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SUMMARY

As digital photography rapidly replacing the traditional film photography

as the photography of choice for all but a few devoted professionals, post image

processing of natural color photos such as denoising becomes increasingly an integral

part of digital photography.

Many mathematical models have been designed to remove noise from images.

Most of them focus on grey value images with additive artificial noise. Only very few

specifically target natural color photos taken by a digital camera with real noise. Noise

in natural color photos have special characteristics that are substantially different

from those that have been added artificially.

In this thesis previous denoising models are reviewed. We analyze the strengths

and weakness of existing denoising models by showing where they perform well and

where they don’t. We put special focus on two models: The steering kernel regression

model and the non-local model. For Kernel Regression model, an adaptive bilateral

filter is introduced as complementary to enhance it. Also a non-local bilateral filter

is proposed as an application of the idea of non-local means filter.

Then the idea of cross-channel denoising is proposed in this thesis. It is effective in

denoising monochromatic images by understanding the characteristics of digital noise

in natural color images. A non-traditional color space is also introduced specifically

for this purpose. The cross-channel paradigm can be applied to most of the exisiting

models to greatly improve their performance for denoising natural color images.

xii



CHAPTER I

INTRODUCTION

1.1 Digital Images and Noise

Image processors could be categorized into different levels by the human vision stan-

dard. Lower-level ones are to clean and enhance observations, interpolate missing

image data, or identify regions occupied by objects without telling what they are.

Higher-level processors are to recognize object features and identify the associated

hidden real-world contexts, such as face reconization for video surveillance and ter-

rain reading for automatic piloting.

In this sense, the human vision system is a highly advanced and complex image

processing senor. It automatically tells what people really want and discards the

useless details. But for digital cameras, denoising becomes a hard task. No matter

how good cameras are, an image improvement is desirable to extend their range of

action.

There are a number of sources of image noise contamination.

Heat generated by cameras or external sources might free electrons from the image

sensor itself, thus contaminating the true photoelectrons. These thermal electrons give

rise to a form of noise called thermal noise or dark current.

Another type of noise is more akin to the grain obtained by using a high ISO

setting (or high ISO film in a film camera). When we use a higher ISO, we are

amplifying the signal we receive from the light photons. Unfortunately, as we amplify

the signal, we also amplify the background electrical noise that is present in any

electrical system.

In low light, there is not enough light for a proper exposure and the longer we

1



Figure 1: A color image taken by digital camera with real noise

Figure 2: A color image taken by digital camera with real noise(left); 100% crop of
the hat(right).
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Figure 3: clean image (left); image with additive gaussian noise, σ = 50(right).

Figure 4: clean image (left); image with additive salt and pepper noise (right).

allow the image sensor to collect the weak signal, the more background electrical noise

it also collects. In this case the background electrical noise may be higher than the

signal.

Practically, these noise roughly has a Gaussian distribution. This is the so-called

amplifier noise, or Gaussian noise. Amplifier noise is a major part of the read noise

of an image sensor, that is, of the constant noise level in dark areas of the image [37].

Another primary noise is Salt and Pepper noise (Figure 4). An image containing

salt-and-pepper noise will have dark pixels in bright regions and bright pixels in dark

regions. This type of noise can be caused by dead pixels, analog-to-digital converter

errors, bit errors in transmission, etc [38, 39].
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1.2 Signal and Noise Ratios

A digital image is generally expressed as a matrix of grey level (1D) or color values

(n-D). In a movie, this matrix becomes 3D since the third one is corresponding to

time. We use the pair (i, u(i)), the position and the value at this positioin, to express

a digital image. For a grey value image, u(i) is a scalar; and for a color image, u(i)

is a 3D or 4D vector.

Mathematically, one can write the observed image captured by devices as:

v(i) = u(i) + n(i), (1.2.1)

where v(i) is the observed value, u(i) is the true value, which needs to be recovered

from v(i). n(i) is the noise perturbation.

For a grey value image, the range of the pixel value is (0, 255), where 0 represents

black and 255 represents white. To measure the amount of noise of an image, one

may use the signal noise ratio (SNR)

SNR =
σ(u)

σ(n)
, (1.2.2)

where σ(u) denotes the empirical standard deviation of u(i),

σ(u) =

√∑
i(u(i)− ū)2

|I|
,

σ(n) =

√∑
i(u(i)− v(i))2

|I|
,

where ū = 1
|I|
∑

i u(i) is the average of grey level values, computed from a clean image.

Because many signals have a very wide dynamic range, SNRs are usually expressed

in terms of the logarithmic decibel scale. In decibels, the SNR is, by definition, 10

times the logarithm of the power ratio:

SNR(dB) = 10 log10

( ∑
i(u(i)− ū)2∑

i(u(i)− v(i))2

)
. (1.2.3)
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Figure 5: clean image (left); image with Gaussian noise, with standard deviation
σ = 25, SNR=5.64dB(right).

Although SNR is widely used in digital image processing, it can only be taken

as one of the criteria to determine the quality of an image, otherwise, it might be

misleading. See Figure 6.

1.3 Mathematical Model of Noise Removal

A denoising method can be defined as Dh working on an image u:

u = Dhu+ n(Dh, u), (1.3.4)

where h is the filtering parameter, Dhu is the denoised image, and n(Dh, u) is the

noise guessed by the method.

Nowadays, it is not enough just to smooth u and get the denoised image. The

more recent methods are actually not contented with a smoothing, but try to recover

lost information in n(Dh, u) as needed [8, 11], i.e. in a image captured by digital SLR

cameras, we often need to keep the sharpness and the detailed information while the

noise is being blurred.

In [16], the image method noise is defined as below:

Definition 1.4.1 (Method noise) Let u be an image and Dh a denoising operator

depending on h. Then we define the method noise of u as the image difference

n(Dh, u) = u−Dh(u).

5



So in this thesis, three criteria will be taken into account in the comparision of

denoising methods:

• a display of typical artifacts in denoised images.

• a formal computation of the method noise on smooth images, evaluation how

small it is in accordance with image local smoothness.

• a classical comparison method based on noise simulation : it consists of taking

a good quality image, add gaussian white noise to it with known σ and then

compute the best image recovered from the noisy one by each method. A table

of L2 distances from the restored to the original can be established. The L2

distance does not provide a good quality assessment. However, it reflects well

the relative performances of algorithms.

We have to make the comment that, the method noise introduced in [16] is actually the

residue between the original image and the reconstructed image. This mathematically

computed error is used in [16] as an criteria to determine how good the denoising filter

is. Ideally, this method noise should be as small as possible and as similar to a white

noise as possible. Just like SNR, practically it should not be taken as the only valuable

criteria to determine the quality of a filter, and can be misleading. See Figure 7.

1.4 Previous Methods

We had to make a selection of the denoising methods we wished to compare. Here a

difficulty arises, as most original methods have caused an abundant literature propos-

ing many improvements. We shall analyze :

1. Local filtering methods, including

• Gaussian smoothing model (Gabor [7]), where the smoothness of u is mea-

sured by the Dirichlet integral
∫
|Du|2.

6



(a) A clean chicken image (b) Same chicken image with higher
contrast, performed by curve adjust-
ment in photoshop, with SNR=7.6476

(c) Additive gaussian noisy image, with
SNR=26.0732

(d) Real noisy image, captured by set-
ting a high ISO, with SNR=28.9343

Figure 6: (a) is set as the original clean image. (b) is also visually noiseless and
have same geometric structure as (a), but with a low SNR. (c) and (d) are both noisy,
but with much higher SNRs.
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(a) Residue of (b) in previous figure (b) Residue of (c) in previous figure

(c) Residue of (d) in previous figure

Figure 7: The first residue is obviously bigger than the other two.
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• Yaroslavsky ([32, 31]) neighborhood filters and an elegant variant, the Su-

san filter (Smith and Brady) [15]

• the Bilateral filter [25].

2. PDE based methods, including

• anisotropic filtering model (Perona-Malik [12], Alvarez et al. [1])

• Rudin-Osher-Fatemi [6] total variation model

3. Frequency domain filters, including

• local adaptive filters in transform domain

• hard and soft thresholding

• Zhou-Wang wavelet total variation [40]

4. Steering kernel regression method [33]

5. Non-local means (NL-means) algorithm [16]

6. cross-channel paradigm for color images

The last algorithm may deserve a lot more attention here because it is based on

decomposition of the color space. Instead of filtering the channels independently, we

will consider the correlation between channels to assist denoising. This paradigm can

work as an extension for all previous schemes.

1.5 Plan for This Thesis

In this thesis, Chapter 2-6 reviewed previous methods, including local/nonlocal filters,

frequency domain filters, PDEs methods and steering kernel regression method, etc.

For some of them we analyze or recall the asymptotic expansion of the filter at smooth

9



points of the image and therefore obtain a formal expression of the method noise. We

try to point out places where the filter performs well and where it fails. In Chapter 5,

an adaptive bilateral filter is introduced as a complementary to enhance the steering

kernel regressionn method. The enhancement will be shown when this method is

dealing with almost clean images or removing salt and pepper noise. In Chapter 6,

a new non-local filter based on the bilateral filter is introduced. In Chapter 7, the

cross-channel paradigm is introduced, i.e. information exchange between different-

channels is used for color images denoising, in which a new mY CrCb color space

decomposition is proposed. Meanwhile, a new mathematical frame is built to apply

previous methods via cross-channel paradigm. In the last chapter, we compare all

algorithms from several points of view and showed some experiment results.
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CHAPTER II

LOCAL FILTERING METHODS

The original (gray value) image u is defined in a bounded domain Ω ⊂ R2, and is

denoted by u(x) for x ∈ R2.

The noise is a discrete phenomenon on the sampling grid. According to the usual

screen and printing visualization practice, we do not interpolate the noise samples ni

as a band limited functions, but rather as a piecewise constant function, constant on

each pixel i and equal to ni.

We write |x| as L2 norm and x · y as the inner product.

2.1 Gaussian Filter

This is the most commonly used blurring filter. It is actually a convolution of the

image by a linear symmetric kernel. The smoothing requirement is usually expressed

by the positivity of the kernel. The formula of such kernel is the so-called Gaussian

Kernel

x→ Gh(x) =
1

(4πh2)
e−
|x|2

4h2 . (2.1.1)

Gh has standard deviation h and the method noise is easily computed:

Theorem 2.1.1. (Gabor 1960) The image method noise of the convolution with a

gaussian kernel Gh is

u−Gh ∗ u = −h2∆u+ o(h2). (2.1.2)

The estimate is valid if h is small enough. On the other hand, the noise reduction

properties depend upon the fact that the neighborhood involved in the smoothing

is large enough, so that the noise gets reduced by averaging. In the following, if we

assume that h = kε, where k is the number of samples of the function u and of the
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noise in an interval of length h, ε2 is the size of a local window. k must be much

larger than 1.

At a reference pixel i = 0, the Gaussian smoothing effect is evaluated as:

Gh ∗ n(0) =
∑
i∈I

∫
Pi

Gh(x)n(x)dx =
∑
i∈I

ε2Gh(i)ni, (2.1.3)

where n(x) is been interpolated as a piecewise function, the Pi square pixels centered

in i have size ε2 and Gh(i) denotes the mean value of the function Gh on the pixel i.

The following theorem is proved in [16],

Theorem 2.1.2. Let n(x) be a piecewise constant noise, with n(x) = ni on each

square pixel i. Assume that the ni are i.i.d. with zero mean and variance σ2. Then

the ‘noise residue’ after a gaussian convolution of n by Gh satisfies

V ar(Gh ∗ n(0)) ≈ ε2σ2

8πh2
. (2.1.4)

In other terms, the standard deviation of the noise, which can be identified with the

noise amplitude, is multiplied by ε
h
√

8π
.

The first theorem tells us that the method noise of the gaussian denoising method

is zero in harmonic parts of the image. A Gaussian convolution is optimal on harmonic

functions, and performs instead poorly on singular parts of u, namely edges or texture,

where the Laplacian of the image is large [16].

2.2 Neighborhood Filters

In stead of considering a notion of spatial neighborhood or proximity, neighborhood

filters take into account grey level values to define neighboring pixels. In this case,

the denoised value at pixel i is an (weighted) average of values at pixels which have

a grey level value close to u(i). We may define the grey level neighborhood as

U(i, h) = {j ∈ I|u(i)− h < u(j) < u(i) + h}. (2.2.5)
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So this is also a local scheme, i.e. locally in intensity domain. But it is non-local in

spatial domain, since pixels belonging to the whole image are used for the estimation

at pixel i. A popular variation of this algorithm is the following weighted average

filter:

NFhu(x) =
1

C(x)

∫
Ω

u(y)e−
|u(y)−u(x)|2

h2 dy, (2.2.6)

where Ω ⊂ R2 is an open and bounded set, and C(x) =
∫

Ω
u(y)e−

|u(y)−u(x)|2

h2 dy is the

normalization factor.

In [16], the method noise of this algorithm is also computed.

Lemma 2.2.1. Suppose u is Lipschitz in Ω and h > 0, then C(x) ≥ O(h2).

Proof. Given x, y ∈ Ω, by the Mean Value Theorem,

|u(x)− u(y)| ≤ K|x− y| (2.2.7)

for some real constant K. Then,

C(x) =

∫
Ω

u(y)e−
|u(y)−u(x)|2

h2 dy

≥
∫
B(x,h)

u(y)e−
|u(y)−u(x)|2

h2 dy

≥ e−K
2

O(h2). (2.2.8)

Proposition 2.2.2. (Method noise estimate). Suppose u is a Lipschitz bounded func-

tion on Ω, where Ω is an open and bounded domain of R2. Then |u(x)−NFhu(x)| =

O(h
√
− log h), for h small, and, x ∈ Ω.

The Yaroslavsky [31, 32] neighborhood filters consider mixed neighborhoods U(i, h)∩

Bρ(i), where Bρ(i) is a ball of center i and radius ρ. So the method takes an average
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of the values of pixels which are both close in grey level and spatial distance. The

Susan filter [15] proposes the following:

Y NFh,ρ(x) =
1

C(x)

∫
Bρ(x)

u(y)e−
|u(y)−u(x)|2

h2 dy, (2.2.9)

where C(x), as before, is the normalization factor.

In [16], Antoni et al studied the method noise in the 1D and 2D cases for the

filter. They showed:

Theorem 2.2.3. Suppose u ∈ C2((a, b)), a,b ∈ R. Then, for h,ρ ∈ R+ and h small

enough

u(s)− Y NFh,ρ(s) ≈ −
h2

2
u′′(s)f(

h

ρ
|u′(s)|), (2.2.10)

where

f(t) =
1
3
− 3

5
t2

1− 1
3
t2
.

This tells us the method noise of the neighborhood filter is actually a locally

weighted Laplacian, with the weighting function f positive or negative. The zeros

and the discontinuity points of f represent the singular points where the behavior of

the method noise changes between Laplacian and inverse Laplacian. The magnitude

of this change is much larger near the discontinuities of f producing a shock or

staircase effect.

Theorem 2.2.4. Suppose u ∈ C2(Ω), Ω ⊂ R2. Then, for h,ρ ∈ R+ and h small

enough

u(x)− Y NFh,ρ(x) ≈ −h
2

8

(
∆uf(

h

ρ
|Du|) +D2u(

Du

|Du|
,
Du

|Du|
)g(

h

ρ
|Du|)

)
(2.2.11)

where

f(t) =
1− 1

2
t2

1− 1
4
t2
, g(t) =

−t2

1− 1
4
t2
.
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It was stated in [16] that, this method is very unstable. If t is near zero, it

behaves like a Gaussian smoothing. If t is near
√

2, the stuctures with a large

value of D2u( Du
|Du| ,

Du
|Du|) will not be preserved. And, edge points are points where

D2u( Du
|Du| ,

Du
|Du|) is zero; on both sides of the edges it can be instead large and the

method actually enhances the edges by making the image flat on both sides. If

t ∈ (0,
√

2) and |f(t)| ≈ |g(t)|, the filter behaves like an anistropic filter. If t is near 2

where the functions f(t) and g(t) have an asymptotical discontinuity. This instability

can deal to unwanted shock effects anf artifacts.

2.3 Bilateral Filters

The baliteral filter was first proposed by C. Tomasi and R. Manduchi [22] in 1998.

It applies spatial weighted averaging without smoothing edges. This is achieved by

combing two Gaussian filters: one filter works in spatial domain, the other filter works

in intensity domain. Therefore, not only the spatial distance but also the intensity

distance is important for the determination of weights.

For a given image u(x), at a pixel location x, the output of a bilateral filter can

be formulated as:

B(x) =
1

C(x)

∑
y∈N(x)

e
− ‖y−x‖

2

2σ2
d e

− |u(y)−u(x)|2

2σ2
r u(y) (2.3.12)

where σd and σr are parameters controlling the fall-off of weights in spatial (distance)

and intensity (radiometric) domains, N(x) is a spatial neighborhood of pixel u(x),

and

C(x) =
∑

y∈N(x)

e
− ‖y−x‖

2

2σ2
d e

− |u(y)−u(x)|2

2σ2
r

is the normalization factor.

Let’s study method noise of the bilateral filter:

Proposition 2.3.1. Suppose u is a Lipschitz bounded function on Ω, where Ω is an
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open and bounded domain of R2. then |u(x)−Bσr,σdu(x)| = O(σr
√
− log σd + σ3

d∆u),

for σr, σd small, 0 < σr < 1, 0 < σd < 1, x ∈ Ω.

Proof. Let x be a point of Ω and for a given B and σr, σd B, σr, σd ∈ R, consider the

set Dσr = {y ∈ Ω||u(y)− u(x)| ≤ Bσr}. Then

|u(x)−Bσr,σdu(x)| ≤ 1

C

∫
Dσr

W1W2|u(y)− u(x)|dy+

1

C

∫
Dcσr

W1W2|u(y)− u(x)|dy, (2.3.13)

where W1 = e
− |u(y)−u(x)|2

σ2
r , W2 = e

− ‖y−x‖
2

σ2
d .

Considering that |u(y) − u(x)| ≤ Bσr for y ∈ Dσr and
∫
Dσr

W1W2dy ≤ C(x) one

sees that the first term is bounded by Bσr. And consider that W1 ≤ e−B
2

for y /∈ Dσr .

And
∫
Dcσr

W2|u(y)−u(x)|dy can be estimated by the method noise of Gaussian filter:∫
Dcσr

W2|u(y)− u(x)|dy ≤ −σ2
d∆u+ o(σ2

d). (2.3.14)

So the second term has an order O(e−B
2
σ2
d∆u). Finally, choosing B such that B2 =

− log σd yields

|u(x)−Bσr,σdu(x)| ≤ Bσr +O(e−B
2

σ2
d∆u)

= O(σr
√
− log σd) +O(σ3

d∆u). (2.3.15)

Although the bilateral filter was first proposed as an intuitive tool, recent papers

have pointed out the connections with some well established techniques. [25] shows

that the bilateral filter is identical to the first iteration of the Jacobi algorithm (di-

agonal normalized steepest descent) with a specific cost function. [28] and [29] relate

the bilateral filter with the anisotropic diffusion.
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The bilateral filter is widely used in applications. But there is not much theoretical

basis on selecting the window size of the neighborhood. This parameter is typically

selected by trial and experiments. The apparent fact is, if the window size is too

small, the denoising effect is limited, since not much related pixels are used. But

when we increase the window size, i.e. a global window size is selected, more and

more unrelated pixels will be included to affect the denoising quality, and practically,

a large window size will make the algorithm inefficient [20].
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CHAPTER III

PDES MODEL METHODS

3.1 Anisotropic Diffusion Equation

Diffusion algorithms remove noise from an image without removing significant edges

by modifying the image via a partial differential equation (PDE). This is done by a

diffusion process in which the image is iteratively filtered that is locally adapted to

the underlying image signal.

Let I(x, t) be the image in the diffusion process at time t, I(x, 0) : R2 → R+ is

the original image in the continuous domain, x ∈ R2 is the position of a pixel in a 2D

image. In the past, the isotropic diffusion equation (the heat equation)

∂I(x, t)

∂t
= div(∇I), I(x, 0) = u (3.1.1)

has been used to denoise images. It has been proved that modifying the image

according to this isotropic diffusion equation is equivalent to filtering the image with

a Gaussian filter (Witkin [21]).

Perona and Malik [12] replaced the classical isotropic diffusion equation with the

following anisotropic diffusion in 1990 for image denoising:

∂I(x, t)

∂t
= div[g(‖∇I‖)∇I)], I(x, 0) = u (3.1.2)

where ‖∇I‖ is the gradient magnitude, and g(‖∇I‖) is an edge stopping function.

This function is chosen to satisfy g(z) → 0 when z → ∞ so that the diffusion is

stopped without crossing edges. The idea is that the smoothing process obtained by

the equation is ’conditional: if ∇I is large, then the diffusion will be low and therefore

the exact localization of the edges will be kept; if ∇I is small, then the diffusion will

tend to smooth still more around x.
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In applications, Perona and Malik [12] proposed two functions for the diffusion

coefficient:

g(‖∇I‖) = e−(‖∇I‖/K)2 ,

and

g(‖∇I‖) =

(
1 +

(
‖∇I‖
K

)2
)−1

,

where in both models, the constant K controls the sensitivity to edges and is usually

chosen experimentally or as a function of the noise in the image. The authors pointed

out that the difference between these two functions is: the first privileges high-contrast

edges over low-contrast edges, the second privileges wide regions over smaller ones.

3.2 Total Variation

The Total Variation minimazation was introduced by Rudin, Osher and Fatemi [13,

14]. Let v(x) = u(x) + n(x), where u denotes the uncontaminated underlying image

and n denote the noise. To reconstruct u one considers the problem of minimizing

E(u) = λ‖u− v‖2
L2(Ω) +R(u), (3.2.3)

where λ > 0, Ω is the domain on which v is defined, and the R(u) is a regular-

ization functional. Earlier efforts focused on least square based functionals R(u)’s

such as ‖∆u‖2
L2(Ω), ‖∇u‖2

L2(Ω) and others. While noise can be effectively removed,

these regularization functionals penalize discontinuity, resulting in soft and smooth

reconstructed images, with subtle details lost.

A better choice for the functional space modelling these properties is BV (Ω), the

space of integrable functions with finite total variation TVΩ(u) =
∫
|∇u|. Given a

noisy image v(x), the above mentioned authors proposed to recover the original image

u(x) as the solution of the constrained minimization problem

argminuTVΩ(u)
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subject to the noise constraints∫
Ω

(u(x)− v(x))dx = 0 and

∫
Ω

|u(x)− v(x)|2dx = σ2.

The solution u must be as regular as possible in the sense of the total variation,

while the difference u − v is treated as an error, with a prescribed energy. The

constraints prescribe the right mean and variance to u− v, but do not ensure that it

be similar to a noise ([10]). So the preceding problem becomes

arg min
u

(TVΩ(u) + λ

∫
Ω

|v(x)− u(x)|2dx) (3.2.4)

for a given Lagrange multiplier λ. The above function is strictly convex and lower

semicontinuous with respect to the weak-star topology of BV . Therefore the mini-

mum exists, is unique and computable [2]. The parameter λ controls the trade-off

between the regularity and fidelity terms. As λ gets smaller the weight of the regu-

larity term increases. Therefore, λ is related to the degree of filtering of the solution

of the minimization problem.

Intensive studies have shown that the total variation better preserves edges in u,

thus it allows for sharper reconstructions, e.g. [17, 2, 18, 19]. Among all the PDE

based techniques, the TV minimization scheme is a candidate that offers the best

combination of noise removal and feature preservation.

To solve the minimizers for the preceding TV minimization problem, it is similar

to the anistropic diffusion scheme. For the TV minimization, it is easy to show that

the minimizer u satisfies the following PDE:

∇ ·
(
∇u
|∇u|

)
− λ(u− v) = 0. (3.2.5)

And in practice, one introduces the time variable t and solve for u(x, t) by time-

marching the equation

ut = ∇ ·
(
∇u
|∇u|

)
− λ(u− v), u(x, 0) = v(x). (3.2.6)
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In this case, straight edges are maintained because of their small curvature. In fact

significant edges are sharpened [40].

There are two approaches to be used for achieve the best combination of noise

removal and feature preservation in this scheme. One is to tune the parameter λ.

Obviously if λ is chosen too large, it may not be able to remove enough noise. However,

if λ is chosen too small, details and texture will be over smoothed as, and it ends up

with a Cartoon-like piecewise constant image.

3.3 Interated Total Variation

With a further study of the removed noise u(x) − v(x) in the original TV model,

Burger ([11]) proposed the following iterated TV model.

• Solve

u1 = arg min
u∈BV

{
∫
|∇u(x)|dx+ λ

∫
(v(x)− u(x))2dx}.

• Perform a correction step

u2 = argminu∈BV{
∫
|∇u(x)|dx+ λ

∫
(u1(x)− u(x))2dx},

where u1 becomes the new observed image.

• Iteration: compute uk+1 as a minimizer of the modified total variation mini-

mization,

uk+1 = argminu∈BV{
∫
|∇u(x)|dx+ λ

∫
(uk(x)− u(x))2dx},

It was proved in [11] that:

• uk converges monotonically in L2 to v, the noisy image, as k →∞.

• uk approaches the noisy free image monotonically in the Bregman distance

associated with the BV seminorm, at least until ‖uk − u‖ ≤ σ2, where u is the

original image and σ is the standard deviation of the added noise.
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These two results indicate how to stop the sequence and choose uk. It is enough

to proceed iteratively until the result gets noisier or the distance ‖uk − u‖2 gets

smaller than σ2. The new solution has more details preserved. One can attempt an

explanation of this improvement by computing the method noise. The above iterated

denoising strategy being quite general, one can make the computations for a linear

denoising operator T as well. In that case, the method noise after one iteration is

u− T (u+ n1) = n1 − (T (u+ n1)− T (u)) = n1 − T (n1).

In the linear case, this amounts to say that the first estimated noise n1 is filtered

again and its smooth components added back to the original.
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CHAPTER IV

FREQUENCY DOMAIN FILTERS

Let u be an image defined on Rn. u is supposed to be modified by a white noise n,

where n is a random process and n(i) are i.i.d, with zero mean and constant variance

σ2. So the observed image v can be written as:

v(i) = u(i) + n(i).

Let B = {gα}α∈A be an orthogonal basis of Rn. Define

vB(α) = 〈v, gα〉, uB(α) = 〈u, gα〉, nB(α) = 〈n, gα〉

the scalar products. Then

vB(α) = uB(α) + nB(α)

is the transformed noise process.

Note that noise coefficients nB(α) remain uncorrelated and zero mean, but the

variances are multiplied by ‖gα‖2,

E[nB(α)nB(β)] =
∑
i,j∈I

gα(i)gβ(j)E[n(i)n(j)]

= 〈gα, gβ〉σ2

= σ2‖gα‖2δ[α− β]. (4.0.1)

Frequency domain filters are applied independently to every transform coefficient

vB(α). When we reconstruct the image, we just perform the inverse transform of the

new coefficients. Noisy coefficients vB(α) are modified to a(α)vB(α), where a(α) are

often restricted to be 0 or 1. This is a nonlinear algorithm since a(α) depends on the
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value vB(α). The inverse transform yields the estimate

Û = DV =
∑
α∈A

a(α)vB(α)gα. (4.0.2)

The classical frequency domain filter, the Fourier Wiener Filter used the Fourier

basis for B. By the use of the Fourier basis, global image characteristics may pre-

vail over local ones and create spurious periodic patterns. To avoid this effect, the

basis must take into account more local features, as the wavelet and local DCT trans-

forms do. The problem of finding an ideal basis for each given application is still an

important problem in image processing.

4.1 Wavelet Thresholding

The wavelet thresholding methods were introduced by D. Donoho [3]. LetB = {gα}α∈A

be an orthonormal basis of wavelet [9]. A certain threshold µ is chosen to determine

a(α), i.e.

a(α) =

 1 |vB(α)| > µ

0 |vB(α)| ≤ µ
(4.1.3)

This is the so-called hard thresholding, which cancels coefficients smaller than the

threshold. This procedure is based on the idea that the image is represented with

large wavelet coefficients, which are kept, whereas the noise is distributed usually as

small coefficients, which are cancelled. The performance of the method depends on

the capacity of approximating u by a small set of large coefficients. We may denote

this operator by HWTµ(v).

But this algorithm will create some small oscillations, i.e. Gibbs-like phenomenon,

near the edges, due to the simple cancellation of the wavelet coefficients lower than

the threshold. D. Donoho [4] showed that these effects can be partially reduced if we

use a soft thresholding,

a(α) =


vB(α)−sgn(vB(α))µ

vB(α)
|vB(α)| ≥ µ

0 |vB(α)| < µ
(4.1.4)
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which will be denoted by SWTµ(v). The continuity of the soft thresholding operator

preserves the structure of the wavelet coefficients and reduces the oscillation near

edges.

4.2 Wavelet Total Variation

In 2006, Wang and Zhou proposed this algorithm for medical images baseon on a

combination of the total variation minimization scheme and the wavelet scheme.

Let z(x) = u0(x)+n(x) be the observed image, where n(x) is the noise, and u0(x)

is to be recovered. All these three functions are in some functional space F , such as

L2(Ω) for some domain Ω ∈ R2. Let {φj : j ∈ I} be an orthonormal basis [41, 42] for

F , if F is a Hilbert space. Let

z(x) =
∑
j∈I

αjφj(x),

and denote

u(x, β) =
∑
j∈I

βjφj(x),

where β = (βj). Define the Total Variation function by

F (u) =

∫
R2

|∇xu(x, β)|dx+
1

2

∑
j∈I

λj(βj − αj)2, (4.2.5)

where λj > 0. Then the goal of denoising is to minimize F (u) and find the minimizer

u∗ = u(x, β) such that F (u∗) = minβ F (u).

For u = u(x, β), where β = (βj),

∂F (u)

∂βj
=

∫
R2

∇x(u)

|∇xu|
· ∇xφjdx+ λ(βj − αj)

= −
∫
R2

∇x ·
[
∇x(u)

|∇xu|

]
φjdx+ λ(βj − αj). (4.2.6)

Then the Euler-Lagrange equation for the model is

−
∫
R2

∇x ·
[
∇x(u)

|∇xu|

]
φjdx+ λ(βj − αj) = 0. (4.2.7)
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And practically, an artificial time parameter t and time-march image using gradient

flow is introduced,

∂βj
∂t

=

∫
R2

∇x ·
[
∇x(u)

|∇xu|

]
φjdx− λ(βj − αj), βj(0) = αj. (4.2.8)

Comparing to the wavelet hard/soft thresholding scheme, this algorithm will elim-

inate the Gibbs oscillation. One of the biggest issues in the traditional TV model

is over-smoothing. For the wavelet TV model Wang and Zhou introduced an ef-

fective automatic stopping criterion. Comparing to the traditional TV models, by

setting a auto-stopping time criterion based on certain statistical property of wavelet

coefficients, the wavelet TV model will prevent the image from being over-smoothed.
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CHAPTER V

STEERING KERNEL REGRESSION

In 2006, Hiroyuki Takeda, Sina Farsiu and Peyman Milanfar [33] introduced this

denoising method based on the field of nonparametric statistics. Basically, a specific

steering matrix is chosen to determine a footprint of homogeneous region, and in this

region, a weighted kernel regression problem with that steering matrix is solved to

smooth a homogeneous region of the image without crossing edges of the footprint.

5.1 Classical Steering Kernel Regression

Let

yi = z(xi) + εi, i = 1, · · · , P

where yi = y(xi) is the observed data, εi is the noise and we want to recover z(xi)

from yi.

Since xi is a 2×1 vector, we may find the local expansion of the regression function

of z(xi)

z(xi) = β0 + βT1 (xi − x) + βT2 vech{(xi − x)(xi − x)T}+ · · · (5.1.1)

where vech(·) is defined as the half-vectorization operator of the ”lower-triangular”

portion of a symmetric matrix, e.g.

vech

 a b

b d

 = [a b d]T

and

vech


a b c

b e f

c f i

 = [a b c e f i]T
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We know that β0 = z(x) is the pixel value of interest and the vectors β1 and β2

are

β1 = ∇z(x) =

[
∂z(x)

∂x1

,
∂z(x)

∂x2

]
,

β2 =
1

2

[
∂2z(x)

∂x2
1

, 2
∂2z(x)

∂x1∂x2

,
∂2z(x)

∂x2
2

]
.

The βns can be computed from the following optimazation problem:

min
{βn}

P∑
i=1

[
yi − β0 − βT1 (xi − x)− · · ·

]2
KH(xi − x) (5.1.2)

with

KH(t) =
1

det(H)
K(H−1t),

where K is the 2-D realization of the kernel function, and H is a 2 × 2 smoothing

matrix.

In [33], the authors gave the solution of this weighted least-squares optimization

problem:

b̂ = arg min
b
‖y−Xb‖2

W

= arg min
b

(y−Xb)TW (y−Xb), (5.1.3)

where

y = [y1, y2, · · · , yP ]T , b = [β0, β
T
1 , · · · , βTN ]T , (5.1.4)

W = diag[KH(x1 − x), KH(x2 − x), · · · , KH(xP − x)], (5.1.5)

X =



1 (x1 − x)T vechT{(x1 − x)(x1 − x)T} · · ·

1 (x2 − x)T vechT{(x2 − x)(x2 − x)T} · · ·
...

...
...

...

1 (xP − x)T vechT{(xP − x)(xP − x)T} · · ·


. (5.1.6)

Since the only necessary computations are limited to the ones that estimate β0, the

least-squares estimation is simplified to

β̂0 = eT1 (XTWX)−1XTWy (5.1.7)
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where e1 = (1, 0, · · · , 0)T is a column vector in RP .

The shape of the regression kernel as defined above, and consequently, the per-

formance of the estimator depend on the choice of the smoothing matrix H [26]. In

[33], a data-dependent steering kernel were choosed by

K = KHsteer
i

(xi − x), (5.1.8)

where

Hsteer
i = hµiC

− 1
2

i ,

and µi’s are scalars that captures the local density of data samples (nominally set

to µi = 1), h is the global smoothing parameter, Ci’s are (symmetric) covariance

matrices based on differences in the local gray-values. A good choice for Ci’s will

effectively spread the kernel function along the local edges.

Since the local edge structure is related to the gradient covariance(or equivalently

the locally dominant orientation), a naive estimate of this covariance matrix would

be:

Ci ≈

∑xj∈wi zx1(xj)zx1(xj)
∑

xj∈wi zx1(xj)zx2(xj)∑
xj∈wi zx1(xj)zx2(xj)

∑
xj∈wi zx2(xj)zx2(xj)

 (5.1.9)

where zx1(·) and zx2(·) are the first derivatives along x1 and x2 directions and wi is the

local analysis window around the position of interest. The domaint local orientation

of the gradients is then related to the eigenvectors of this estimated matrix.

This approach is simple and has nice tolerance to noise, but practically, the com-

putation of steering matrices in this way may be rank deficient or unstable. Therefore,

care must be taken not to take the inverse of the estimate directly in this case. [27]

proposed an effective multiscale technique for estimating local orientations, which fits

the requirements of this problem nicely.

Using the eigenvalues decomposition, Ci is decomposed into:

Ci = γiUθiΛiU
T
θi
, (5.1.10)
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where

Uθi =

 cos θi sin θi

− sin θi cos θi

 , Λi =

σi 0

0 σ−1
i


Now Uθi is the rotation matrix, Λi is the elongation matrix and γi is the scaling

parameter. Following the work in [27], the dominant orientation of the local gradient

field is the singular vector corresponding to the smallest (nonzero) singular value of

the local gradient matrix arranged:

Gi =


...

...

zx1(xj) zx2(xj)

...
...

 = UiSiV
T
i , xj ∈ wi (5.1.11)

where UiSiV
T
i is the truncated singluar value decomposition of Gi, and Si is a diagnal

2 × 2 matrix representing the energy in the domainant directions, with diagnals s1

and s2. The second column of the 2× 2 orthogonal matrix Vi, v2 = [ν1, ν2]T , defines

the dominant orientation angle θi

θi = arctan

(
ν1

ν2

)
(5.1.12)

The elongation and scaling parameters σi and γi are also computed by

σi =
s1 + λ′

s2 + λ′
, (5.1.13)

γi =

(
s1s2 + λ′′

M

) 1
2

(5.1.14)

where λ′ ≈ 0 and λ′′ ≈ 0 are regularization parameters, which dapmpen the effect of

the noise, restrict the restrict the ration and square root becoming degenerate and

zero, respectively. M is the number of samples in the local analysis window.

Now all Ci have been set, if a Gaussian kernel is choosen, the steering kernel is

mathematically represented as

KHsteer
i

(xi − x) =

√
det(Ci)

2πh2µ2
i

exp

{
−(xi − x)TCi(xi − x)

2h2µ2
i

}
. (5.1.15)
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Figure 8: Kernels in the classical local method, footprints are local windows (left);
Data-adapted kernels elongate with respect to the edge (right).

Figure 9: Footprint examples in a clean image (left); Footprint examples at the
same position in a noisy image (right).

5.2 Bilateral Steering Kernel Regression

In [33], the steering kernel Kadapt is chosen to be KHsteer
i

(xi−x), resulting in elongated,

elliptical contours spread along the directions of the local edge structure. With these

locally adpated kernels, the denoising is effected most strongly along the edges, rather

than across them, resulting in strong preservation of details in the final output.

Practically, the steering matrix is determined by the local (noise) information

of the image, i.e. the size and shape of the fooprint is determined by the noise

information. As the noise is quite soft (the extreme case is a clean image), the
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Figure 10: Left: a clean image, notice that the footprint determined by the steering
kernel will elongate along with the edge. It can be seen that along with edges on
the left top and right bottom (denoted by RT and LB), the regions are homogeneous
(| du
dn1
| ≈ 0, where n1 is the corresponding direction); while along with the other

two edges (denoted by RB and LT), the regions are not (| du
dn2
| ≈ 0, where n2 is

the corresponding direction); right: Clean image denoised by original steering kernel
regression method. Note that the homogeneous edges RT and LB are blurred, due to
footprints crossing the edges, while the nonhomogeneous edges RB and LT are kept
sharp.

footprint becomes quite large; when the effect of the steering kernel meets the edge,

the footprint will inevitably crosses the edge, although just for a little. See Figure 9.

When noise is quite strong (the extreme case is salt and pepper noise), the foot-

prints in noisy regions become quite small. So the smoothing effect is not good

enough. See Figure 16.

So let’s consider a bilateral steering kernel instead of the original steering kernel.

Let

Kadapt = KHsteer
i

(xi − x) ·Khr(yi − y), (5.2.16)

where

Khr(yi − y) = e
− |yi−y|

γ

2h2
r ,

and γ is a bilateral parameter. Combining the Gaussian Kernel and Steering matrix
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Figure 11: Another example. Left: an clean image; Right: clean image blurred by
original steering kernel regression method.

Figure 12: Left: The shape of steering kernel at a pixel in a homogeneous region
near the edge in a clean image; Right: the shape of bilateral steering kernel (γ=1.5)
at the same pixel.

Ci, we have

Kadapt(xi − x, yi − y) =

√
det(Ci)

2πh2µ2
i

exp

{
−(xi − x)TCi(xi − x)

2h2µ2
i

}
·

exp

{
−|yi − y|

γ

2h2
r

}
. (5.2.17)

After combining this bilateral filter, the footprint close to the edge has been cut along

the edge. See Figure 12.

Further more, let’s consider an adaptive bilateral steering kernel, in which model,

γ is a locally data dependent constant. The idea is, in more homogeneous region, the

baliteral effect should be stronger, and in noisy region, the bilateral effect becomes

less. There are numerous choices of γ. By experiments, the results are the best when
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Figure 13: Previous clean figures performed by bilateral steering kernel regression
γ = 1.5. Note that no blurring effect exists.

Figure 14: Left: image with gaussian noise, σ2 = 20; right: denoised by original
steering kernel regression.

γ ∈ [0.85, 2]. Generally we choose

γ = 0.85σ + 2(1− σ),

where σ ∈ [0, 1] is a parameter related to the local average gradient. When the region

is more homogeneous, the local average gradient is smaller so σ is closer to 0. When

the region is noisier, the local average gradient is bigger so σ is closer to 1.

Surprisingly, although neither the original bilateral filter nor the original steering

kernel method do well to the salt and pepper noise, this adaptive bilateral steering

kernel performs very well for such noise. See Figures 16-19.
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Figure 15: Left: previous gaussian noisy image denoised by Bilateral SKR, with
γ = 0.85; right: same image denoised by Adaptive Bilateral SKR.

Figure 16: Left: image with salt and pepper noise; Right: denoised by original
SKR.

Figure 17: Left: previous image with salt and pepper noise denoised by Bilateral
SKR, with γ = 0.85; Right: same image denoised by Adaptive Bilateral SKR.
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Figure 18: Left: image with gaussian and salt and pepper mixed noise; Right:
denoised by original SKR.

Figure 19: Left: previous image with mixed noise denoised by Bilateral SKR, with
γ = 0.85; Right: same image denoised by Adaptive Bilateral SKR.
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CHAPTER VI

NON LOCAL METHODS

In 2006, A.Buades, B.Coll and J.M.Morel developed the Non-local mean method for

denoising and it has become quite popular. The idea of the NL-means filter comes

from this fact: for each small window that a local smoothing method takes place, it

has many similar windows in the same image. The difference of this method from

previous adaptive spartial domain filtering methods is that the theory behand this

method does not require a locality constraint. The method was further enhanced

for speed in subsequent works by Mona Mahmoudi and Guillermo Sapiro in [20].

Different from previous neighborhood filtering methods, this method make use of

similar patterns occuring in different parts of a image and use these similarites to

denoise.

6.1 Non Local Mean Algorithm

Let v(i) and u(i) be the observed noisy and original images, respectively, where i is

the pixel index. The restored values can be derived as the weighted average of all

gray values in the image (indexed in the set I)

NL(v)(i) =
∑
j∈I

w(i, j)v(j) (6.1.1)

where NL(v)(i) is the restored value at pixel i. The weights express the amount of

similarity between the neighborhoods of each pair of pixels involved in the computa-

tion (i and j)

w(i, j) =
1

Z(i)
e−
‖v(Ni)−v(Nj)‖

2
2,a

h2

where ‖.‖ denotes the Gaussian weighted distance and Z(i) is a normalizing factor

Z(i) =
∑

j w(i, j). In the above equation, v(Ni) is the vector of neighborhood pixel
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values v(Ni) := (v(j)), j ∈ Ni , where Ni defines the neighborhood of pixel i, normally

a square-block of predefined size around i. h is the global smoothing parameter which

controls the amount of blurring introduced in the denoising process. For higher values

of noise present in an image, h is set to be larger.

Definition 6.1.1. (Neighborhoods) A neighborhood system on I is a family N =

{Ni}i∈I of subsets of I such that for all i ∈ I,

(i) i ∈ Ni

(ii) j ∈ Ni ⇒ i ∈ Nj

Then subset Ni is called the neighborhood or the similarity window of i. The subset

Ni will denote Ni \ {i}.

The similarity between two pixels i and j will depend on the similarity of the

intensity gray level vectors v(Ni) and v(Nj). The pixels with a similar grey level

neighborhood to v(Ni) will have larger weights in the average.

To compute the similartity between two blocks, they use the gaussian weighted

Euclidean distance, .

‖v(Ni)− v(Nj)‖2
2,a = (Ga ∗ |v(Ni)− v(Nj)|2)(0) (6.1.2)

It was shown by Efros and Leung that the L2 distance is a reliable measure for

the comparison of image windows in a texture patch [5]. Also this measure is more

adapted to any additive white noise. Indeed,

E‖v(Ni)− v(Nj)‖2
2,a = ‖u(Ni)− u(Nj)‖2

2,a + 2σ2 (6.1.3)

where u and v are respectively the original and noisy images and σ2 is the noise

variance. This equality shows that, in expectation, the Euclidean distance preserves

the order of similarity between pixels. So the most similar pixels to i in v also are

expected to be the most similar pixels of i in u.
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6.2 Faster Non Local Mean Algorithm

For an image with n pixels, n2 weights have to be computed for each pixel. Compu-

tation n2 of the overall weights makes the algorithm inefficient and impractical. And

so in [2], Morel and Sapiro reduced the total number of computed weighted weights

by neglecting in advance neighborhoods with expected small weights. This is done in

following three ways:

(a) Fix a number M . For each pixel, only the closest 2M+1 similar pixels are choosed

to calculate weights.

(b) The further consideration of similarity are determined by an inequality η1 <

(v(i)/v(j)) < η2, where v(i) and v(j) are the average gray values in the neighbor-

hoods of pixels in i and j, and η1 < 1 and η2 > 1 are two constants close to 1. Only

pixels satisfying this inequality will be considered to calculated weights.

(c) Another method to approximate the similarity between two neighborhoods is to

compute 5v(i) = (vx(i), vy(i)), where vx(i) and vy(i) are the average horizontal and

vertical derivatives in the neighborhood of pixel i. Define θ(i, j) = ∠(5v(i),5v(j))

and σθ = 1.4826medianI×I [|θ(i, j) −medianI×I(|θ(i, j)|)|], where θ(i, j) is angle be-

tween the average gradient directions. The weight w(i, j) is computed(nonzero) if the

gradient in pixel i or j are small or θ(i, j) < σθ.

(a) and (b) make the closest blocks be easily accessed with O(1) complexity lookup

table addressed by the average gray value of the neighborhood for the current pixel

being processed. (c) makes the angle between the average gradient directions at the

corresponding pixels to be a measure to filter out unrelated neighborhoods, where the

threshold is choosed by a statistical result following [23] and [24].
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So in Sapiro’s model, the wight w(i, j) is calculated as the following equation:

w(i, j) =



1
Z(i)

e−
‖v(Ni)−v(Nj)‖

2
a

h2 , [(‖ 5 v(i)‖ < σ5)

or (‖ 5 v(j)‖ < σ5)

or (θ(i, j) < σθ)]

and (η1 < (v(i)/v(j)) < η2)

0, otherwise

(6.2.4)

This effectively reduced the computational complexity of the original algorithm.

6.3 Nonlocal Bilateral Filter

In this section, a modified nonlocal bilateral fiter is suggested to preclassify the image

blocks and thereby reduce the number of weight computations in the global window

size denoising algorithm. The idea of this algorithm comes from the original NLM

filter and the original Bilateral filter. In both methods, for each pixel, the related pixels

are used to build the weights so to smooth it. In the original NLM filter, the pixels

with close intensity distance from the whole image are considered as the related pixels,

which does not take any pixels with close spatial distance into account. Some color

leaking problems will occur due to this fact, mostly happened in a color image(See

Figure 22). In the original bilateral filter, pixels with close intensity distance and

close spatial distance are both considered, but fixed in a small local window, which

somehow neglects the affect of pixels with close grey values but spatially far from

center of the local window. What’s more, how to choose a window size of a bilateral

filter is still a problem. When one chooses a small size window, the denoising effect

is not good enough, but when one chooses a big size window, too many weights of

(unrelated) pixels computed will not only increase the complexity of the algorithm

but also make the image look unreal and thus the SNR decreases.

In the example, the original size of the image is 512×512. We keep increasing the

denoising window of the original bilateral image to see how well it works. Actually,
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when the window size is 5 × 5, the SNR reaches the maximum 36.9857, with the

running time t = 16.953s; after that, the SNR starts dereasing, and the running

time becomes longer and longer. When we use a 20× 20 window, the SNR becomes

32.587, and it takes 37.484s; when we use a 50× 50 window to denoise, the SNR has

been reduced to 32.2007, and it takes 156.689s. See Figure 21.

So let’s consider:

NLB(v)(i) =
1

C(i)

∑
j∈Ωi

w1(i, j)w2(i, j)v(j) (6.3.5)

where w1(i, j) = e
− (v(i)−v(j))2

h2
1 , w2(i, j) = e

− ‖i−j‖
2

h2
2 and

Ωi = {v(j)||v(i)− v(j)| < σ}. (6.3.6)

The advantage of this algorithm is, it considers the relevance of both pixels closed

in spatial domain and intensity domain. The complexity of this algorithm relies on

the choice of Ωi. For (6.3.6), it is easy to estimate the method noise:

Proposition 6.3.1. Suppose u is a Lipschitz bounded function on Ω, where Ω is an

open and bounded domain of R2, then |u(x)−NLBσr,σd,σu(x)| < σ.

Proof. Let x be a point of Ω, then

|u(x)−NLBσr,σd,σu(x)| = 1

C

∫
Ωi

W1W2|u(y)− u(x)|dy

≤ 1

C

∫
Ωi

W1W2 · σdy

=
σ

C

∫
Ωi

W1W2dy

= σ (6.3.7)

where W1 = e
− |u(y)−u(x)|2

σ2
r , W2 = e

− ‖y−x‖
2

σ2
d .
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Figure 20: Left Top: original lena image; right top: lena with additive gaussian
noise σ2 = 25; left bottom: denoised by original non local mean filter, 1 iteration,
SNR = 36.0472; right bottom: denoised by non local bilateral filter, 1 iteration,
SNR = 37.1205.

To make this algorithm fast and efficient, a more wise choice of Ωi goes to the

contribution of Sapiro’s blocks preclassfication. We choose the 2M + 1 closest sim-

ilar pixels of v(j) to compute weights. Here we use a Gaussian weighted average

pixel value to compute distance. This change significantly reduces the complexity of

computation and enhance quality of the image.
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Figure 21: Lena image denoised by original bilateral filter with window size increas-
ing. Left Top:5 × 5, SNR=36.9857, running time 16.953s; 20 × 20, SNR=32.587,
running time 37.484s; left bottom: 50× 50, SNR = 32.2007, running time 156.689s;
right bottom: 100× 100, SNR = 32.2007, running time 591.001s.
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Figure 22: Left top: original chicken image; right top: chicken image denoised by
NLM filter, 3 iterations. Note that color leaking appears on the hat of the pen; left
bottom: chicken image denoised by NL Bilateral filter, 3 iterations; right bottom:
chicken image denoised by original bilateral filter, 3 iterations.
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CHAPTER VII

CROSS-CHANNEL PARADIGM

7.1 Color Image With Real Noise

In real-world scenarios, noise in color images comes from many sources, such as the

underlying physics of the imaging sensor itself, sensor malfunction, flaws in the data

transmission procedure, and electronic interference. Due to the complex nature of

the noise process, the overall acquisition noise is usually modeled as a zero mean

white Gaussian noise. Aside from this, image imperfections resulting from salt and

pepper noise are generated during transmission through a communication channel,

with sources ranging from human-made to natural. Thus, noise corruption process in

simulated scenarios is usually modeled using additive Gaussian noise, salt and pepper

noise, or mixed noise.

Real images are corrupted by real, non-approximated noise which may be different

in characteristics and statistical properties depending on application.

One may argue that color images are no difference from three monochromatic

images once we consider the three channels separately, and therefore to denoise a color

photo one only needs to denoise the three monochromatic channels separately. This

view, however, misses some important subtle characteristics in naturally captured

color images that, when fully utilized, yield superior results. To denoise color photos

we must understand the nature of the noise in these images, and take full advantages

of all available informations.
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7.2 Color Space Decomposition

A color model is an abstract mathematical model describing the way colors can be

represented as tuples of numbers, typically as three or four values or color components.

The three most popular color models are RGB, Lab(used in computer graphics); YIQ,

YUV or YCrCb(used in video systems) and CMYK(used in color printing).

All of the color spaces are derived from the RGB information captured by devices

such as cameras and scanners.

7.2.1 RGB Color Space

The red, green, and blue (RGB) color space is widely used throughout computer

graphics. Red, green, and blue are three primary additive colors and are represented

by a 3D coordinate system. The RGB data captured by digital cameras and scanners

is the raw data and has the most information. This color space is the most prevalent

choice for computer graphics because color displayes use red, green, and blue to creat

the desired color. RGB is a convenient color model for computer graphics because the

human visual system works in a way that is similar though not quite identical to an

RGB color space. The most commonly used RGB color spaces are sRGB and Adobe

RGB (which has a significantly larger gamut). Adobe has recently developed another

color space called Adobe Wide Gamut RGB, which is even larger, in detriment to

gamut density.

7.2.2 CIE XYZ Color Space

In the study of the perception of color, one of the first mathematically defined color

spaces was the CIE 1931 XYZ color space (also known as CIE 1931 color space),

created by the International Commission on Illumination (CIE) in 1931 [34, 35].

The human eye has receptors (called cone cells) for short (S), middle (M), and

long (L) wavelengths. Thus in principle, three parameters describe a color sensation.
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Figure 23: A color image(left top) and the G(left bottom), B(right top) and R(right
bottom) elements. Note that the Green channel is the cleanest channel and the Blue
channel has most noise
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The tristimulus values of a color are the amounts of three primary colors in a three-

component additive color model needed to match that test color. The tristimulus

values are most often given in the CIE 1931 color space, in which they are denoted

X, Y, and Z [36].

CIE XYZ color space is special because it is based on direct measurements of

human visual perception, and serves as the basis from which many other color spaces

are defined.

Mathematically, CIE XYZ is a linear transformation of RGB:
X

Y

Z

 =
1

0.17697


0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99



R

G

B


7.2.3 Lab Color Space

A Lab color space is a color-opponent space with dimension L for lightness (or lumi-

nance) and a and b for the color-opponent (or chrominance) dimensions, based on a

nonlinear transformation of CIE XYZ color space.

The most advantage of Lab color space is, it is perceptually uniform, which means

that a change of the same amount in a color value should produce a change of about

the same visual importance. Thus, Lab color is designed to approximate human

vision. It aspires to perceptual uniformity, and its L component closely matches

human perception of lightness. It can thus be used to make accurate color balance

corrections by modifying output curves in the a and b components, or to adjust the

lightness contrast using the L component.

Mathematically, Lab is a nonlinear transformation of XYZ, thus it is nonlinear of
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Figure 24: A color image(left top) and the L(left bottom), a(right top) and b(right
bottom) elements. Note that the L channel is the luminance channel (cleanest) and
the a and b channels has much more noise

RGB:

L = 116f(Y )− 16

a = 500[f(X)− f(Y )]

b = 200[f(Y )− f(Z)]

where

f(t) =

 t1/3 if t > 0.008856

7.787t+ 16/116 otherwise
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7.2.4 YCrCb Color Space

YCrCb color space decomposition is also a Luminance-Chrominance decomposition.

Y is the luminance component and Cb and Cr are the blue-difference and red-

difference chromainance components. It is offen used as a part of the Color image

pipeline in video and digital photography systems. Due to the noise distribution in

different channels of a digital color image, which will be discussed in next section,

YCrCb is experimentaly the best decomposition in image denoising.

Mathematically, YCrCb is also a linear transformation of RGB. The basic equation

to convert between 8-bit digital RGB data with a 16-235 nominal range YCrCb is:
Y

Cb

Cr

 =


0.299 0.587 0.114

−0.172 −0.339 0.511

0.511 −0.428 −0.083



R

G

B

+


0

128

128



7.3 Noise Distribution in Digital Color Images

7.3.1 Natural Noise and Artificial Noise

Due to the similarity between the amplified noise and gaussian noise, many of the

studies focus on normal images with artificially added Gaussian noise (or sometimes

salt and pepper noise). The results are often either misleading or not optimal. Color

images captured by digital cameras are often noisy, but the noise profile is nothing

like those that have been added artificially [44].

It has been well studied that, for a grey value image, the natural noise distribu-

tion is quite different between light areas and dark areas. The dominant noise in

the lighter parts of an image from an image sensor is typically caused by statistical

quantum fluctuations, that is, variation in the number of photons sensed at a given

exposure level; this noise is known as photon shot noise [45]. Shot noise has a Poisson

distribution, which is usually not very different from Gaussian.
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Figure 25: A color image(left top) and the Y(left bottom), Cb(right top) and
Cr(right bottom) elements.
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Figure 26: clean image(left top) and image with natural noise(right top), image
with additive gaussian noise(left bottom) and image with additive salt and pepper
noise(right bottom), note that artificial noise distributions are homogeneous while
the natural noise is not.
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Figure 27: A line is picked in a grey value image to see the noise distribution

While there is additional shot noise from the dark leakage current in the image

sensor; this dark area noise is sometimes known as dark shot noise [45] or dark-current

shot noise [46]. Dark current is greatest at hot pixels within the image sensor; the

variable dark charge of normal and hot pixels can be subtracted off, leaving only the

shot noise, or random component, of the leakage [47, 48]; if the exposure time is long

enough that the hot pixel charge exceeds the linear charge capacity, the noise will be

more than just shot noise, and hot pixels appear as salt-and-pepper noise.

Generally, we have a comparison between the natural noise and artificial noise:

(1) Additive artificial noise is homogeneous in the whole image, while real noise is

often not, especially in dark areas;

(2) There is much more real noise in dark areas than in light areas;

(3) Additive artificial noise is independent from pixel to pixel, while real noise is often

non-independent from pixels.

To see it more clearly, we pick a line from the image and see the noise distribution

in a 2D way. See Figures 27-29.

7.3.2 Bayer Pattern and Noise Distribution in Color Images

Bayer pattern is known as a filter arrangement in an image sensor that captures
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Figure 28: Pixel value in a clean image and an image with natural noise. Note that
the noise is much more in the dark area and distributes non-homogeneously.

Figure 29: Pixel value in an image with additive gaussian noise (top) and salt
and pepper noise (bottom). Note that the noise distributions in both images are
homogeneous.
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Figure 30: Bayer Pattern Filter Arrangement

natural light in RGB model. In a Bayer filter arrangement, green is given twice as

many sensors as red and blue in order to achieve higher luminance resolution than

chrominance resolution, see Figure 30. For every channel, missing pixels are obtained

by interpolation in the demosaicing process to build up the complete image.

In this case, the green channel will be cleaner than the red channel and the blue

channel. What’s more, due to the reason that more amplification is used in the blue

color channel than in the green or red channel, the blue channel is always the noisiest

[45]. For the same reason, in a luminance-chrominance color space decomposition,

the luminance channel is always cleaner than the chrominance channel. Since the

cleaner channel(s) have better geometric properties (which are not annoyed by noise

that much), it is natural to think that, we can use cleaner channel(s) as a standard

in denoising process to work on noisier channels.

7.4 Discription of Cross-channel Paradigm

For a given 3-channel color space decomposition (~i,~j,~k), a color image

~u(x) = u1(x)~i+ u2(x)~j + u3(x)~k, (7.4.1)
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Figure 31: Lab Decomposition of a peacock image. From left to right, top to bottom:
original image, a channel, L channel, b channel. Note that L channel is clean.

and a cross-channel paradigm will be

CR(~u(x)) = CR(u1(x)~i+ u2(x)~j + u3(x)~k)

= CR1(u1(x))~i+ CR2(u2(x))~j + CR3(u3(x))~k (7.4.2)

where, CR1, CR2 and CR3 are different but correlated filters defined on 3 channels.

For example, a naive algorithm using Lab decomposition and Gaussian filter is:

CR(~u(x)) = CR(uL(x)~i+ ua(x)~j + ub(x)~k)

= uL(x)~i+Gh1(ua(x))~j +Gh2(ub(x))~k. (7.4.3)

Since L is a luminance channel, it is almost clean. We use Gaussian blur to denoise

the chrominance channels a and b. See Figure 31 and 32.

One thing that needs to be paid attention is, the advantage of separating lumi-

nance from chrominance is that human vision is typically less sensitive to diffusion in
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Figure 32: From left to right, top to bottom: L channel remained as before, a
channel blurred by Gaussian filter with radius 5, b channel blurred by Gaussian filter
with radius 5, recomposed image.
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Figure 33: YCrCb Decomposition of an image with real noise. From left to right,
top to bottom: original image, Cr channel, Y channel, Cb channel. Note that Y
channel is clean.

chrominance [44]. which means, when we take a strong blurring effect on chrominance

channels (a, b in Lab decomposition or Cr Cb in YCrCb decomposition), after recom-

position, there is a very little discernible difference from the original image (except

for denoising). However, to the luminance channel (L or Y), it is a different story. In

fact, even a tiny blurring in the luminance channel will be immediately visible in the

recomposed color image. Given these characteristics of the luminance-chrominance

decomposition, we would be more aggressive in denoising the chrominance channels

while less so in denoising the luminance channel. See Figure 33 and 34.

7.5 A New YCrCb Decomposition for Denoising

In the standard luminance-chrominance decomposition, such as Lab and YCrCb,

the luminance is contaminated by the blue channel, where noise concentrates as we
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Figure 34: From left to right, top to bottom: original Y channel; using wavelet
thresholding to severely blur the Cr channel, note that most details are removed;
using wavelet thresholding to severely blur the Cb channel, similar as Cr, most details
are removed; the recomposed color image, note that the blurring Cr Cb channels do
not the sharpness of the original color image.
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have pointed out earlier. As a result, the luminance channel can be somewhat noisy,

and therefore substantial denoising will have to be performed on it. This can be

adversely affect the quality of the denoised color image. To get around this problem

we introduce a new color space, the modified YCrCb color space (mY CrCb). Different

from the original YCrCb color space, the luminance channel Y in mY CrCb is a linear

combination of only the green and the red channels. More precisely, the mY CrCb

color space is obtained via a linear transform from RGB space:

Ym = 0.666G+ 0.334R,

Crm = (R− Y )/1.6,

Cbm = (B − Y )/2.

7.6 Cross-channel ENO/WENO schemes

This scheme is particularly designed based on the cross-channel idea. By color space

decomposition, we have some clean channels and some noisy channels. There are sev-

eral kinds useful information that clean channels can provide, i.e. geometric property,

contrast, the feature that it is in a better functional space, etc. But the most useful

information is: it provides the most accurate edges. All denoising filters are facing a

same problem: how to preserve the sharp edge while blurring the noise? Now we can

take the accurate edges from the given color image and then perform a blurring filter

without cross the edge.

There are a lot of edge detectors in 2D images, i.e. Canny, LoG, Zero-crossing....

Here we use J. Canny’s method (1986 [49]), which is the most widely used algorithm

in image processing. In matlab, it provides the edges corresponding to a threshold γ,

which controls the strength of the edges. See Figure 35.

Define

CD(u, γ)(x) =

 1 if x is Canny′s Edge with threshold γ,

0 otherwise.
(7.6.4)
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Figure 35: Canny’s Edge Detection. Left top: original image with real noise; Right
top: Canny’s edge with threshold 0.15; Left bottom: Canny’s edge with threshold
0.40; Right bottom: Canny’s edge with threshold 0.15.
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And let’s define an operator between two matrces with same dimensions. For

A = (aij)i,j=1,...,n, B = (bij)i,j=1,...,n,

A�B = (aij · bij)i,j=1,...,n.

Using mY CrCb color space and Gaussian blur (inside the edge), the cross-channel

ENO scheme (CE) is defined as:

CE(~u) = CE(uY~i+ uCr~j + uCb~k)

= CE1(uY )~i+ CNL2(uCr)~j + CNL3(uCb)~k, (7.6.5)

where CE1(·) = Identity, and

CE2(uCr) = G̃hr(uCr \ (uCr � CD(uY , γr))),

CE3(uCb) = G̃hb(uCb \ (uCb � CD(uY , γb))).

The explanation of G̃h(A\B) should be made here: A and B are both given matrices

and B ⊂ A, where B is the set of edges of A. G̃h(A \ B) means he locally gaussian

filter (with parameter h) is taken on A without crossing edges in B. In details, in

a local window of A, denoted by I, if the center i is on an edge in B, e.g. i ∈ B,

then nothing will be done in I; if i /∈ B, and if there exists edge points in I, then the

gaussian filter will be taken at i without crossing edges. See Figure 36.

For some case, soft edges also need to be blurred a little bit, to make the whole

image look smooth. So we take full consideration of the strength of edges, i.e. each

pixel in the image is taken as an edge with a weight, we will have a WENO scheme.

Definition 7.6.1. (Pixel Edge Weight):

WCD(u, γ)(x) =

 λ(|ux|2 + |uy|2 + |uz|2), if x is Canny′s Edge with threshold γ,

0, otherwise,

(7.6.6)
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Figure 36: G̃h filter taken on a local 5 × 5 window. i: center point; Black areas:
edge; white areas: effective when taken the gaussian filter; grey areas: ineffective
when taken gaussian filter; Left: the center i is not on an edge; Right: the center i is
on an edge.

where λ is an adjustment constant and

ux = u(i, j)− u(i− 1, j), uy = u(i, j)− u(i, j − 1), uz = u(i, j)− u(i− 1, j − 1).

So for WENO scheme,

CWE(~u) = CWE(uY~i+ uCr~j + uCb~k)

= CWE1(uY )~i+ CWE2(uCr)~j + CWE3(uCb)~k, (7.6.7)

where

CWE1(uY ) = G̃hY (uY \ (uY � CD(uY , γY ))) +GhY ,WCDuY ,γY (x)(uY )(x),

CWE2(uCr) = G̃hCr(uCr \ (uCr � CD(uY , γCr))) +GhCr,WCDuY ,γCr (x)(uCr),

CWE3(uCb) = G̃hCb(uCb \ (uCb � CD(uY , γCb))) +GhCb,WCDuY ,γCb (x)(uCb),

where Gh,β is the gaussian filter, with radius h and σ = β.

In the above formula, the gaussian filter is taken on the non-edge pixels without

crossing the edges, and for each edge pixel, it is blurred slightly or strongly, depending

on the weakness of the edge. In this case, the noise on soft edges would also be removed

and strong edges are still kept sharp. See Figures 37-39.
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Figure 37: Left: chicken image denoised by ENO scheme, performed in mY CrCb
space, 3 iterations; Right: 100 % crop of the hat area.

Figure 38: Left to right: chicken image denoised by ENO and WENO schemes, both
performed in mY CrCb space, 3 iterations.
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Figure 39: 100% crop of the above images. Note that edges in the right image are
more smooth than in the left one.

7.7 Cross-channel Non Local Means Filter

In this section, we will see how cross-channel paradigm is performed upon the Non

Local Filter. Let

~u(x) = uY (x)~i+ uCr(x)~j + uCb(x)~k,

where ~i,~j,~k is the mY CrCb color space decomposition. The

CNL(~u(x)) = CNL(u1(x)~i+ u2(x)~j + u3(x)~k)

= CNL1(uY (x))~i+ CNL2(uCr(x))~j + CNL3(uCb(x))~k (7.7.8)

Note that, in NLM filter,

NL(u)(i) =
∑
j∈I

w(i, j)u(j)

where

w(i, j) =
1

Z(i)
e−
‖u(Ni)−u(Nj)‖

2
2,a

h2 .

Now let

CNL1(uY )(i) =
∑
j∈I

wY,h0(i, j)uY (j),

CNL2(uCr)(i) =
∑
j∈I

wY,h1(i, j)uCr(j),
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CNL3(uCb)(i) =
∑
j∈I

wY,h2(i, j)uCb(j),

where

wY,h(i, j) =
1

Z(i)
e−
‖uY (Ni)−uY (Nj)‖

2
2,a

h2 . (7.7.9)

Note that Y channel has the best geometric property, which rarely annoyed by

noise, we may perform the filter very slightly, so we choose a small h0. For Cr, Cb

channels, we choose larger h1 and h2 to obtain strong blurring effect. We also notice

that in CNL2 and CNL3, the weights were computed by grey values in Y channel,

which means the similarity of blocks will be determined by Y channel, and then

performed in Cr and Cb channels.

One thing that needs to be pointed out is, images denoised by the original NLM

filter might have a color leaking problem, which was discussed in previous chapters.

The reason is, it only used the pixels closed in grey values (as related pixels) to modify

the image (without considering the the effect of distance closed pixels). It was also

pointed out by the authors in [16], that the best performance of this filter will obtain

is when denoising images with periodic patterns, since many similar blocks could be

found and used in denoising. But this will bring another problem, for images without

many periodic patterns, it smoothes (sometimes over-smoothes) the homogeneous

regions quite well, but for a region with subtle details and a lot of noise, (frequently

happened in a dark region), the performance is not that good. Fortunately, extended

by the cross-channel paradigm, a slight blurring effect on Y channel will preserve

enough details while the aggressive blurring in Cr and Cb channels will remove the

noise as much as possible. See Figure 42 and 43.
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Figure 40: A chicken image with real noise and its blue channel.

Figure 41: Left: 100% crop part from a chicken image. Right: blue channel of this
image.
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Figure 42: Left to right: the crop area denoised by the original NLM filter (3
iterations) and cross -channel NLM fiter (3 iterations), respectively. Note that the
both are clean, but the left one is a little bit over-smoothed.

Figure 43: Left to right: blue channels of previous denoised images. Note that much
more details are kept in the right one.
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7.8 Cross-channel Steering Kernel Regression Method

Recall the original SKR method, the estimation of the u(x) is computed from a

weighted least-squares optimization problem:

min
{βn}

P∑
i=1

[
yi − β0 − βT1 (xi − x)− · · ·

]2
KHsteer

i
(xi − x)

with

KHsteer
i

(xi − x) =

√
det(Ci)

2πh2µ2
i

exp

{
−(xi − x)TCi(xi − x)

2h2µ2
i

}
.

where Ci is computed from equation (5.1.10).

The solution of β0 for the least-squares estimation is

β̂0 = eT1 (XTWX)−1XTWy

where e1 = (1, 0, · · · , 0)T is a column vector in RP ,

y = [y1, y2, · · · , yP ]T , b = [β0, β
T
1 , · · · , βTN ]T ,

W = diag[KHsteer
1

(x1 − x), KHsteer
2

(x2 − x), · · · , KHsteer
P

(xP − x)],

and

X =



1 (x1 − x)T vechT{(x1 − x)(x1 − x)T} · · ·

1 (x2 − x)T vechT{(x2 − x)(x2 − x)T} · · ·
...

...
...

...

1 (xP − x)T vechT{(xP − x)(xP − x)T} · · ·


. (7.8.10)

Now consider a color image in mY CrCb space. Since the size and shape of foot-

prints determines where to blur, and parameters P (local window size) and h deter-

mines how much to blur. The natural thinking would be using Y channel to compute

steering matrices (which determines the footprint), and using larger values of P and

h in Cr and Cb channels to obtain a stronger blurring effect.
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In details,

CNL(~u(x)) = CNL(u1(x)~i+ u2(x)~j + u3(x)~k)

= CNL1(uY (x))~i+ CNL2(uCr(x))~j + CNL3(uCb(x))~k (7.8.11)

where

CNL1(uY )(x) = eT1 (XT
YWYXY )−1XT

YWY yY ,

CNL2(uCr)(x) = eT1 (XT
CrWCrXCr)

−1XT
CrWCryCr,

CNL3(uCb)(x) = eT1 (XT
CbWCbXCb)

−1XT
CbWCbyCb,

where yY , yCr, yCb and XY , XCr, XCb are defined similarly as in (5.1.4) and (5.1.5),

but in different channels and with differnt P s. For WY , WCr and WCb:

WY = diag[KHsteer
1,Y

(x1 − x), KHsteer
2,Y

(x2 − x), · · · , KHsteer
P1,Y

(xP1 − x)],

WCr = diag[KHsteer
1,Cr

(x1 − x), KHsteer
2,Cr

(x2 − x), · · · , KHsteer
P2,Cr

(xP2 − x)],

WCb = diag[KHsteer
1,Cb

(x1 − x), KHsteer
2,Cb

(x2 − x), · · · , KHsteer
P3,Cb

(xP3 − x)],

where we choose P2, P3 > P1 and

KHsteer
i,Y

(xi − x) =

√
det(CY

i )

2πh2
1µ

2
i

exp

{
−(xi − x)TCY

i (xi − x)

2h2
1µ

2
i

}
,

KHsteer
i,Cr

(xi − x) =

√
det(CY

i )

2πh2
2µ

2
i

exp

{
−(xi − x)TCY

i (xi − x)

2h2
2µ

2
i

}
,

KHsteer
i,Cb

(xi − x) =

√
det(CY

i )

2πh2
3µ

2
i

exp

{
−(xi − x)TCY

i (xi − x)

2h2
3µ

2
i

}
,

here h2, h3 > h1. So 3 channels share same steering matrices (at each pixel) computed

from Y channel, and when denoising Cr and Cb channels, the larger P s and hs will

obtain stronger noise blurring effect. See Figure 44-47.
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Figure 44: Left: chicken image denoised by SKR method, 1iteration; Right: cross-
channel method performed on cross-channel SKR method, 1iteration.

7.9 Comparisons and Experiments

Here are some examples showing the cross-channel effect. Figure 47-50 were intro-

duced in [44]. We use the reconstructed blue channel to indicate the effectiveness

of denoising. We have to make the comment that, although after several iterations,

filters without cross-channel may clean the noise quite well, the cross-channel reduces

the number of iterations and preserve the sharpness of edges.
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Figure 45: Blue channel of the previous images. The right one looks cleaner in
many areas.

Figure 46: Left to right: 100 % crop of the previous images denoised by SKR
schemes with and without cross-channel, respectively, 1 iteration. The noticeable
noise in the left one is much more than in the right one.

72



Figure 47: The blue channels of previous crops. Obviously the right one is much
better.

Figure 48: Another cut of the chicken image and its blue channels.
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Figure 49: The denoised images by wavelet hard (left) and soft (right) thresholdings
in the RGB space. Either noticable noise still exists due to high noise in blue channel,
or the image is excessively smeared.

Figure 50: The denoised image by MTV in the RGB space (left) and its blue
channel (right). Noticable noise still exists due to high noise in blue channel even the
recomposed image has most of the noise removed.
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Figure 51: The denoised image by MTV in mY CrCb color space (left) and its blue
channel (right) which is much cleaner than the original one.
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CHAPTER VIII

CONCLUSION

We have reviewed the previous mathematical models of denoising. For the grey value

images, we analyzed method noise of some methods.

Particularly, for Kernel Regression model, an adaptive bilateral filter is introduced

as complementary to enhance it. Significant improvement can be seen when we de-

noise an image with noise in discrete distribution, e.g. salt and pepper noise, and,

the extreme case, a clean image with no noise.

Also a non-local bilateral filter is proposed based on the idea of non-local means

filter. In this part, the idea of related pixels is taken out, e.g. all pixels closed

both in spatial distance and intensity distance of the whole image should be taken

into account to denoise. Here comes out the non-local bilateral fiter. Using Sapiro’s

blocks pre-classification, this algorithm works fast and efficiently. Also it solved the

color leaking problem which exists in performance of the original NLM filter.

For digital color images with real noise, based on the analysis of color space de-

composition and noise distribution, we proposed a cross-channel paradigm. A new

mY CrCb color space is built particularly for this method, which significantly makes

the algorithm efficiently remove the noise in chrominance channels and keep the ge-

ometry and details well relying on the luminance channel. This method can be widely

used together with almost any of the previous denoising methods but saves the num-

ber of iterations.

For all models, more details preservation and more noise removal are always a

trade-off task. So the essential question in denoising is: What on earth is a noise? Do

we have an exact mathematical definition of it? Unfortunately, the answer is no. The
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reason can be described by the brilliant maxim circulated among signal processing

experts:

”What to one is a noise is often a signal to another.”
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