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NOTATION

S Set or curve S

!S Complement of set S

iS Interior of set S (Open set bounded by a curve loop S)

eS Exterior of set S (Open set not bounded by a curve loop S)

bS Closed boundary (curve or surface) of set S

cS Closure of set S

Sr Dilation of S by radius r

Sr Set S eroded by r

A ∪B Boolean union of two sets A and B

A ∩B Boolean intersection of two sets A and B

A∆B Symmetric difference of sets A and B

moat X(A,B) (A ∪ iA)∆(B ∪ iB) ∪ A ∪B for closed loop curves A and B

i(A ∪B) ∪ A ∪B for open endpoint-aligned curves A and B

RB(A) Relative blending of A with respect to control shape B

p Cartesian point p

−→v Vector −→v

R(−→v ) Vector −→v rotated by π

|−→v | Magnitude of vector v

−→
ab Vector line segment b− a

v̂ Unit vector v̂

N̂P (p) Unit normal to set P at point p

4abc Triangle with vertices a,b, c
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CHAPTER I

INTRODUCTION

Shape processing comprises a set of theoretical and algorithmic tools for creating,

measuring and modifying digital representations of shapes (curves in 2D or surfaces

in 3D). Such tools are of paramount importance to many disciplines of computer

graphics, including modeling, animation, visualization, and image processing. Many

applications of shape processing can be found in the entertainment and medical in-

dustries. Examples of shape processing include:

1. Computing a point-to-point correspondence between different shapes

2. Identifying and filtering (smoothing) a shape’s sharp features

3. Segmenting a shape into components relevant to a particular application domain

4. Measuring the local discrepancy (difference) between shapes

5. Computing an animation that morphs (smoothly interpolates) from one shape

to another

6. Combining shapes through Boolean (union, intersection) or morphological (grow,

shrink, Minkowski sum) operators

7. Computing a rigid transformation (registration) that best aligns different shapes

Many popular algorithms applied to these problems are based on using the shortest

distance measure between sets. This measure does not take local surface orientation

into account and is asymmetric, and hence, suboptimal. One commonly used algo-

rithm for computing correspondences between registered shapes is based upon closest
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point projections for all points from A to B or B to A, or equivalently, the normal

projection from B to A or A to B [25]. To be ideal, we argue that a correspon-

dence algorithm should be symmetric and return the same result regardless of order

of operation.

Hausdorff distance [53] is a common measure for computing the global discrepancy

between two shapes. It is also based on closest projection (point-to-shape minimal

distance). Because it uses this closest-point computation, the Hausdorff distance

between two shapes A and B must be computed twice, once from A to B, and then

from B to A. The maximum of those two measures is then used. We argue that

a better discrepancy measure is one that does not require this double computation

and takes into account curve or surface orientation. Hausdorff distance is further

discussed in Chapter 6.

In an attempt to improve upon these techniques, the present thesis explores the

theoretical and algorithmic aspects of a novel difference measure, based on fitting

a ball (disk in 2D) such that it has at least one tangential contact with each shape

(curve in 2D or surface in 3D) and the ball interior is disjoint from both shapes (Fig. 1

center). This construction is both symmetric and orientation sensitive.

We propose a set of ball-based operators and discuss their properties, implemen-

tations, and applications. We divide the group of ball-based operations into unary

and binary as follows:

Unary operators include:

Figure 1: Left: Closest Point projections from the orange curve to the blue curve.
Center: Balls tangent to both curves. Right: Circular Arc mappings corresponding
to the tangent-balls (center).
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• identifying details (salient features, constrictions, sharp features)

• smoothing shapes by removing such details, replacing them by fillets and round-

ings

• segmentation (recognition, abstract modelization via centerline and radius vari-

ation) of tubular structures

Binary operators include:

• measuring the local discrepancy between two shapes

• computing the average of two shapes

• computing point-to-point correspondence between two shapes

• computing circular trajectories between corresponding points that meet both

shapes at right angles

• using these trajectories to support smooth morphing (inbetweening)

• using a curve morph to construct surfaces that interpolate between contours on

consecutive slices

The technical contributions of this thesis are focused on the implementation of

tangent-ball operators and their application to shape processing tasks. We show

specific applications in the areas of animation and computer-aided medical analy-

sis. These algorithms are simple to implement, mathematically elegant, and fast to

execute.

1.1 Target Applications

Morphing is a fundamental tool in animation design where in-between frames are

produced from a set of key-frames [21]. Artists would like to have control over cor-

respondence as well as certain feature point trajectories. Once matches and control
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Figure 2: Morphing is a fundamental tool for creating inbetweens (b, c, d) from
artist-produced keyframes (a, e) in an animation pipeline.

Figure 3: Two consecutive slices of a CT scan of a human head. The manually
segmented closed contours are shown in red.

trajectories have been specified, either automatically or by the artist, the problem

can be broken into a series of single-stroke inbetweens (morphing animations) which

can sometimes be produced automatically, especially when the keyframes are very

close together, as in Figure 2. In addition to key frame interpolation, morphing is

also fundamental to producing models from slice contours extracted from medical

image data, like the slices shown in Figure 3. We present here a morph which can

accomplish these tasks, and we compare it to other morphs in the same context.

The blending (rounding and filleting) of sharp features is a necessary operation in

the manufacturing of goods and a vital tool in CAD software. Our contribution to

this application is based on the blending of one shape relative to a second “control”

shape. This control shape defines the region to be blended as well as the local radius
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Figure 4: Given raw medical scan data (left), image segmentation and vessel ex-
traction are important for producing clean geometry (right).

of the blend. The sharp features are replaced with smooth surfaces defined by the

boundary of the sweep of a ball that rolls between the surfaces while staying in

tangential contact with each.

There are numerous algorithms for the segmentation of medical images, both in

2D and 3D [63]. Our contribution in this area is a user-guided vessel segmentation

algorithm which operates at interactive speeds. Other segmentation algorithms re-

quire between minutes and hours to compute a segmentation, which may need to be

adjusted, at the cost of additional execution time. Our system allows for user guiding

and editing of the result by culling unwanted branches and extending branches missed

by the automatic first pass, an example of which is shown in Figure 4.

1.2 Structure of the thesis

Chapter 2 introduces the key properties of tangent balls and reviews previous ball-

based techniques. Chapter 3 discusses the formulation of ball-compatibility, a funda-

mental property of pairs of curves and shapes on which this thesis is based. Chapter 4

describes relative blending, our tool for identifying and smoothing incompatible fea-

tures. Chapter 5 introduces the ball-map; its definition and implementations for shape

correspondence. Next, in Chapter 6, we discuss shape discrepancy and our ball-based
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measure. Utilizing the ball-map correspondence, Chapter 7 defines the ball-morph -

an animation between ball-compatible shapes. Chapter 8 compares the ball-morph to

other morphs using a collection of measures. For dealing with shapes that are not

ball-compatible, Chapter 9 introduces an extended ball-morph. Chapter 10 discusses

how tangent balls can be used in the segmentation of tubular structures in 2D and

3D images. Then, Chapter 11 discusses techniques for computing a smooth tubu-

lar surface that bounds the tubes. Finally, Chapter 12 describes which techniques

can be applied to medical image processing, while Chapter 13 discusses the relevant

applications to the animation industry.
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CHAPTER II

TANGENT BALLS

The ability of an algorithm to accomplish a shape processing task is limited to its

ability to perceive and understand the input. The algorithm designer supplies this

knowledge as a fixed set of rules meant to account for a range of variables in the input.

These rules are often expressed in terms of geometric primitives (points, lines, planes,

directions) of operations (fitting, intersection) and of measures (distance, proximity).

We focus on techniques where the primitive is a ball, the operation is fitting it to

achieve several tangential contacts, and the measure is the radius of the ball. Using

a ball in such a manner is easy to understand and natural for an algorithm designer,

and ultimately a user.

2.1 Ball Properties

We define it in n-dimensions as a set B(c, r) of all points with distance less than or

equal to a radius r from a center point c. The equation of a closed ball is

B(c, r) = {p : −→cp2 ≤ r2} (1)

where −→cp is the vector such that p = c +−→cp and −→cp2 stands for −→cp · −→cp where · is the

dot product. In 2D, a ball is a disk and in 3D it is a solid ball. The boundary of a

ball in 2D is a circle, and in 3D, a sphere.

In order to compute whether a point p lies within a ball of center c and radius r,

the following inequality is tested:

−→cp2 ≤ r2. (2)

The signed distance d between the boundary of a ball and a point p is computed as

d =
√−→cp2 − r (3)

7



where a negative value of d indicates that p is within the ball.

Two balls, B1(c1, r1) and B2(c2, r2), are in tangential contact when the following

equality is true:

−−→c1c2
2

= (r1 + r2)
2. (4)

Any object that intersects the boundary but not the interior of a ball is tangent

to that ball at the contact points. If you hold a ball in your hand, every point on your

hand that is touching the ball is tangent to the ball. If a ball is tangent to multiple

objects, the center of the ball is equidistant from all contact points with distance

equal to the radius. Hence, it is computationally easier to test or enforce tangential

contact with a ball than with more complex shapes.

A ball B(c, r) is tangent to a smooth shape Q at point p with surface normal

N̂Q(p) when the following equality is true:

c = p + rN̂Q(p). (5)

A shape is smooth when there is a well defined unique normal at each point on

its boundary and when the field of normals is continuous.

2.2 Additional Ball-based Tools

Additional primitive tools which are important to several tangent-ball based algo-

rithms are described here, in the form of geometric constructions.

2.2.1 Circle through 3 planar points

Given a set of 3 non-colinear points p1,p2,p3, the center c of the ball B(c, r) that is

tangent to all three points is found by computing the intersection of the perpendicular

bisectors of −−→p1p2 and −−→p2p3:

m1 = (p1 + p2)/2 (6)

m2 = (p2 + p3)/2 (7)
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c = intersect(m1, R(−−→p1p2),m2, R(−−→p2p3)) (8)

r = |c− p1| (9)

where R(−→v ) returns a vector orthogonal to −→v and intersect(s1,
−→v 1, s2,

−→v 2) returns

the point intersection between two lines each defined by a point s and direction vector

−→v .

2.2.2 Sphere through four points

Given a set of 4 nonplanar and non-colinear points p1,p2,p3,p4, computing a ball

B(c, r) that is tangent to all 4 points is similar to the 3 points method, such that the

center c is found by computing the intersection point of the bisecting planes of −−→p1p2,

−−→p2p3 and −−→p3p4:

m1 = (p1 + p2)/2 (10)

m2 = (p2 + p3)/2 (11)

m3 = (p3 + p4)/2 (12)

c = intersect(m1,
−−→p1p2

|−−→p1p2|
,m2,

−−→p2p3

|−−→p2p3|
,m3,

−−→p3p4

|−−→p3p4|
) (13)

r = |c− p1| (14)

where intersect(s1, N̂1, s2, N̂2, s3, N̂3) computes the intersection point of 3 planes de-

fined by a point s and a normal vector N̂.

2.2.3 Circle Inversion

A circle inversion is a transformation of the Euclidean plane that transforms points

across the boundary of a circle. Given a point p and a reference circle B(c, r), the

transformed point q satisfies the equation

|−→cp| · |−→cq| = r2 (15)

which is computed as

q = c +
−→cp · r2

−→cp2
(16)
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(a) (b) (c) (d) (e)

Figure 5: Several examples of circle inversion where the primitive in blue is the
inverse of the primitive in orange across the green circle.

Circles on the interior of the ball that do not pass through c are transformed to

circles on the exterior, and vice-versa (Fig. 2.2.3 (c)). If a circle on the interior does

pass through c then it is transformed to a line (infinite radius circle) on the exterior

since c transforms to infinity (Fig. 2.2.3 (a)).

This inverted geometry can make difficult problems more tractable once an inver-

sion is applied since angles between lines and curves are preserved through inversion,

as shown in Figure 2.2.3 (e), where the four corners of the inverted square are right

angles. The concept of circle inversion can also be generalized to higher dimensions.

2.3 Tangent Balls in Prior Art

Figure 6: There are up to 8 solution tangent circles (blue) to any 3 given input
circles (red).
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2.3.1 Apollonius’ Circles and Spheres

Now consider the computation of a ball that is tangent to several given balls. In 2D,

this problem is a special case of a famous problem addressed more than 2000 years ago.

The construction of tangent circles was first formally studied by Apollonius around

200 B.C. The problem he proposed, known as “Apollonius’ Problem”, is: given three

objects, each of which may be a point, line or circle, construct a circle that is tangent

to each. All possible cases were solved by construction between Apollonius and Euclid

except for the case of three circles. A solution to this final case of Apollonius’ problem

was not discovered until 1816 by J.D. Gergonne [50]. The important tool that was

needed in order to solve this problem was an understanding of circle inversion [67].

His solution is a pure construction and can be done using a compass and straight

edge. This construction yields the 8 solution tangent circles given three circles in

general positions, as shown in Fig. 6.

The Gergonne construction is outlined below. In order to obtain all possible

solutions for a given configuration, all three input circles must have different radii.

1. For each pair of circles, construct the radical axis, yielding 3 radical axis lines

2. Construct the radical center, which is the intersection of all 3 radical axes

3. For each pair of circles, construct the 2 dilation points, yielding 6 total dilation

points

4. Construct 4 dilation lines that each intersect 3 dilation points

5. Choose 1 dilation line L, compute its inversion pole (point) for each of the 3

circles

6. For each circle, construct the line through the radical center and its inversion

pole, yielding 2 points of intersection a and b, where a is the intersection point

nearest the radical center
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Figure 7: The Gergonne construction for computing the Apollonius circles.

Figure 8: There are up to 16 solution tangent spheres (two shown here in red) to
any 4 given input spheres (gray). Points of tangency are shown in purple.

7. Identify the circle C of the 3 circles that is alone on one side of the current

dilation line L

8. Construct a solution circle through point a of circle C and points b from the

other two circles

9. Construct a solution circle through point b of circle C and points a from the

other two circles

10. Repeat steps 5-9 for the remaining 3 dilation lines

We have extended this construction to 3D. The construction requires the following

modifications to the above steps:
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Figure 9: Left: The shape (orange) is grown by a constant radius, denoted by the
blue circles, to obtain the black shape. Right: A constant-radius shrink operation is
performed on the grown shape in order to produce a filleted version of the original
shape (orange). Notice the fillet at the concave vertex.

1. 12 dilation points are constructed instead of 6 in 2D

2. 8 combinations of 4 of the 12 dilation points are coplanar and define 8 dilation

planes, as opposed to 4 dilation lines in 2D

3. There are 8 radical axis planes instead of 4 radical axis lines, and they all

intersect at a single point, the radical center

4. In the final step, spheres through 4 points are constructed instead of circles

through 3 points

This produces a maximum of 16 tangent spheres to any given 4 input spheres. It

should be noted that 16 solutions do not always exist just as 8 don’t always exist in

2D. Also note that we have no proof that our construction always yields all possible

solutions for a given configuration. Two example solution spheres are shown in red

in Fig. 8.

2.3.2 Rounding and Filleting

Tangent balls have been used to compute rounds and fillets in solid models [96].

These constant radius blends of solids are defined in terms of growing and shrinking
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Figure 10: The medial axis (black) defines a set of points that are equidistant to two
or more points on a curve (orange). The medial axis transform associates a radius at
each medial axis point, defining a set of maximal balls (a subset are shown in blue),
the boundary of the union of which fully define the original curve.

operations as morphological opening and closing [76] with a ball of constant radius

r. Consider a shape S. We use respectively !S, iS, eS, bS, and cS, to denote

the complement, interior, exterior, boundary, and closure of set S. The r-filleting

Fr(S) of a set S is defined as (Sr)r, where Sr is S grown by r (the set of all points

for which the distance to S does not exceed r) and where Sr =!((!S)r), yielding

Fr(S) = (Sr)r =!((!(Sr))r). Fr(S) is the space not reachable by an open ball of

radius r that remains disjoint from S. Figure 9-right (orange) shows the result of an

r-filleting on the solid in Figure 9-left (orange). Similarly, the r-rounding Rr(S) of a

solid S is defined as (Sr)
r and is the set reachable by a closed ball of radius r in S.

2.3.3 Maximal Balls

Given a closed and regularized [114] set S, following [108], we say that a ball in S

is maximal if it is not contained in any other ball in S. The medial axis of S is

defined as the set of all points having more than one closest point to the boundary

bS. The medial axis axis M of S in the interior iS is the closure of the centers of

all maximal-balls in S. The medial axis is a set of curves (and/or points) for shapes

in R2 and a set of surfaces (and/or curves, points) in R3. The medial axis transform

(MAT) of S is the interior medial axis M of S with an associated radius (distance to

14



Figure 11: The Hausdorff distance is a common discrepancy measure. In this
example, it is represented by the black line.

bS) for each sample m on M . The possibly infinite union of the balls of the MAT of

S, is equal to S:

S =
⋃

m∈M

B(m, r(m)). (17)

In [20], state-of-the-art algorithms are given for computing the medial axis M of

a planar curve, as well as for recovering the original curve as the boundary of the

union of maximal balls described by the medial axis transform. Figure 10 shows an

example of the interior medial axis of a closed curve, and also shows several of the

maximal balls that define the medial axis transform.

The term local feature size at a point s on the boundary of S defines the closest

distance of s to the medial axis of S. Note that this includes the interior and exterior

portions of the medial axis. We use the term minimum feature size (or reach [41]) of

the set S as the smallest of all local feature sizes. Minimum feature size may also be

defined as the largest r for which Fr(S) = S and Rr(S) = S.

2.3.4 Hausdorff Distance

The Hausdorff distance [53] is related to the distance between two sets and is often

used as a discrepancy measure. H(A,B) is the Hausdorff distance between A and B

and is the smallest r for which A ⊂ Br and B ⊂ Ar.

15



Figure 12: Left: The Delaunay triangulation of the given points and the associated
circumscribing circles for each triangle. Right: The Voronoi tesselation, or medial
axis, of the given set of points.

The Hausdorff distance is based upon the point-to-shape minimal distance mea-

sure. The distance between a point a and a shape B is defined simply as d(a, B) =

min
b∈B

(dist(a,b)). This distance identifies one or several points b ∈ B that are as close

to a as possible. Extending this definition to two shapes, the Hausdorff distance is

equivalently defined as

H(A,B) = max(max
a∈A

(d(a, B)),max
b∈B

(d(b, A))). (18)

An example of this distance is shown in Fig. 11. If the curves A and B are thought

of as sidewalks and a different person is constrained to walk on each, the Hausdorff

distance defines that maximum distance apart the two people could be if one is in

pursuit of the other.

2.3.5 Delaunay and Voronoi

If S is a set of discrete points, then the medial axis of S is equal to the union of the

Voronoi edges of those points, an example of which is shown in Fig. 12 (right). Every

point on an edge of the Voronoi tessellation corresponds to the center of a circle that

is tangent to 2 points in S and contains no other points of S. The vertices of the

Voronoi tessellation correspond to the centers of maximum empty circles that are

tangent to 3 or more points in S and contain no other points of S. The dual of this
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tessellation is the Delaunay triangulation, as shown in Fig. 12 (left). The circumcircle

of a triangle in a Delaunay triangulation does not contain any other points from the

set S, and the center of the circumcircle defines a vertex in the Voronoi tessellation.

There are numerous algorithms for computing Delaunay triangulations [115] with

computational complexities in 2D ranging from O(n4) to O(n log n) [44].

If the input S is a set of curves instead of points, then the curves of the medial

axis are Voronoi curves and have the same properties as when S is a set of points.

Likewise, if the input is a set of surfaces, the surfaces of the medial axis are Voronoi

surfaces.
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CHAPTER III

BALL COMPATIBILITY

3.1 Compatibility

In general, we use the term compatibility and say that two given sets A and B are

compatible when there exists a function mc : A → B that is a homeomorphism (i.e.

is a bijection, is continuous, and has a continuous inverse m−1
c ). In this section,

we define ball-compatibility (abbreviated b-compatibility) between curves, and discuss

how it relates to the Hausdorff distance, and also how it compares with the closest-

point compatibility, or c-compatibility. We illustrate compatibility in terms of curves

in R2 for clarity. These definitions apply to surfaces in R3 as well.

A curve is simple if it is planar, connected, free from self-intersections, and if it is

topologically closed (contains its endpoints, if any). A simple curve is either a loop

(no end-points) or a stroke (two endpoints). We consider two simple curves, A and

B, that are either both closed or both strokes with identical endpoints.

We contrast ball compatibility, or b-compatibility, with the following definition of

c-compatibility.

Definition 1 (c-compatibility) A and B are said to be c-compatible if for every

point a ∈ A there exists exactly one point b ∈ B such that there exists an offset d(b)

such that a = b+N̂B(b)d(b) and for every point b ∈ B there exists exactly one point

Figure 13: Left: The blue curve is expressed as the normal offset of the orange
curve. Right: The blue curve is expressed as the ball-offset of the orange curve (and
vice-versa).
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Figure 14: Reconstruction of the ball offset

a ∈ A such that ∃d(a) such that b = a + N̂A(a)d(a).

Two curves are c-compatible when each one can be expressed as the normal offset of

the other, i.e., as a continuous height-field orthogonal to the other curve at all points

(Fig. 13-left). A more precise definition of c-compatibility is discussed in [25].

Definition 2 (b-compatibility) A and B are said to be b-compatible if for every

point a ∈ A there exists a ball B(c, r) that is tangent to A only at a and also tangent

to B at exactly one point b ∈ B.

When two curves are b-compatible, each can be expressed as the ball-offset of the

other, i.e., as a portion of the envelope swept by a variable radius disk as it rolls on

the other curve, assuming neither curve is self-intersecting (Fig. 13-right).

3.1.1 Ball offset

When A and B are b-compatible, B is the ball offset of A and hence can be represented

by A and a height field r(A). In practice, to compute the ball offset representation of

a shape B, we sample A and for each sample, a, record the associated r-value, which

is the radius of the ball that is tangent to A at a. If necessary, we recover a continuous

approximation of the height field using linear or higher order interpolation.

Given a point a ∈ A and the field value r(a) at a, we reconstruct the corresponding

point b ∈ B as follows (Fig. 14). First, we compute the normal N̂A(a) at a from the

19



Figure 15: Reconstruction of the normal N̂M(m) for use in the ball offset construc-
tion.

Figure 16: Two curves that are b-compatible (left), but not c-compatible (right).

representation of A and then construct the corresponding point m = a + r(a)N̂A(a),

which lies on the medial axis M between A and B. Then, we must compute the

normal N̂M(m). We compute this normal by measuring the local derivative of r with

respect to the arc-length of A as follows. As shown in Figure 15, we compute a line

T tangent to A at a and use it as the base of a height-field of the local values of r.

Using this local estimate of M , we are able to compute N̂M(m) by rotating N̂A(a)

by the angle tan−1((r+1 − r−1)/dist(a+1, a−1)) where +1 and −1 denote next and

previous, respectively. Finally, we compute b = a + 2(−→am · N̂M(m))N̂M(m) using

the property that 4amb is an isosceles triangle such that
−→
ab is parallel to N̂M(m)

and |
−→
ab| = 2N̂M(m) · −→am.
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Figure 17: If the curves are not smooth, they are not b-compatible. Left: if a sharp
concave feature exists, a maximal ball cannot reach the sharp vertex. Right: if a
sharp convex feature exists, there are several maximal balls which are tangent to the
sharp vertex. For these reasons, a homemorphism using maximal balls cannot exist
in either case.

3.1.2 Bounds of b-compatibility

Chazal et al. [24] show that if two curves A and B are smooth loops and their

Hausdorff distance H is less than the minimum feature size (mfs) of both A and

B, then A and B are b-compatible. Note that this is a sufficient, but not necessary

condition.

In contrast, Chazal et al. [25] show that two curves are c-compatible when their

minimum feature size f and their Hausdorff distance H satisfy the following relation:

H < (2−
√

2)mfs.

Compare this bound with the bound on b-compatibility : H < mfs. Observe that

H is proportional to the discrepancy between two shapes and that 2−
√

2 ≈ 0.58 < 1.

Thus, the b-compatibility condition is less constraining: Pairs of shapes may pass the

b-compatibility condition, while they do not pass the c-compatibility condition (See

Figure 16 for example).

The property of b-compatibility is only possible when the curves are smooth, i.e.

at least C1 continuous. Fig. 17 shows the problem when one of the curves contains

a sharp feature. If one of the curves contains a concave feature (with respect to the

other curve), there does not exist a maximal ball that is tangent to all points. Fig. 17
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(left) shows the largest possible maximal ball for the curves. If one of the curves

contains a convex feature (Fig, 17 (right)), there exists an infinite set of maximal

balls that are tangent to the sharp feature. Because this vertex is tangent to multiple

maximal balls, the other curve can no longer be represented as a ball-offset, because

more than one ball radius would be required for the sharp point.

3.2 Testing for b-compatibility

We consider 3 possible types of curves A and B in the plane for testing b-compatibility :

1. Open curves with shared endpoints that meet at angles less than π (Fig. 3.2-left)

2. Closed curves such that iA ∩ iB and eA ∩ eB are each a non-empty connected

set (Fig. 3.2-center)

3. Closed curves such that A∩B = ∅ and A∩iB = A or B∩iA = B (Fig. 3.2-right)

Note that for a closed curve A, iA denotes the open region bound by A. Also note

that type 2 can be decomposed into type 1 by cutting A and B at their intersection

points.

There are several ways to test for b-compatibility given two curves A and B in

the plane. Recall that b-compatibility is defined in terms of maximal balls that are

tangent to both A and B. As discussed in Chapter 2, the closure of the centers of

maximal balls inscribed in a set S defines the internal medial axis of S. Following

this definition, b-compatibility can be discussed in terms of the internal medial axis

M of the moat X(A,B).

Definition 3 (moat): If A and B are closed loops, then the moat X(A,B) is the

closed set (A ∪ iA)∆(B ∪ iB) ∪ A ∪ B, where (A ∪ iA)∆(B ∪ iB) is the symmetric

difference (XOR) of the closed regions bound by A and B. If A and B are open curves

that share endpoints and define a closed loop C = A ∪B, then X(A,B) is defined as

the closed set C ∪ iC.
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Figure 18: We consider three types of curves for b-compatibility : end-point aligned
open curves (left), intersecting closed curves (center), and non-intersecting closed
curves where one is bound by the other (right). The moat X(A,B) is shaded in green
for each.

Note that the definition includes A ∪B so that X includes the points of intersection

of A and B. Figure 3.2 shows X(A,B) for the three possible types of input curves.

B-compatibility implies the following additional two conditions on the input curves

A and B:

1. i!X(A,B) has no more than 2 components

2. The internal medial axis of X is simply connected

If A and B belong to one of the three types and the internal medial axis M of

X(A,B) is known, then b-compatibility can be determined by examining the topology

of M . If M is continuous and contains no bifurcations then A and B are b-compatible.

Figure 19 shows an example where the internal medial axis contains a branch. The

bifurcation point corresponds to a ball that is tangent to one of the curves at more

than one point and the branch corresponds to maximal balls that are only tangent to

the blue curve. Recall that in order for two curves to be b-compatible, the maximal

balls must be tangent to each curve at exactly one point.

If the internal medial axis of X doesn’t contain bifurcations, but does contain a

sharp (C0 continuous) feature, then A and B are defined as quasi-b-compatible. The

maximal ball centered at a discontinuity touches one or both of the curves at an
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Figure 19: If the internal medial axis (black) of X(A,B) contains bifurcations, then
the curves are not b-compatible. The maximal ball centered at the bifurcation point
touches the blue curve at 2 points.

Figure 20: If the internal medial axis of X contains a discontinuity, then the curves
are quasi-b-compatible, and contain a maximal ball (green) centered at each disconti-
nuity that is tangent to an infinite set of points on one or both curves.

infinite set of points, as shown in Figure 20.

3.2.1 Algorithms

Piecewise-circular curves (PCCs) [97] are composed of circular-arc edges that meet

tangentially (C1 continuous) at vertices. We propose the following algorithm for

testing b-compatibility between two PCCs A and B (Algorithm 1). We can use the

Apollonius solution described in Chapter 2 in order to test if any ball exists that

is tangent to three circular arcs, and if not, then A and B are b-compatible. For

every combination of three circular arcs from A ∪ B, the Apollonius solution circles
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Figure 21: Given two piecewise-circular curves (orange, blue), then the Apollonius’
circle solution (green) may be used to check for incompatible features.

Figure 22: If a constrained Delaunay triangulation in X yields a triangle with no
edges on either A or B, then A and B are not b-compatible.

are computed. Because the Apollonius solutions will be circles tangent to the three

circles that define the three arcs, the solutions are then tested for tangency with the

arcs. The remaining solutions that meet this criteria are then tested for intersection

with A and B. If a solution is found that does not intersect A or B and is within X,

then A and B are not b-compatible, as shown in Fig. 21.

As discussed in the previous section, our definition of b-compatibility doesn’t allow

for piecewise-linear curves or triangle meshes to be considered b-compatible. However,

if the curves are sufficiently smooth and densely sampled, we propose a definition for

the approximate b-compatibility of polygonal curves.

A and B are approximately b-compatible when there is a constrained Delaunay
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Algorithm 1 Pseudo-code for testing b-compatibility between two piecewise-circular
curves A and B using the greedy O(n4) algorithm. Returns true if A and B are
b-compatible, false otherwise.
1: S ← A.arcs+B.arcs
2: for all arcs s of S do
3: for all arcs t 6= s of S do
4: for all arcs u 6= s, u 6= t of S do
5: T ← Apollonius(s.circle, t.circle, u.circle)
6: for all circles c of T do
7: if s.tangentTo(c) and t.tangentTo(c) and u.tangentTo(c) then
8: valid← true
9: for all arcs v 6= s, v 6= t, v 6= u of S do

10: if c.intersects(v) then
11: valid← false
12: end if
13: end for
14: if valid then
15: return false
16: end if
17: end if
18: end for
19: end for
20: end for
21: end for
22: return true

triangulation of the vertices of the moat X(A,B) and for each Delaunay triangle,

exactly one edge is an edge of A or B. Figure 3.2.1 shows an example of a Delaunay

triangle that violates this definition. Such a Delaunay triangle corresponds to a

circumscribing ball that is tangent to one of the curves at more than one point,

thereby violating the definition of b-compatibility.

A faster algorithm for approximating the b-compatibility test on piecewise-linear

curves can be found in Chapter 9.
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CHAPTER IV

RELATIVE BLENDING

Solid models may be blended through filleting or rounding operations that typically

replace the vicinity of concave or convex edges by blends that smoothly connect to the

rest of the solid’s boundary. Circular blends, which are popular in manufacturing,

are each the subset of a canal surface that bounds the region swept by a ball of

constant or varying radius as it rolls on the solid while maintaining two tangential

contacts. We propose to use a second solid to control the radius variation. This new

formulation supports global blending (simultaneous rounding and filleting) operations

and yields a simple set-theoretic formulation of the relative blending RB(A) of a solid

A given a control solid B. We propose user-interface options, describe practical

implementations, and show results in 2 and 3 dimensions.

Figure 23: A simple example showing A (dark blue) and control shape B (red),
with disks of O (orange) in the moat X(A,B). The union of all disks in O defines
the pad P . The final blended shape RB(A) is shown in light blue.
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4.1 Introduction

Blending replaces portions of the boundary near the sharp features or constrictions

of a solid model A by smooth surfaces (blends) that connect tangentially to the

remaining part. Some blending operations are associated with one or several edges of

a solid. Others produce smooth connections between non-intersecting portions of a

solid or of two different solids. The formulation proposed here handles both types. In

the absence of aesthetic or dynamic flow considerations, which may impose functional

constraints on the nature of the blends, drafting and manufacturing practices often

call for circular blends, which have circular cross-sections [57]. Such blends are part

of the boundary of a canal surface [81], which is swept [14] by a ball as it rolls while

maintaining two or more tangential contacts with the boundary of A. When the ball

rolls in the interior of A, the removed material is called a rounding. When the ball

rolls in the exterior of A, the added material is called a fillet. If the radius of the ball is

constant the corresponding r-rounding and r-filleting operations have a set-theoretic

formulation [96] as morphological opening and closing [105] with an r-ball. They may

be applied to the entire solid or combined with Boolean operations to restrict their

effect to a portion of the solid. In this chapter, we propose a set-theoretic formulation

for variable-radius blending. The formulation of the proposed relative blending uses

a “bounding” solid B to control the radius of the rolling ball locally. Intuitively, the

rolling ball is required to stay in the symmetric difference, A∆B, and to be touching

the boundary of A and B at all times, as shown in 2D by the disks in Fig. 23.

As such, our relative blending is a global operation that blends the entire solid.

Hence the designer may not need to invoke specialized blending operations for cor-

ners where several blends meet. Because it offers a set theoretic formulation for the

resulting set, relative blending may be incorporated within a CSG design paradigm

[60] [92] and, if needed, combined with Boolean operations to localize the effect of

blending.
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(a) (b) (c)

(d) (e) (f)

Figure 24: (a) An input shape A (blue) and a control shape B (red). (b) The Dupin
cyclide (green) associated with the blend shown within B, and (c) the final rounded
shape RB(A). (d) The same setup as (a) but with B directly in the center of A. (e)
Constant radius Dupin cyclide (torus) shown within B, and the (f) final blending
RB(A).

Note that when A is the Boolean combination of two balls and B is a third ball

(Fig. 24), the blending surface is a portion of a Dupin cyclide [39]. Dupin cyclides

have been successfully used to compute smooth approximations of individual blends.

Hence, one may view the proposed approach as an extension of the Dupin cyclide

construction to more complex shapes A and B.

Observe that the spine (curve traced by the center of the rolling ball) must lie

on the medial axis (also called Voronoi) surface [84] of A (for rounding) or of its

complement, !A (for filleting). It has been suggested that variable-radius blends could

be specified by defining such a spine, either by drawing an approximating space curve

and snapping it to the medial axis surface [87] or by defining it as the intersection

of the medial axis surface with a control surface C [58]. Another option is to draw

one contact curve (also called a linkage curve or spring curve [18]) on A and compute

the spine from it. The relative blending approach proposed here offers a different

specification mechanism, which may prove more convenient for the designer. For

example, the designer may start by setting B to be identical to A and then modifying
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it locally through precise CSG operations or through less precise warping by pulling

its boundary away from the boundary of A. Intuitively, pulling further increases the

radius of the blend.

Finally, note that our relative blending may be used to perform both filleting and

rounding in a single blending operation.

In conclusion, we suggest that the proposed relative blending paradigm offers a

useful alternative to previously proposed approaches to the specification of variable

radius blending, because it offers a simple set-theoretic formulation, operates globally

on an entire solid, and simplifies the specification of complex blends.

To validate and demonstrate the proposed formulation, we have implemented it

in two dimensions for cases where both A and B are bounded by PCCs (curves made

of smoothly-connected line segments and circular arcs) [97] and in three dimensions

by voxelizing [19] [71] A and B, computing the volumetric model of the relative

blending of A with respect to B and generating the result as an iso-surface. Both

implementations are straightforward. Note that the first one is exact, while the second

one is an approximation, the accuracy of which may be controlled by adjusting the

grid size.

The computation of the exact shape of these blends in 3D is tractable for simple

situations where the blend is part of a Dupin cyclide, such as the example in Fig. 24.

In general, however, the resulting canal surfaces are highly complex [28]. Hence,

we advocate approximation or discretization, as was previously done for constant

and variable radius blends [97] [28]. Because the combination of the voxelization

process and its reverse (the iso-surfaces extraction) perform a resampling, they will

typically alter A away from the blends. Hence, a more precise approach is to trace the

variable-radius canal surfaces by “rolling” a variable radius ball that maintains two

tangential contacts with the boundary of A and one with the boundary of B. The

center of the rolling ball (i.e. the spine of the blend) follows an edge (seam [107]) of
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the Voronoi (medial axis) surface complex of the moat X. For simplicity, throughout

this chapter, we assume that A and B are closed-regularized (i.e. equal to the closure

of their interior).

The remainder of this chapter is organized as follows. We first discuss prior art.

Then we present the set theoretic formulation of relative blending. Then, we discuss

two different implementations. Finally, we propose user interface options and mention

applications.

4.2 Related Work

To put our contribution in perspective with a vast body of prior art on blending,

we organize prior approaches into two categories: (1) the proposed relative blending

approach is a ball-rolling technique, hence we contrast it with previously proposed

constant-radius and variable-radius ball-rolling techniques. (2) a broad variety of

other techniques for smoothing the sharp features of 2D shapes or 3D solids have

been proposed. We briefly mention a few examples to provide a global context of

our work and to point out similarities. Several articles include more comprehensive

surveys of the topic [129] [119].

4.2.1 Ball rolling

In this subsection, we focus on blends generated by rolling a ball [100] of constant or

varying radius [95] [118]. This is an important category, because often manufacturing

and drafting practices require that the cross-section profile of a blend be circular [57].

In [96], Rossignac and Requicha formulate a global constant radius blending

(rounding or filleting) of solids in terms of growing and shrinking operations as mor-

phological opening and closing [76] with a ball of constant radius r, as discussed

in Chapter 2. Recall that we use the term blending to refer to both filleting and

rounding.
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The advantage of this approach is that it offers a formal and unambiguous set-

theoretic specification of the result of a blending operation applied to an entire solid,

including corners where three or more blends meet. The specification is simple (in-

dicate whether you wish to fillet or blend A and specify r) and the resulting solids

are always well defined. The effect of such blending operations may be restricted to

user-selected features by combining blending and Boolean operations. The relative

blending solution proposed here preserves the advantage of constant radius blending

by offering an unambiguous set theoretic specification for a global blending, yet it

overcomes the constant-radius restriction.

A constant-radius blending operation replaces portions of the boundary of A with

blending faces. Each blending face (simply called blend hereafter) is either a portion

of a sphere of radius r that touches the boundary of A at three or more points or

the subset of a constant-radius canal-surfaces [81] [55] that is the envelope of the

region swept by a ball of radius r as it rolls on (i.e. remains in tangential contact

with) two elements (faces, edges, vertices) of the boundary of A. Canal surfaces

have a high algebraic degree, even when the two faces upon which the ball rolls lie on

quadrics. To avoid dealing with high-degree implicit surfaces, Rossignac and Requicha

approximate the constant radius canal surfaces by a series of smoothly connected

torus sections [97]. Unfortunately, these approximations of the blends usually do not

maintain a tangential contact with the faces upon which the ball is rolling, hence

potentially creating gaps or self-intersections in the boundary of the result.

Furthermore, the envelope of the canal surfaces may self-intersect. These self-

intersections must be detected and trimmed [60] [61].

Instead of a constant-radius blend, the designer may need to produce a variable-

radius blend, where the radius of the ball varies as it rolls on A. Supporting such

a functionality poses several new challenges: (1) How to precisely specify the radius

variation along a single blend, (2) how to conveniently specify the radius variation for
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all the blends in an entire solid or feature, and (3) how to provide an unambiguous

set-theoretic definition of the resulting blended solid.

As the ball rolls on two elements of the boundary of A, the resulting blend is

the subset of a variable-radius canal surface. Because the center of the ball re-

mains equidistant from both boundary elements, it must lie on their bisecting surface.

Hence, the spine of the canal-surface of each blend, i.e., the trajectory followed by

the centers of the rolling ball, is a curve on the Voronoi surface (the set of points of

A equidistant from two or more elements of the boundary of A, also called medial

axis surface [84] as discussed in Chapter 2).

Pegna [87] proposed to let the designer provide an approximation of the spine and

to use an automated iterative process to snap the spine to the Voronoi surfaces.

One may envision computing [61] the Voronoi surface M of A and then asking

the designer to trace on it a network of spines, i.e., paths for the rounding ball. For

filleting, one would use the medial surfaces of the complement !A of A. Instead of

tracing the spines manually, Chandru et al. propose to specify them as intersec-

tions of Voronoi surfaces with a reference surface C provided by the designer [22].

Chuang et al. [30] derive the spine from a reference curve endowed with a para-

metric radius function. They use a marching procedure to compute the spine and

linkage curves simultaneously. Voronoi surfaces may be computed using a variety of

approaches [84] [132]. To bypass the need of computing Voronoi surfaces, Chandru et

al. propose to trace the spines numerically and to approximate the desired portions

of variable-radius canal surfaces with pieces of Dupin cyclides [39] [74] [75] [89] [23],

which are envelopes of one of the four families of spheres that touch three given

“control” spheres. Their spines are conic sections.

Note that the relative blending approach proposed here is an extension of this

Dupin cyclide method in two ways:

1. Two of the spheres used in the definition of a Dupin cyclide are replaced by an
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arbitrary solid A.

2. The control shape B that defines the blend is not restricted to be a sphere.

The complexity of the Voronoi surfaces may appear intimidating to the designer,

since they usually include many details that are not used for a specific blending.

In contrast, the relative blending approach proposed here does not require showing

the medial surfaces to the designer and uses what we believe to be a more intuitive

control surface strategy. The proposed control surface B constrains the radius of the

rolling ball indirectly - as the rolling-ball must remain in tangential contact with two

elements of the boundary of A and with B. For example, pulling B away from A near

a concave edge will increase the radius of the rolling-ball locally and hence increase

the radius of the blend.

4.2.2 More general blends

In this section we discuss blends that are not necessarily circular. Krasauskas [66] pro-

posed to construct Pythagorean Normal (PN)-blends between natural quadrics (cylin-

ders, spheres, cones). These blends have two advantages over their canal-surfaces

counterparts: improved shapes and lower degree surfaces. A surface is Pythagorean

Normal when its normal is rational [88].

Given the implicit quadric equations G = 0 and H = 0 representing two candidate

surfaces, potential methods [56] [122] define the blend as the sweep of the curve of

intersection between G = s and H = t, where s and t satisfy f(s, t) = 0, with four

constraints: f(a, 0) = 0 and f(0, b) = 0 ensure that the first contact curve (where

the blend is in tangential contact with each quadric surfaces, also called trimline or

linkage curve) is the intersection of G = a and H = 0 and the second contact curve

is the intersection of G = 0 with H = b. f ′(a, 0) = (1, 0) and f ′(0, b) = (0, 1) ensure

that the blend is tangent to the candidate surface along the corresponding contact

curves. A conic section may be used for f . The blend is a subset of a quartic surface.
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Hoffmann and Hopcroft [59] show that such blends can be constructed when the two

contact curves lie on the same quadric surface Q. Typically, to construct such a blend,

the designer specifies the constants a and b, which control the distance between the

contact curve on one surface and the other surface. Hoffman and Hopcroft extend

this approach to blending corners where three surfaces meet [57]. Alternatively the

linkage curves can be computed through geodesic offsetting of the intersection curve

and connected through a bicubic B-spline surface blend [8].

Filkins et al. [42] propose to define the contact curves first and then to either

establish the spine or a correspondence between the trim lines. Then, tangents to

each cross-section curves of the blend may be derived so that they are orthogonal

to both the contact curve and tangent to the candidate surface upon which it lies.

Finally, arcs that interpolate these boundary conditions may be constructed in various

ways. For example, Partial Differential Equations (PDEs) may be used to define the

blend [16]. Zhang and You [134] propose a blending method based on a fourth-order

partial differential equation controlled by three vector-valued parameters. They also

present a PDE method which is able to achieve C2 continuity of the blend surface

using a sixth-order PDE with one vector-valued parameter [135].

Semi-analytic formulations of a blend of a specific type of varying radius may be

obtained for rounding intersections between specific pairs of surfaces. Fjällström’s

approach [43] replaces edges of polyhedra with cubic b-splines such that the variable

radius is controlled by weights assigned to the original edges. Blends of collections

of shapes represented by implicit surfaces [54] may be created using Ricci’s com-

binations [93] of real functions [85], as well as their generalization to convolution

surfaces [15] and blending functions [37]. Hierarchical representations combining R-

functions in a CSG-like manner were introduced in [85] and used in [130]. Rockwood

et al.’s [94] displacement method defines an implicit blending technique which cre-

ates a C1 continuous blending for the entire domain of the blend. Another implicit
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approach [86], based on displacement functions as well as R-functions, allows for the

local selection of geometry to blend using a control shape, which is also defined as

a real-valued function. This bounding control shape localizes the blend and also af-

fects its shape but doesn’t define it completely. In fact, the shape of the blend is

controlled by three additional parameters: two of the parameters are weights applied

to each shape and the third controls the total displacement of the blending surface.

For example, compare the shape of the blend in Fig. 9-e of [86] to Fig 24. At each

point of an intersection curve between two faces of A, one may consider the intersec-

tions of the two surfaces with the normal (cross-section) plane and compute a circular

rounding curve in that cross-section plane. The value of the radius for the rounding

may evolve as a function of arc-length or other parameterization of the intersection

curve. Alternatively, a 3D sweep may be computed along the intersection curves us-

ing a parameterized 2D template to define the rounding cross-sections curves [101].

Such blends may produce undesired results (such as self-intersections of the rounding

surface when, for example, filleting the intersection between a plane and a cylinder

whose axis is at 60 degrees with the normal to the plane) or simply be impossible

(when the two surfaces do not intersect at all) as illustrated in Fig. 24.

Shape blending can also be accomplished using iterative fairing approaches. A

fairing algorithm [112] reduces the problem of blending to implementing a linear-time

low-pass filter and it allows for constraining the fairing to specific portions of the input

shape and supplying other constraints. The result of a fairing can be constrained to

obey a maximum radius of curvature, for example.

4.3 Set-theoretic Formulation of Relative Blending

Consider two shapes, A and B. We use respectively !A, iA, eA, bA, and cA, to denote

the complement, interior, exterior, boundary, and closure of set A. As mentioned

previously, we assume that A and B are each closed-regularized. Here we redefine
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the term moat and symbol X from Chapter 3 for solids instead of boundaries as

(A∆B) ∪ bA ∪ bB. Note that X is the union of the boundaries bA and bB with the

symmetric difference, A∆B, of the two shapes. The boundaries are necessary since

A∆B does not include bA ∩ bB. Let O be the set of all “maximal” balls of possibly

zero radius (when A and B intersect) in X that are in tangential contact with both

bA and bB. Let the pad P be the union of all balls of O. O and P are shown in

Fig. 23 for a simple 2D example.

We define the mean M of A and B as the set of points (solid in 3D or planar face

in 2D) closer to iA ∩ iB than to !(A ∪ B). Let C denote its boundary. Note that

C is the location of the centers of balls that touch bA and bB. Except for singular

situations, C is the subset of the medial axis surface of X such that all branches of

the medial axis of X have been removed, and only parts of the medial axis that are

equidistant from at least one point on both A and B remain.

Using the pad P and mean M , we provide a set theoretic definition of the relative

blending of A with respect to a control shape B as:

RB(A) = (A ∩ (M ∪ P )) ∪ (M − P ) (19)

We identify the incompatible features of A and B that have been smoothed (i.e.

removed) by this relative blending operation. Specifically the relative blending adds

(M − P ) − A to A and removes A − (M ∪ P ) from A. The following figures show

the various pieces of the boolean formulation, starting with the input curves A and

B and finally arriving at the relative blended solutions RB(A) and RA(B).
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4.4 Computation

We include below an outline of two different implementations of relative blending.

Many others are possible.

4.4.1 Medial Axis Surfaces

Because each point on the boundary C of M is equidistant from both bA and bB, C is

a subset of the medial axis surface [17] of X. Several techniques have been proposed

for computing the medial axis or its approximation [84].

In 2D, Montanari [82] presents the classic explicit algorithm for polygons which

propagates the boundaries inward while identifying self-intersections to determine

branching points on the medial axis and then connecting them with linear or parabolic

segments. For sets discretized on a regular grid, Telea et al. [113] present an approach
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which utilizes a form of fast marching methods in order to approximate a distance

transform, the result of which is thresholded to produce skeleton branches.

In 3D, the medial axis is no longer a graph of 1D segments, but a complex of

2D surfaces, sometimes called the medial axis surface, or Voronoi surface. Foskey et

al. [45] approximate the medial axis surface by analyzing distance fields computed

from triangle meshes. An explicit approach for polyhedra, presented by Sherbrooke

et al. [107] traces 1D seams from vertices and connects their intersection points with

2D sheets. More recently, Du and Qin [38] discuss extracting the medial axis using

parabolic PDEs and Yang et al. [132] discuss a fast sampling approach to approximate

points on the medial axis.

The boundary C of M may be obtained from the medial axis surface of X by

trimming away portions that are not equidistant from bA and bB. Each point p on

the boundary of M inherits the radius r(p) defined as the distance to both bA and

bB. The pad P is the union of balls of center p with radius r(p). Once M and P

are known, we compute RB(A) using Eqn. 19. (Note that the medial axis surface of

X discussed above is different from the Voronoi surfaces of A and of !A, as used by

Hoffmann in [61].)

4.4.2 Regular grids

We describe here a simple approximating approach for performing relative blending in

3D when A and B are CSG models involving simple primitives. This is the approach

that was used to generate all of the 3D examples in this chapter.

Assume the following fields per voxel: one-bit flags a, b, p, m, x, ra to record

membership in A, B, P , M , X, RB(A) and values di and de which define the distances

to A ∩ B and !(A ∪ B). Our algorithm assigns these values, and hence computes a

discrete approximation of the corresponding sets by performing the following simple

steps illustrated in pseudo-code below.

43



Algorithm 2 Pseudo-code for approximating relative blending on regular grids

1: for all voxels s do
2: a(s)← A.contains(s)
3: b(s)← B.contains(s)
4: x(s)← a(s) != b(s)
5: if x(s) then
6: di(s)← A.distance(s)
7: de(s)← B.distance(s)
8: m(s)← di(s) < de(s)
9: end if

10: end for
11: for all voxels s do
12: if x(s) then
13: t← voxel(s.x+ 1, s.y, s.z)
14: u← voxel(s.x, s.y + 1, s.z)
15: v ← voxel(s.x, s.y, s.z + 1)
16: for all voxels w in t, u, v do
17: if m(s) and !m(w) then
18: p.rasterizeSphere(s, di(s))
19: p.rasterizeSphere(w, de(w))
20: else if !m(s) and m(w) then
21: p.rasterizeSphere(s, de(s))
22: p.rasterizeSphere(w, di(w))
23: end if
24: end for
25: end if
26: end for
27: for all voxels s do
28: ra(s)← (a(s) and (m(s) or p(s)))

or (m(s) and !p(s))
29: end for

Lines 2 - 4 first rasterize A and B and then compute the symmetric difference.

Lines 6 - 8 compute the distance fields from the interior (A∩B) and exterior (!(A∪B))

and also set m to true wherever the distance to the interior is less than the distance

to the exterior. Once m is computed for all voxels, the next traversal then finds every

voxel s in x such that m(s) is not equal to m at the three positive neighbors of s (one

in each dimension). The purpose of this step is to find all voxels incident upon the

boundary of m. At each of these incident voxels, a sphere is then rasterized into p
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Table 1: Average timings for computing the relative blend in Fig. 24(a-c) using the
binary regular grid algorithm presented in this chapter.

Dimensions # Voxels Running Time Voxels/sec
323 32K 0.0047s 6, 972K
643 262K 0.038s 6, 898K
1283 2, 097K 0.38s 5, 518K
2563 16, 777K 4.81s 3, 487K
3843 56, 623K 24.11s 2, 348K
5123 134, 217K 79.85s 1, 680K
6403 262, 144K 216.04s 1, 213K

with radius equal to either di(s) or de(s), depending on which side of the boundary

the voxel lies. Finally, in lines 27 - 29, the final relative blending is computed using

Equation 19.

Performance of our non-optimized implementation of the discrete relative rounding

algorithm depends on the resolution and also on the nature of the model. Typically,

over 50% of the cost is spent in the second loop (lines 11-26) rasterizing the spheres

of the pad. Table 1 provides typical timings for the model shown in Fig. 24(a-c) at

various resolutions. We list the number of voxels in each dimension, the total number

of voxels, the total time, and the number of voxels processed per second.

4.5 Suggested Interface and Applications

We briefly discuss three applications of relative blending.

4.5.1 Local blend creation

In [18], Braid discusses the need for local adjusting of blends. In the application

of relative blending, the designer may isolate a specific feature F of A and blend it

as described above to obtain RB(F ). Then, the result may be incorporated in A

by computing A∆(F∆RB(F )). F could be selected by letting the user specify an

additional control shape D such that A ∩D = F . For example, in Fig. 24, D and B
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Figure 25: Left: Instead of specifying the entire control shape B, a curve K (black)
may be used to define B locally. Center: The rest of B is then completed automati-
cally by using A and “snapping” to the endpoints of K to produce a smooth shape.
Right: This produces a final shape RB(A) that is identical to A except for the area
specified by K.

are identical and shown in red.

4.5.2 Control shape construction

Figure 26: Two examples of a relative blending operation on a convex corner with
the same input shape A (blue) and two different control shapes B (red). The two
different results RB(A) are shown in orange. Note that the control shapes are actually
just modified versions of A produced by a boolean subtraction with a sphere (left)
and a halfspace (right).

Instead of the localization discussed above, we start by setting B to A. Clearly,

relative blending in this condition will leave A unchanged (ignoring the effect of

sampling if an approximating method is used). Now the designer may modify B to

obtain the desired control shape. For example, in 2D, the designer may simply draw

a control curve segment K as shown in Fig. 25. The portion of B that is close to K
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Figure 27: Left-top: An input shape A is the union of two intersecting cylinders.
Left-bottom: A control shape B defined as the union of A with a sphere. Right: The
final rounded shape RB(A).

will snap to K. We use a small range near the ends to provide a smooth transition.

In 3D, B may be precisely defined through CSG operations applied to A, as

demonstrated in Figs. 27 and 28. In some application areas where the shape of the

blend does not require set-theoretic semantics, we can use interactive space warps [72]

of A to produce the final control shape B. This enables the designer to use a set of

standard tools for specifying the control shape B and hence controlling the radius of

the blend. For example, to blend only one feature locally, the user may place a sphere

centered on that feature and compute the boolean difference with A to obtain B, as

shown in Fig. 26.

Figure 28: Left: An input shape A composed of a cylinder and a plane. Center: A
control shape B defined as the union of A with a sphere. Right: The final rounded
shape RB(A) with a variable radius fillet around the base of the cylinder. The radius
of curvature is larger on the left side than on the right side.
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Figure 29: A shape A (blue) and a halfspace B defined by a plane (red) as the
bounding shape. Note that the single relative blending operation results in both
rounds and fillets (right).

Furthermore, note that several consecutive relative blending operations may be

performed in order to round both the concave and convex corners even though the

relative blending is often sufficient to round both in one operation, as shown in Fig. 29.

However, this global user interface for creating blends may not be appropriate for

handling the precise specs of complex blends such as those described by Braid [18].

4.5.3 B-compatibility

As discussed in Chapter 3, two shapes are b-compatible when each ball of O has a

single contact point with A and a single contact point with B. Even though RA(B)

and RB(A) are not b-compatible, they are quasi-b-compatible as the limit of a family of

b-compatible shapes. To force A and B to be quasi-b-compatible, we replace them with

RA(B) and RB(A). The result of this simultaneous and symmetric relative blending is

shown in Fig. 30. Chapter 9 discusses using relative blending as a tool to force curves

to be quasi-b-compatible in order to operate on non-b-compatible curves.

4.6 Limitations

4.6.1 Non-circular blends

Because the relative blending formulation included here falls into the category of ball-

rolling techniques for computing blends, it is constrained to producing circular blends.
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Figure 30: Figure of bunny and fish showing the disks of local maximum radii in O
that create the rounding arcs for one or the other shape. The incompatible features
(i.e., portions of the boundary of each shape that have been removed by our relative
blending performed on both shapes) are shown in dashed line style.

If elliptical blends, for example, are desired, then there are other techniques, such as

those described in Section 4.2.2, to better accomplish this task.

4.6.2 Precise edits

Our suggested interface for relative blending may not be appropriate for complex

blends that require extreme precision. There are no parameters to relative blend-

ing other than the geometry of the control shape. For this reason, making precise

edits to the result of a blend by tweaking the control shape may be tedious within

this given framework.
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4.6.3 Smoothness

The result of relative blending, although smooth in the general case, may produce

sharp edges just as in other rolling-ball techniques. This can happen when different

sweeps of balls intersect, thus creating sharp geometry where the two sweeps “pinch”

together.
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CHAPTER V

TANGENT-BALL CORRESPONDENCE

This chapter discusses the correspondence derived from tangent-ball contact and also

the algorithms for computing tangent balls. These algorithms are used to discretely

sample the interior medial axis of the moat X of two curves A and B. They are also

used to determine b-compatibility, as discussed in Chapter 3.

5.1 Ball-Map

Consider the maximal ball centered at point m ∈ M . The maximal disk O centered

at m touches A at a and B at b, as shown in Figure 31. The ball-map [24] establishes

the correspondence between the closest projection a of m onto A and the closest

projection b of m onto B.

The ball-map may be viewed as a continuous version of an approach proposed

by [64] for establishing correspondences between curves by considering their distance

fields. They use discrete distance fields computed on a regular grid for the two curves

A and B. The points m of M are then defined where adjacent pixels are closest to

Figure 31: A ball-map between points a,b on curves A,B centered at point m on
the internal medial axis M of the moat X.
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Figure 32: A ball-map circular arc (violet) inscribed in the triangle 4amb.

different curves.

A uniform sampling of the ball-map correspondence may be computed in several

ways: (1) By initially computing M as the medial axis of the moat X between two

curves A and B using efficient medial axis construction techniques [45][132] and then

generating the closest projections a and b for a set of uniformly spaced sample points

m ∈ M ; (2) By computing the radii of the maximal disks that touch A at a set of

uniformly spaced samples a; or (3) By simultaneously advancing the corresponding

points, a and b, until one of them has travelled from the previous sample on its curve

by a prescribed geodesic distance.

5.1.1 Ball-map Arc

Given a ball-map centered at m and tangent to a and b, the points a,m and b form

an isosceles triangle as shown in Figure 32. Within such a triangle, we can inscribe a

circular arc that is orthogonal to A at a and B at b. We associate this circular arc

to the ball-map correspondence pair.

5.2 Details of the Ball-map construction for PCCs

We include here the details of an exact implementation (except for numerical round-

off errors) for the case of piecewise-circular curves in 2D, where A and B are each a

series of smoothly connected circular-arc edges.
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Figure 33: Computing r, m and a from b for a circular arc Bi. The formula
produces two candidate points b1,b2. In this example, b2 is discarded since it does
not lie on the arc Bi.

We compute the corresponding point b from a, assuming a is not a point of

intersection of A and B, as follows. Consider the parameterized offset point m =

rN̂A(a), whose distance from a is defined by the parameter r. Here, we have oriented

N̂A(a) so that it points towards the interior of the moat X. m is the center of a circle

of radius r that is tangent to A at a. We want to compute the smallest positive r for

which m is at distance r from B, and hence for which the circle is tangent to B.

First consider a circular edge Bi of B with center c and radius s (Fig. 33). We

compute r1 and r2 as the roots

s2 −−→ca2

2N̂A(a) · −→ca± 2s
(20)

of

−→cm2 = (r ± s)2 (21)

and keep the smallest positive solution for which the ball-map tangent point (b1 or

b2) lies on Bi.

We apply the above approach to all edges Bi of B. We compute the r-value for

a circle supporting each edge, compute the corresponding candidate point b on the

circle, discard it if it is not contained within the arc (such as b2 in Figure 33), and

select amongst the retained (r,b) pairs with the smallest r-value.
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Figure 34: The lacing algorithm for b-compatible PCCs. (1) An initial mapping is
given between 2 points a,b. They are vertices and sit at the start of a circular arc
edge segment (red). (2) A ball-map is computed from the endpoints of the current
arcs (a′,b′) to the current arc on the other curve (red). Only a′ produces a valid
ball-map to the edge segment b,b′, so only it is kept. (3) a and b step forward to the
positions of the previous ball-map and the process repeats. Again, only a′ produces
a valid ball-map, so only it is kept. (4) a and b again step forward. This time, b′

produces the valid ball-map.

Since we assume that A and B are b-compatible, there is exactly one (r,b) pair

for each point a ∈ A. The above process computes the ball-map correspondence for

any desired sampling of A or B.

5.2.1 Lacing acceleration for PCCs

To accelerate the computation of the ball-map for b-compatible PCCs and produce

a sampling-independent representation from which different sampling densities can

be quickly derived, we perform a “lacing” process (Fig. 34), to split the moat into

arc-quads, each bounded by 4 circular arcs: one being a circular-arc edge-segment of

A, one being a circular-arc edge-segment of B, and two being ball-map arcs from a

vertex of A or B to its image on the other curve.

To perform the lacing, we first pick a vertex a ∈ A, where two edges of A meet

and compute its image b ∈ B as described above. Then, we perform a synchronized

walk to “lace” the moat, one vertex of A or B at a time. At each step, a is the start

of an edge-segment Ai of A not yet laced and b is the start of an edge-segment Bk

of B not yet laced. Let a′ be the end of Ai and b′ be the end of Bk. Let b′′ be the

54



Figure 35: Lacing splits the moat X into arc-quads. Each one is bounded by 4
circular arcs (2 edge-segments and 2 ball-map arcs).

corresponding point for a′ and a′′ be the corresponding point for b′. If a′′ falls on Ai,

we record that the edge-segment [b,b′] of Bk maps to the edge-segment [a, a′′] of Ai,

close the current arc-quad with the arc from b′ to a′′, and set a to a′′ and b to b′ to

continue the lacing process, as shown in Fig. 34.

This lacing process splits the edges of A and B into edge-segments and establishes

a bijective mapping between edge-segments of A and edge-segments of B that bound

the same arc-quad. The cost of this pre-computation is O(n) in the number of edges

in A and B since at every step, only the current arc-edges Ai and Bi are used to

compute ball-map correspondences. It can be performed in real-time, as the curves

are edited, which is convenient for the interactive design of b-compatible curves.

The pseudo-code for the linear-time algorithm is shown below in Algorithm 3.

5.2.2 Fast b-compatibility test for PCCs

The lacing algorithm is also used in order to determine if two curves are b-compatible in

linear time, improving on the O(n4) algorithm in Chapter 3. In order to do this, the

lacing process is computed as above, however, if at any step there does not exist a

ball-map solution from point a or b to Bi or Ai, respectively, then the curves are

not b-compatible. The updated algorithm is shown below in Algorithm 4 where lines

29-30 simply return false if a valid mapping is not found.
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Algorithm 3 Pseudo-code for computing the ball-map between two piecewise-circular
curves A and B using our fast O(n) algorithm. It assumes that one set of closest points
a and b are given (if A and B intersect, a = b). It also assumes that A and B are
oriented in the same direction.
1: ballmaps← ∅
2: ballmaps.add(a, b)
3: {Split each arc at the given points a and b, making a and b vertices}
4: splitArc(a.arc, a)
5: splitArc(b.arc, b)
6: {If a is a vertex then a.arc is the arc following a}
7: startA← a.arc
8: startB ← b.arc
9: repeat

10: {Compute a ball tangent to a.arc at a.next (next vertex of A) and b.arc}
11: {Returns null if no solution or infinite solutions}
12: Ba = tangentBall(a.next, a.arc, b.arc)
13:
14: Bb = tangentBall(b.next, b.arc, a.arc)
15:
16: {Move a and b forward depending on which maximal ball is not null}
17: if Ba 6= null and Bb = null then
18: a← a.next
19: b← tangentPoint(b.arc, Bb)
20: {Split b.arc at b, such that b is now a vertex}
21: splitArc(b.arc, b)
22: ballmaps.add(a, b)
23: else if Ba = null and Bb 6= null then
24: a← tangentPoint(a.arc, Ba)
25: {Split a.arc at a, such that a is now a vertex}
26: splitArc(a.arc, a)
27: b← b.next
28: ballmaps.add(a, b)
29: else if Ba 6= null and Bb 6= null then
30: {This means that Ba = Bb}
31: a← a.next
32: b← b.next
33: ballmaps.add(a, b)
34: end if
35: until (startA = a.arc and startB = b.arc) or END OF CURV E
36: return ballmaps
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Algorithm 4 Pseudo-code for testing b-compatibility between two piecewise-circular
curves A and B using our faster O(n) algorithm. It assumes that one set of closest
points a and b are given (if A and B intersect, a = b). It also assumes that A and
B are oriented in the same direction.
1: {Split each arc at the given points a and b, making a and b vertices}
2: splitArc(a.arc, a)
3: splitArc(b.arc, b)
4: {If a is a vertex then a.arc is the arc following a}
5: startA← a.arc
6: startB ← b.arc
7: repeat
8: {Compute a ball tangent to a.arc at a.next (next vertex of A) and b.arc}
9: {Returns null if no solution or infinite solutions}

10: Ba = tangentBall(a.next, a.arc, b.arc)
11:
12: Bb = tangentBall(b.next, b.arc, a.arc)
13:
14: {Move a and b forward depending on which maximal ball is valid}
15: if Ba 6= null and Bb = null then
16: a← a.next
17: b← tangentPoint(b.arc, Bb)
18: {Split b.arc at b, such that b is now a vertex}
19: splitArc(b.arc, b)
20: else if Ba = null and Bb 6= null then
21: a← tangentPoint(a.arc, Ba)
22: {Split a.arc at a, such that a is now a vertex}
23: splitArc(a.arc, a)
24: b← b.next
25: else if Ba 6= null and Bb 6= null then
26: {This means that Ba = Bb}
27: a← a.next
28: b← b.next
29: else
30: return false
31: end if
32: until (startA = a.arc and startB = b.arc) or END OF CURV E
33: return true
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Figure 36: Left: Lacing splits the moat X into arc-quads. Each one is bounded by 4
circular arcs (2 corresponding edge-segments Ai, Bi and 2 ball-map arcs (green)) and
defines a set of orthogonal circular arcs in the interior (black). Right: The orthogonal
circular arcs correspond to the Apollonian families of circles.

5.2.3 Arc-quads and Apollonian Circles

The arc-quads produced by lacing of PCCs, which are bounded by 4 circular arcs

that are orthogonal to each other at their intersections, define two infinite sets of

orthogonal circular arcs within their bounds. Figure 36-left shows an example set of

these orthogonal arcs. These arcs correspond to a special family of circles discovered

by Apollonius of Perga (same as from Chapter 2) known as Apollonian circles. Apol-

lonian circles are two familes of circles such that every circle in one family intersects

every circle in the other family orthogonally, as shown in Figure 36-right. In Fig-

ure 36-left, the arcs between the two green ball-map arcs define one family, and the

arcs between Ai and Bi define the other family.

5.3 Details of Ball-map construction for PLCs

The piecewise-linear curve is a popular curve representation due to its ability to ap-

proximately represent a variety of types of curves (i.e. polygons, subdivision curves).

As discussed in Chapter 3, piecewise-linear curves cannot be b-compatible. How-

ever, we propose here an approach for computing an approximate ball-map, treating

piecewise-linear curves as approximations of smooth curves.
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There are several possibilities for handling PLCs:

1. Use relative blended (Chapter 4) versions of each curve as approximations

2. Use PLCs as control polygons for constructing PCCs according to [99]

3. Treat vertices as circular arcs with infinitely small radii and ignore incompati-

bilities as long as adjacent ball-maps do not intersect

The first two options are then handled using the PCC method described above.

Option 3 allows for working directly with the input curves instead of adding an

additional level of approximation. We discuss option 3 here, including implementation

details and issues of sampling.

5.3.1 Equations

First we show the formulation for computing ball-maps between vertex-vertex pairs

and vertex-edge pairs. We compute the corresponding point b from a as follows,

assuming a is not a point of intersection between A and B. We have the normal

N̂A(a), computed as the weighted average of the normals of the two incident edges,

such that it points towards the interior of the moat. First, for every vertex b 6= a

of B, we compute the r-value for a ball with center m = a + rN̂A(a) such that

|m− a| = |m− b| = r as follows:

r = −
−→
ba2

2
−→
ba · N̂B(b)

(22)

Notice that we don’t check that m lies along any particular normal of b or even

that it is within the fan of normals defined by interpolating the normals of the incident

edges. Since we next compute the ball-map for those incident edges, one of those maps

will always return a smaller radius r if m does not lie in the desired fan of normals.

For every edge Bi of B with oriented edge-normal N̂B(Bi) and vertices c,d, we

compute the r-value for a ball with center m = a+rN̂A(a) = b+rN̂B(Bi) as follows:

r =
−→ca · N̂B(Bi)

1− N̂A(a) · N̂B(Bi)
(23)
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Figure 37: Construction of a non-intersecting ball-map for simple polygons.

Figure 38: Construction of a self-intersecting ball-map for simple polygons.

The corresponding point b is then computed as:

b = a + rN̂A(a)− rN̂B(Bi) (24)

The candidate mapping is discarded if b lies outside the bounds of Bi. The minimum

r ball-map candidate among all vertex-vertex and retained vertex-edge mappings

is then selected for point a. Note that care needs to be taken to ensure that the

denominator of these equations is not 0 which occurs when a = b in equation 22 or

when N̂A(a) and N̂B(b) are parallel and oriented in the same direction in equation 23.

5.3.2 Sparsely sampled PLCs

Figure 37 shows a simple ball-map construction for the case of a square and a pen-

tagon. On the left, the vertex normals are shown for every vertex. These normals are

the length-weighted averages of the incident edge normals. Fig. 37 (center) shows that
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Figure 39: A sample ball-map result of the PLC lacing algorithm

none of the ball-map circular-arc trajectories computed from each vertex intersect.

However, notice that some of the balls are not entirely contained within the moat X,

which means that their centers are not actually samples on the medial axis of X.

Also notice that the two ball-maps in the bottom-right corner share a vertex on the

blue polygon, meaning that the ball-map construction is not symmetric at this point.

In Fig. 37 (right), the median curve M is constructed by connecting the ball centers

with linear edges. It has no self-intersections, despite the highlighted problems, since

all the ball-maps are disjoint.

Now, if we add one additional vertex to the same example, as shown in Fig-

ure 38, the result becomes undesirable. Fig. 38 (center) shows that two adjacent ball-

map circular-arc trajectories intersect, causing the median curve M to self-intersect

(Fig. 38 (right)). This is to highlight that computing the ball-map for PLCs is very

sensitive to sampling and care must be taken to avoid/resolve these issues when deal-

ing with sparsely-sampled PLCs.

5.3.3 Smooth PLCs

The ball-map construction for PLCs is better behaved when the input PLCs are

smooth and densely sampled. In fact, all results in this thesis were computed using

the PLC method described here unless explicitly stated otherwise. Figure 39 shows
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a ball-map result using densely sampled subdivision curves as the input. A modified

form of the PCC lacing algorithm is used to compute this result, as detailed below.

Recall that in the PCC lacing algorithm, two points (a and b) walk on each curve,

where the maximum step-size is determined by the length of the current circular-arc.

Instead, we now set a constant step-size dStep. For the examples in this thesis, we

use a value of dStep that is double the maximum edge-length of both curves. In

practice, this value produces desirable results. If dStep is not sufficiently larger than

the edge-lengths, then the problems highlighted in Figure 38 are more likely to appear.

To perform the PLC lacing, we first pick a vertex a ∈ A, where two edges of

A meet and compute its image b ∈ B as described above. Then, we perform a

synchronized walk to “lace” the gap as with the PCCs. At each step, a and b are

the current positions on each curve, and could be vertices or points on edges. Let

a′ be the point obtained by walking on A a distance of dStep and b′ be the sample

obtained by walking on B a distance of dStep. Let Ai be a subcurve of A starting

at a and having length dStep ∗ 1.1. Let Bi be a subcurve of B starting at b and

having length dStep ∗ 1.1. Let b′′ be the corresponding point for a′ and a′′ be the

corresponding point for b′. If a′′ falls on Ai, we record that the subcurve [b,b′] of Bk

maps to the subcurve [a, a′′] of Ai, and set a to a′′ and b to b′ to continue the lacing

process.

The justification for Ai and Bi having length dStep∗1.1 as opposed to dStep is to

add an error tolerance for dealing with numerical inaccuracies. At some steps, both

a and b may yield ball-map solutions. If this occurs (line 28), then the result that is

geodesically closest to the current values of a and b is used.

Pseudo-code for the PLC lacing algorithm is shown below in Algorithm 5. As

shown in line 34, approximate b-compatibility is tested simultaneously.
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5.4 Details of Ball-map construction for triangle meshes
in 3D

As with PLCs, the ball-map construction can be approximated for triangle meshes.

However, this construction also suffers from sampling issues. For every point a on

mesh A, there are three ball-map computations that must be performed. First, as-

suming a /∈ B and we have the surface normal N̂A(a) such that it points towards the

interior of the moat X, we compute a candidate point b and r-value for each vertex

of B using Equation 22.

Next, we compute a candidate r and point b for every edge Bi. Because edges in

3D do not have a single normal, but rather an infinite fan of normals, the candidate

r value must be computed as the root(s) of a quadratic equation. For every edge Bi

with endpoints c,d and normalized tangent ĉd, we compute r as the root(s) of:

((N̂A(a)× ĉd)2 − 1)r2 + 2((N̂A(a)× ĉd) · (−→ca× ĉd))r + (−→ca× ĉd)2 = 0 (25)

The point(s) m = a+rN̂A(a) are then projected onto the line through Bi to compute

b. If b does not lie on edge Bi, the candidate map is discarded. Notice as with the

vertex case in 2D, we need not check that m lies along the appropriate fan of normals.

Finally, we compute a candidate r and b for every triangle 4Bi with vertices

c,d, e and normal N̂B(4Bi) with the following equation:

r =
−→ca · N̂B(4Bi)

1− N̂A(a) · N̂B(4Bi)
, (26)

which is equivalent to equation 23. The corresponding point b is then be computed

as:

b = a + rN̂A(a)− rN̂B(4Bi) (27)

Points b which lie outside of triangle 4Bi are discarded. The minimum r ball-

map candidate among all vertex-vertex, vertex-edge and vertex-triangle mappings is

then selected for point a.
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Algorithm 5 Pseudo-code for computing the ball-map between two piecewise-linear
curves A and B using our fast O(n) algorithm. It assumes that one set of closest
points a and b are given (if A and B intersect, a = b). It also assumes that A and B
are oriented in the same direction and that A and B are smooth and densely sampled.

1: ballmaps← ∅
2: ballmaps.add(a, b)
3: {If a is a vertex then a.edge is the edge following a}
4: startA← a.edge
5: startB ← b.edge
6: repeat
7: {Get a subcurve starting at a with length dStep ∗ 1.1}
8: subcurveA← A.subCurve(a, a+ dStep ∗ 1.1)
9: subcurveB ← B.subCurve(b, b+ dStep ∗ 1.1)

10: {Get the next point by stepping forward by dStep from a}
11: aNext← A.step(a, dStep)
12: bNext← B.step(b, dStep)
13: aNorm← A.normal(aNext)
14: bNorm← B.normal(bNext)
15: {Compute smallest ball-map from aNext to all vertices/edges on

subcurveB}
16: {Returns null if no solution}
17: Ba = ballMap(aNext, aNorm, subcurveB)
18: Bb = ballMap(bNext, bNorm, subcurveA)
19: {Move a and b forward depending on which ball-map is valid}
20: if Ba 6= null and Bb = null then
21: a← aNext
22: b← Ba.destination
23: ballmaps.add(a, b)
24: else if Ba = null and Bb 6= null then
25: a← Bb.destination
26: b← bNext
27: ballmaps.add(a, b)
28: else if Ba 6= null and Bb 6= null then
29: {Return the closest result}
30: a← nearest(Bb.destination, aNext)
31: b← nearest(Ba.destination, bNext)
32: ballmaps.add(a, b)
33: else
34: return NON COMPATIBLE
35: end if
36: until (startA = a.edge and startB = b.edge) or END OF CURV E
37: return ballmaps
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CHAPTER VI

SHAPE DISCREPANCY MEASURES BASED ON

TANGENT BALLS

This chapter defines several possible discrepancy measures based on tangent balls and

compares them to the classic measures of Hausdorff distance and Fréchet distance.

Recall that the Hausdorff distance (Chapter 2) between two shapes A and B is

computed as H(A,B) = max(max
a∈A

(d(a, B)),max
b∈B

(d(b, A))), and utilizes only point-

to-shape distance computations. Fréchet distance [4] is another discrepancy mea-

sure between two curves which uses a continuous mapping from one curve to the

other. Given two curves A and B with parameters s, t ∈ [0, 1], respectively, and a

mapping m : [0, 1] → [0, 1], the parametric distance is computed as Dp(A,B,m) =

max
t∈[0,1]

||A(t) − B(m(t))||. The Fréchet distance is defined as the minimum Dp for all

possible mappings m: F (A,B) = min
∀m

Dp(A,B,m).

Fig. 40 shows an example where the Hausdorff distance does not reflect how dif-

ferent the curves actually are. The Fréchet distance better captures this discrepancy.

Figure 40: Sometimes the Hausdorff distance can fail to capture the magnitude of
the discrepancy (left). The Fréchet distance (right) does a better job of highlighting
the discrepancy between these two curves.

65



Figure 41: When curves are b-compatible, the Hausdorff, Fréchet, and ball-
distance are identical, as depicted by the black line.

6.1 Ball Measures

6.1.1 Ball Distance

We propose a maximum discrepancy measure between two shapes called the ball-

distance. The ball-distance between two shapes can be measured using the L∞ norm

on the diameter of the maximal balls in the moat X. In particular, it has been

shown [24] that when the input curves are b-compatible, using the L∞ norm computes

both the Hausdorff [7] and the Fréchet distances between these two sets, as shown in

Fig. 41 where all three are identical.

If the input curves are not b-compatible, then the ball-distance corresponds to the

L∞ norm on the diameter of the maximal balls in the moat of RB(A) and RA(B) (the

relative blended versions of A and B as defined in Chapter 4).

The L1 or L2 norms on the diameter of the maximal balls or the travel distance

may also be used to identify regions of discrepancy. The travel distance measure

accentuates orientation differences. Both may be used locally to identify and visualize

areas with large discrepancy between curves or surfaces, or globally.

6.1.2 Ball Discrepancy

One may declare that a shape A is not an acceptable realization of a nominal shape

B if either A or B have incompatible features. If incompatible features exist, the
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Figure 42: The ball-distance (red disk) can produce undesirable results in extreme
incompatible cases (left). The ball-error measure handles this case by measuring the
area of the incompatible feature (right) produced by relative blending.

ball-distance may not give an adequate sense of how different two shapes are, as

shown in Figure 42-left. In such cases, we propose a new measure, ball-error, which

takes into account the area in 2D or volume in 3D of incompatible features which are

determined by computing a relative blending on the shapes A and B. The total ball-

error is computed as EB(A,B) = Area(A−RB(A)) +Area(B−RA(B)) as shown in

Figure 42. The discrepancy of a single point on A or B may also be described as the

shortest path through the moat X to B or A, respectively, similar to the convexity

measure in [70]. They measure convexity of a point s on a closed curve S as the

length of the shortest path which does not intersect iS from s to the convex hull of

S.

6.2 Discrepancy Exaggeration

Local discrepancies may be exaggerated by uniformly scaling the radii of all maximal

balls in X and reconstructing one curve from the other using the ball offset (Fig. 43),

as described in Chapter 3. This exaggeration approach proves useful when comparing

two shapes or when interactively editing one shape manually so that it perfectly

aligns with another shape. In manufacturing, parts are created as copies of an ideal

model. Using the exaggeration technique, errors may be visualized quickly by a human
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Figure 43: The barely noticeable discrepancy between the original blue and green
shapes (left) may be exaggerated by expressing B as the ball offset of A, by scaling
the offset field 4 times (center) or 6 times (right) and shading the moat between A
and the exaggerated ball offset version of B.

operator to determine whether or not the errors are within acceptable tolerances.
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CHAPTER VII

BALL MORPH FOR COMPATIBLE SHAPES

A variety of techniques have been proposed for automatically computing a morph

between two curves A and B in the plane (see [51] and [3] for examples). In this

chapter, we present a new family of morphs, which we call the b-morphs. In Chapter 8,

we discuss two related issues: (1) How to compare different morphing solutions and

(2) How do the b-morphs introduced here compare to other approaches.

7.1 Contributions

We propose a family of three new morphing techniques (that we call b-morphs) for

which the correspondence and the vertex trajectories are both derived from the max-

imal disks and their tangential contact points with the curves, as established using

the ball-map described in Chapter 5.

7.2 Limitation

Our b-morph constructions assume that the two curves have been registered and are

sufficiently similar, or b-compatible. Loosely speaking, our compatibility conditions

require that each maximal disk [108] in the finite region bounded by the union of

the two curves, or the moat X, have exactly one contact point with each curve, as

discussed more formally in Chapter 3

Where A and B are similar but not properly registered, one may consider com-

bining a b-morph with the animation of a rigid or non-rigid registration [120] or

of a smooth space warp [11], as was done for image morphs [12]. Numerous so-

lutions to the automatic registration problem have been proposed using ICP [13],
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Figure 44: To obtain the point b on B that corresponds, through the ball-map,
to point a on A, we compute the smallest positive r such that m = a + rN̂A(b)
is at distance r from B and return its closest projection b on B. Point m is on
the medial axis M (red) and defines the center of the circle tangent at both a and
b. The Circular (black) and Parabolic (purple) b-morph trajectories are defined by
the inscribing isosceles triangle 4amb. The Linear b-morph trajectory is the line
segment ab.

automatically identified landmarks [80] [49] [83], or distortion minimizing parameter-

ization [121] [102].

7.2.1 B-morph trajectories

For each maximal disk, we consider five paths (curve segments) from a to b (Fig 44):

Hat : The broken line segment from a to m to b (Fig 44 green).

Linear : The straight line segment from a to b (Fig 44 yellow).

Tangent : The shorter of the two circular arc segments of the boundary of the ball

B(m, r) that joins a and b (Fig 44 green).

Circular : The circular arc segment that is orthogonal to A at a and to B at b

(Fig 44 black).

Parabolic: The parabolic arc segment that is orthogonal to A at a and to B at b

(Fig 44 violet).
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Figure 45: The associated average curves for the various b-morph constructions.

The Circular and Parabolic paths are trivially defined by their enclosing isosceles

triangle (4amb). The Parabolic path is the quadratic Bézier curve with control

vertices a, m and b and the center of the circle supporting the Circular path is the

intersection of the tangent to A at a and the tangent to B at b.

All paths, including the Linear path, are symmetric in that the angles where

they meet A and B are equal. Swapping the role of A and B does not affect these

segments. Hence, the b-morphs derived here are symmetric and may be inverted

easily by swapping the role of A and B.

Let l be the midpoint of the Linear path and let L be the set of all points l.

L is the midpoint locus proposed by Asada and Brady [6]. Let t be the midpoint

of the tangent path and T be the set of all points t. T is the Process Inferring

Symmetry Axis proposed by Layton [68] as a variation of the medial axis. Let n

be the midpoint of the Circular path and N the set of all points n. Let p be the

midpoint of the Parabolic path (quadratic B-spline) and P be the set of all points p.

The construction of these 4 points, along with m is illustrated in Fig. 44.

The curves M , L, T , N and P usually differ from one another, but may all be

viewed as averages of A and B. They are shown superimposed in Fig. 45.
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7.3 Examples

A b-morph advances with time, each point a according to uniform arc-length param-

eterization along one of the five aforementioned paths. A result for the Circular b-

morph is shown in Figures 46, 47, and 48 using seven inbetween frames. Note that

the curves in Figure 46 are intentionally not aligned and the b-morph doesn’t pro-

duce the rigid body motion one might expect when morphing between two identical

shapes. The intersection points of the curves remain fixed throughout the morph. In

Figure 47, notice that the inbetweens are not as smooth as the input curves. This is

due to the local nature of the b-morph which knows nothing of global smoothness.

Additional examples of the Circular b-morph as well as the Parabolic and Linear b-

morphs can be found in Chapter 8. The future work of combining b-morphs with

affine motions is discussed in Chapter 13.
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Figure 46: A morph between two offset circles along Circular b-morph trajectories
(top). Frames are displayed in order from left to right, top to bottom.
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Figure 47: A morph between two ellipses along Circular b-morph trajectories (top).
Frames are displayed in order from left to right, top to bottom.
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Figure 48: A morph between an apple and pear along Circular b-morph trajectories
(top). Frames are displayed in order from left to right, top to bottom.
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CHAPTER VIII

COMPARISON OF VARIOUS MORPHS

8.1 Prior art on planar curve morphing

A large variety of techniques have been investigated for the automatic generation of

in-betweening frames or animations that morph between two planar curves.

We only discuss here techniques that are appropriate to the tight in-betweening

problem discussed in Chapter 13. We do not discuss the problems of registration

or landmark (salient feature) identification and assume that the curves have been

registered.

First, we consider techniques that assume that the correspondence between ver-

tices or samples on both curves is either given by the artist or computed automati-

cally using uniform geodesic sampling, minimization of area or travel [47], curvature-

sensitive sample [36], or optimization of matching to affine transformations extracted

from an example morph [110].

If the correspondence is given, the simplest approach is to use a linear interpolation

between corresponding pairs. Linear trajectories are computed between these pairs of

points on A and B in order to produce morph curves with vertices vi = ai+t(bi−ai).

We include this Linear Interpolation (LI ) in our benchmark set of approaches that we

compare to the b-morphs. This näıve approach may lead to unpleasant artifacts, such

as self-intersections in the intermediate frames (as for example pointed out by [104]).

The Linear Interpolation fails to take into account the relative orientation and cur-

vature of the curves at the corresponding points.

To take these into account, a popular morphing technique proposed by [103] for

polygonal curves interpolates the lengths of corresponding edges and the angles at
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corresponding vertices and uses optimization to ensure that the curve closes properly.

We include a simple version of this approach, which we call Curvature Interpola-

tion (CI ) in our benchmark set. When it is applied to open curve segments, we

ensure that the interpolating frames meet at end-point constraints by retrofitting

them through a trivial similarity transformation (rotation, scaling, and translation).

A different approach that takes into account the relative orientation and curvature

of the two curves at the corresponding samples is to compute the local coordinates of

each vertex in the coordinate system defined by its neighbors on each curve. Then,

the corresponding local coordinates are averaged linearly to produce a desired set of

local coordinates for a given frame. Iterative techniques may be used to construct

a curve that satisfies the two endpoint constraints and minimizes the discrepancy

between the actual and desired local coordinates. Variations of these techniques have

been successfully used [2][131][46]. We include a simple version of this approach,

which we call Laplace Blending (LB), in our benchmark set.

Vertex trajectories and correspondences may also be obtained by solving a PDE

or by computing a gradient field that interpolates the two contours and then following

the steepest gradient to obtain the trajectory of each point or equivalently [133], the

in-between frames may be obtained as iso-contours of that field. A heat propagation

formulation may be used to characterize the desired field [33]. We include a simple

version of this approach, which we call Heat Propagation (HP), in our benchmark

set.

Several approaches for morphing closed curves use compatible triangulations [5]

of their interior [123][52][3] or compatible skeletons to ensure rigidity [106][26]. We

don’t consider these since they aren’t applicable to our problem of open curves. Other

approaches blend distance fields to both surfaces [64][32].

We separate the approaches that establish correspondence using a direct geometric

criterion (as opposed to a global optimization or feature recognition as discussed
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Figure 49: Example Minkowski morphs between convex (left) and non-convex
(right) shapes.

above) into three categories: (1) Proximity-based, (2) Orientation-based, and (3)

both Proximity- and Orientation-based.

The popular distance-based approach is the closest point projection, which to each

point a on A maps a point b on B that minimizes the distance to a. Variations of

this approach are used for Iterative Closest Point (ICP) registration [13]. We do not

include this approach, the Closest Projection (CP) morph, because of the limitation

of the c-compatibility constraint, as defined in Chapter 3. None of the examples used

in our benchmark set are c-compatible.

An orientation-based approach is the Minkowski morph [98], which yields satis-

fying results for convex shapes, even when the shapes are not aligned (see Fig. 49

left). For smooth curves, the approach establishes a correspondence between points

with the same normal. Unfortunately, as shown in Fig. 49 (right), the approach may

yield self-intersecting frames when the two curves are not convex. Hence, we do not

include it in our benchmark.

Our b-morphs are both proximity- and orientation-based in that correspondence

is determined locally and based on a ball that is tangent to corresponding points. The

Heat Propagation morph is also proximity- and orientation-based since the trajectories

are used to identify correspondence and are orthogonal to each of the input curves.
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8.2 Measures

Comparing morphs is difficult since criteria used in the comparison may be application-

dependent and subjective. Nevertheless, we propose here quantitative measures of

the quality of a morph. We propose seven measures of quality inadequacy (i.e. lack

of quality): travel distance, distortion, stretch, local acceleration, surface area, av-

erage curvature, and maximal curvature. We compare the three b-morphs to each

other and also four simple morphing techniques which we have implemented (Linear

Interpolation (LI ), Curvature Interpolation (CI ), Laplace Blending (LB), Heat Prop-

agation (HP)). We first discuss how we sample space and time. Then, we provide

details of the measures used here to compare morphs.

8.2.1 Measure normalization

Three of the studied morphs (Linear Interpolation, Curvature Interpolation, and

Laplace Blending) assume a given correspondence. For simplicity, we use a uniform

arc-length sampling to produce the same number of uniformly distributed samples on

each curve. The three b-morphs use the ball-map correspondence. The other morphs

compute their own correspondence. This sampling disparity makes it difficult to

compute measures for a fair comparison.

Consider for example the problem of measuring the average travel distance. This

should be the integral of travel distances. The problem is how to fairly select the

integration element. If for example we use the CP morph, then the average distance

measured for a set of uniformly distributed samples will depend on whether we start

from A or B. The average travel distance is a property of the mapping, and should

be dependent on the sampling. A measure that so blatantly depends on the sampling

is clearly incorrect.

To overcome this problem, each reported measure is the average of two measures,

one computed by sampling A and one computed by sampling B. For the first measure,
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Figure 50: Comparison of the travel distances of the b-morph trajectory and the
two CP morph trajectories that correspond to any point m of the medial axis of X.

we sample the departure curve A using a dense set of samples that are uniformly

distributed on each curve so as to be separated by a prescribed geodesic distance

u. For each sample ai on A, we compute the corresponding point bi on the arrival

curve B so that bi is the image of ai by the mapping associated with the particular

morphing scheme. We compute a measure mi associated with the trajectory from ai

to bi and the associated weight wi = (dist(ai−1, ai) + dist(bi−1,bi) + dist(ai, ai+1) +

dist(bi,bi+1))/4. Then, we report the normalized weighted average (Σwimi)/(Σwi).

For the second measure, we sample the arrival curve B as before using the same

geodesic distance u. For each sample bi on B, we compute the corresponding point

ai on the departure curve B, so that bi is the image of ai by the mapping associated

with the particular morphing scheme. Then, we proceed as above and report the

average of the two.

8.2.2 Measures used in our comparison

We have implemented the following seven measures of morph quality.

Travel distance For each sample ai, we measure mi as the arc length of the tra-

jectory to the corresponding point bi. Then, as explained in Section 8.2.1, we report

the weighted average Etravel of these from A to B and vice-versa.
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Although we don’t use the CP morph in our benchmark comparison, we show

that the travel distance of the CP morph is never less than that of any of the three

b-morphs. Consider an arbitrary point on the medial axis m ∈M of the moat X and

its closest projections a on A and b on B, as shown in Figure 50. Now let b′ be the

pre-image of a by the Closest Projection from B to A, and let a′ be the pre-image

of b by the Closest Projection from A to B. With each point m ∈ M , we associate

three travel distances: the travel distance |b− a′|, the travel distance |a− b′|, and

the travel distance of the ball-map from a to b, which is the length of the circular-

arc trajectory from a to b and never exceeds |a−m| + |m− b| = 2r. Because the

corresponding ball fits in the moat X, |m− b′| and |m− a′| cannot be smaller than

r.

Travel distance can be a useful measure in a variety of applications, such as finding

an efficient route for an advancing army on the battlefield which minimizes travel,

thereby conserving fuel, time and every soldier’s energy.

Stretch We define stretch as the average of the integral over time of the stretch

factor for an infinitesimal portion of the curve. We compute its discrete approximation

as follows. Let a and a′ be consecutive samples on A. Let L(a, t) be the length of the

segment of A(t) between a(t) and a′(t). We compute stretch for a sample ai ∈ A as

si =
∑

t∈[0,1−ε] (|L(a, t+ ε)− L(a, t)|)

The weighted average Estretch is then reported as described above.

The measure of stretch can be important when computing the range of flexibility

of an elastic material. If the material experiences a stretch during its range of motion

that is beyond its prescribed maximum tolerance, failure may occur.

Acceleration Acceleration, or unsteadiness [120], is defined as the derivative of the

expression of velocity in the local, time-evolving frame, and measures the lack of

81



steadiness of the motion.

vt vt+1

Lt

Rt

Lt+1

Rt+1

Figure 51: Computation of acceleration (steadiness) for a given vector v of the
morph trajectory is computed relative to the neighboring triangles (green).

To compute Eacceleration, let at denote the position of a sample a at a time t.

We approximate the instantaneous velocity of at by the vector −−−→atat+ε. For each

such velocity on a morph trajectory, we compute two barycentric coordinate vectors

−→
B L(−−−→atat+ε) and

−→
BR(−−−→atat+ε) relative to the left and right neighboring triangles Lt and

Rt as shown in Fig. 51. The steadiness at a point at is then computed as:

gt = 1
2
|
−→
B L(−−−→at−εat)−

−→
BR(−−−→at−εat)|

+ 1
2
|
−→
B L(−−−→atat+ε)−

−→
BR(−−−→atat+ε)|

We compute the acceleration measure as the sum of the gt terms over the trajectory

of each point ai and report their weighted average Eacceleration, as described above.

Acceleration is important in detecting instabilities in a motion. For example,

consider points as passengers on an airplane, where the plane represents the local

frame flying (evolving) along a trajectory. When the plane encounters turbulence, the

passengers’ coordinates within the plane may not be steady (due to local acceleration),

causing discomfort. If the motion is free of acceleration, the passengers will remain

perfectly still in the local coordinates defined by the plane.
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Distortion At each point along the evolving curve and at each time, the amount

of distortion is proportional to 1/cosθ, where θ is the angle between the direction of

travel and the normal to the evolving curve. If the direction of travel is always in the

normal direction, then the morph is said to be free from distortion.

Figure 52: The b-morph produces a pure rotation with zero distortion, zero stretch
and zero acceleration between linear segments in 2D.

Let a and a′ be consecutive samples on A and L(a, t) define the length of the

segment
−→
aa′. Let V (a, t) define the length of the segment −−−→atat+ε. We compute

Edistortion =
∑

t∈[0,1−ε]

∣∣∣∣1− 1
2
(L(a, t) + L(a, t+ ε)) · 1

2
(V (a, t) + V (a′, t)

Area(ata′ta
′
t+εat+ε)

∣∣∣∣
It was shown in [24] that (1) the b-morph is a Ck−1 isotopy when the input curves

are Ck for k ≥ 2 and (2) that the Circular b-morph is free from distortion when

morphing between line segments (in 2D) of A and B (Fig. 52).

When a surface is reconstructed from a morph with zero distortion, a rectangular

texture applied to the surface will retain its angles of π/2, although there may be

stretching along one or both of the axes.

8.2.3 Mesh measures

In addition to our 2D measures, we also present results of 3D measures of surface area

and also average and maximum squared mean curvature [78] of the resulting triangle

mesh surfaces constructed by interpolating the input curves along the z − axis. In
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applications of surface reconstruction from 2D planar contours, minimizing the surface

area and smoothness of the resulting reconstruction is often desirable (see Fig. 53).

Figure 53: We show the slice-interpolating surface reconstructed using a Closest
Projection morph from-green-to-blue (left), the reverse Closest Projection morph
from-blue-to-green (center), and the symmetric Circular b-morph (right) which ap-
pears smoother. The amount of local distortion is shown in red on the 2D drawings.
Clearly, the b-morph produces less distortion than either of the CP morphs. It also
produces a shorter average travel distance.

8.3 Results

We first compare the b-morphs to our benchmark set using two different test cases,

as shown in Figures 8.3 through 69. Then, we compare two of the b-morphs to the

best two other morphs (Laplace and Heat) on a test case between an apple and a

pear. The results are organized by example, showing the trajectories, the surface

reconstructions, and 9 frames of each. The frames of animation are ordered from

left to right, and top to bottom. At the end of all the morphs for each example is

the chart showing the measures, where all results are normalized by dividing by the

maximum result for each measure.

The first test case (Figures 8.3-61) shows a morph between two offset circles. In

order to simplify the problem of computing correspondences for the methods which

rely on uniform arc-length parameterization, we split each curve into 2 open curves

at the intersection points.
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Our experiments demonstrate that the average travel distance is the shortest when

using the Linear b-morph , as we discussed earlier, and that the Circular b-morph has

the least amount of distortion. The HP morph is the closest in terms of appearance

and measure to the Circular b-morph.

The second test case (Figures. 8.3-69) shows a set of symmetric ‘S’ shaped curves.

This example highlights the strength of the morphs which compute their own corre-

spondence (HP, b-morphs). The other results, which define correspondence through

uniform arc-length parameterization, exhibit extreme distortion and travel lengths

and also produce self-intersections with the original curves. Again, the HP morph is

closest to the family of b-morphs in terms of measure and appearance.

The final test case (Figures 8.3-74) uses contours representing an apple and a

pear. We show the best four morphs (Linear b-morph, Circular b-morph, Heat

Propagation and Laplace Blending) and compare their measures. The measures for

these four are similar. Travel distance and distortion are still minimized for the

Linear and Circular b-morphs, respectively. The LB approach wins in terms of

acceleration, stretch and curvature.
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Linear Interpolation

Figure 54: The result of using the Linear Interpolation morphing algorithm
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Linear B-morph

Figure 55: The result of using the Linear B-morph morphing algorithm
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Parabolic B-morph

Figure 56: The result of using the Parabolic B-morph morphing algorithm
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Circular B-morph

Figure 57: The result of using the Circular B-morph morphing algorithm
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Heat Propagation

Figure 58: The result of using the Heat Propagation morphing algorithm
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Curvature Interpolation

Figure 59: The result of using the Curvature Interpolation morphing algorithm
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Laplace Blending

Figure 60: A result of using the Laplace Blending morphing algorithm on a pair of
offset circles.
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Figure 61: The measures for each morphing algorithm for the pair of offset circles.
Each measure is normalized independently by dividing by the maximum result.
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Linear Interpolation

Figure 62: The result of using the Linear Interpolation morphing algorithm
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Linear B-morph

Figure 63: The result of using the Linear B-morph morphing algorithm
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Parabolic B-morph

Figure 64: The result of using the Parabolic B-morph morphing algorithm
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Circular B-morph

Figure 65: The result of using the Circular B-morph morphing algorithm
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Heat Propagation

Figure 66: The result of using the Heat Propagation morphing algorithm
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Curvature Interpolation

Figure 67: The result of using the Curvature Interpolation morphing algorithm
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Laplace Blending

Figure 68: A result of using the Laplace Blending morphing algorithm.
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Figure 69: Morph measures for a set of ‘S’-shaped curves. Each measure is normal-
ized independently by dividing by the maximum result.
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Linear B-morph

Figure 70: The result of using the Linear B-morph morphing algorithm
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Circular B-morph

Figure 71: The result of using the Circular B-morph morphing algorithm
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Heat Propagation

Figure 72: The result of using the Heat Propagation morphing algorithm
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Laplace Blending

Figure 73: A result of using the Laplace Blending morphing algorithm on a pair of
offset circles.

8.4 Conclusion

Stretch is a measure where none of the b-morphs fare well. This is due to its local,

orientation-based correspondence. This effect is also exhibited by the Heat Propa-

gation morph. As shown in Figure 8.3, an unnatural “bend” may occur in areas of
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Acceleration Surface Area
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Figure 74: The measures for each of the 4 methods used in the Apple to Pear morph.
Each measure is normalized independently by dividing by the maximum result.

high stretch. Although the resulting morph curves are smooth, the bend immedi-

ately draws the attention of the viewer. The stretch is lower for the other morphs

because we use uniform sampling to define their correspondence. For example, in

the ’S’-curve example, each edge segment starts and ends with the same length when

uniform sampling is used.
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The effect of distortion for the morphs is made evident when examining the

checkerboard texture applied to the corresponding surface reconstruction. The Cir-

cular b-morph and Heat Propagation morph result in a texture where the gridlines

remain almost exactly orthogonal. In the other morphs, the checkboard is more

distorted, having angles which deviate farther from π/2.

Throughout the results, it is clear that the Circular b-morph and the Heat Propa-

gation morph produce similar results in terms of appearance and measure. Both use

trajectories that are orthogonal to the input curves. The Heat Propagation morph

theoretically should have zero distortion since every point moves in the direction of

steepest descent along the gradient defined by the heat equation within the moat X.

However, due to the discretized nature of our implementation of this approach, this

is not the case. Our Circular b-morph approximates this property of following the

normal flow. We argue that for the case of b-compatible curves, the Circular b-

morph offers a reliable alternative to the Heat Propagation morph for minimizing

distortion. It is easier and faster to compute and can be computed exactly (using

closed form expression) in the case of PCCs.

The Curvature Interpolation morph and Laplace Blending morph perform well

in terms of average mean curvature of the resulting surfaces. Indeed, by design they

interpolate the curvature defined by the input curves. The Laplace Blending approach

does this best, as shown in Figure 8.3 where the shape remains circular throughout

the morph. Our Curvature Interpolation morph produces ellipses for this example

(Fig. 8.3) due to the final 1D scale operation we use to bring the endpoints into

alignment. The Circular b-morph offers competitive results for mean curvature. As

previously stated, for Ck continuous input curves, the inbetween b-morph curves are

guaranteed to be at least Ck−1 continuous for k ≥ 2, and the trajectories in 3D are

C1 continuous circular helices.

Because the choice of morph is application dependent and inherently subjective,
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we do not argue that any one measure is more important than another. However,

for applications where the input curves are b-compatible, and distortion, acceleration,

average curvature, and travel distance are important, the b-morphs offer important

advantages over the others benchmarked here.
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CHAPTER IX

BALL-MAP AND BALL-MORPH EXTENSIONS TO

INCOMPATIBLE SHAPES

As discussed in previous chapters, the ball-map, and consequently the b-morph, is

restricted to cases where the input curves are b-compatible. We discuss here an ex-

tension in order to accommodate incompatible features for curves. We assume that

the curves A and B fall into one of the three same categories as defined in Chapter 3:

1. Open curves with shared endpoints that meet at angles less than π

2. Closed curves such that iA ∩ iB and eA ∩ eB are each a non-empty connected

set

3. Closed curves such that A ∩B = ∅ and A ∩ iB = A or B ∩ iA = B

And we again assume that i!X(A,B) has no more than 2 components and the interior

medial axis of X is simply connected.

9.1 Identifying incompatible features

Finding incompatible features is equivalent to finding branches in the medial axis of

the moat of two shapes. These branches form at bifurcation points on the medial axis.

These bifurcation points exist where a ball has tangential contacts with more than

one point on one of the two shapes. If the input shapes are closed piecewise-circular

curves, then Apollonius’ circle solution can be used in a greedy search to find these

points by trying every combination of three circular arcs. A valid result is one which

has a tangential contact with each of the three circular arcs and intersects no other

arcs of either curve. This algorithm is defined in detail in Chapter 3, Algorithm 1.
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Figure 75: a) The lacing process has passed an incompatible feature since a ball-
map solution does not exist between a and Bi or b and Ai. b) a and b step backward
until a ball-map solution is found that does not intersect A or B. c) Using the
Apollonius’ circles solution, a ball-map V is found by using Ai, Bi and testing with
every other arc on both curves. d) The ball-map process continues by moving a and
b past the incompatible feature.

We propose a modification of the ball-map lacing algorithm in Chapter 5 such

that it will detect incompatible features and construct the relative blending arcs

(Chapter 4), then continue the lacing process.

Assume that A and B are manifold curves and that iA ∩ iB and eA ∩ eB are

each a non-empty connected set. Once the lacing process reaches points a,b and

associated arc-edges Ai, Bi such that no ball-map solutions exist which map a to Bi

or b to Ai, an incompatibility has been found (Figure 75-a). Instead of returning

an error as before, the a and b pointers step backward simultaneously to previously

computed ball-map solutions until one is found such that its tangent ball does not

intersect A or B. At each backward step, the ball corresponding to the previously

computed map from a to b is checked for intersection with A and B (O(n)). The
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Figure 76: Left: ball-map arcs between the relative blended versions of the curves
and Closest Projection linear trajectories from the blue curve to its relative blended
version. Right: The Closest Projection morph is not a homemorphism, so additional
relative blending operations will be necessary.

process continues until a ball-map is found that does not intersect A or B (O(n2) in

the worst case) as shown in Figure 75-b. At this point, a tangent ball V must exist

that is tangent to the arc-edges Ai and Bi corresponding to a and b. V will also

be tangent to additional point(s) on A and/or B. The Apollonius’ circles solution

is constructed using the arc-edges Ai, Bi and every other arc-edge on A and B that

has not already been laced until the solution tangent ball V is found that does not

intersect A or B (O(n2) in the worst case) and is tangent to A at vA, B at vB, and

either A or B at v∗ as shown in Figure 75-c. If v∗ lies on A, then the shortest circular

arc on V between vA and v∗ is the relative blending arc for the incompatible feature.

Finally, a,b are set to v∗,vB, respectively, and the lacing process continues, as shown

in Figure 75-d.

Once all vertices on A and B are laced, the relative blended curves RB(A), RA(B)

have been computed.

9.2 Composite b-morphs in 2D

To produce morphs between curves that are not b-compatible, we compute the relative

blendings A′ = RB(A) and B′ = RA(B) and the b-morph M0 between the resulting

quasi-b-compatible curves A′ and B′ using the lacing algorithm from Chapter 5.
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Figure 77: Trajectories (left) shown with caps (red) computed by recursive relative
blending operations and constant speed morph curves from blue to orange (right).

There are 3 situations for computing the next morph M1:

1. If B′ and B are b-compatible we compute their b-morph M1.

2. If B is not at least C1 continuous, we try a Closest Projection morph (discussed

in Chapter 8) from B to B′. If the closest projection is a homeomorphism, we

produce a morph M1 with the reversed straight line trajectories (Figure 76-left)

3. If B is at least C1 continuous, or the the closest point projection is not a home-

omorphism (Figure 76-right), we compute the relative blending B′′ = RB′(B),

then compute their b-morph M1.

Note that in all cases, the trajectories of M1 leave B′ along its local normals and

are hence smoothly joined with the trajectories of M0. If we run into situation (3),

we recurse on the gap between B′′ and B. This process fills the gap between B′ and

B by a series of b-morphs and possibly a final Closest Projection morph, generating

piecewise-circular trajectories (Fig. 77 left) with possibly a straight line at the end

of each one. Note that without handling situation (2), the recursive process would

never converge since a ball will never reach the sharp feature. We have produced a

concatenation of morphs M1, M2, M3... We perform a similar iterative process to

invade the gap between A′ and A, producing in this manner a series of morphs, which

112



we reference with negative integers: M−1, M−2, M−3 The final combined morph is:

M−3, M−2, M−1, M0, M1, M2, M3 (Fig. 77 (right), Fig. 9.2, Fig. 9.2, Fig. 9.2).

We have explored several synchronizations of the motions of sample points of A

along their smooth trajectories towardsB during a composite morph (Figs. 9.2, 9.2, 9.2).

The first one performs one morph after the other in the sequence M2, M1, M0, M1,

M2 as shown in Figure 9.2. This has the effect of shrinking and growing the incom-

patible features first and last. Also notice that there is a large jump between frames

5 and 6. Each “stage” of the morph is interpolated with the same timing and because

the largest change occurs when morphing the M0 stage between the relative blendings

of the original curves, it moves very quickly.

The second synchronization moves each sample point of A at uniform speed along

its composite trajectory (Fig. 9.2). Notice the incompatible features shrink quickly

to the medial axis, producing non-smooth results.

The third synchronization moves all samples with the same speed, synchronized

to reach the N curve (Chapter 7, Figure 45) between A′ and B′ at the same time

(Fig. 9.2 right). This is a compromise between the other two methods and produces

the best results, although non-smooth morph curves are still be produced.

9.3 Limitations

As shown in the various synchronizations of the composite b-morph, the inbetween

curves are not smooth. The composite ball-map produces trajectories that do not

self-intersect, although choosing a parameterization of these trajectories that ensures

C1 continuity has been left for future work. We hope that the fast and precise

computation of the trajectories will be useful in other applications, such as measuring

tissue thickness in medical imaging analysis [133].

As is the case for the compatible b-morphs, the composite morph curves exist

entirely within the bounds of the moat, and the points of intersection of the input
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Figure 78: Composite b-morph and trajectories (black, top-left) between incom-
patible shapes obtained by recursively applying the relative blending operation and
morphing each stage of the trajectories one level of a recursion at a time (right).
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Figure 79: Composite b-morph and trajectories (black, top-left) between incom-
patible shapes obtained by recursively applying the relative blending operation and
morphing along the uniformly sampled trajectories (right).
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Figure 80: Composite b-morph and trajectories (black, top-left) between incom-
patible shapes obtained by recursively applying the relative blending operation and
moving all samples at uniform speed such that they are synchronized to reach the N
curve between A′ and B′ at the same time (right).
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Figure 81: The Heat Propagation morph produces similar results to the uniform
speed composite b-morph (Figure 9.2). Notice that it also produces thin features in
the inbetween curves.
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curves remain fixed throughout the morph. This effect may not be desirable in some

applications, and another morph, such as one discussed in Chapter 8, may be used.

9.4 Analysis

As discussed in Chapter 8, the Circular b-morph produces similar results to the

Heat Propagation morph. For the case of incompatible curves, the Heat Propaga-

tion morph (Figure 9.2) produces results similar to the uniform speed composite

b-morph (Figure 9.2). Again, each has trajectories that are orthogonal to the input

curves. Also, the trajectories exist entirely in the moat X. When parameterizing

the trajectories uniformly, both morphs result in features shrinking to curves with

sharp C0 continuous features. However, the Heat Propagation morph does produce a

one-to-one correspondence whereas the ball-map is one-to-many where the curves are

incompatible.

The advantage of the b-morph in these incompatible cases is precision. When

using PCCs, we have a closed-form solution for computing the correspondence and

trajectories. As previously mentioned, the resulting trajectories will also be piecewise-

circular curves.
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CHAPTER X

PEARLING

Pearling is a novel segmentation technique for the semi-automatic extraction of ideal-

ized models of networks of strokes (variable width curves) in 2D images and variable

radius networks of tubular structures in 3D medical images. Pearling is related to

the ball-map construction in that we want to compute an approximate medial axis

transform, but instead of having explicit geometry, we have discrete models (pixels,

voxels). The approximate MAT may for example represent roads in an aerial photo-

graph, vessels in a medical scan (image or volume), or an artist’s strokes in a scanned

drawing of feature animation. For clarity, we use “vessel” to describe any traceable

path (i.e. roads, arteries, strokes).

10.1 Overview

The operator seeds the pearling process by selecting representative areas of good

(vessel to be traced) and bad colors (or gray levels). Then, the operator may either

provide a rough trace through a particular path in the vessel graph or simply pick a

starting point (seed) and a direction of growth. Pearling computes in realtime the

centerlines of the structures, the bifurcations, and the thickness function along each

structure, hence producing a purified approximating medial axis transform of a desired

portion of the graph. No prior segmentation or thresholding is required. Simple stylus

gestures may be used to trim or extend the selection or to add branches. The realtime

performance and reliability of pearling results from a novel ball-sampling approach,

which traces the structures by optimizing the positions and radii of a discrete series

of balls (pearls) along the structure. By design, the idealized pearl string model is

slightly wider than necessary to ensure that it contains the boundary. A narrower
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core model that fits inside the structure is computed simultaneously. The difference

between the pearl string and its core, which we call the crust, contains the boundary

of the structure and may be used to capture, compress, visualize, or analyze the raw

image data along the boundary. For example, the core may trace the blood in an

artery, while the crust will capture the arterial wall.

10.2 Prior Art

Given its clinical importance, the problem of vessel segmentation has received a fair

amount of attention in the literature. Kirbas et al. [63] provide a recent survey

of techniques for vessel segmentation. They conclude that there is no single vessel

segmentation approach that is robust, automatic, and fast, and that successfully

extracts the vasculature across all imaging modalities and different anatomic regions.

Following their conclusion, we step away from total automation and instead focus

on interactive segmentation, providing an efficient system for an operator to quickly

extract the region and branches of interest.

Other recent vessel segmentation approaches in the medical imaging literature in-

clude [116], which models vessel segments using superellipsoids, [73], which utilizes

co-dimension two level set flows, and [109], which applies a Bayesian classifier to fea-

ture vectors produced using Gabor wavelets. While elegant, these techniques require

significant computational resources.

Fast methods such as [128] perform the segmentation on slices made in a direction

orthogonal to the vessel centerline or intensity maxima [111] and then extract the

vessel geometry by connecting the results. More closely related to our work is [77],

which builds tunnels modeled as a union of spheres, placed through protein molecules

along the edges of a Voronoi diagram computed from the atoms (represented by

spheres). Unlike this work, our method is image-based and designed for segmentation,

placing the pearls using local pixel intensity inside each pearl.
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Several authors proposed to compute skeletons through the advection of particles

along the distance field [35] [113]. The thinning methods [90] and the methods based

on distance transform [117] for extracting a skeleton are not easily applicable to our

problem of rapidly segmenting a subset of the volume because they are global and

hence slow and require the precomputation of a distance field. The distance field pre-

computation may be avoided in methods that use a general scalar field [34]. Minimal

paths through vessels have been computed using fast marching techniques [69] that

backtrack along a distance field [31] computed with a Riemannian metric.

Also related is the computation of the medial axis transform [17], as discussed in

previous chapters. Once an image is segmented and pixels have been identified that

are in the vessel network, other techniques for producing the medial axis transform on

discrete data could be used. However, pearling produces directly the purified MAT

that could be derived by removing automatically small branches from the MAT and

selecting a desired portion of the graph, all without requiring a prior segmentation.

10.3 Our contribution

Pearling performs a segmentation and idealization simultaneously by computing an

ordered series of pearls, which are balls of possibly different radii. Starting with an

initial pearl given by the operator, as well as an initial direction, pearling iteratively

computes the position and radius of an adjacent pearl based on the image data, so

that the newly placed pearl fits properly along the desired path, slightly bulging out of

the segmented shape on both sides. The method proceeds in this fashion, producing

a string or network of strings of pearls that provide a discrete representation of the

vessel geometry. A final smooth contour representing the vessel network is then

obtained by estimating continuous functions that interpolate the discrete series of

pearls. As we will show, pearling is computationally efficient and well suited to user

interactivity. This interactivity affords operator guidance of the segmentation in a
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Figure 82: Representation of pearling, which consists of an ordered series of pearls.
Continuous functions that interpolate the pearls are also shown: the blue curve in-
terpolates the pearl centers, and the red and green curves interpolate the outside
and inside edges of the pearls, respectively. Note the circular arc trajectories of the
b-morph joining corresponding points on each side.

particular direction as well as operator correction of errant segmentation results.

In addition to pearls, we introduce the concepts of core and crust. The core of

the pearling model is computed by reducing the radius of each pearl while keeping

its center in place. The radius is chosen to be as large as possible, while ensuring

that a given majority of pixels inside the core pearl are good. The difference between

the “outer” pearl model and its core is the crust, which may be used to capture,

compress, archive, transmit, visualize, or analyze the original data along the vessel

border. We show in Section 10.5 that the crust is a narrow band around the vessel

border computed through region growing techniques.

10.4 Methodology

Pearling allows the operator to extract a higher level idealized parametric represen-

tation of each vessel. This representation is called a string. As shown in Figure 82,

it comprises an ordered series of pearls (or balls), each defined by the location ci of

its center, by its radius ri, and a time value ti, and possibly other attributes ai. The

continuous model of the corresponding vessel that is recovered by pearling is defined
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Figure 83: Two adjacent Pearls (green) and their cores (cyan) with their centers
connected (magenta) overlaid on top a vessel (black) and the crust region defined by
the continuous set of pearls minus their cores (red)

as the region W swept by a pearl whose center c(t) and radius r(t) are both con-

tinuous and smooth functions of the time parameter t. These functions interpolate

the centers and radii of the string of pearls for given values ti of time and define the

MAT for the string. For a network of vessels, multiple strings will be defined which

meet at bifurcation pearls, the centers of which define bifurcation points of the MAT.

Bifurcation pearls will be defined later.

10.4.1 Estimation of pearls

As previously discussed, pearling starts with an initial seed, c0, which is a point either

provided by an operator or by an algorithm. Typically, c0 should be chosen to lie

close to the centerline of a path in the image and possibly at the end of one of the

paths of the desired structure. Pearling then uses an iterative process to construct an

ordered series of pearls, one at a time. During that process, at each step, the center

ci and radius ri of the current pearl is chosen so as to maximize ri subject to image

data, given the constraint that the distance di between ci and the center ci−1 of the

previous pearl is bound by functions dmin(ri−1, ri) and dmax(ri−1, ri). We use linear

functions dmin,max(ri−1, ri) = ari−1 + bri, and with bounds dmin(ri−1, ri) = ri/2 and

dmax(ri−1, ri) = ri−1 + ri. It is important that di be allowed to fluctuate in order to
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capture rapid changes in thickness and allow convergence to local minima.

Let ci−1 be the center of the previous pearl, as shown in Figure 83. Let ci be the

center of the next pearl, and let ri be its radius. The objective is to find the optimal

values of ci and ri that place the ith pearl in the vessel. In order to adjust the values

of ri and ci so that the pearl fits more “snugly” astride the vessel, we define two

functions: f(ci, ri) and g(ci, ri), as described below.

Center estimation: The function f(ci, ri) returns a gradient vector indicating

the direction in which ci should be adjusted and the amount of the adjustment.

f(ci, ri) takes the form:

f(ci, ri) =
30

7πr2
i

∫
x∈Pi

φ(x)(ci − x)

(
1− ‖ci − x‖2

r2
i

)
dx (28)

for pearling in 2D, and

f(ci, ri) =
5

πr3
i

∫
x∈Pi

φ(x)(ci − x)

(
1− ‖ci − x‖2

r2
i

)
dx (29)

for pearling in 3D.

φ(x) =

 1, if p̂out(I(x)) > p̂in(I(x))

0, otherwise
(30)

The function f(ci, ri) sums the vectors (ci − x), where x is the vector coordinate

of the the current grid cell (pixel or voxel), across the entire area of cells for pearl

Pi, using only those cells such that φ(x) = 1, i.e., cells determined to be outside the

vessel. Each of these vectors is weighted by its distance from ci such that cells nearer

ci have a stronger influence on the result, as reflected in the
(

1− ‖ci−x‖2
r2i

)
component

of Equations 28 and 29. Intuitively, Equation 30 states that each point inside the ith

pearl but outside the vessel imparts a force on the pearl that pushes it away from the

vessel boundary. When the forces are balanced on all sides of the pearl, the pearl is

typically centered in the vessel.
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Figure 84: The normalization factors 30
7πr2i

and 5
πr3i

are such that in this ideal example,

f(ci, ri) has magnitude ri/2 and offsets the pearl half the distance into the “good”
region.

The 30
7πr2i

and 5
πr3i

are normalization factors are computed by examining the case

where a pearl is cut into two equal halves by a linear boundary separating good and

bad cells, as shown in Figure 84. By assuming this ideal case, we can compute the

normalization factor by calculating the offset magnitude needed to move this pearl

half the distance that would move it entirely in the good region, which is ri/2.

Determination of whether a cell lies inside the vessel or outside the vessel is nec-

essary when computing f(ci, ri), and is achieved using non-parametric density esti-

mation. Before running the algorithm, the operator selects two regions; one inside

the vessel and one outside. For a given region, we estimate the density by applying a

smoothing kernel K to the cells in the region’s histogram, i.e.,

p̂ =
1

n

n∑
i=1

K

(
Ii −m
h

)
, (31)

where Ii is the intensity of the ith cell in the region, m is the mean of intensities

of the n cells in the region, and h is the bandwidth of the estimator. We use a

Gaussian kernel, K(u) = 1√
2π
e−

1
2
u2

. Performing this estimation on two operator-

supplied regions results in two densities, p̂in(I) and p̂out(I). During segmentation,

an intensity I is classified as outside if p̂out(I) > p̂in(I); otherwise it is classified as

inside.
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Radius estimation: ri is adjusted to better fit the vessel using the function

g(ci, ri), as shown in Equation 32. For robustness, pearls are designed to have a

percentage p of their cells inside the vessel and the rest outside the vessel, as indicated

in Figure 83. In our implementation, g(ci, ri) is positive when less than p percent of

the pearl’s cells fit in the vessel and negative more than 1− p of the cells lie outside

of the vessel. The result of g(ci, ri) is then used to scale ri to better fit in the vessel.

g(ci, ri) takes the form,

g(ci, ri) = p−
∫
x∈Pi

(1− φ(x)) dx∫
x∈Pi

dx
(32)

Interleaving the estimation, and convergence: We interleave the estimation

of ci and ri for the ith pearl Pi. For a given position ci and radius ri, one can update

both parameters independently using the results given by f(ri, ci) and g(ri, ci). In

both cases, the quality of the fit is measured and the desired adjustment is computed

and returned.

The adjustments of ci and ri are done through several iterations while enforcing

the constraint on di until the adjustment values returned by f(ci, ri) and g(ci, ri) fall

below a given threshold. The process then freezes the current pearl and starts fitting

the next one. The growth of a vessel stops when the radius of the next pearl falls

outside of a prescribed range, or when another application-dependent criterion is met,

such as the detection of an operator-supplied endpoint or exceeding a prescribed arc-

length of the spine. The result of this pearling process is a series of location-radius

pairs (ci, ri), which we call the control pearls and which approximates a portion of

the MAT of the vessel.

10.4.2 Direction estimation and Bifurcations

Often in the applications targeted, images contain sharp turns and bifurcations where

a path will branch into multiple paths and may even contain loops. We have extended
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Figure 85: A pearl shown at a vessel bifurcation along with its set of good cells
in the region bounded by ri and kri. Each connected component Cj is uniquely
colored. Vectors Dj (magenta) are shown for the connected components which contain
a number of pixels greater than the set threshold.

the above process to support these options to trace a network of pearl strings. These

networks are stored as directed graphs (in the direction of growth), which may also

contain undirected closed loops in the case where the growing string intersects another

string.

Once a pearl Pi has converged to fit on a vessel, an analysis of the region around

Pi is done in order to decide where to initially position Pi+1, taking into account that

there could be more than one Pi+1 or none. This analysis is done on the pixels in a

circular band around Pi in 2D, or a spherical band around Pi in 3D, with an outer

radius kri where k is some constant. In our experiments, a value of k = 1.35 produces

acceptable results. Each cell x in this band is then classified using Equation 30. The

result gives a classification with N > 0 connected components of good pixels, as shown

in Figure 85. At minimum, there should be a connected component identifying the

path from the previous pearl, Pi−1. If N = 1, then the only possible direction is

backwards and pearling stops growing the current branch because its end has been

found. If N > 1, then the starting position(s) for any subsequent pearl(s) can be

chosen using the remaining connected components. For each connected component

Cj, an average point is calculated which defines a direction vector Dj from the pearl
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center ci. Subsequent pearls are then initialized to the points on the boundary points

of Pi which intersect each Dj. This extension allows pearling to accommodate sharp

turns and bifurcations in the vessel structure.

A loop in the pearling network can also exist. A simple intersection check between

the current pearl and all previous pearls will reveal if such a loop has occurred. In

this case, the current pearl is linked to the intersected pearl and its string growing

process is ended. The intersected pearl could then become a bifurcation pearl, if it

already has more than one adjacent pearl, or it could be the end of another stroke

still in in the growing phase. If the latter is the case, and two growing strokes collide,

they are both ended and become part of the same stroke.

10.5 Results

Figure 86: An unedited grayscale image obtained from satellite imagery of a river
shown with the initial inputs(left), the resulting pearling segmentation, computed in
33ms(center), and the crust (red) overlaid atop a simple region-grown segmentation
(yellow), showing that the majority of boundary details are contained within the
crust.

We now present segmentation results using pearling. We begin with the segmen-

tation of a satellite image of a river. The original image with the initial inputs is

shown in Figure 86 (left). As described, the initial inputs include regions of good

and bad pixels (shown in green and red) and an initial point and direction (shown

in orange). The algorithm then proceeds, successively adding pearls until no more

can be added, the result of which is shown in Figure 86 (center). From the collection
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of discrete pearls and their cores, we can then extract the continuous model of the

crust, as seen red in Figure 86 (right). The yellow region in the figure is the result

of a simple region-growing segmentation using the same good and bad regions and

starting point as pearling. A zoomed-in section shows almost all boundary pixels are

contained within the pearling crust.

Figure 87: A Chinese character with centerlines (left) and discrete pearls (right)
computed by pearling in 37ms on an image with size 236x201.

Figure 87 presents another segmentation result, of a variable width Chinese char-

acter. We show the original image with the pearling-computed centerlines (left) and

the pearl disks (right). Note that all examples completed in tens of milliseconds.

Additional results for both 2D and 3D pearling can be found in Chapter 12.

10.6 Limitations

Pearling has been designed to work for the extraction of thin vessels in both 2D and

3D images. If the desired application is to extract more complex features, such as

entire organs in a 3D medical scan or a square parking-lot in a satellite image, then

other approaches discussed above are more applicable.

For the case of 3D images, it is possible that a desired vessel for segmentation

may not have a circular cross-section, but an elliptical or more complex cross-section

instead. Because pearling uses a ball to trace vessels, it may produce undesirable
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results if appropriate parameters are not set. In order to accommodate these more

complex boundaries, the target ratio p used in Equation 32 can be set higher to

allow the pearls to contain more “bad” pixels such that the irregular boundary is

encompassed. In the examples presented here and in the next chapter, such a situation

was not encountered.

10.7 User Control

The pearling process is initiated by the user manually selecting a point on the image

and giving a direction vector, as well as identifying regions of “good” and “bad”. In

2D, this is accomplished by directly clicking on the image, and in 3D, the user first

selects a cross-section and proceeds as in 2D (Figures 91,92). An initial segmentation

is then computed (Figure 93).

As pearling is computationally efficient, it affords the user interaction with data

without delays. In Figure 88 (top) we show an example where an operator can select

a string by simply moving the mouse over any pearl in the string. Once selected, the

branch can then be deleted with the press of a key, as shown in Figure 88 (center).

This process works the same way in 3D, the result of which is shown in Figure 94.

The operator can also add strings to an incomplete segmentation by simply selecting

a pearl and drawing a new direction vector from it, as shown in orange in Figure 88

(center) and similarly in 3D as shown in Figures 95, 96. The results of growing the

new strings are shown in Figure 88 (bottom) and in Figure 97.

For more direct control in 2D, the operator may provide a rough trace of the

centerline of a desired stroke, as shown in Figure 89 (orange). Pearls are placed at

samples along the curve and converge in real-time thus forming the stroke (Fig. 89

(magenta)) as the operator is attempting to trace it with a stylus. In this mode,

the operator uses a stylus to quickly trace a rough curve through the desired stroke

structure and then as desired, adds branches. A preset mode or the stylus speed when
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Figure 88: An initial incomplete pearling, with one string selected (yellow) by the
operator (top). The result of the deleting the selected string and also the initial input
for a new string (orange) by the operator (center), and the result (bottom).
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Figure 89: A rough trace of the centerline of the river supplied by the user (orange)
has been interactively corrected (magenta).

the stylus is released indicate how far past the release point pearling will grow the

stroke structure. As the operator is still tracing the curves, pearling computes the

idealized strokes (centerline and radius) and displays them. Each new trace either

adds or removes a branch.
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Figure 90: Segmentation obtained through global thresholding.
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Figure 91: A horizontal slice through the volume.
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Figure 92: A different slice in which the operator has marked selected examples of
good (green) and bad (red) material and has identified the seed and initial growth
direction (cyan).
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Figure 93: Initial tree extracted by pearling in 1.23 seconds with the seed-pearl
(cyan), branching-pearls (red), leaf-pearls (blue), and control-pearls (green).
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Figure 94: By clicking on the base of undesired branches, the operator has trimmed
the tree.
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Figure 95: By sliding the cross-section along the spine, the operator has discovered
a missing branch.
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Figure 96: The direction of the desired branch is indicated in cyan.
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Figure 97: New portion added to the tree at the desired location.
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Figure 98: A small branch of the new portion removed.
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CHAPTER XI

SKINNING AND FAIRING PEARL STRINGS

11.1 Building a continuous model from pearl strings

Figure 99: (Left) Branches after 1 refinement step. (Right) Branches after 5 refine-
ments.

A continuous model W of each vessel is obtained by computing continuous func-

tions c(t) and r(t) that interpolate the discrete set of end, branching and contour

pearls. We model W as the union of an infinite set of balls [81], which is and may be

expressed in parametric form as W = B(c(t), r(t)) for t ∈ [0, 1]. If we assume that

the pearls are more or less uniformly spaced along the vessel, we can define the string

as the limit of a four-point subdivision process, which, at each iteration, introduces

a new pearl between each pair of consecutive pearls as shown in Figure 99.

11.2 Sampling the pearl skin

Although producing a dense set of pearls may produce a smooth result for rendering

(Figure 99 (right)), in order to manipulate the result using standard surface defor-

mation techniques, or facilitate fluid simulations, a boundary representation must be

obtained. Included here is an algorithm for computing an envelope for a single strand
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Figure 100: Construction for computing a midpoint (m) on the edge of the convex
hull of two pearls.

of pearls for both 2D and 3D.

Figure 101: (Top) The cross-sections (red) computed between each pair of adjacent
balls. (Bottom) The skin created by subdividing the input balls (blue) as a 4D curve
and connecting each adjacent cross-section circle with a triangle-strip.

Once a dense sampling of pearls has been obtained through subdivision, the next

step is to construct a series of cross-sections, one for each consecutive pair of pearls.

This is done by computing samples (a pair of points in 2D, a circle in 3D) on the convex

hull between two consecutive pearls. Let P1 and P2 be two consecutive pearls with

centers o1, o2 and radii r1, r2 respectively, such that r2 > r1. Let d be the distance

between o1 and o2. The angle θ (Fig. 100) is calculated as cos−1((r2 − r1)/d). The

point b where an edge of the convex hull meets pearl P2 is b = o2+R(r2 ·
−−−→o1o2

|−−−→o1o2|), where

R is a rotation by angle θ. Similarly, the point a becomes a = o2 +R(r1 ·
−−−→o1o2

|−−−→o1o2|). The
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final cross-section point m is then (a + b)/2. In 2D, the other cross-section point m′

is obtained by reflecting m across −−→o1o2. In 3D, the cross-section circle is computed

as the rotation of m around the axis −−→o1o2. Figure 101 (top) shows cross-sections

computed for a string of balls.

Notice that if the cross-sections are connected, the edges will intersect the in-

put balls. However, in the limit of subdivision by a four-point subdivision process

(Fig. 99), a smooth skin can be obtained by connecting the densely sampled cross-

sections with line segments (2D) or triangle strips (3D) (Figure 101 (bottom)).

11.3 Surface construction from circular contours

In order to construct a smooth tubular surface from a set of non-coplanar circles, as

obtained from the above process, corresponding samples on consecutive circles must

be computed. We propose the following simple solution.

The process above yields an ordered set of circles Ci with centers oi and radii ri;

each on a plane with normal N̂i. Let C0 be the first contour. We place m uniformly-

spaced samples cn on C0. Let α0,1 be the angle between N̂0 and N̂1, α0,1 = cos−1(N̂0 ·

N̂1). Let
−→
A 0,1 be the result of the vector cross product N̂0 × N̂1. Let the difference

between the centers of the circles be D0,1 = o1 − o0. For each sample cn on C0, we

compute its corresponding point c′n on C1 as R(
−→
A 0,1, α0,1)(r1/r0)(cn−o0)+D0,1 +o1.

This process is then repeated in order for all remaining circle-pairs Ci, Ci+1. Finally,

for each circle-pair Ci, Ci+1, quads are computed between all points cn, cn+1, c
′
n+1, c

′
n

for n = [0,m] and a mesh is defined.
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CHAPTER XII

APPLICATIONS TO MEDICINE

The applications and results discussed here were motivated by and are the result

of collaborations with Siemens Corporate Research (SCR) in the area of medical

imaging.

12.1 Image Segmentation

We have evaluated the pearling approach, as discussed in Chapter 10, on a variety

of medical image datasets, both 2D and 3D. Fig. 102 shows a segmentation of a MR

angiographic image in 2D, with the pearls shown (right) and the approximate medial

axis defined by the centers of the pearls (left).

In Fig. 103 (left), a thresholded volume rendering of the original angiography

dataset is shown. Then, in Fig. 103 (center), we show the initial result of the

pearling algorithm which contains 328 pearls and took 1.1 seconds. Finally, in Fig. 103

(right), we show the result of user editing where the goal was to trim everything away

except the main vessel, the aneurysm, and the two major branches leading from that

junction. This interaction took about 30 seconds total and involved nine deletions.

Figure 102: An MR angiographic image with centerlines (left) and discrete pearls
(right) computed by pearling in 27ms on an image with size 436x168.
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Figure 103: Left: Thresholded volume rendering of the original angiography dataset.
Center: Initial result of the pearling algorithm (328 pearls, 1.1 seconds). Right: result
of user editing and refinement (9 deletions, 30 seconds).

Figure 104: Left: Slice of a chest CT scan showing bronchial tubes. Center: Result
of the initial run of pearling (638 pearls, 1.5 seconds). Right: Result of user editing
and refinement rendered within the volume itself (2 deletions, 10 seconds).
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Figure 105: Left: Detailed volume render of pulmonary arteries. Center: Initial
pearling result. Right: Refined pearling result.

Figure 106: Left: Aorta segmention obtained via level set methods (10 minute
execution on reduced volume). Right: pearling result using an endpoint and no
trimming (1.5 second execution time on full-resolution image).
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In Fig. 104 (left) a slice of the chest CT scan is shown within our pearling envi-

ronment. Then, in Fig. 104 (center), we show the result of the initial run of pearling.

This result contains 638 pearls and executed in 1.5 seconds. Even though there are

almost twice as many pearls as the angiography, the running times are similar because

most of the pearls in this example are extremely small and converge faster. Finally,

in Fig. 104 (right), we show the result of refinement, producing a smooth structure.

The next example was chosen to show the result of pearling on a more detailed

dataset. In Fig. 105 (left), a volume rendering of the dataset is shown, which includes

the aorta, heart, kidneys and pulmonary arteries. In Fig. 105 (center), we show

the result of pearling, which contains 10186 pearls and took 67 seconds to complete.

Then, in Fig. 105 (right), the result of the refinement is shown, which creates smooth

tubular structures.

In such a complex example, if the operator only needs to examine a subset of the

image, an endpoint should be used to tell pearling to explicitly stop. The result in

Fig. 106 (left) shows such an example of an aorta. No final trimming was needed

for this result, and the execution took 1.5 seconds on the raw 512x512x459 volume.

The result shown in Fig. 106 (right) is from a level-set approach, which required 10

minutes of running time on a reduced volume of size 256x256x229, because the full

size volume combined with temporary structures wouldn’t fit in the RAM of our test

machine. Note that the pearling result is generated in over two orders of magnitude

less time.

12.2 Future work on crust extraction

As discussed in Chapter 10, pearling provides an idealized approximation of the orig-

inal image data. Image details which are important for a visual diagnosis by a doctor

or radiologist may be lost in the process. Therefore, we introduced the concept of the

crust, which identifies a region near the boundary of the pearling segmentation. This
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region contains important image data, such as the arterial wall of a segmented artery.

We propose only storing the crust and pearling segmentation to reduce storage and

transmission costs and also to allow for efficient rendering of only the desired portions

of the original volumetric data.

12.3 Future work on slice interpolation

The problem (encountered in the segmentation of medical scans) of constructing a

surface in 3D that interpolates between each pair of consecutive planar cross-sections

may be solved [27] using the morphing between the projection, onto the same plane, of

the two cross-section curves. This problem of surface reconstruction has been studied

extensively [29][9][1][47][32].

12.3.1 Limitations

Our investigation of the benefit of b-morphs in Chapters 7, 8 to the problem of cross-

section interpolation has limitations:

1. We assumed b-compatibility

2. We considered only two consecutive slices instead of building a smooth surface

through the whole series, as proposed in [10]

The first limitation may be addressed using the composite b-morph as discussed in

Chapter 9. Because the b-morph reaches the interpolated contours at right angles, the

projection of these trajectories on the slice plane all meet tangentially with angle 0 or

π. We expect that this property may help researchers devise solutions that smoothly

connect surface sections generated by b-morphs, addressing the second limitation.

Furthermore, the b-morph as discussed here is not suited for dealing with topological

changes, as discussed for example in [48].
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CHAPTER XIII

APPLICATIONS TO ANIMATION

While some of the underlying mechanisms have benefited from the advent of digital

technology, a 2D production today follows much the same basic workflow as tradi-

tional animation [62]. The process begins with a storyboard, which provides a visual

representation of the story. In layout, the staging for each scene is designed, includ-

ing establishing the setting, choosing and placing character and prop elements, and

specifying camera motion and cuts.

Animators first produce the subset of rough drawings that lay down the core of

the action, the “keys.” A “clean up” artist is then responsible for taking the rough

key drawings and producing clean lines that remain true to the original intent. Each

key drawing has one or more associated timing charts in order to specify how many

drawings should be produced between the keys, and at what time intervals. An

inbetweening artist then has the job of drawing the intermediate frames in order to

produce a seamless motion.

The inbetweening process for similar key drawings can be very tedious for the

artists due to the accuracy required and lack of artistic interpretation. Thus, the

problem is ideal for automation and although there has been over 40 years of research

devoted to this task [79], the problem remains unsolved.

Some of the basic algorithmic pieces necessary for a stroke-based approach are:

1. Vectorization of the cleaned-up drawings

2. Segmentation into a graph of connected strokes

3. Stroke-to-stroke correspondence for consecutive keys, which may have different
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topologies

4. Stroke-to-stroke interpolation

We discuss in this chapter how pearling can be used to vectorize drawings and

how the b-morph can be applied to stroke interpolation. This work is motivated by

and the result of a collaboration with Walt Disney Animation Studios.

13.1 Future work on vectorization

Figure 107: Left: Pearls computed automatically for the drawing of a flower. Cen-
ter: The curves created by joining the centers of the pearls. Right: A zoomed in
section of the center lines. Notice that the obtained medial axis does not correspond
to the trajectory of the artist’s pen.

Before any shape processing algorithms can be applied to traditional animation,

the geometry of the artists’ drawings must be captured. Because artists often prefer

working with pencil and paper, vectorization is necessary in order to create digital

representations of the drawings. Such drawings are likely to contain variable thickness

strokes, and sometimes different levels of shading. For this reason, pearling (Chap-

ter 10) is an ideal candidate. Figure 107-left shows the result of pearling segmentation

for a simple drawing. In Figure 107-center, the centers of the pearls are connected to

produce an approximation of the medial axis of the drawing.

Notice, however, at the bifurcations of this medial axis, it is not a reasonable

representation of the centerlines actually drawn by the artist’s pen (Figure 107-right).
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Figure 108: (Left and Center) Two keyframes of an animation. (Right) Trajecto-
ries (blue) that define the desired motion have been specified between each pair of
corresponding points on the 2 keyframes.

This will affect a rendering of the curves based on the pearling segmentation and

produce unexpected artifacts once geometric operations are applied to the geometry.

Future work is necessary to ensure pearling accurately vectorizes the strokes at the

junctions.

13.2 Future work on morphing (inbetweening)

Morphing is a fundamental tool in animation design where in-between [21] frames

are produced from a sparse set of key-frames that are often drawn [62] digitally or

have been vectorized from pencil and paper drawings. Although several attempts

at automating the construction of in-between frames have been developed [65], the

artist responsible for in-betweening likes to have control over correspondence and

the trajectories for selected landmarks or stroke end-points. These specifications are

difficult to fully automate because they involve aesthetic judgement, style guidelines,

and context semantics about the relative 3D motions of the strokes and their mutual

occlusions.

Once these matching and control trajectories are given, as in Figure 108, the

overall problem is naturally broken into a series of tight in-betweening tasks [91].

These are viewed as tedious and hence are a prime candidate for artist-supervised
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Figure 109: Two corresponding strokes from the two keyframes are highlighted in
yellow.

(a) (b) (c) (d)

Figure 110: (a) Two corresponding strokes from Figure 109. (b) The blue curve
is transformed to bring it into endpoint alignment with the orange curve. (c) An
inbetween stroke is computed. (d) The inbetween curve is transformed to have its
endpoints aligned to the proper location along the specified trajectories (Figure 108).

automation. In most of such tight in-between tasks, the goal is to generate a number

of intermediate frames between two reasonably simple and similar curve segments,

such as the two highlighted in Figure 109.

This task can be accomplished by applying a morph to each pair of corresponding

curves. For example, the two curves from Figure 109 can be brought into endpoint

alignment by applying an affine transformation (Fig. 110 (b)). Once the curves have

matching endpoints, an inbetween, or morph, curve is computed for every time t as

desired by the artist (Fig. 110 (c)). Another affine transformation is then applied to

each resulting inbetween curve in order to put its endpoints at the appropriate point

in time along the defined trajectories (Fig. 110 (d)).
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13.3 B-morph motivation and limitations

At this point, it is unreasonable to ask the artist to identify the best candidate

techniques that promise to generate acceptable morphs. Then, rather than offloading

upon the artist the burden of choosing the best one in each case, one may want to

compare these techniques to better assess the strength of each. The comparisons in

Chapter 8 are a modest–although we hope useful–step in this direction. It may not be

the final answer to tight in-betweening for several reasons: (1) the quantitative quality

measures that we use may not reflect artistic concerns. (2) for practical reasons, we

compare the proposed b-morphs to our simple and un-optimized implementations of

candidate techniques, and not to state of the art solutions. (3) we do not take into

account the broader context of the whole animation, but instead focus on interpolating

only the instances of the same stroke in two consecutive key-frames. Nevertheless, we

feel that the experiments described in this thesis are useful and that the conclusions

we draw from them about the specific benefits of the b-morphs will help the reader

appreciate their potential.

In the application of animation, the quality of the morph is important as one typi-

cally favors a solution where the animation is smooth and free from self-intersections [40]

and of unnecessary distortions. We have shown that when the curves are b-compatible,

the b-morph always satisfies these properties.

However, there may be cases when an artist desires specific points on each curve to

correspond. Likewise, an artist may not want the intersection points of two intersect-

ing curves to remain fixed throughout the morph. For these cases, the b-morph may

not be the best candidate for producing inbetween curves.
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CHAPTER XIV

CONCLUSIONS

In this thesis, we have introduced several tangent-ball -based operators where a ball is

placed such that it has tangential contact with two or more points of either one or two

sets. Because of the properties of a ball, when it is placed tangent to multiple points,

its center lies on the medial axis of the complement of the tangent set(s). We have

shown how to exploit this property for the blending of shapes, morphing of shapes,

and segmenting of images.

We have included the implementations of these operators and discussed their

usefulness in applications of shape processing. We have highlighted the specific appli-

cations of these tools in the fields of medical imaging as well as computer animation.

14.1 Relative Blending

The contributions reported in Chapter 4 include the invention of the concept of rela-

tive blending and a set theoretic formulation of it. We outlined practical approaches

for implementing relative blending and proposed a novel interface for specifying the

bounding shape that controls the local radius. We discussed several applications

of relative blending, including interactive design and shape comparison. We hope

that these initial contributions will fuel further research on efficient algorithms for

computing relative blendings and inspire new applications.

14.2 Ball-morph

We have proposed a family of morphs between curves which are b-compatible in

Chapter 7. All are based on variations of the medial axis construction. We have

compared them to one another and to several other simple morphs in Chapter 8.
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We used four measures of morph quality in our comparison, as well as three surface

measures for comparing them as surface reconstruction techniques.

We conclude that for the cases of b-compatible shapes, the b-morphs offer a precise

and desirable result in terms of distortion, travel distance, as well as curvature. The

Circular b-morph is guaranteed to produce morph curves of Ck−1 continuity for input

curves of Ck for k ≥ 2 [24].

When curves are not b-compatible, we have shown in Chapter 9 that the b-

morph may be extended to produce morphs by applying recursive relative blend-

ing operations. This method supplies a fast result comparable to that produced by

the Heat Propagation morph in these non-b-compatible cases.

14.3 Pearling

In Chapter 10 we presented pearling, a new method for semi-automatic segmentation

and geometric modeling of tube-like structures. Pearling performs a segmentation

by computing an ordered series of pearls that discretely model the tubular structure

geometry. Subdivision is used to define a continuous model. The computational

efficiency of pearling affords efficient user interaction with the segmentation, allowing

the operator to correct for errant segmentation results or guide the segmentation in

a particular direction through the data.

Sometimes the idealized pearling result doesn’t contain enough information to

perform a more precise analysis, so we presented the concept of a crust around the

border region. Important image information, such as the inner wall of an artery, is

identified in the crust region and can be used to support a more detailed analysis.

While more comprehensive validation of the algorithm is required, from our ex-

perimental results we conclude that pearling results in highly efficient segmentation
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of tubular structures in both 2D and 3D images, and holds much promise for semi-

automatic image segmentation, especially in the application of medical image seg-

mentation, as demonstrated in Chapter 12.
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