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Abstract

In this paper we study a situation in which agents embedded in a network simul-

taneously play interrelated bilateral contest games with their neighbors. Spillovers

between contests induce complex local and global network effects. We first charac-

terize the equilibrium of the game on a given network. Then we study a network

formation model, introducing a novel but intuitive link formation protocol. As links

represent negative relationships, link formation is unilateral while link destruction

is bilateral. The unique stable network topology is a complete K-partite network

with partitions of different sizes. Stable networks exhibit properties that are in line

with empirical and theoretical findings from other disciplines.
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1 Introduction

A contest is a strategic interaction in which opposing parties exert costly resources in order

to increase their chances to gain control over scarce resources. Contests have been studied

in many contexts, including political rent seeking (Hillman and Riley, 1989), discretionary

spending of top managers (Inderst et al., 2007), competitions between the departments

and schools of universities for funding (Pfeffer and Moore, 1980), sports competitions

(Szymanski, 2003), litigation (Sytch and Tatarynowicz, 2014), armed conflict (König

et al., 2015). Individuals often compete with several different opponents simultaneously.

In this case, the set of bilateral contest relations in a population can be described as a

network. We will refer to such a network as a contest network. Contest networks have

recently received attention in the literature. For instance, (Sytch and Tatarynowicz, 2014)

analyze the network of contest relationships (litigation and antitrust disputes) among US

companies and (König et al., 2015) study the network of enmities in the Second Congo

War. Figure 1 illustrates a simple network of conflicts among major military forces in

Europe from 1872 to 1907.
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Figure 1: Networks of enmities in Europe (1872 - 1907) (Nodes: Great Britain (GB),

France (Fr), Russia (Ru), Italy (It), Germany (Ge), and Austria-Hungary (AH)). Source:

(Antal et al., 2006)

It has been emphasized in the literature that existing enmity relations affect the

further evolution of enmity relations. Examples include interstate conflicts (Levy and

Thompson, 2011), and litigation among firms (Sytch and Tatarynowicz, 2014). However,
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a formal treatment of the formation of contest networks has been almost completely

neglected in the networks literature1.

The main objective in this paper is to study the formation of contest networks and

the properties of stable contest networks. To do so, we first analyze the contest game on

a given network. When the network is given, agents choose the amount of effort to exert

in every specific contest (the effort is link-specific). There are local spillovers across the

contests a player is involved in, as she spends the same type of resources (time, money,

soldiers) on each of her contests. These spillovers have complex global effects that are

mediated by the contest network. Our model of a game on a fixed network can be seen

as a modest generalization of the model proposed by (Franke and Ozturk, 2015). Using

the same approach as in (Franke and Ozturk, 2015), we show that there is a unique, pure

strategy Nash equilibrium of the contest game on a network. Furthermore, we define a

concept of a player’s strength in the contest network, which is (the strength) endogenous

to the model and closely related to the total spending of that player in the equilibrium.

The strength of a player is completely determined by the (global) position of that player

in the network. Equipped with this result, we turn our attention to the question of

network formation.

In the network formation model, agents decide who to engage in contest with (form

negative links) and which contests to end (destroy negative links). As the network

changes, the effort that players exert in each particular contest will in general change.

Thus, our model of network formation can be thought of as a model of network forma-

tion coupled with a model of a game on a network. We posit that links can be formed

unilaterally (filing a lawsuit, starting a war). On the other hand, to sever a link (ending

a litigation process, ending a war), both parties must prefer not to engage in a contest.

To the best of our knowledge, this link formation protocol is novel in the literature.

Within this framework, we are primarily interested in understanding which networks

are most likely to arise as stable networks. We say that a contest network is stable

when no player wishes to create an additional link and no two connected players have an

incentive to sever an existing link between them. We allow for simultaneous creation and

destruction of links.

The main result of the paper provides a characterization of stable network topologies.

We show that in every stable non-empty network, players are partitioned in K ≥ 2

partitions of unequal sizes. Members of the same partition do not have links with each

other, but have links with all other players in the network. So, even though players are

ex-ante homogeneous, the stable non-empty network is necessarily asymmetric.

1Exceptions are (Hiller, 2013) and (Jackson and Nei, 2015). We discuss their contribution later in
this paper
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The intuition behind the result can be summarized as follows. In the model, a strong

player2 has an incentive to form a link with a weak player provided their difference in

strength is large enough. This is because it is cheaper to extract resources from weak

players than from strong players. As the number of opponents of a weak player increases,

she becomes relatively weaker and therefore a more attractive opponent for other strong

players.

This mechanism leads to network configurations involving three generic types of play-

ers in a stable network. The strongest players in the society (attackers) extract rents

from all the players they are linked to. Mixed type players are strong enough to extract

resources from the weakest players and at the same time weak enough to be attractive

opponents for the strongest players. Weak players are victims. They do not extract re-

sources from anyone, and everyone extracts resources from them. There will always be

a single class of attackers and a single class of victims in a stable non-empty network.

Remaining K − 2 classes will be classes of mixed types. There are no links between

members of the same class while there is a link between any two players belonging to two

different classes.

As transferable contests are wasteful (the effort is costly and the prize is a transfer),

an empty network is the unique network topology that maximizes total welfare.

Studying contests has a long tradition in economics, going back to the seminal con-

tributions of (Tullock, 1967) and (Krueger, 1974). The importance of the structure of a

contest network has recently been acknowledged in the literature, both theoretically and

empirically. Two papers that are close to our work are (Franke and Ozturk, 2015) and

(König et al., 2015). The former analyzes a model where individuals are embedded in a

network of bilateral contests and choose their degree of fighting effort against their neigh-

bors. The latter studies a conflict model on a network where links can be of two types:

enmity links or alliance links. All agents participate in a single n-lateral contest and the

network structure is built into the payoff function. They also conduct an econometric

analysis using data on the Second Congo War, and find that there are significant fighting

externalities across contests. However, both (Franke and Ozturk, 2015) and (König et al.,

2015) study contests on a given network, while in this paper we are primarily interested

in how contest networks are formed and what are the properties of stable contest net-

works. (Goyal et al., 2016) provide a comprehensive review of the literature on conflict

and networks.

To the best of our knowledge, only two other papers study the formation of networks

with antagonistic links. In (Hiller, 2013), players form positive links (friendship) and

negative links (enmity). A negative link indicates that players are involved in a contest. In

2Strength is an endogenous concept in our model, and it is a function of the global network structure.
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(Hiller, 2013), players do not choose the fighting effort, and a player’s strength in a contest

is determined by the number of friends she has. In our model, players noncooperatively

choose the fighting effort in each of their contests and player’s strength depends on the

global network structure and on the strengths of all players in the network in a nontrivial

way. Furthermore, the link formation protocol and the stability concept employed by

(Hiller, 2013) are different from those in our paper. It is interesting, however, that

the stable network structures predicted by both models are essentially the same, which

indicates the robustness of the results from both papers. (Jackson and Nei, 2015) study

the impact of trade on the formation of interstate alliances and on the onset of war. They

show that trade can mitigate a conflict.

The rest of the paper is organized in 4 sections. Section 2 lays out the model. In

Section 3, we present the main results on stable and efficient networks. Section 4 discusses

specific modeling choices and extensions. We conclude in Section 5. All the proofs are

given in Appendix A. Appendix B contains an alternative specification of the model.

2 The Model

We describe the model starting from the main building block - the bilateral contest game.

Then we describe the contest game played on a network and provide results that will be

useful to explore network formation. The network formation model is introduced in

Subsection 2.3

2.1 Bilateral contest game

We model the bilateral contest following (Hillman and Riley, 1989). There are n = 2

ex-ante identical players competing over a transfer R. In this paper we consider players as

conflicting parties (countries, tribes, interest groups). The transfer R can be interpreted

as loot from armed conflict or damages awarded after litigation.

A player can influence the probability of winning the contest by allocating resources

to competing with the opponent. We assume that players simultaneously choose the

amount of resources si ∈ [0,+∞) to spend on the contest. The resources are costly, and

we denote by c(si) the individual cost of spending amount of resources si. We make the

following assumptions on the cost function c.

Assumption 1

Function c : R+
0 → R+

0 is continuous, twice continuously differentiable with c(0) = 0,

c′(s) > 0 and c′′(s) > 0 for all s ∈: R+
0
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Let pi be the probability that player i will win the contest. Then the expected payoff

of player i who spends the amount si of resources on the contest with player j is given

by:

πi(si, sj) = piR− pjR− c(si) (1)

Equation (2) defines the outcome probability pi.

pi = pi(si, sj; r) =
φ(si)

φ(sj) + φ(si) + r
(2)

A function that maps spendings s into outcome probabilities is known in the literature

as a contest success function (CSF)3. The parameter r > 0 determines the probability of

a draw (there is no transfer between players in the event of a draw). Here, we assume that

r is relatively small. Function φ is the technology function4 which transforms resources

allocated to a contest into actual means of fighting. We make the following assumptions

about the technology function φ.

Assumption 2

The technology function φ : R+
0 → R+

0 is:

(i) Continuous and twice differentiable

(ii) Strictly increasing (φ′(s) > 0) and weakly concave (φ′′ ≤ 0)

(iii) φ(0) = 0

The first assumption is technical. The second basically imposes non-increasing returns

to scale of the technology function. The third assumption guarantees that zero spending

implies zero actual means of fighting.

It is worth noting that the game described above has a zero sum flavor, in that the

winner of the contest receives a transfer from the loser. Additionally, players spend costly

resources on competing. Importantly, this means that when players are homogeneous,

the payoff for both players will be negative. So, if there is a choice, players will opt for

not playing the contest game.

The bilateral contest game has a unique and symmetric Nash equilibrium in pure

strategies (Nti, 1997). When r is small enough, the equilibrium is interior. In this case,

the equilibrium strategy of player i is defined with the following implicit function:

φ′(s∗ij)R = (r + 2φ(s∗ij))c
′(s∗ij)

3There are several different specifications of CSF considered in the literature, see for example (Jia
et al., 2013). The specification used in this paper has been studied in (Nti, 1997)

4One can think of it as an analogue of a production function.
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Figure 2: Bilateral contest game - best response functions

The bilateral contest game is neither a game of strategic substitutes nor a game of strate-

gic complements. The best response functions (see Figure 2) are non-linear and non-

monotonic. This property, as we will see in what follows, makes it a real challenge to

study the contest game on a network.

2.2 Contest game on network

This section is closely related to (Franke and Ozturk, 2015). The difference is that we

allow for a positive probability of a draw and a general technology function5.

Consider a population composed of a finite set of ex-ante identical agents, N =

{1, 2, ..., n}. These may be countries or tribes (as in our conflict example), firms, di-

visions in a multidivisional organization, interest groups. We indicate that i and j play

the bilateral contest game by gij = gji = 1 (network g is undirected). The set of contests

in the population can be formally described by network g = {(gij)}i,j∈N . We refer to g

as the contest network. Let Ni = {j ∈ N : gij = 1} denote the set of i’s direct neighbors

in network g. The degree di of node i is defined by di = |Ni|.
Let g be a contest network. In the contest game on network g, every player i chooses

the amount of resources (sij)j∈Ni
to devote to each contest she is involved in. Thus, the

strategy space of player i is the set Si = R+
0
di .

The payoff of player i choosing strategy si when other agents play s−i is defined by:

πi(si, s−i g) =
∑
j∈Ni

(
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r

)
− c(Ai) (3)

where Ai =
∑

j∈Ni
sij is the total spending of player i in all of her contests. We assume in

5In (Franke and Ozturk, 2015) φ is assumed to be identity mapping and r = 0
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(3) that the size of the transfer R is independent of the network structure and the same

for every contest gij
6. We normalize R = 1 for exposition simplicity7.

The specification of the cost function in (3) conveys the idea that there are cost

externalities across contests for player i, as she spends the same type of resources (money,

time) in all her contests. From Assumption 1 it follows that the marginal cost of player i

in a contest with j is higher when i spends more in other contests. Therefore, a player’s

spending in a particular bilateral contest will depend on that player’s spending in all her

other contests.

We are interested in pure strategy Nash equilibria of the contest game on a network.

Definition 1

A pure-strategy Nash equilibrium of the contest game on network g is a strategy profile

s∗ ∈ S1 × S2 × ...× Sn such that:

π(s∗i , s
∗
−i, g) ≥ π(si, s

∗
−i) ∀(si ∈ Si ∧ i ∈ N)

The following result will have important implications for our study of network forma-

tion.

Proposition 1

The contest game on a network has a unique pure-strategy Nash equilibrium. There exists

ε > 0 such that the equilibrium is interior when r < ε.

Proof. See Appendix A

Proposition 1 is important because it implies that when r is low, the unique pure-

strategy equilibrium of the contest game will be fully characterized with the set of first-

order conditions of the players’ optimization problem. In what follows, we will assume

that r is chosen in such a way that the interiority of the equilibrium is guaranteed.

Consider now any two connected players i and j. The first-order conditions that

characterize their equilibrium behavior in contest gij are given by:(
(r + 2φ(s∗ji))φ

′(s∗ij)

(r + φ(s∗ij) + φ(s∗ji))
2
− c′(A∗i ) = 0

)
∧
(

(r + 2φ(s∗ij))φ
′(s∗ji)

(r + φ(s∗ij) + φ(s∗ji))
2
− c′(A∗j) = 0

)
(4)

Simplifying (4) we get the following equation.

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

=
c′(A∗i )

c′(A∗j)

6We use gij to denote the link between nodes i and j in network g and to refer to the contest between
players i and j.

7This normalization does not have any significant impact on our results
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As φ′(x) > 0 and φ′′(x) ≤ 0 and c′′(x) > 0 we have:

A∗i > A∗j ⇒
c′(A∗i )

c′(A∗j)
> 1⇒

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

> 1⇒ s∗ji > s∗ij (5)

where the last implication in (5) is due to the facts that φ is an increasing function and

φ′ is a decreasing function.

In the equilibrium the player whose total spending is lower will win a contest with

higher probability. This observation reflects the fact that the more ’exhausted’ player

(the one who spends more resources in the equilibrium) performs worse in a particular

contest. The reason is that an additional unit of resources is more costly for her due to

the convexity of the cost function. This apparently counterintuitive observation - that a

player spending more in total loses8 a contest against player spending less in total - will

be used extensively in the next section. Based on the above considerations, we introduce

our notion of relative strength of players.

Definition 2

Player i ∈ N is said to be stronger than player j ∈ N in contest network g if A∗i < A∗j

Note also that the equilibrium strategy of a player is uniquely determined by her

position in the contest network. This is because the network g essentially determines the

system of first-order condition equations. As spillovers across contests are global, it is not

just the local structure of the network that matters. However, finding an explicit relation

between the position of a player in the network and her equilibrium strategy proved to

be infeasible. In Section 5 we briefly discuss this issue.

2.3 Network formation

We now explore which contest networks are likely to arise. To understand which networks

are strategically stable networks, we first need to define how links can be formed and

destroyed (link formation protocol). In this paper, a link between two players indicates

that they are engaged in an antagonistic interaction. To start such an interaction, action

by one party suffices. For instance, to start a war one country waging war is sufficient;

or one side filing a lawsuit is sufficient to start a litigation process. On the other hand,

for there to be no contest, both parties have to agree. Thus, in our model of network

formation, links are formed unilaterally while the destruction of a link is a bilateral

decision. When the interaction is such that the existence of a link implies an adversary

relationship, we believe the above link formation protocol is the natural one. To the best

of our knowledge, this is the first paper in the literature to consider such a link formation

protocol.

8We say that agent i loses the contest against player j when p∗i < p∗j
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Informally, we say that network g is stable when (a) no player wants to create ad-

ditional links, and (b) no player can improve her payoff by creating a set of links while

simultaneously severing some existing links, and (c) no player can improve her payoff by

severing links.

Let us now formally define our concept of stability. First, we introduce the notion of

action equilibrium, and then define the concept of stability we use.

Definition 3 (Action equilibrium)

A network g is in action equilibrium if all actions sij and sji assigned to every contest

gij ∈ g are part of the unique Nash equilibrium of the game on a fixed network

Definition 4 (Stable network)

A network g in action equilibrium is said to be a stable network if (6) holds for every

agent i ∈ N and any two (possibly empty) sets of nodes A ⊆ N and B ⊆ N

(i) πi(g + {gij}j∈A) ≤ πi(g)

(ii) πi(g + {gij}j∈A − {gij}j∈B) > πi(g)⇒ (∃j ∈ B) : πj(g − gij) < πj(g)
(6)

Definition 4 implies that players are allowed to remove and replace multiple links at

the same time. Allowing players to manipulate several links at the same time is not

crucial for our results - as can be seen from the proofs of our claims. Assuming that

players can create, sever or replace only one link at a time would not affect the results of

the paper. On the other hand, the assumption that players can replace a link is necessary

for our results. This assumption is made in other models of network formation, including

(Watts, 2001) and (Goyal and Vega-Redondo, 2007).

When deciding on her links, player i knows the network g and the equilibrium strategy

profile s∗. A player will create a link only if it is strictly profitable for her to do so. If

a player is indifferent between keeping or destroying a link, the link will be destroyed.

Players, therefore, prefer to be involved in a smaller number of contests. This tie-breaking

rule does not have any significant effect on our results.

In our model of network formation, agents are myopic. As our model combines both

network formation and playing a game on a network, the assumption of myopic behavior

in the model has twofold meaning.

Assumption 3 (i) A player decides to add or sever links under the assumption that

players in the network will play the same strategy in all other remaining contests.

The effort levels (sij, sji) assigned to the newly-formed link gij are determined as

the solution of the bilateral contest game, keeping all other actions in the network

fixed (see Example 1)

10



(ii) Agents do not take into account future changes of network g that may be the result

of their adding or severing links

We believe that (i) in Assumption 3, apart from appearing in the literature9 and

being convenient, is natural. Solving for the Nash equilibrium of the game on a fixed

network is analytically intractable, and computationally intensive. The reason is that

the equilibrium is characterized by the first-order conditions (4), which is a system of

|{gij}ni,j=1| non-linear equations. So it may be unsound to assume that players have the

cognitive ability to predict all the adjustments that will take place in all the contests in

the network when they create or sever a link. Furthermore, we show in Subsection 4.1

that strategy profile s of the game on a fixed network will globally converge to the action

equilibrium when agents follow a simple and natural myopic strategy updating process.

We use this result in Subsection 4.1 to justify the notion of stability from Definition 4 as

a steady state of a coupled dynamic process of network formation and playing the game

on a network. Item (ii) in Assumption 3 is prevalent in the network formation literature

(Jackson, 2008), and does not require further elaboration.

Example 1

Let c(x) = 1
2
x2. Suppose network g is in action equilibrium, and denote with A∗i , A

∗
j

the total equilibrium spending of players i and j respectively. When link gij is created,

corresponding actions sij and sji are determined as the solution of:

2sji − r
(sij + sji + r)2

= (A∗i + sij)

2sij − r
(sij + sji + r)2

= (A∗j + sji)

which is given by

sij =
2 + A′i

(
A′i + A′j −

√
4 + (A′i + A′j)

2
)

2
√

4 + (A′i + A′j)
2

> 0 (7)

Here A′i = A∗i − r/2. Player i will wish to form link gij when

sij − sji
(sij + sji + r)

+ A∗2i − (A∗i + sij)
2 > 0

and (sij, sji) are determined with (7), and analogously for player j.

On the other hand, the existing link gij will be destroyed if both players agree to destroy

it, that is when πi(si, s−i, G− gij) ≥ πi(si, s−i, G) and πj(sj, s−j, g − gij) ≥ πi(sj, s−j, g).

This will be the case when

A∗2i − (A∗i − s∗ij)2 −
s∗ij − s∗ji

(s∗ij + s∗ji + r)
≥ 0 ∧ A∗2j − (A∗j − s∗ji)2 −

s∗ji − s∗ij
(s∗ij + s∗ji + r)

≥ 0

9See for example (Jackson and Watts, 2002) who make the same assumption
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3 Analysis

Consider network g which is in the action equilibrium. We can rank all players in the

network in increasing order with respect to their total equilibrium spending (A∗1 < A∗2 <

... < A∗K), where K ≤ n is the number of different total spending levels in the network.

We denote by Ai the class of nodes whose total equilibrium spending is A∗i .

We say that player i has control over link gij if it is beneficial10 for player j to destroy

link gij. Thus, when agent i has control over gij it is completely up to her whether the

link is destroyed. This is an important notion as the link destruction is a bilateral action.

Note that both i and j are in control of link gij when this link is not beneficial to either

of them. Recall that by Definition 2 we say that player j is stronger than player i when

A∗i > A∗j . In general, we refer to A∗i as the strength of player i (higher A∗i implies a weaker

player i). It is clear that when i is stronger than j, then i controls link gij.

Example 2

Consider network g depicted in Figure 3.

A1
* = 0.96

1

π1=-1.93

A2
* = 0.70

2

π2=-0.34

A3
* = 0.70

3

π3=-0.34

A4
* = 0.47

4

π4=0.12

A5
* = 0.47

5

π5=0.12

Figure 3: Contest network

It is important to note that the above concept of strength is endogenous and crucially

depends on the global structure of the network. When the contest network changes, then

in general all strengths of all players in the network will change.

The total spending of each node in the action equilibrium (strength) is indicated above

the node. There are three classes of node in network g, based on their total equilibrium

spending - members of the same class have the same vertex shape. Agents 4 and 5 are

the strongest agents, while agent 1 is the weakest. Agent 4 is in control of link g41, since

10A link gij is said to be beneficial for player i if the creation of this link (if it did not exist) makes
player i better off and if the destruction of this link (if it exists) makes player i worse off

12



agent 1 would prefer to sever link g41, as this would increase her payoff. Agent 1 is not in

control of link g41, as agent 4 prefers to keep this link. Both agents 3 and 2 are in control

of link g32, as both of them would like to sever it. The network in Figure 3 is obviously

not stable.

Let us define the net payoff of player i from contest gij with:

πi(gij) =
φ(s∗ij)− φ(s∗ji)(

φ(s∗ij) + φ(s∗ji) + r
) − (c(A∗i )− c(A∗i − s∗ij)) (8)

We now state the result which enables us to compare different contests of a player,

and which will be very useful in studying stable contest networks.

Proposition 2

Let a ∈ Ai, b ∈ Aj, c ∈ Ak such that i < j < k and gab, gac ∈ g. Then s∗ab > s∗ac,

s∗ba > s∗ca, furthermore πi(gab) < πi(gac)

Proof. See Appendix A

Proposition 2 contains an important intuition for our main result. It states that a

strong player contesting two players j and k spends less and has a higher expected payoff

in the contest with the weaker player of the two. Thus, a strong player has an incentive

to compete with the weakest agents in the society.

Our main result states that a stable network has to be a complete K-partite network

with partitions of different sizes. We prove this result by proving the set of intermediate

results, reducing the set of possible stable networks. Let us first introduce the following

definition.

Definition 5

Player a ∈ Ai is an attacker if all of her contests are with agents from A i = {Aj|j > i}.
Player a ∈ Ai is a mixed type if there exist players b and c such that gab, gac ∈ g and

A∗b > A∗a > A∗c Player a ∈ Ai is a victim if she has all of her contests are with agents

from A i = {Aj|j < i}

It is clear that every player i is one of 3 types defined in Definition 5. Note also that,

in a stable network, all attackers must receive a positive payoff from all their contests. If

this is not true for some attacker i, then since she controls all her links, she could deviate

and destroy non-profitable links. Furthermore, any player j in a stable network must be

stronger than all opponents of some attacker i in order not to be connected to i. This is

because an attacker always has an incentive to switch from a strong to a weak opponent.

We state this formally in Lemma 1.
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Lemma 1

Let a ∈ A , and A is a class of attackers. Let b and c be two nodes in the network such

that A∗b ≤ A∗c , gab = 1 and gac = 0. Replacing gab with gac is a profitable deviation for

player a.

Proof. See Appendix A

Figure 4 illustrates the statement of Lemma 1.

A1
* = 0.49

1A2
* = 0.70

2

A3
* = 0.84

3

4

5

(a)

1

2

3

4

5

(b)

Figure 4: Profitable deviation - player 1 replaces g12 with g13, network (a) becomes

network (b)

The following corollary is direct consequence of Lemma 1.

Corollary 1

If in a stable network player a ∈ Ai has a link with player b ∈ Aj and i < j then she has

a link with every player c ∈ Aj+k k = 0, 1, 2, ..K − j

Proof. See Appendix A

We next show that a non-empty stable network must be connected. Recall that

Lemma 1 states that if there exists a player k in the network such that A∗k < A∗j ∧ gik =

0 ∧ gij = 1 and player i has control over gij, she will have an incentive to replace gij

with gik. We argue that this implies that there cannot be more than one component in

a stable non-empty network. To see this, suppose that, contrary to what is asserted, a

stable network is split into two or more components. Consider two components such that

attackers in those components earn a positive payoff11. Let m be the weakest player in

these two components. Then, by Lemma 1, an attacker from the component that does

not include m has an incentive to sever one of her links and form a link with m. We state

this result in Lemma 2

11We present the arguments more formally in the proof in the appendix
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Lemma 2

A non-empty stable network must be connected

Proof. See Appendix A

Example 3 illustrates the intuition behind Lemma 2

Example 3

In (a) node 3 who is an attacker has an incentive to form a link with the weakest player

in the network, which results in network (b). In (b), both player 2 and player 1 have

incentive to sever link g12 and form a link with player 4.

1

A1
* = 0.70

2

A2
* = 0.49

A3
* = 0.49

3

A4
* = 0.83

4
A5
* = 0.48

5

A6
* = 0.48

6

A7
* = 0.48

7

(a)

1

A1
* = 0.50

2

A2
* = 0.5

A3
* = 0.47

3

A4
* = 0.94

4
A5
* = 0.47

5

A6
* = 0.47

6

A7
* = 0.47

7

(b)

Figure 5: Profitable deviation in case of not-connected network

In the rest of the paper we will take it as given that the stable network is connected.

Our results so far are based on the fact that weak players are attractive opponents.

Let us now focus on attackers. By definition, an attacker has control over all her links.

Therefore, it is always feasible for an attacker to imitate the linking strategy of another

attacker. Building on this observation, we can state the following lemma.

Lemma 3

Two players that belong to the same class of attackers A have the same neighborhood

Proof. See Appendix A

Since all attackers in the same class have the same neighborhood in a stable network, it

must be that they have the same payoff. We argue now that there can be at most one class

of attackers. Suppose that there is more than one class of attackers and that members of

different classes of attackers have different payoffs. Since attackers have control over their

links, we can show that members of a class with low payoff have an incentive to imitate

the strategy of members of a class with high payoff. And since they are attackers, this

deviation is feasible under the link formation protocol. This implies that all attackers in
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a stable network must have the same payoff. Furthermore, the incentive to attack weaker

players will incite all attackers to have the same neighborhood. Eventually, the network

will have only one class of attackers. We formalize this intuition in the following lemma.

Lemma 4

There is only one class of attackers in a stable network

Proof. See Appendix A

Lemma 4 and Corollary 1 imply that members of the unique class of attackers are

connected to all nodes in the network that are not attackers. To see this, note that class

A2 must be a class of mixed types or victims, as there is only one class of attackers. In

either case, Lemma 4, together with the fact that two players from the same class cannot

be connected in a stable network, implies that all members of A1 and A2 are connected.

Then Corollary 1 implies that attackers are connected to all other nodes in the network.

Let us now turn to mixed types in a stable network. Using the same reasoning as in

the case of attackers, we can conclude that all members of a mixed class must have the

same neighbors in the subset of players that are weaker than they are. We show that the

same will hold with respect to their stronger neighbors. We state this result as a separate

lemma.

Lemma 5

In a stable network all members of a mixed type class are connected to all other nodes in

the network that do not belong to their class.

Proof. See Appendix A

Lemma 3 and 5 directly imply:

Corollary 2

There is only one class of victims and all victims have the same neighborhood

Proof. Omitted

We are now ready to state the main result of the paper regarding the structure of

stable networks.

Proposition 3

A stable network is a complete K-partite network

Proof. See Appendix A
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An example of a stable network is given in Figure 6

A2 = 1.18

A1 = 0.68

Figure 6: A stable network - complete K-partite, K = 2

We have shown that in a stable network we can partition all agents into K < n

different classes with respect to their equilibrium spending. Members of the same class

are in contest with all agents who are not members of their own class. The classes in a

stable network cannot be of the same size. If this were the case, all players in the network

would have the same total spending and therefore no contest would be profitable for any

of the players. In Proposition 4, we note that stronger classes (classes with low total

equilibrium spending per node) must have more members than weaker classes.

Proposition 4

Let |Ak| denote the number of nodes that belong to class Ak. Then |Ak| > |Ak+1| ∀k ∈
{1, ..., K − 1}

Proof. See Appendix A

It is clear that |Ak| > |Ak+1| is not a sufficient condition for the stability of the

network. The difference between |Ak| and |Ak+1| must be large enough to ensure that

members of the stronger class do not find it payoff-improving to sever links with members

of the weaker class. Links that can be created in a complete K-partite network are links

between players from the same partition and therefore with the same strength. Note,

however, that in a complete K-partite network, no player will wish to create a link,since,

as we have seen before, link gij such that A∗i = A∗j = A cannot be profitable.

Let us now discuss the sufficient conditions for the stability of a complete K-partite

network. For simplicity let us assume that r → 0, and that φ is the identity mapping. As

discussed above, a sufficient condition for stability is that no player wants to sever a link.
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No player will want to destroy a link if every contest is profitable for one of the players.

We can express the sufficient conditions for stability of a network in terms of the total

spending in the equilibrium.

Proposition 5

A complete K-partite network will be stable if for every contest gij

c′(A∗j)− c′(A∗i )
c′(A∗j) + c′(A∗i )

> c(A∗i )− c
(
A∗i −

2c′(A∗j)

c′(A∗i ) + c′(A∗j)
− r

2

)
Proof. See appendix A

We now focus on a particular class of complete K-partite networks - bipartite networks

(K = 2). Assume, for simplicity, that the cost function is given by c(x) = x2. Denote the

two partitions by K1 and K2, and the sizes of the partitions by k1 and k2 respectively.

Let k1 > k2. Due to the symmetry, agents that belong to the same partition will play the

same strategy in every contest gij. Then, the total effort of members of the two partitions

can be written as A∗1 = k2s
∗
1 and A∗2 = k1s

∗
2, where s∗i , i ∈ {1, 2} is the effort level in each

contest of members of partition Ki. The following proposition holds.

Proposition 6

A complete bipartite network with sizes of partition k1 and k2 (k1 > k2) will be stable

when k1 >
1−4k2+6k22+(2k2−1)

√
1−4k2+8k22

2k2

Proof. See Appendix A

The payoff of a player i ∈ K1 increases with k1, and is non-monotone in k2. Specifi-

cally, the payoff of player i ∈ K1 will increase in k2 as long as: 2(k
3
2
1 − k

3
2
2 )− k

1
2
1 k

1
2
2 (3k

1
2
1 +

5k
1
2
2 ) > 0 The payoff of a member of the larger partition is affected in two ways when the

size of the smaller partition increases. First, contests become more costly, as the mem-

bers of the smaller partition become stronger. The second effect is that players from K1

have more opponents to extract resources from. Depending on which effect dominates,

the payoff of agents from the larger partition will increase or decease with the size of the

smaller partition.
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Figure 7: Payoff of members of partition K1 as a function of k2. k1 = 50

3.1 Efficiency

It is easy to show that the unique network structure that maximizes the total utility of

society is an empty network. This is a direct consequence of the transferable nature of

the contest game and the fact that effort is costly. Indeed, the total payoff that society

obtains from network g can be expressed as:

U(g) =
∑
i∈N

πi(si, s−i; g)

=
∑
i∈N

∑
j∈Ni

(
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r
− c(Ai)

)
= −

∑
i∈N

c(Ai)

The following proposition directly follows from the above discussion

Proposition 7

The efficient network is the empty network

Proof. Omitted

4 Discussion

4.1 Dynamics of network formation

We can think of the network formation process in this paper as a discrete dynamic

process. Time is indexed with t ∈ N ∪ {0}. In period t = 0 an arbitrary contest network

g is given12. For every period t:

12Due to the ’negative sum’ nature of the contest game, the empty network will always be stable in
our model. In order to describe the dynamic process that leads to a non-empty stable network, we
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(i) At the beginning of period t the network from t− 1 is in the action equilibrium

(ii) Random player i is chosen and she updates her links according to the link formation

protocol, resulting in network gt+1 (which is not in the action equilibrium)

(iii) The second dynamic process (action adjustment process13) starts, and all agents

update their strategies in contests on network gt+1 according to the process formally

described in what follows.

Example 4 illustrates the formation process

Example 4

Let us consider a path from network (a) to stable network (d) in Figure 8.

(a) (b)

12

A3
* = 0.97

3

A4
* = 0.70

4

A5
* = 0.70

5

π5=-0.33

6

A1
* = 0.49

1

A2
* = 0.70

2

A3
* = 0.84

3

4 5

6

(c) (d)

12

A3
* = 0.94

3

4

A5
* = 0

5

6

12

A3
* = 1.03

3

π3=-2.9

4

A5
* = 0.46

5

π5=0.17

6

Figure 8: An illustration of network formation process

(a)→(b): In network (a) node 5 is chosen to update her linking strategy. Link g54 is

not profitable for 5, as 4 and 5 have the same strength. Link g53 is not profitable for 5,

even though 5 is stronger than 3. Thus, it is profitable for player 5 to update her linking

strategy by severing links g54 and g53. This action is feasible, as 5 has control over her

links.

(b)→(c): Player 1 updates her strategy. She finds it profitable to replace link g12 with

assume that, because of some non-modeled mutation or a tremble, the initial conditions are given with
a potentially non-empty network.

13We will assume that this process takes place in continuous time (so it happens on a much faster
time-scale than the network formation process, which is discrete).
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link g13, as 3 is weaker than 2. This is a profitable deviation according to Lemma 1

(c)→(d): Only node 5 in network (c) has an incentive to update her linking strategy.

No other node in (c) has an incentive to change her strategy (3 would prefer to destroy

her links, but cannot because links incident to 3 are beneficial to opponents of 3). 5 forms

link g53, which is profitable for her. The network in (d) is a stable network (complete

bipartite).

Let us formally describe the action adjustment process. We assume that player i

updates her strategy following a simple gradient-based adjustment as defined in equation

(9)

dsi
dt

= α∇iπi(s), α > 0, i = 1, .., n (9)

where πi(s) = πi(s1, s2, ..., si, ...sn) and ∇iπi(s) =
(
∂πi
∂si1

∂πi
∂si1

... ∂πi
∂sidi

)
is the gradient of

the payoff function with respect to si. It is clear that the pure-strategy Nash equilibrium

defined in Definition 1 is a steady state of this dynamics. We prove that this Nash

equilibrium is a globally asymptotically stable state of (9). Let us define function J :∏
i[0,M ]di →

∏
i[0,M ]di with:

J(s) =


∇1π1(s)

∇2π2(s)

...

∇nπn(s)


We can now write system (9) in a more compact form

ṡ = αJ(s) (10)

To prove global stability, we need to show that the rate of change of ||J || = JJ ′ is always

negative (and equal to 0 in the equilibrium). Let us denote by G the Jacobian matrix of

J . The following holds.

d

dt
JJ ′ = (Gṡ)′J + J ′Gṡ = (J ′G′J + J ′GJ) = J ′(G′ +G)J

From the proof of Proposition 1, it directly follows that (G′ + G) is a negative definite

matrix. This implies that d
dt
JJ ′ < 0, which is what we had to prove. Thus, if every player

adjusts her actions according to the adjustment process in (10), the action adjustment

process converges, irrespective of the initial conditions. The discussion above implies the

following proposition.

Proposition 8

The action adjustment process given by equation (10) is globally asymptotically stable
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Proof. See Appendix A

It is interesting to note that Proposition 8 has a very practical application. It provides

an efficient way to numerically calculate the action equilibrium on an arbitrary network.

It is clear that the described network formation process is a path dependent pro-

cess. Example 5 illustrates how starting from the same initial condition (a) the network

formation process can lead to two different stable networks (d).

Example 5

Figure 9 illustrates path dependency of the network formation process. The resulting

stable network depends on the order in which agents are chosen to update their linking

strategy. The agent which updates linking strategy is indicated with light blue color of the

node

(a) (b) (c) (d)
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Figure 9: The network formation process is path dependent

4.2 Relation to structural balance theory

In this subsection we show how our main result fits with the theory of structural balance

from social psychology. We first note that the absence of a link can be interpreted in our

model as a self-enforcing commitment not to engage in a contest. So the absence of a

negative (contest) link can be viewed as a positive link.

The theory of (strong) structural balance, first formulated by (Heider, 1946), applies

to situations in which relations between agents can be either negative (antagonistic) or

positive (friendship). It states that in groups of three agents, the only socially stable

structures are those in which all three agents are friends (all links are positive) or two of

them are friends, with the third being a common enemy (one positive and two negative

links). In other words, a friendship is transitive. There are two social structures that

satisfy structural balance (Cartwright and Harary, 1956): (i) all agents are friends or (ii)

agents are divided into two groups, members of the same group are friends, members
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of different groups are enemies. For positive links, a network that satisfies structural

balance will be a complete network or a network with two components that are cliques.

For negative links, it will be either an empty network or a complete bipartite network.

It has been argued in (Davis, 1967) that in many contexts we may have a situation in

which all links in a triad are negative. To encompass this type of configuration, the

concept of weak structural balance is proposed. The implication for the global structure

when allowing for this type of triad is the emergence of additional balanced network

structures. For positive links, these are networks with more than 2 components in which

every component is a clique. For negative links, they are complete K-partite networks.

+

+ +

1 2

3

(i) Balanced

-

+ +

1 2

3

(ii) Not balanced

-

- +

1 2

3

(iii) Balanced

-

- -

1 2

3

(iv) Not strongly balanced, weakly balanced

Figure 10: Structural balance

There are a number of empirical papers that find evidence in favor of structural

balance theory in different settings, see for example (Antal et al., 2006, Szell et al., 2010,

Sytch and Tatarynowicz, 2014). A textbook treatment of structural balance theory can be

found in (Easley and Kleinberg, 2010). In our model, stable networks are always weakly

balanced (they satisfy weak structural balance). Strong structural balance is satisfied in

particular cases - when the stable network is a complete bipartite. It is important to

note that structural balance is a concept concerning only the sign of links, which does

not say anything about the intensities/weights assigned to links. Stable networks in our

model are signed and weighted14, therefore the model yields insights that go far beyond

14We can assign the equilibrium efforts s∗ij , s
∗
ji as weights to every link gij

23



structural balance theory.

5 Conclusion

In this paper, we study a transferable contest game played on a network and explore the

formation of contest networks. We provide a stylized model of contest network formation

which captures the following qualitative properties of contest-type relations: (i) they are

costly, (ii) the probability of a favorable outcome increases with a player’s own effort

and decreases with the opponent’s effort, (iii) there are spillovers between contests (iv)

starting a contest is a unilateral decision and ending a contest is a bilateral decision.

We believe that the qualitative insights of the model are applicable to many real-world

situations including competitions between divisions in companies, lobbying, litigation and

armed conflict.

When the contest network is given, the model essentially leads to a definition of

strength (contest centrality) in the network - a player will be strong if she does not

have many opponents and if her opponents are not strong. The recursive nature of this

concept of strength is a common feature of global centrality measures in networks (i.e.

Katz centrality, Bonacich centrality, PageRank). However, as the contest game is a game

with non-linear and non-monotone best responses we cannot hope to obtain a simple

explicit representation for contest centrality. Actually, the system of equations which

defines contest centrality is given with equation (11).



0 g12
(A1+A2)2

g13
(A1+A3)2

· · · · · · g1n
(A1+An)2

g21
(A2+A1)2

0 g23
(A2+A3)2

· · · · · · g2n
(A2+An)2

...
...

. . .
...

...
...

...
. . .

...
...

gn1

(An+A1)2
gn2

(An+A2)2
gn3

(An+A3)2
· · 0





A1

A2

...

...

An


=



A1

A2

...

...

An


(11)

Although, from Proposition 1, we know that system (11) has a unique solution, finding

the analytical solution of (11) for an arbitrary network proved to be infeasible. However

one can fairly efficiently calculate the strength of a node in the contest network using a

numerical algorithm based on Proposition 8.

Even though solving for the equilibrium of the game on a given network is analytically

infeasible, we show, for a general technology and cost function, that a stable network must

have a very specific structure: it must be a complete K-partite. With more assumptions

on the cost and the technology function, we are able to narrow down the set of potentially
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stable networks and provide sufficient conditions for stability. As the transferable contest

is a wasteful interaction, an empty network is the efficient network structure.

There are several avenues for future research. One interesting direction would be to

replace the transferable contest with a contest in which players compete for a share of

an exogenous prize. This modification would not change the existence and uniqueness

results from Subsection 2.2. However, in this case it is not clear why link destruction

should be a bilateral decision, if the prize exists independently of the contest. A patent

race (innovation contest) is a more appropriate situation to model in this way (Baye and

Hoppe, 2003). This approach would extend naturally to cases where a contest is not

necessarily bilateral - for instance a competition among n firms on m markets.
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Appendix A: Proofs

We first provide a definition of a concave game.

Definition 6

A n-player game is a concave game if (i) the strategy space (S) is given with S = {S1 ×
S2 × ... × Sn|Si ⊂ Emi ∧ mi ∈ N} and Emi is a closed, convex and bounded subset of

Euclidian space15 and (ii) the payoff function πi(s) of every player i is continuous in

s = (s1, s2, ..., sn) and concave in si ∈ Si for a fixed s−i ∈ S−i

Proof of Proposition 1. Uniqueness: We first show that the contest game on a

network is a concave game, according to Definition 6

(i) The strategy space S of the game is in general unbounded, but since the transfer

R is finite, and the cost function c is strictly increasing and convex, there exists a

point M ∈ R such that c(M) > R. No player will wish to exert effort larger than

M . Therefore we can bound the strategy space from above.

(ii) It is clear that the payoff function πi is continuous and twice differentiable on its

domain. To show that the payoff function of player i is concave in si we show that

Hessian of a player’s payoff function with respect that player’s strategy is a negative

definite matrix. To see this, note that

∂2πi

∂sij
2 =

(r + 2φ(sji)) (φ′′(sij)(r + φ(sij) + φ(sji))− 2φ′(sij)
2)

(r + φ(sij) + φ(sji))3
− c′′(Ai) < 0 (12)

The inequality in (12) holds as the first term in the difference is negative (due to

the properties of function φ stated in Assumption 2) and the second term is positive

(due to the strict convexity of function c). Furthermore

∂2πi
∂sij∂sik

= −c′′(Ai) < 0 ∀j, k ∈ Ni

Thus, the Hessian matrix Hi of function πi with respect to si is the sum of diagonal

matrix Hi1 with diagonal elements equal to:

(r + 2φ(sji)) (φ′′(sij)(r + φ(sij) + φ(sji))− 2φ′(sij)
2)

(r + φ(sij) + φ(sji))3
< 0

and matrix Hi2 which has all the elements equal to −c′′(Ai) < 0. Hi1 is a negative

definite matrix and Hi2 is a negative semidefinite matrix, thus Hessian Hi = Hi1 +

Hi2 is a negative definite matrix.

15(Rosen, 1965) actually proves a more general result when the strategy space is coupled, that is when
S ⊂ Em = Em1 ×Em2 × ...×Emn is a closed, convex and bounded set. Here we consider a special case
when the strategy space is uncoupled
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We have proved that the contest game an a network is a concave game. Let us

now define function σ : S × Rn
+ → R assigned to the contest game on a network with

σ(s, z) =
∑n

i=1 ziπi(s). Following (Rosen, 1965) a concave game will have a unique Nash

equilibrium if σ is diagonally strictly concave. To prove that function σ is diagonally

strictly concave we use the result from (Goodman, 1980) which states that σ(s, z) will

be diagonally strictly concave if the payoff functions are such that for every player i: (a)

πi(s) is strictly concave in si, (b) πi(s) is convex in s−i and (c) σ(s, z) is concave in s for

some z ≥ 0. We have already shown (a). To see that (b) holds, note that (when gij = 1)

:

∂2πi
∂s2ji

=
(r + 2φ(sij)) (2φ′(sji)

2 − φ′′(sji)(r + φ(sij) + φ(sji)))

(r + φ(sij) + φ(sji))3
> 0

Furthermore, (∀gjk ∈ g : k 6= i), ∂2πi
∂s2jk

= 0 and ∂2πi
∂sjk∂slt

= 0 for any other combination of

players j, k, l and t. Thus, the Hessian of πi with respect to s−i is a diagonal matrix with

all entries positive or zero and therefore positive semi-definite.

To prove (c) choose z = 1. Then:

σ(s,1) =
n∑
i=1

∑
j∈Ni

(
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r
− c(Ai)

)
= −

n∑
i=1

c(Ai)

The last equality above holds since in the first sum above
φ(sij)

φ(sij)+φ(sji)+r
appears exactly

once with a positive sign (as a part of payoff function πi) and exactly once with a negative

sign (as a part of function πj). Function −
∑
i

c(Ai) is strictly concave due to the strict

convexity of the cost function c. Hence, (c) also holds. We have shown that there is a

unique equilibrium of the game on a fixed network.

Interiority: Consider two players i and j such that gij = 1. Let us first prove that it

cannot be s∗ij = s∗ji = 0 ∀r > 0. Assume this is not true. Then, the payoff of both players

in contest gij will be 0. Consider now the deviation of player i from s∗ij = 0 to sij = r.

The probability of winning for player i becomes pij = φ(r)
φ(r)+r

= α > 0 and the probability

of losing pji is still 0. This deviation is profitable as long as c(A∗i + r)− c(A∗i ) < α. As c

is continuous, we can always find r such that |c(A∗i + r)− c(A∗i )| < α. Therefore, in this

case there always exists r such that the deviation from sij = 0 to sij = r is profitable.

For such r it cannot be that s∗ij = s∗ji = 0 in the equilibrium.

Let us now prove that for two connected players i and j it cannot be that s∗ij 6= 0

∧s∗ji = 0 ∀r > 0. Suppose that, contrary to what is asserted, this is the case for some

two players i and j. That is, suppose s∗ij 6= 0 and s∗ji = 0. Equation (4) implies that:

∂πi
∂sij
|(s∗ij ,s∗ji) =

(r + 2φ(0))φ′(s∗ij)

(r + φ(s∗ij) + φ(0))2
− c′(A∗i ) =

rφ′(s∗ij)

(r + φ(s∗ij))
2
− c′(A∗i ) = 0 (13)
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But we can always find r small enough such that (13) cannot hold for any s∗ij > 0 and

A∗i > 0. Indeed, since R is finite and the number of nodes in the network is finite, then

A∗i must be finite for every i. For any cost function c ∈ C2 which satisfies Assumption 1

we can find U > 0 such that c′(x) < U for every finite x. Thus c′(A∗i ) is bounded from

above. Furthermore, we can always choose r > 0 small enough such that
rφ′(s∗ij)

(r+φ(s∗ij))
2 > U

∀s∗ij ∈ [0,M ], since for any s∗ij > 0 we have that
rφ′(s∗ij)

(r+φ(s∗ij))
2 →∞ when r → 0.

Proof of proposition 2. Expressing φ(s∗ij) from (4) we get that in the equilibrium:

φ(s∗ij) =
2
[
φ′(s∗ij)

]2
c′(A∗j)φ

′(s∗ji)(
φ′(s∗ij)c

′(A∗j) + φ′(s∗ji)c
′(A∗i )

)2 − r

2
(14)

Let us define function f with:

f(x, y; a, b, r) =
2a2c′(y)b

(ac′(y) + bc′(x))2
− r

2
(15)

We first notice that (16) holds.

∂f

∂x
= − 4a2b2c′(y)

(bc′(x) + ac′(y))3

∂f

∂y
=

2a2b(bc′(x)− ac′(y))

(bc′(x) + ac′(y))3

(16)

When 0 < a ≤ b the signs of derivatives in (16) are: ∂f
∂x
< 0 and ∂f

∂y
≶ 0 when x ≶ y.

Recall also that from (5) A∗j > A∗i ⇒ s∗ij > s∗ji. Furthermore, since φ is increasing and

concave, s∗ij > s∗ji ⇒ φ′(s∗ij) ≤ φ′(s∗ji). Now, setting a = φ′(s∗ij) and b = φ′(s∗ji) in (16)

it directly follows that A∗c > A∗b > A∗a implies s∗ab > s∗ac and s∗ba > s∗ca. To prove that

πi(gac) > πi(gab) we plug (14) in (8). After some algebra we get:

πi(gij) = 1−
2φ′(s∗ji)c

′(A∗i )

φ′(s∗ij)c
′(A∗j) + φ′(s∗ji)c

′(A∗i )
− (c(A∗i )− c(A∗i − s∗ij))

It is clear that πi(gij) is strictly increasing in A∗j . Thus, A∗c > A∗b > A∗a ⇒ πi(gac) >

πi(gab)

Proof of Lemma 1. Let us write (14) for contest gab as:

φ(s∗ab) =
2 [φ′(s∗ab)]

2 c′(A∗b − s∗ba + s∗ba)φ
′(s∗ba)

(φ′(s∗ab)c
′(A∗b − s∗ba + s∗ba) + φ′(s∗ba)c

′(A∗a − s∗ab + s∗ab))
2 −

r

2

As a player assumes that actions in all other contests will remain fixed when she creates

a new link, s∗ac and s∗ca are determined as the solution of system (17) (see Example 1 for
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details on the creation of a new link in the network):

φ(s∗ac) =
2 [φ′(s∗ac)]

2 c′(A∗c + s∗ca)φ
′(s∗ca)

(φ′(s∗ac)c
′(A∗c + s∗ca) + φ′(s∗ca)c

′(A∗a − s∗ca + s∗ac))
2 −

r

2

φ(s∗ca) =
2 [φ′(s∗ca)]

2 c′(A∗a + s∗ac)φ
′(s∗ac)

(φ′(s∗ca)c
′(A∗a + s∗ac) + φ′(s∗ac)c

′(A∗c − s∗ac + s∗ca))
2 −

r

2

(17)

It is clear that, A∗c + s∗ca > A∗c ≥ A∗b . Since A∗c + s∗ca > A∗b Proposition 2 implies that this

deviation is profitable.

Proof of Corollary 1: Suppose that the claim of the corollary is not true. If link gab

is not profitable for player a then it is not profitable for player b, as a is stronger than b.

Then link gab cannot be a part of a stable network. Therefore, it must be that link gab is

profitable for player a. Let c ∈ Aj+k k ≥ 0 be a node such that link gac does not exist.

Then, from Lemma 1 the deviation of player a in which she destroys link gab and creates

link gac is profitable.

Proof of Lemma 2: We use a proof by contradiction. Assume that the claim of the

lemma does not hold. Then there are at least two components in a stable network.

Choose two components (C1 and C2) from the network such that the weakest player in

the network (w1) belongs to C1. All opponents of w1 must find the contest with w1

beneficial. Otherwise the network would not be stable. Then, the strongest player in C2

(denote her with a2) by Lemma 1 has an incentive to form a link with w1 instead of link

with one of her current opponents which are not weaker than w1. If |C2| = 1 then a2 has

an incentive to form a link with w1 as she is stronger than the strongest member of C1

(since A∗a2 = 0 in this case).

Proof of Lemma 3: Consider two nodes a, b ∈ A . Let us first prove that they must

have the same degree. Suppose that this is not true, that is, suppose that in a stable

network db > da. It cannot be that Na ⊂ Nb because then the total spending of a and

b would not be equal (they would not belong to the same class). As Na 6= Nb, there

must exist nodes h ∈ Na\Nb and k ∈ Nb\Na. Suppose that, without loss of generality,

A∗k ≥ A∗h. Then it would be beneficial for player a to replace link gah with link gak

according to Lemma 1. This is in contradiction with the assumption that the network is

stable. So it must be da = db.

Let us now prove that Na = Nb. Again, assume this is not the case. Then we can find

two nodes h ∈ Na\Nb and k ∈ Nb\Na such that, without loss of generality, A∗k ≥ A∗h.

But then it would be better for player a to replace link gah with link gak according to

Lemma 1. Thus, network g cannot be stable. The assumption that Na 6= Nb led us to

the contradiction and must be rejected.
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Proof of Lemma 4: We again use a proof by contradiction. Suppose there are two dif-

ferent classes of attackers and denote them with A1 and A2 and let A∗2 > A∗1. As Lemma

3 implies that all members of the same class of attackers have the same neighborhood,

we restrict our attention to representative nodes a ∈ A1 and b ∈ A2.

Let us first prove that it must be πa = πb. Assume this is not the case. Then it

must be that Na 6= Nb. Since A∗2 > A∗1 there are two possible situations that we need to

consider.

(i) Na ⊂ Nb. If πa > πb player b would prefer to imitate a’s linking strategy (this is

feasible as she is an attacker), and if πb > πa then a will have an incentive to mimic b16.

(ii) Na 6⊂ Nb =⇒ (∃k ∈ Na\Nb ∧ ∃h ∈ Nb\Na). In this case, if A∗k ≥ A∗h Lemma 1

implies that b has a profitable deviation. If A∗k < A∗h the same Lemma implies that a has

a profitable deviation. Hence, in a stable network it must be πa = πb.

We now prove that in a stable network it must be that Na = Nb. As A∗2 > A∗1 it

must be that db > da or the distributions of total spending of a′s and b′s opponents are

different. We show that in both cases there exists a feasible deviation which makes one

of the players better off.

Let us first consider the case when db > da. If Na ⊂ Nb we have (i) from above. If

Na 6⊂ Nb there must exist nodes k ∈ Na\Nb and h ∈ Nb\Na. If A∗k ≥ A∗h then player b

would be better off by replacing contest gbh with gbk by Lemma 1. If A∗k < A∗h player a

can make an analogous profitable deviation.

If da = db then, since A∗2 > A∗1 the strengths of a′s opponents are different than the

strengths of b′s opponents. Let q be the strongest node from (Na∪Nb)\(Na∩Nb) 6= ∅. If

link gaq exists, then it is profitable for a to replace gaq with gay where y ∈ Nb\Na . If gbq

exists, then the profitable deviation is switching from gbq to gbz where z ∈ Na\Nb.

Proof of Lemma 5: If there are only two classes of nodes in a stable network (A1 and

A2) then there are no mixed types. Suppose there are more than two classes of nodes

in a stable network. First, let us consider the strongest mixed type class (A2). A node

m ∈ A2 must be connected to all nodes from A1. This is because a mixed type player m

must be connected with at least one stronger player, which must be an attacker because

of the choice of m. Then, Lemma 4 implies that m must be connected to all players from

class A1.

Let us now prove that all members of the class A2 have the same neighborhood.

Suppose this is not true. Let {m1, m2} ⊂ A2 ∧ Nm1 6= Nm2 . As (A1 ⊂ Nm1 ∧ A1 ⊂
Nm2) =⇒ ((Nm1/Nm2) ∪ (Nm2/Nm1)) ∩ A1 = ∅. Thus, if Nm1 and Nm2 differ, they

must differ only in the part where m1 and m2 have control over their links. It cannot

16Recall that we assume that when a player is indifferent between two actions he prefers to have less
links.
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be Nm1 ⊂ Nm2 ∨Nm2 ⊂ Nm1 because then it would be A∗m1
6= A∗m2

. Consider two nodes,

k ∈ Nm1\Nm2 and l ∈ Nm2\Nm1 . Note that sets Nm1\Nm2 and Nm2\Nm1 cannot be

empty. If A∗k ≥ A∗l then m2 has a profitable deviation (switching from gm2l to gm2k). If

A∗k < A∗l , then m1 has an analogous profitable deviation.

Let A3 be the third strongest class in the network. If K = 3 then, by definition, all

players A2 must be connected to some players of A3, because otherwise they would not

be mixed types. Note that if player i ∈ A3 is connected to some player from class A2

that she is connected to all players from class A2 since we have shown that all members

of class A2 have the same neighborhood. If there exists some player j ∈ A3 who is not

connected to all players from A2 then she is only connected to all players from A1 but

then i and j cannot belong to the same class. So, for K = 3 the claim of the lemma

holds.

If K > 3, then A3 is a class of mixed types. Corollary 1 implies that all members of

A1 must be connected to all members of A3 since they are connected to all members of

A2 and A∗2 < A∗3.

We now show that all players from A2 are connected to all players from A3. Suppose

that there exist players i ∈ A2 and j ∈ A3 such that gij = 0. If this is the case we show

that there will always exist a profitable deviation some player in the network.

Since all players from A2 have the same neighborhood then there will be no links

between members of class A2 and A3. This means that players from A3 lose only in

contests with players from A1. Because of this, they have control over all of their links

except links that connect them to players in A1. Furthermore, A∗2 < A∗3 =⇒ Ni 6= Nj.

Suppose first that πi 6= πj i ∈ A2, j ∈ A3.

(i) Ni ⊂ Nj then j can destroy links towards all players in Nj/Ni and increase her

payoff i (if πi > πj), or player i can create links to all players in Nj/Ni and increase her

payoff (if πi < πj)

(ii) Ni 6⊂ Nj =⇒ (∃k ∈ Ni\Nj ∧ ∃h ∈ Nj\Nh). But then, if A∗k ≥ A∗h Lemma 1

implies that j has a profitable deviation, and if A∗k < A∗h, the same lemma implies that i

has a profitable deviation.

If πi = πj since A∗3 > A∗2 then it must be that dj > di or that the distributions of total

spending of i′s and j′s opponents are different. We show that in both cases there exists

a profitable deviation.

Let us first consider the case when di > dj. If Ni ⊂ Nj we have (i) from above. If

Ni 6⊂ Nj we have an analogue of (ii) from above.

If di = dj then, since A∗3 > A∗2, the strengths (total equilibrium spending) of i′s

opponents are different than the strengths of j′s opponents. Let q be the strongest node

from (Na∪Nb)\(Na∩Nb) 6= ∅. If link giq exists, then it is profitable for i to switch from q
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to any node in the set Nj\Ni . If gjq exists, then the profitable deviation for b is switching

from q to some node in Ni\Nj.

Thus, we have shown that in a stable network it cannot happen that there are no

links between members of A2 and A3.

Using the same technique as above, we can show that all players from Ak must be

connected to all players from Ak+1. Since the number of nodes in the network is finite, the

number of classes is finite and this procedure reaches AK in a finite number of steps.

Proof of Proposition 4: Suppose that the claim does not hold, so let A∗k < A∗k+1 and

assume that |Ak| < |Ak+1|. Note that (4) implies that s∗ij = s∗ih ∀{i, j, h} ∈ N ∧ {j, h} ∈
Al, l ∈ {1, 2, ..., K}. So, in a stable network, for any two players x, y such that x ∈ Ak and

y ∈ Ak+1, we have that A∗k =
∑
i 6=k
|Ai|s∗xi and A∗k+1 =

∑
i 6=k+1

|Ai|s∗yi. Recall that due to strict

convexity of the cost function, A∗a > A∗b =⇒ s∗aj < s∗bj ∀(j ∈ N : gaj = gbj = 1). This

implies that s∗xj > s∗yj ∀j ∈ {A1,A2..,AK}\{Ak,Ak+1}. Furthermore, since A∗k < A∗k+1

we have that s∗xy > s∗yx. But then |Ak| < |Ak+1| ⇒
∑
i 6=k
|Ai|sxi >

∑
i 6=k+1

|Ai|syi =⇒ A∗k >

A∗k+1. This is in contradiction with the fact that A∗k < A∗k+1. The assumption A∗k < A∗k+1

lead us to contradiction so it must be rejected.

Proof of Proposition 5: In a complete bipartite network no player has an incentive

to form a link, as the only links that can be formed are links with players who have the

same total equilibrium spending A∗. Let us show that no player will wish to sever a link

if the condition from the statement of the proposition holds. Suppose that i ∈ K1 and

j ∈ K2 and |K1| > |K2|. Player j ∈ K2 will always wish to sever link with i ∈ K, as i is

stronger than j. From (5) we have that a player i ∈ K1 will wish to keep link gij when

φ′(s∗ij)c
′(A∗j)− φ′(s∗ji)c′(A∗i )

φ′(s∗ij)c
′(A∗j) + φ′(s∗ji)c

′(A∗i )
− c(A∗i ) + c

(
A∗i − s∗ij

)
> 0 (18)

where

s∗ij = φ−1

(
2
[
φ′(s∗ij)

]2
c′(A∗j)φ

′(s∗ji)(
φ′(s∗ij)c

′(A∗j) + φ′(s∗ji)c
′(A∗i )

)2 − r

2

)
when φ is identity mapping (18) is reduced to:

c′(A∗j)− c′(A∗i )
c′(A∗j) + c′(A∗i )

> c(A∗i )− c
(
A∗i −

2c′(A∗j)

c′(A∗i ) + c′(A∗j)
− r

2

)

Proof of Proposition 6: Setting φ to be the identity mapping, c(x) = x2 and letting
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r → 0 from (4) we get:

s∗ij =

√
kj√

kikj(
√
ki +

√
kj)2

(19)

where i ∈ K1 and j ∈ K2. To prove the claim it is enough to find conditions under which

i prefers not to destroy a link gij. Due to convexity of the cost function, if player i does

not wish to sever a single link, she will not want to sever multiple links. The net payoff

from a link gij for player i defined in (8) becomes (20).

πi(s
∗
ij, s

∗
ji) =

s∗ij − s∗ji
s∗ij + s∗ji

− (k2s
∗
ij)

2 + ((k2 − 1)s∗ij)
2 (20)

Plugging (19) into (20) we get:

πi(gij) =

√
k1 −

√
k2√

k1 +
√
k2
− k1(2k2 − 1)√

k1k2
(
2
√
k1k2 + k1 + k2

)
and after some manipulation we have that:

πi(gij) > 0⇔ k
3
2
1 + k1(1 + k1)

√
k2 − k

3
2
1 k2 − 3k1k

3
2
2 −

√
k1k

2
2 > 0

which finally gives:

πi(gij) > 0⇔ k1 >
1− 4k2 + 6k22 + (2k2 − 1)

√
1− 4k2 + 8k22

2k2

Proof of Proposition 8: It has been proved in (Goodman, 1980) that G + G′ is neg-

ative definite if function σ : S × Rn
+ → R defined in the proof of Proposition 1 satisfies

conditions (a), (b), (c) from that proof. We have proved in the proof of Proposition 1

that this is true.

Appendix B: An Alternative Formulation

Suppose that, instead of the contest game with a general convex cost function, we consider

a Colonel Blotto game with the contest success function (2). That is, suppose that

each player is endowed with an equal amount of resources (time) and the strategy is

to distribute the resources across different contests. Define the budget constraint by:∑
j∈Ni

sij = 1 ∀i, j. Following (Rosen, 1965) we can easily show that Proposition 1 will

still hold.

Let λi denote the Lagrange multiplier associated with the budget constraint for agent
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i. The first-order conditions that characterize behavior in contest gij are given by:

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + φ(s∗ij) + φ(s∗ji))
2
− λi = 0

(r + 2φ(s∗ij))φ
′(sji)

∗

(r + φ(s∗ij) + φ(s∗ji))
2
− λj = 0∑

k∈Ni

s∗ik = 1,
∑
k∈Nj

s∗jk = 1

which gives:

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

=
λi
λj

(21)

Thus, the role of λi is analogous to the role of A∗i . Higher A∗i implies a higher marginal

cost of effort, and λi is the shadow price of resources for player i.
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