiments are still needed on a limited range of 

microstructures to calibrate and validate such frameworks.  
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We acknowledge that understanding and physics-based models for secondary 

hardening martensitic gear steels are evolving within the research community; 

accordingly, the levels of hierarchy are expected to improve over time. As summarized 

by McDowell [152] that with improvements in atomistic-to-discrete dislocation, and 

discrete dislocation –to-continuum descriptions, it should be possible to augment or 

replace lower-scale (for e.g. fine scale precipitates) continuum descriptions with suitable 

homogenized descriptions. But to do so requires not only the mechanics formalisms, 

which already exist to varying extent, but also necessary initial and boundary conditions 

of defects, defect source distributions, and types of dislocation reactions that occur in the 

vicinity of sub-micron scale precipitates and primary inclusions. Necessary supporting 

understanding and characterization for such a predictive quantitative framework at fine 

scales in by no means already established in the literature for secondary hardening steels.  

 
 
6.12. Summary and conclusions 
 

A dislocation density-based crystal plasticity model relevant to model the sub-

micron scale strengthening in case hardened martensitic gear steel was developed. A 

simplified scheme to model the fatigue crack formation and early growth at critical life-

limiting microstructure attributes was demonstrated. A statistical framework was utilized 

to characterize the variability in fatigue response. An Anderson-Darling goodness of fit 

test was conducted to identify the extreme value statistical distribution function that best 

fits the simulated variability in extreme value FIPs. By identifying certain key 

microstructure attributes such as inclusion size, spacing, polycrystalline matrix grain 

orientation, and remote loading conditions we have constructed an extreme value 
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statistical framework to estimate the minimum life for crack formation on the order of a 

martensite block in the case layer of secondary hardening martensitic steels. The sole 

purpose of correlating with life was to rank order the severity of different attributes in 

fatigue and it is acknowledged that experimental data are essential to obtain actual fatigue 

lives. Idealized cases were considered in the present study to facilitate parametric 

investigation. This work offers a simple yet effective framework to relate FIPs to micron 

and sub-micron scale microstructure features, effectively constituting a multiscale 

approach. Certain key findings are summarized below:- 

1. For the selected material model, inclusion size, inclusion stiffness, remote 

loading, interfacial conditions and the selected extreme value statistical distribution 

functions, Weibull distribution demonstrated superior capabilities in capturing the 

variability in microstructure scale fatigue response. This inference is based on identifying 

the number of cases for which Weibull fit showed lowest 2A compared to Gumbel and 

Frechet distribution.  

2. Large isolated partially debonded inclusions were observed to be most severe 

with regard to crack formation among the simulated cases. However, significant 

enhancement in FIP is observed due to interaction of inclusions in cluster. Estimation of 

minimum life based on single microstructure attribute can be misleading due to the role 

played by various other microstructure attributes such as inclusion spacing, and 

interfacial conditions. Furthermore, intrinsic variability such as variation in 

polycrystalline matrix grain orientation and variation in phase fractions of fine scale 

dispersions contribute towards defining minimum fatigue resistance in HCF.  
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6.13. Limitations 
 
a. Due to insufficient experimental data regarding cyclic stress-strain data of secondary 

hardening martensitic gear steels, the crystal plasticity model developed in this study 

is calibrated using available experimental data from literature. Due to significant 

number of material parameters and constants involved in the constitutive model, it is 

necessary to rely on future experiments. For example, fatigue tests of material whose 

microstructure represents the case layer of heat treated secondary hardening 

martensitic steels will be very useful to improve model predictions.  

b. We have attempted to model the grain scale response of lath martensite respecting the 

microstructure hierarchy exhibited by lath martensite at that scale. However, the 

effects of low angle boundaries within the blocks are neglected. It is necessary to 

understand the effects of low angle boundaries in HCF and detailed experimental 

investigations are imperative to develop better tools for materials design. TEM 

characterization, nanoindentation, and other relevant imaging methods and studies 

that relate microstructure to cyclic plasticity at block or sub-block scale will certainly 

enhance model predictions.  

c. Limited parametric studies were conducted with regard to variation in size and 

spacing of inclusions while computing the minimum fatigue resistance in this work. 

A more comprehensive study involving statistical variation of size and spacing of 

primary inclusions in a cluster in addition to variation in polycrystalline matrix grain 

orientation will be more fruitful to obtain a better estimate of the minimum fatigue 

resistance. The aforementioned study will require well characterized experimental 

data of statistical extremes of the microstructure attributes and is left to future work. 
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Chapter 7 

 
MODELING EFFECTS OF COMPLIANT COATINGS ON HCF 

RESISTANCE AT PRIMARY INCLUSIONS  

 
 

In this Chapter, we explore the capabilities of an elastic interphase material adhered to 

the inclusion surface to alter the FIPs in the matrix. By varying the elastic stiffness of the 

encapsulating interphase, the stresses and cyclic plastic strains are examined in the matrix 

in the proximity of a partially debonded inclusion, a worst case scenario for crack 

formation. The matrix is modeled as elastic-plastic with pure kinematic hardening 

expressed in a hardening minus dynamic recovery format. The inclusion and interphase 

are modeled as isotropic linear elastic. An idealized spherical, homogeneous inclusion is 

considered to facilitate parametric study. A nonlocal average value of the maximum 

plastic shear strain amplitude was used in a modified form of the Fatemi-Socie parameter 

in the proximity of inclusions as a FIP to facilitate comparative parametric study of the 

potency for crack formation. 

 

7.1 Introduction 

Design of improved process routes and new material systems that address the 

increasing demand for extended fatigue performance in technologically significant 

structural materials is a key research focus. Nonmetallic primary inclusions are a major 

life-limiting feature in advanced metallic systems as described in Chapter 1. Simulation-

based strategies offer a convenient platform to understand mechanisms of crack 
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formation and early growth from such second phase particles [10, 199], which in turn can 

be applied to develop understanding of possible means to suppress such phenomena. 

The mechanisms of crack formation and early growth from inclusions involve either 

cracking of the inclusion or debonding of the inclusion/matrix interface, with the 

inclusion serving as a notch to concentrate cyclic plastic strain in the surrounding metal 

matrix [12, 18]. Of the three scenarios, decohesion of the inclusion/matrix interface, 

either during processing or service, has been observed to be most detrimental with regard 

to fatigue crack formation in metals (see Chapter 3). Gall et al. [19] reported for A356-T6 

Al alloy that the FIPs near perfectly bonded inclusions are two orders of magnitude 

smaller than those near cracked or debonded particles, within the range of elastic stiffness 

contrast and yield strengths studied. Due to high stress concentration, it is improbable 

that a cracked inclusion would remain completely bonded to the matrix material, and the 

cracked inclusion might eventually debond during service. Improving the 

inclusion/matrix interface strength is one way to negate or delay the process of 

decohesion. Another remedy would be to introduce an interphase layer between inclusion 

and matrix either to inhibit decohesion or to reduce stresses and plastic strain localization 

in the matrix in the event of decohesion.  In this Chapter we propose to study the effect of 

the latter by introducing an elastic interphase material that adheres to the inclusion 

surface, forming a layer between the inclusion and matrix.   

The influence of such coatings on the structural response of different material systems 

have been studied by many researchers [200-207]. Interaction of pre-existing cracks and 

dislocations with coated particles (inclusions or fibers) have also been studied by many 

researchers [204, 208-213]   Such second phase particles have often been reported to 
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serve as crack nuclei in different grades of steel [12, 15, 214-217]. Gubenko [218] 

performed experiments to understand the role of interphase between an inclusion and 

steel matrix. Based on the experimental findings on void formation from corundum and 

spinel inclusions,  the author suggested to create silicate and sulfide shells around such 

second phase particles in order to lower the susceptibility of decohesion of the 

inclusion/matrix interface. Miao and Knott [219] performed experiments on C-Mn steel 

weld metal and demonstrated that heating the steel to austenitization temperature 

followed by slow cooling resulted in formation of sulfide coating (MnS) on oxide 

inclusions with thickness ranging between 0.1-0.5 μm. Manganese sulfide is relatively 

less stiff than oxide inclusion and can be viewed as a soft coating layer or interphase 

between the steel matrix and the oxide particle. In comparison to the bulk materials, thin 

coatings exhibit strong anisotropy in mechanical properties [220, 221]. Additionally, the 

properties of the substrate can influence the mechanical behavior of coatings [222]. 

Although the aforementioned factors can influence the severity of plastic strain 

localization in the surrounding ductile matrix, detailed investigation of their effects is 

beyond the scope of this work.  

The effect of introducing a compliant coating on fatigue crack formation at 

nonmetallic inclusions in metals has not been explored to date from a modeling 

standpoint. We examine the possible reduction of the FIP in such a case for a parametric 

range of relative elastic stiffnesses of the inclusion, interphase, and matrix, for given 

properties of matrix elasto-plastic flow that mimic high strength steel. To avoid 

ambiguity, the interphase material is labeled ‘coating’ throughout this manuscript.  

Specifically, we consider a lath martensitic steel matrix with hard nonmetallic inclusions. 
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In this work, we investigate crack formation potency of partially debonded spherical 

inclusions with/without coating and to support efforts to modify the inclusion/matrix 

interface for improved HCF performance. For simplicity, we model the coating as 

isotropic linear elastic.  

 

7.2. Methodology 
 

The elasto-plastic response of the steel matrix is modeled using J2 type plasticity with 

kinematic hardening outlined in Section 3.4.  Nonlocal averaged value of FS parameter 

( )ΔΓ  is used in the present study as fatigue indicator parameter (see Chapter 3, Section 

3.7). We may assert a nonlocal Coffin-Manson relation ( )2 q
iNΔΓ γ ′= where material 

constantγ ′  is estimated to be 0.335, and material constant q = -0.514 [110]. iN is the 

number of cycles to form a crack of size of the order of 1μm in length at the inclusion 

notch root. Three-dimensional FE simulations were performed to characterize the 

ΔΓ parameter for nonmetallic primary inclusions, with and without coatings, for the case 

of debonded matrix/inclusion or coating/inclusion interfaces. Figure 7.1 shows a 

schematic of an elastic inclusion with coating embedded in an elasto-plastic matrix.  The 

coating-matrix interface is assumed initially debonded over half the interface to facilitate 

parametric study of effects of properties of the constituents in the three phase system.  

The diameter of the spherical isotropic elastic inclusion is 5 μm.  Material parameters of 

matrix, coating and inclusion are distinguished using superscripts m, c, and i, 

respectively. Table 7.1 summarizes the material parameters of the elastic-plastic response 

of the steel matrix in Equations 7.1-7.6. These are typical values for carburized and 

tempered lath martensitic steels intended for HCF applications [217]. Properties assigned 



 170

for the inclusion include Young’s modulus iE = 380 GPa and Poisson’s ratio iν = 0.2 

[18]. The coating is assumed to also behave as an isotropic linear elastic solid with 

thickness of 0.5 μm, a typical thickness for sulfide coatings on oxide particles [219], for 

example. In this study we vary the Young’s modulus of the coating to study effects on the 

ΔΓ  parameter in the matrix, assuming the coating Poisson’s ratio is also cν = 0.2 [223].  

 
                     Table 7.1. Material parameters of martensitic steel. 

mE  (GPa) mν  m
ysσ (MPa) mc (GPa) mr  

193.6 0.28 987 112.1 200 
 
 

Figure 7.2 shows a cross-section of a 3-D FE mesh. A fine mesh is employed close to 

the inclusion (element size about 0.25 μm) to capture the details of inelastic deformation 

around the coating, fanning out with a coarse mesh away from the inclusion. The domain 

in Figure 7.2 is subjected to three different uniaxial strain ranges ( rε = 0.3%, 0.5% and 

0.6%), applied remotely with Rε = 0 and -1 and the nonlocal average of the FS 

parameter, ΔΓ , is evaluated over the third loading cycle. The averaging volume for all 

cases was taken to be 1 μm3 (unit cube), selected as that particular volume at the notch 

root that maximizes the nonlocal FS parameter.  Figure 7.3 shows different cross 

sectional views of the 3D domain, elaborating on the dimensions of FE domain with the 

boundary conditions, and loading direction enforced in the simulations. All simulations 

were performed using 4-node 3D (C3D4) tetrahedral elements in ABAQUS. Reduced 

integration is employed. Frictionless contact is assumed along debonded regions. The 

*Tie command in ABAQUS was used to describe connectivity of the inclusion and 

coating surfaces and bonded portion of coating and matrix surface.   
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Figure 7.1. Schematic showing a partially debonded elastic inclusion with 
coating embedded in an elasto-plastic matrix subjected to cyclic loading. 
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Figure 7.2. Cross section of FE mesh through the center of the inclusion, 
showing refinement close to the inclusion. Cyclic loading is in the Z direction. 
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7.3. Results and Discussion 

The ratio of Young’s modulus of inclusion to coating is defined by
i

c

E
E

=ζ .  Figure 

7.4 shows the variation of the maximum nonlocal FS parameter, ncΔΓ  for ζ =1 and Rε=0 

and -1 loading conditions; in this case, the coating effectively increases the size of a 

partially debonded inclusion without any coating in an elasto-plastic matrix. The 

superscript ‘nc’ denotes that the FIP corresponds to an inclusion without any coating. For 
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Figure 7.3. Cross sectional views of the 3-D section with embedded inclusion 
elaborating on the debonded surface, boundary conditions for uniaxial loading 

and cyclic loading direction. Views across (a) XY, (b) XZ, and (c) YZ cutting 
planes through the center of the inclusion. 
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clarity, the numerical values of FS parameter plotted in Figure 7.4 are also presented in 

Table 7.2.   

 

 It can be seen that ncΔΓ increases exponentially with remote applied strain range. 

Comparing the results for different Rε, we observe that the FS parameter is relatively 
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    Figure 7.4. Variation of FS parameter with applied strain range 

and strain ratio.  

εr (%) 
ΔГnc

(Rε=0) 

0.30

0.50

0.60

1.21x10-5

6.51x10-4

3.03x10-4

0.55 4.44x10-4

0.45 1.83x10-4
0.40 9.61x10-5
0.35 4.16x10-5

ΔГnc

(Rε=-1) 

0.14x10-5

1.01x10-5

2.91x10-5

5.78x10-5

1.03x10-4

1.71x10-4

2.69x10-4

Table 7.2. Variation of FS parameter with applied strain range and strain 
ratio. 
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higher for Rε = 0 for the same remote applied strain range. This is due to higher 

associated maximum applied stress level encountered during cycling at high Rε ratios. 

Additionally, the constraints experienced during contact of inclusion with matrix 

manifests an R ratio effect [19].  The debonded inclusion facilitates high localized plastic 

strains under monotonic loading conditions, which in turn leads to high local stress states. 

Consequently, reversed yielding occurs more readily near the debonded inclusion. At 

high Rε , the aforementioned mechanism allows for high plastic strain ranges near a 

debonded inclusion. However, under fully reversed loading conditions, the contact of the 

inclusion with the matrix inhibits reversed plasticity near the debonded inclusion in the 

same location as observed under maximum tensile strains. As a result, at very low Rε  

ratios the values of p
maxΔγ are relatively small for the debonded inclusion.  
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 Further simulations were performed by reducing the elastic stiffness of the coating, 

with results shown in Figure 7.5. The stiffness ratio,ζ , was varied from 1 to 30  for each 

remote applied strain range and Rε. The values of ΔΓ  were normalized by their 

respective values at ζ =1 ( ncΔΓ  in Figure 7.4) to illustrate the percentage reduction in the 

FIP relative to ζ =1. At low applied strain ranges (0.3%) and Rε= 0 and -1 loading 

conditions, a coating with elastic stiffness half that of the inclusion (ζ = 2) leads to a 

reduction of ΔΓ  by 40%. This would lead to substantial improvement in the fatigue crack 

formation life (~ 200% increase). Further reduction of coating stiffness (ζ  30) leads to 

negligible ΔΓ  values for an applied strain range rε = 0.3% and Rε =0. Equation 7.7 is 

used to evaluate the fatigue crack formation life over the nonlocal region of calculation of 

the FS parameter, as shown in Figure 7.6. For higher values ofζ , substantial 

enhancement of fatigue crack formation life can be realized. In Figure 7.6, the fatigue 

crack formation life is not plotted beyond 10ζ =  for rε = 0.3% and Rε =0 loading 

condition. We assign the points for 10ζ >  as ‘run-outs’ corresponding to negligibly small 

values of ΔΓ .     

 In the case of rε = 0.3% and Rε = −1 loading condition, the FS parameter ratio (Figure 

7.5) does not trend to zero with increasing ζ ; this is unlike the trend observed in the case 

of rε = 0.3% and Rε = 0 loading condition. The presence of a compliant coating reduces 

the severity of the plastic strain localization and the local stress state near debonded 

inclusion. This is evident from the results obtained by varying the elastic stiffness of the 

coating. On the contrary, a compliant coating relaxes the effect of constraint experienced 

during the contact of matrix and coating and permits reverse plasticity under fully 
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reversed loading conditions. This effect is believed to be responsible for the FS parameter 

ratio not trending to zero with increasing ζ  under fully reversed loading conditions. The 

aforementioned observation is along the lines reported by Gall et al. [19], who studied the 

sensitivity of the plastic shear strain ranges near pores and debonded inclusions to the R 

ratio in A356-T6 Al alloy. However, significant improvement in the fatigue resistance is 

still realized by introducing compliant coating under fully reversed loading.     

 

 

       Further investigations were carried out to assess the influence of coating at higher 

applied strain ranges. For a given value ofζ , the percentage reduction in ΔΓ  decreased 

with increase in the applied strain range for Rε= 0 and -1 loading conditions. 

Nevertheless, considerable increase could still be realized in fatigue resistance. We 
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applied strain ranges and strain ratios (Rε =0 and -1). 
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observe from Figure 7.5 that for ζ =2, ΔΓ reduces by approximately 20% for the applied 

strain ranges of rε =0.5% and rε =0.6%, which correlates to approximately 50% increase 

fatigue crack formation lives (Figure 7.6).  Figure 7.5 also shows that the effectiveness of 

a coating is maximized at low imposed strain range.  Based on this observation it can be 

concluded that the idea of introducing a coating at the inclusion/matrix interface is most 

effective in the HCF and VHCF regimes.  

 
7.4. Summary and Conclusions 
 

Three-dimensional FE simulations suggest the possibility of introducing an elastically 

compliant interphase layer between a hard inclusion and an elasto-plastic matrix to 

enhance HCF performance. The sensitivity of FS parameter in the presence of a 

compliant coating to Rε ratio was investigated. Significant reduction in FIP after 

decohesion is observed for compliant coatings at Rε = 0 and -1. Parametric studies of an 

idealized nature considered here are useful for discerning trends and potential magnitudes 

of effects of coatings. Of course, numerous other microstructural factors influence the 

fatigue response, such as inclusion clustering, inclusion size, grain size, anisotropy of 

coating and/or inclusion, residual stresses, and so forth.  

The advent of computer-controlled processing and experimental techniques, and the 

extensive work available on coatings through the work of many researchers, encourages 

pursuit of design of fatigue resistant material systems. Nonmetallic inclusions in steels 

provide higher energy interfaces that can be leveraged to deposit a soft coating layer  

through controlled heat treatment processes, thereby producing ‘duplex’ inclusions [219]. 

This research work has been published in 2009 as a journal manuscript [224].  
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Chapter 8 
 

MODELING EFFECT OF HOT ISOSTATIC PRESSING ON HCF 

RESISTANCE AT DEBONDED PRIMARY INCLUSIONS  

 
      In this Chapter, a three-dimensional finite element based framework is used to assess 

the effect of hot isostatic pressing (HIPping) on void closure at partially debonded 

nonmetallic primary inclusion in high strength martensitic gear steels. The effect of 

HIPping on fatigue crack formation potency at nonmetallic primary inclusion is 

evaluated.  The matrix is modeled as rate-independent elasto-plastic material with pure 

kinematic hardening expressed in hardening minus dynamic recovery format. Idealized 

linear elastic spherical inclusion is considered to facilitate parametric studies. 

Temperature dependent material properties are used to simulate deformation at elevated 

temperatures, e.g. HIPping. A nonlocal average value of plastic shear strain range is used 

in the modified form of Fatemi-Socie parameter as the FIP. Simulation results reveal 

enhanced HCF resistance in HIPped steels. 

 
 
8.1 Introduction 
 
    HIPping subjects materials to a combination of high pressure inert gas (e.g., argon) and 

elevated temperature. The process temperature is selected so that the material yields or 

creeps in compression under the action of the applied pressure. The result is elimination 

of internal voids (porosity) and full densification of the material. The isostatic nature of 

the pressure (i.e., uniform in all directions) means that the component being HIPped 

retains its shape without the need for support tooling. HIPping removes internal voids 

from all types of material and promotes diffusion bonding across the surfaces of the 
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voids. The replacement of the voids by continuous material is the basis for the 

improvements in mechanical properties that HIPping provides. The basics of HIPping 

have been summarized previously [225].  

    Yield strength decreases, for most metals and ceramics, with increasing temperature. 

The HIPping conditions are generally chosen so that the gas pressure is greater than the 

reduced yield strength of the material at that temperature. Plastic flow at the microscopic 

scale occurs under such conditions. During HIPping, creep processes such as Nabarro-

Herring creep, Coble creep, and dislocation creep could occur at relatively high rates. The 

major effects of HIPping on microstructure are the removal of porosity and grain growth. 

The precipitate distribution and the segregation pattern may be altered during the process. 

Atkinson and Davies [226] pointed out that after HIPping a PM ferrous alloy, the 

material tended to fracture along the prior particle boundaries. This was due to 

segregation of certain alloy content such as titanium to the prior particle boundaries 

through enhanced diffusion during high temperature processing.   

    The aforementioned discussion suffices to describe the complexity of the 

microstructural changes that occur in steels during high temperature processing such as 

HIPping. Furthermore, steels in general are composed of highly complex microstructure. 

There are a myriad of interactions between steel chemistry and heat-treatment processing 

that combine to produce desirable microstructures and properties for specific applications 

[30, 227]. Hence, it is tedious to develop an all-inclusive model to simulate the complete 

microstructural response occurring during HIPping; however, there are many aspects of 

fatigue of microstructures that are amenable to relatively straightforward computation in 
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order to gain insight into structure–property relations and to build the basis for efforts to 

pursue modified process routes to enhance fatigue resistance. 

    Void formation at metal-inclusion interfaces during manufacturing and large 

deformation processing is a common occurrence. Furthermore, nonmetallic primary 

inclusions are critical life-limiting features in high strength steels [228]. The objective of 

this work is to model the effects of HIPping on void closure at debonded metal-inclusion 

interface. Furthermore, the effect of such a process on fatigue crack formation potency at 

isolated primary inclusion is evaluated. Several material models have been proposed to 

simulate HIPping as summarized by Atkinson and Davies [226]. In this work, we adopt a 

rate-independent elasto-plastic constitutive model to represent the stress-strain response 

of martensitic steels. This is acceptable since the motive of this work is to qualitatively 

discern the effect of HIPping on altering the local stress and plastic strain states in the 

vicinity of debonded primary inclusion in addition to void closure. The inclusions are 

assumed to be isotropic linear elastic. The two-parameter Fatemi-Socie (FS) critical plane 

approach discussed in Section 3.5 is used as fatigue indicator parameter. It is well known 

that significant portion of service life of metallic components is consumed in fatigue 

crack formation and small crack growth in HCF and VHCF regime [10, 229]. 

   Partially debonded Al2O3 inclusions were modeled as the potential fatigue crack nuclei 

as observed in experiments (see Chapter 2). Simulation-based investigations have 

revealed partially debonded inclusions to be the worst case scenario for fatigue crack 

formation (see Chapter 3). Furthermore, void formation at secondary precipitates such as 

TiC particles during processing can be detrimental to fatigue and fracture resistance [230, 

231]; however, such investigations are left to future work.  
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8.2. Elasto-plastic framework 
 

The general outline of the rate-independent elasto-plastic framework is described in 

Section 3.4.  However, in this study the total strain-rate is additively decomposed into its 

elastic, plastic, and thermal parts given by 

 

e p Tε ε ε ε= + +                                                (8.1) 

 

In the rate-independent formulation, the increments of strain are taken to be additively 

decomposed into elastic, plastic, and thermal parts, i.e., 

 

e p Td d d dε ε ε ε= + +                                 (8.2) 

 

where ( )T
CTEd T dTε α= . Here, ( )CTE Tα  is the coefficient of thermal expansion which is 

a function of temperature in the present study.  

The elastic response is given by 
 
 

:σ = εeC   (8.3) 
 
where eε  denotes the elastic strain tensor, and C  is the isotropic elastic stiffness tensor. 

 

8.3. Methodology 

Idealized spherical alumina inclusions are embedded in a steel matrix. It is assumed 

that HIPping is conducted prior to case hardening.  Hot deformation simulations are 

conducted at the austenization temperature, approximately 1373 K, of the selected 
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martensitic steel. A systematic parametric investigation is conducted to assess the effect 

of HIPping on void closure and fatigue resistance at primary inclusion. The elasto-plastic 

and thermal properties of steel [232-234] and the elastic and thermal properties of 

alumina [235] were obtained from literature for various temperatures, as listed in Table 

8.1. Yield strength could exhibit non-linear dependence on temperature. Due to 

insufficient data we interpolate the variation in yield strength with temperature using a 

polynomial relation shown in Equation (8.4) between 300K and 1100 K. The polynomial 

relation between yield strength and temperature is obtained by fitting the experimental 

data provided in [234] for AF1410 steel. Between 1100 K and 1373 K the yield strength 

of the steel matrix is linearly interpolated. All other properties of the steel matrix and 

alumina are linearly interpolated within the selected temperature range. It is noted that in 

addition to variation in strength and compliance of the inclusion and steel matrix, the 

effect of variation in CTE is also considered. The data provided in [235] for alumina and 

martensitic steel shows a linear interpolation of the elastic modulus and the CTE to be a 

reasonable approximation. Room temperature (RT) is considered to be 300 K. For 

simplicity, the steel matrix is assumed to be elastic-perfectly plastic at elevated 

temperatures (T > 1273 K). 

 

( ) ( )21541.9 0.231 0.0009 300 1100y MPa T T K T Kσ = − − < ≤                 (8.4) 
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Table 8.1. Material parameters of steel and alumina at various temperatures. 
Material T(K) E (GPa) ν  

yσ (MPa) c  (GPa) r ( )6 110CTE Kα − −×  

300 194 0.28 1400 112 200 9.54  

Steel 1373 112 0.28 100 - - 11.25 

300 385 0.25 - - - 0.0388  

Alumina 1373 304 0.25 - - - 0.81 

 

       
Figure 8.1 shows a schematic of the different stages of the simulation conducted to 

model the effect of HIPping on fatigue resistance. Inclusions are assumed to be partially 

debonded at the start of the simulation to permit interfacial decohesion during hot 

deformation such as plane strain compression. The simulation procedure is summarized 

as follows: 

1. The 3D inclusion-matrix volume element (VE) is subjected to high temperature (T= 

1373 K) plane strain compression to a macroscopic strain level, 0.2yyε = − . Such 
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Figure 8.1. Schematic illustrating the different steps involved in the simulation 
based investigation of HIPping and fatigue resistance at primary inclusion. 
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high strain deformation promotes large interfacial decohesion (void formation) at the 

inclusion-matrix interface. The direction convention illustrated in Figure 8.1 is 

followed.  

2. Following the plane strain compression, the VE is cooled to RT. This allows the 

residual stresses to build at the inclusion matrix interface by virtue of CTE mismatch. 

3. The VE is raised to 1373 K and subjected to uniform pressure P on all directions as 

illustrated in Figure 8.1. The magnitude of pressure is varied to investigate its effect 

on void closure at the inclusion-matrix interface. 

4. The VE is cooled to RT and subjected to three cycles of loading at several remote 

loading strain range, rε with Rε =0. The FIP is evaluated over the 3rd loading cycle.  

Figure 7.3 shows the different cross sectional views of the 3D domain, elaborating on 

the dimensions of the FE domain with the boundary conditions, partially debonded 

interface, and cyclic loading direction enforced in the simulations. All simulations were 

performed using 4-node 3D tetrahedral elements (C3D4) in ABAQUS. Reduced 

integration is employed. Frictionless contact is assumed along debonded regions. During 

plane strain compression the nodes on the face X=50 μm are fixed along direction X. The 

inclusion diameter is 5 μm, typical of the inclusion size observed on the fracture surface 

of the selected martensitic steel [27].  

Figure 8.2 shows a cross-section of a 3-D FE mesh. A fine mesh is employed close to 

the inclusion (element size about 0.25 μm) to capture the details of inelastic deformation 

around the inclusion, fanning out with a coarse mesh away from the inclusion. During 

cyclic loading, the domain in Figure 8.3 is subjected to several different uniaxial strain 

ranges ( rε = 0.25%, 0.35%, 0.45%, 0.5% and 1%), applied remotely with Rε = 0. The 
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nonlocal average of the FS parameter, ΔΓ  is evaluated over the third loading cycle. The 

averaging volume for all cases was taken to be 1 μm3 (unit cube), selected as that 

particular volume at the notch root that maximizes the nonlocal FS parameter.  

 

 

 

 
 

 
 
 
 

Figure 8.2. Cross section of FE mesh through the center of the inclusion, 
showing refinement close to the inclusion. Cyclic loading is in the Z direction. 
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8.4. Results and Discussion 

 The cross section view of a 3D inclusion-matrix volume element is shown in Figure 

8.3a illustrating the enlarged 2D viewing scheme that was followed to monitor the 

debonded region of the inclusion-matrix interface during processing, as shown in Figures 
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Figure 8.3. (a) Cross section of the FE domain through the center of the inclusion, 
(b) Decohesion of inclusion-matrix interface (void) after high temperature plane 
strain compression, (c) Effect of HIPping at 100 MPa pressure on the void, (d) 

Effect of HIPping at pressure of 200 MPa on the void, and (e) Effect of HIPping at 
pressure of 300 MPa on the void- results in complete closure of the void.
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8.3b-e. The partial decohesion of inclusion-matrix interface occurs during high 

temperature plane strain compression, as shown in Figure 8.3b. Following plane strain 

compression, the VE is subjected to uniform pressure at elevated temperature (T = 1373 

K) mimicking HIPping. We choose three different magnitudes of remote applied 

pressure, namely 100 MPa, 200 MPa, and 300 MPa. The deformation scale factor relative 

to the undeformed configuration for all the images in Figures 8.3 b-e is set to 1. 

Evidently, high pressure (P >100 MPa) tends to close the void present at inclusion-matrix 

interface, as illustrated in Figures 8.3c-e. At a remote applied pressure of 300 MPa, we 

observe complete closure of the void. It is noted that the selected magnitudes of pressure 

are either equal to or greater than the yield strength of the steel at the processing 

temperature. It was pointed out by Pagounis and co-workers [236] that optimum bonding 

between the metal and ceramic and full densification occurs with sufficient hold times 

during HIPping. The presence of fine dispersions such as grain refining precipitates 

increases the pressure required for full densification [237].  The selected material model 

is inadequate to simulate the aforementioned effects; however, the closure of the 

inclusion-matrix interface does provide useful insights into the advantages of such high 

temperature processing in suppressing the growth of voids at primary inclusions. Several 

macroscopic continuum based models have been proposed to simulate the process of 

HIPping of porous media [226, 238, 239]. However, the material investigated in this 

work has minimum porosity.  Voids are formed at isolated sites within the material such 

as in the vicinity of primary inclusions; hence, the present material model used to study 

the effect of HIPping on fatigue potency at such critical life-limiting attributes is 

reasonable. 
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Figure 8.4 shows the variation in the nonlocal FS parameter with the applied strain 

range for unHIPped inclusion-matrix volume element denoted by superscript ‘ nh ’. It can 

be seen that nhΔΓ increases exponentially with the remote applied strain range (note: the 

ordinate in Figure 8.4 is in log scale). Pre-existing crack-like defects such as debonding 

of the inclusion-matrix interface invariably facilitates higher local stresses at the 

intersection of bonded and unbonded portions of the matrix. Furthermore, large 

interfacial separation occurring at high applied strain ranges aggravates the stresses and 

plastic strain localization and increases the plastic zone size in the vicinity of 

micronotches [19]. The aforementioned factor coupled with the constraints experienced 

during contact gives rise to exponential increase in the FIP with applied strain range. 
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applied remotely with 0Rε = for material subjected to fatigue cycling without 
HIPping.  
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 Figure 8.5 illustrates the variation in the nonlocal ΔΓ with applied strain range for 

HIPped steels at RT. The values of ΔΓ at a particular strain range are normalized by the 

respective values of the unHIPped material ( nhΔΓ in Figure 8.4) to illustrate the 

percentage reduction in the FIP due to HIPing. At very low applied strain ranges 

( 0.25%rε = ) the FIP is negligibly small for HIPped steel. Compressive stresses develop 

in the vicinity of primary inclusions during HIPping which in turn suppress the FIP. The 

effect of the CTE mismatch between the inclusion and matrix is significant during 

cooling after high temperature processing; however, such effects are present in unHIPped 

material too. Hence, the results presented in Figure 8.5 can be used to qualitatively 

discern the effect of HIPping pressure on fatigue crack formation potency.  

 Significant enhancement of fatigue resistance is observed with increasing HIPping 

pressure. The effectiveness of a HIPping is maximized at low imposed strain range. For 

example, at applied strain range of 0.35% we observe approximately 40% reduction in 

ΔΓ for material HIPped at 300 MPa. This would lead to substantial improvement in 

fatigue crack formation life.  However, the percentage improvement in fatigue resistance 

decreases at higher applied strain ranges ( 1%rε = ). As observed in Figure 8.3, HIPping 

results in void closure at the debonded inclusion-matrix interface. This would reduce the 

interfacial separation that occurs during subsequent fatigue cycling. The aforementioned 

factor coupled with the compressive stresses induced during HIPping effectively 

alleviates the stresses and plastic strain localization in the vicinity of the stress raisers at 

low applied strain ranges. At higher strain ranges, the local stress states in the proximity 

of primary inclusions are relatively very high. This effectively negates the effect of any 

prior residual stresses and facilitates large interfacial separation at the inclusion-matrix 
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interface. Hence, the improvement in fatigue resistance at high applied strain ranges 

( 1%rε = ) is relatively less significant (~10%), as illustrated in Figure 8.5. Based on this 

observation it can be concluded that the idea of HIPping of steels containing debonded 

primary inclusions is most effective in the HCF and VHCF regimes.  

  

 Although development of interfacial bonding between inclusion and the steel matrix is 

not simulated in the present study, prior simulations have revealed at least two orders of 

magnitude difference in the ΔΓ  between intact and partially debonded inclusion [121] 

with partially debonded inclusion being the most severe with regard to fatigue crack 

formation. Hence, in the event of bonding between inclusion and matrix during HIPping 

[236] the improvement in fatigue resistance would be substantial. In this work we 

assumed that HIPping is performed prior to case hardening such as carburization and 
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surface treatments such as shot peening. The aforementioned processing steps could 

drastically alter the local stress state in the proximity of primary inclusions (see Chapter 

3). Furthermore, while cooling from austenization temperature to RT after HIPping, 

phase transformation occurs in martensitic steels. The selected material model utilized in 

this study does not account for such effects. It is acknowledged that the simulations 

conducted in this study are primarily intended to obtain qualitative trends with regard to 

enhancement in fatigue resistance due to HIPping. Detailed experiments and 

microstructure dependent material models [238] are necessary to conduct quantitative 

evaluation of HIPping. However, it is important to note that FE based models that are 

capable of combining the hot deformation process such as HIPping with fatigue are 

limited. Furthermore, FE based studies evaluating the effect of HIPping on fatigue 

potency at nonmetallic primary inclusions are very limited.  

 

8.5. Conclusions 

Three-dimensional FE simulations suggest the possibility of using HIPping to 

enhance HCF performance of martensitic steel. The sensitivity of the FS parameter to 

HIPping pressure was investigated. The simulations revealed that HIPping reduces the 

interfacial separation at the debonded inclusion-matrix interface. At high pressure (= 300 

MPa) closure of a pre-existing void present at inclusion-matrix interface was observed. 

The effectiveness of HIPping is maximized at low imposed strain range. Parametric 

studies of idealized nature, such as those considered here, are useful for discerning trends 

and potential magnitudes of effects of HIPping. Of course, numerous other 
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microstructural factors influence the fatigue response, such as inclusion clustering, 

inclusion size, grain size, residual stresses, and so forth. 
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Chapter 9 
 

SUMMARY, CONTRIBUTIONS, AND RECOMMENDATIONS FOR 

FUTURE WORK 

 
 

9.1. Summary and contributions 

 A comprehensive set of 3D computational tools and algorithms for microstructure-

sensitive fatigue modeling of lath martensitic steels has been developed in this research. 

The primary objective was to quantify the fatigue potency at critical life-limiting primary 

inclusions in lath martensitic steels. More emphasis was placed on the use of 

computational tools to compare microstructure attributes with the goal of design or 

specification of material microstructure. To understand the role of various microstructure 

attributes that affect crack formation and growth in lath martensitic steel, a hierarchical 

computation framework was adopted. Relevant microstructure-scale fatigue descriptors 

were identified. The computational tools and algorithms can support:- 

1. Tailoring of microstructures to maximize fatigue resistance; 

2. Comparison of candidate microstructures for a desired application; 

3. Characterization of variability and scatter in fatigue; 

4. Modification of process routes to enhance fatigue resistance; and 

5. Rank ordering the severity of various microstructure attributes in fatigue to 

develop cost effective strategies to extend fatigue life. 

Even though the constitutive modeling studies and the computational studies were 

conducted on a specific lath martensitic steel (C61 steel), the generic 3D framework 
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should be applicable to any processed martensitic steel with similar microstructure. The 

key outcomes of this research are summarized as follows:- 

1. Devised simplified schemes to simulate materials processing effects on 

subsurface and near inclusion residual stresses in order to evaluate the potency for 

crack formation and early growth. 

2. Developed physically based constitutive models suitable to investigate fatigue 

crack formation and early growth at microstructural heterogeneities (for e.g., 

nonmetallic primary inclusions, fine scale precipitates, etc.). 

3. Devised methodologies to account for the 3D effects of inclusion size, spacing, 

orientation, and clustering on fatigue crack formation potency. 

4. Devised crystal plasticity based methodology to model the relaxation of 

compressive residual stresses in HCF.  

5. Developed a computational micromechanics framework to study the variability of 

crack formation and early growth due to material microstructure and process 

routes.  

6. Devised strategies to explore modified process routes that enhance the fatigue 

resistance of martensitic steels (e.g., HIPping).  

 

The key innovations and intellectual contributions are summarized as follows:- 

 

1. Novel strategies were developed to couple the process route with the 

microstructure scale response for comprehensive fatigue analyses of critical life-

limiting attributes in high strength steels. This will contribute significantly to the 
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development of reliable life-prediction models.  Such strategies can readily feed 

into concurrent/hierarchical multiscale modeling schemes for materials design 

with the aim of understanding the sensitivity of fatigue response to microstructure 

and process routes. Simulation results utilizing continuum crystal plasticity with 

the microstructural dependence embedded in the model will provide tremendous 

insights into the evolution of fatigue damage at various microstructure scales.  

 

2. Methods were developed for computational study of improved process routes 

such as HIPping, and coated inclusions. These methods should provide a basis for 

efforts to modify the actual process routes in order to achieve enhanced fatigue 

resistance. 

 

3. A computational micromechanics based statistical/probabilistic framework was 

developed to evaluate the effect of microstructure and process variability on 

fatigue life variability. This framework will have significant implications in the 

minimum-life design approach followed in industry. 

 

9.2 Recommendations for future research 

 Extensive computational studies have been performed in this thesis to characterize 

the fatigue crack formation and early growth in lath martensitic gear steels. Several 

aspects of this research are relatively new and may not be practical to classify this work 

as complete in all respects. There are many avenues for future research as listed below:- 
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1. Experiments 

• Characterizing the cyclic stress-strain response of the case layer 

      It is evident that the primary inclusions present at the case layer serve as highly potent 

site for crack formation. Furthermore, significant strength gradient is induced during case 

hardening from the surface to the core. Hence, detailed experimental study is imperative 

in order to characterize the cyclic stress-strain response of the case layer of high strength 

steels. Furthermore, such studies should provide information regarding the degree of 

cyclic hardening that occurs during the initial stages of fatigue cycling. This can be 

achieved by machining fatigue specimens (e.g. dog bone specimens) with varying 

degrees of out of plane thickness. Such samples when subjected to similar heat treatment 

will develop different strength characteristics by virtue of varying case and core depth 

along the thickness. Subsequent fatigue tests will provide qualitative information 

regarding the fatigue response of the case layer. Furthermore, the experiments will be 

useful to discern the effect of variation in volume fraction of fine scale size precipitates 

(M2C) on cyclic hardening characteristics. The experimentally obtained stress-strain 

response can be used to calibrate the material-dependent parameters and constants in 

fatigue models.  

 

• Investigation of fatigue crack formation at the grain scale 

Although much work in this research has focused on characterizing the fatigue crack 

formation potency at the grain scale, several experimental studies can be conducted to 

support and improve model predictions. For example, the effects of prior austenite grain 

boundaries on crack formation and early growth are still unclear. In this work, a single 



 197

block of lath martensite is considered to be an effective grain; however, crack formation 

potency of a block situated close to a prior austenite grain boundary could differ from 

that situated in the interior. Atomic force microscopy techniques can be utilized to study 

such crack formation mechanisms at the nanoscale. Transmission electron microscopy 

(TEM) could be conducted to better characterize complex dislocation interactions and 

other deformation mechanisms in secondary hardening martensitic steels that contain 

several microstructure inhomogenieties (e.g., primary inclusions, precipitates) in fatigue. 

The aforementioned information would certainly assist in improving the existing 

microstructure-sensitive fatigue models.    

 

• Experimental measurement of residual stress relaxation 

One factor that is not well understood in the present material is the evolution of the 

compressive residual stresses in fatigue. Attempts have been made in this research to 

investigate the residual stress relaxation utilizing a computational crystal plasticity 

model. However, validating the model predictions with experiments is critical. 

Interrupted residual stress measurements or non-destructive high energy x-ray diffraction 

methods could be utilized to gain insight into residual stress profile evolution during 

cyclic loading. Such detailed investigation will certainly improve model predictions and 

also help guide selection and tailoring of microstructures to better resist residual stress 

relaxation and improve fatigue resistance. 
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2. Computational modeling 

• Multiresolution Models 

Limited attempts have been made as a part of the collaborative research to evaluate 

fatigue potency at primary inclusions by constructing 3D FE meshes from measured 

(realistic) microstructures containing about 8 nonmetallic inclusions [105]. A simple J2 

type macroscopic elasto-plastic model was utilized to simulate the cyclic stress-strain 

response of the steel matrix for simulations involving realistic particle distribution. 

However, conducting crystal plasticity simulations of similar 3D FE domains can be 

computationally prohibitive. Although such computationally intensive simulations can 

provide useful insight into the effects of cluster morphology on fatigue potency, the HCF 

crack formation life could be dependent on a few critical “hot spots” such as the largest 

inclusion within the cluster. Multiscale modeling such as the schemes developed by Liu 

and co-workers [240, 241] can be utilized to identify the fatigue critical “hot spots”. Such 

multiresolution strategies have demonstrated superior capabilities in capturing the 

localization of stresses and plastic strains at various microstructure scales under 

monotonic loading conditions  [242]. Furthermore, the aforementioned schemes can be 

utilized to rank order the severity of various microstructure attributes in fatigue. Once the 

fatigue critical “hot spots” are identified, detailed crystal plasticity simulations can be 

conducted locally to characterize the variability in HCF. It is noted that crystal plasticity 

calculations are imperative to understand variability in fatigue crack formation and small 

crack growth potency in HCF.  
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•  Modeling effects of retained austenite on fatigue crack formation potency 

The heat treatment of the selected martensitic steels assures complete transformation of 

the case layer microstructure to lath martensite prior to surface treatment and service. 

However, it will be interesting to investigate the effect on the fatigue performance of 

having limited retained austenite (RA) in the case layer. There is a possibility that during 

fatigue cycling, the RA present in the vicinity of primary inclusions could undergo phase 

transformation by virtue of stress localization. RA is relatively softer than lath martensite 

and will deform more readily in fatigue. A portion of the fatigue load could be consumed 

in phase transformation, thereby reducing the degree of plastic strain localization in the 

proximity of the stress raisers. The aforementioned phenomenon could potentially 

improve the fatigue life of the steel component. Such investigations are possible using 

computational models such as the FE model developed by Alley and Neu [118]. 

•  Transition from single particle-dominated fatigue to that dominated by 

inclusion cluster (interaction effects) 

    The simulation-based studies performed in this work showed that for the selected 

inclusion size, interfacial conditions (debonded and cracked particles), inclusion stiffness, 

and remote loading conditions, a single microstructure attribute such as the size of the 

inclusion may be inadequate to characterize the minimum fatigue resistance of the 

selected martensitic gear steel. In Chapter 6, we showed that interaction of relatively 

smaller size inclusions in a cluster demonstrated the potential to replicate the effect of a 

larger isolated particle in HCF. However, with the increase in the size of the inclusion 

there exists a critical inclusion size above which the second order effects such as the 

interaction of inclusions may become less prominent. It is important to estimate the 
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aforementioned transition from a single large particle-dominated fatigue response to that 

dictated by interaction of inclusions in a cluster. Such a study would require simulation 

over a range of inclusion sizes and spacing to correlate the fatigue potency with the 

aforementioned microstructure attributes. Furthermore, it is important to introduce 

suitable MSC growth law at the scale of single inclusion and inclusion clusters. 

Estimating the life consumed in crack formation and small crack growth to length of the 

order of cluster size and comparing the crack formation and MSC growth life at single 

isolated particle of varying size would provide a better indication of the critical inclusion 

size. Also, the aforementioned study will be useful to estimate the minimum fatigue 

resistance of the material for a desired fatigue application provided statistical extremes of 

the microstructure attributes (e.g., inclusion size, cluster size, inclusion spacing) are well 

characterized.  
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