
Multistage Decisions And Risk In Markov Decision

Processes: Towards Effective Approximate Dynamic

Programming Architectures

A Thesis
Presented to

The Academic Faculty

by

Nikolaos E. Pratikakis

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

December 2008

Multistage Decisions And Risk In Markov Decision

Processes: Towards Effective Approximate Dynamic

Programming Architectures

Approved by:

Professor Jay H. Lee, Advisor
School of Chemical and Biomolecular En-
gineering
Georgia Institute of Technology

Professor Matthew J. Realff, Advisor
School of Chemical and Biomolecular En-
gineering
Georgia Institute of Technology

Professor Stylianos Kavadias,
College of Management
Georgia Institute of Technology

Professor Shabbir Ahmed
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Professor Martha Grover-Gallivan
School of Chemical and Biomolecular En-
gineering
Georgia Institute of Technology

Date Approved : 20 August 2008

To the memory of my grandfather

Koστα

iii

ACKNOWLEDGEMENTS

Thank God, I think I am done!

First and foremost, I need to acknowledge my advisors at Georgia Tech (In alphabetical

order): Jay H. Lee, and Matthew J. Realff. They complement each other in the most unique

way. I thank them for giving me the opportunity to explore and learn these very different

areas of science. Looking back, through my countless meetings, it was a unique experience

to share or at times not to share new ideas with them! I owe them a lot, especially my

development as a responsible professional individual. I thank them for believing in me,

pushing me to my limit and trusting me that I will eventually blossom with interesting

ideas.

After the advisors, I would like to thank all the individuals and coworkers that help me

persevere. Starting from day one I made this trip with a dear friend and colleague Christos

Fountoukis. We shared the same experiences for about 3.5 years; from taking courses to

having fun together. The time we spent together is always going to be cherished by me.

I would like to thank my friend Kevin P. Doyle for being a great roommate for almost 2

years. If he ever reads this he should try to contact me. I also would like to thank my

two dear friends Eduardo and Charlene for their encouragement of pursuing my PhD and

for helping me adapt to my new environment. I will make sure i will visit them and vice

versa, i wish them the best in their personal and professional life. I would like to thank

my colleague and dear friend Wee Chin Wong. I have had endless discussions with Wee

Chin, he is remarkable and brilliant. I admire his intelligence and insights, he has set a

standard of excellence for me. In the future, I look forward collaborating with him at a

professional level. I would like to thank Vasileios Papapostolou. Our friendship started

at the National Technical University Of Athens and then continued after his transition to

Harvard University. He and I definitely need rollover minutes!

iv

I would like to thank the seniors who graduated before me: Anshul a remarkable indi-

vidual who had answers for almost anything, Niket who had the kindest of heart and time

for anybody, Jongmin Lee for being a Korean brother!, Jaein for wanting to teach me his

work but never had the time (I do understand now why), Tina for demonstrating what

discipline and professionalism really means. I would like to thank Rakshita for the many

conversations. I love her attitude towards life and I think I have never seen her stressed.

I would also like to mention the other current and former members of the group whose

company I have enjoyed over the last few years Fermi,Ugur,Prabudha, Choon Meng and

Jihoon, and I advise them to persevere to the end.

I will also like to thank Ms. Janice Whatley and Ms. Juanita Freeman for providing the

solution to every administrative problem as a graduate student. I extend my gratitude to

the other members of my committee Dr. Martha Grover-Gallivan, Dr Stylianos Kavadias

and Dr Shabbir Ahemed for pushing me hard when i did my third-fourth year progress

evaluation. I also would like to thank former N.T.U.A Academic advisor Professor Andreas

Boudouvis and current Georgia Tech ChBE faculty member Professor Athanasios Nenes for

the constant moral support.

At this point, I would also like to mention some people who have affected not only

my professional, but also my personal life. Starting with my family in Greece; my parents

have been a supporting hand on my shoulders all of my life. They trusted every decision I

made and were full of encouragement. My mom for talking to me every single day at least

twice. We must of have spent a fortune in calls. My dad for going though two surgeries,

working all of his life for my well being and education and providing for me always. My

sister for our endless fights and for her patience to listen to my mother’s complaints about

my absence. There are many other members of my extended family who have helped me at

different points in my life and I would like to thank all of them. At the very end, I would

like to thank my lovely wife Kimberly Pratikakis and my 2 year old son Manolis. Their

companionship certainly made things a lot easier for me (most of the times!). We have a

great family. My son is the light in my life. I hope I will instill to him some of the good

qualities that were instilled in me in these 5 years. I would like to thank my wife for being a

v

loving and most beautiful friend, girlfriend, and wife, a man could have asked for. I cherish

the last four years (I think it’s four, I may be mistaking here!) deeply and look forward to

the rest of my life with you.

Last, I will like to say goodbye and goodnight -(καληνυχτα) to my grandfather and I

dedicate this thesis to his memory. I didn’t attend his funeral because my son was born

at the same time. My grandmother told me that when he heard that Manolis was born he

smiled...

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xv

SUMMARY . xviii

1 INTRODUCTION . 1

1.1 Thesis Focus On Multistage Decision Problems Under Uncertainty 1

1.2 Handling Risk In Single Stage Problems: A Shortest Path Example 3

1.3 Thesis Scope And Structure . 5

2 BACKGROUND . 9

2.1 Mathematical Programming Applied To Multistage Problems 9

2.1.1 Deterministic Optimization Applied To Multistage Problems 10

2.2 Markov Decision Processes . 13

2.3 Dynamic Programming . 14

2.3.1 The Value Function . 14

2.3.2 The Value Iteration Algorithm . 15

2.3.3 The Dynamic Programming Operator 16

2.3.4 Contractions . 19

2.3.5 A Review Of Approximate Dynamic Programming Techniques . . 20

2.4 Risk Measures . 24

2.5 Pareto Optimal Frontier - Efficient Frontier 26

2.6 Expected Utility Decision Theory . 27

2.7 Methodologies Addressing Multistage Risk 29

2.7.1 Mathematical Programming And Simulation Based Optimization
Methodologies On Pareto Efficiency 30

2.7.2 Dynamic Programming Methodologies 31

2.8 The Formulation Of A Stochastic Shortest Path Problem As An MDP . . 31

2.8.1 State Variables / Exogenous Information Variables 32

vii

2.8.2 Decision Variables . 32

2.8.3 Transition Function . 32

2.8.4 Contribution (Cost) Function . 33

2.8.5 Objective Function . 33

3 A REAL TIME APPROXIMATE DYNAMIC PROGRAMMING AP-
PROACH . 34

3.1 A Real-Time Approximate Dynamic Programming
(RTADP) Approach . 37

3.1.1 Formal RTADP Description . 38

3.1.2 Initialization . 39

3.1.3 Key Elements of Asub . 40

3.1.4 On Calculating Jπ(st) . 41

3.2 RTADP Applied At Capacity Planning . 42

3.2.1 Manufacturing Job Shop Under Uncertain Demand and Product
Yield . 44

3.2.2 Formal MDP Formulation Of The Manufacturing Job SHop 47

3.2.3 Simulation Results . 50

3.2.4 Simulation Procedure . 51

3.2.5 Performance Comparisons . 53

3.3 Applying The RTADP Algorithm On Stochastic Shortest Path Instances -
Exploring Potential Issues . 59

3.3.1 Results On A 77 Discrete State Space Example 61

3.3.2 Results On A 900 Discrete State Space Example 63

3.3.3 Results On A 10,000 Discrete State Space Example 65

3.4 Chapter Conclusions . 67

4 SOLVING A HIGH DIMENSIONAL LIGHT AROMATIC SUPPLY
CHAIN EXAMPLE USING RTADP . 68

4.1 Introduction . 68

4.1.1 An Overview Of A Light Aromatic Supply Chain Case Study . . . 70

4.1.2 Motivation Of Our Numerical Studies 71

4.2 Modeling The High Dimensional Supply Chain Case Study As An MILP . 72

4.2.1 Introduction . 73

viii

4.2.2 Mathematical Modeling of of the Supply Chain 73

4.2.3 Sets . 73

4.2.4 Control Volumes at each Tank . 74

4.2.5 Reaction and Separation Processes - The Determination of Pru,p(t) 81

4.2.6 Constraints . 82

4.2.7 Decision Variables . 83

4.2.8 Objective Function . 84

4.2.9 A 2 Stage Stochastic Programming Formulation 85

4.3 Formulating the Problem as an MDP . 86

4.3.1 State Variables / Exogenous Information Variables 86

4.3.2 Decision Variables . 87

4.3.3 Transition Function . 87

4.3.4 Objective Function . 88

4.4 Information Flow And Decision Making . 88

4.4.1 A Real Time Approximate Dynamic Programming Algorithm . . . 88

4.4.2 The RTADP Algorithm . 90

4.4.3 Key Elements of Asub . 91

4.4.4 Calculating J(st) . 93

4.4.5 A Rolling Horizon MILP Approach 95

4.5 Numerical Results . 96

4.5.1 An Upper Bound On The Performance 96

4.5.2 Case Study 1: Information Revealed After Mode+Flow Decisions . 97

4.5.3 Case Study 2: Information Revealed After The Mode And Before
The Flow Decisions . 100

4.5.4 The Value Of Information . 101

4.6 Conclusions . 102

5 CONTROLLED EXPLORATION OF THE STATE SPACE VIA AN
OFF-LINE ADP APPROACH . 103

5.1 Introduction . 103

5.2 Statement of SSP Problem . 107

5.3 Overall Structure Of The Approach . 107

ix

5.3.1 Initialization . 109

5.3.2 Monte Carlo Expansion . 110

5.3.3 Approximate Value Iteration. 111

5.3.4 Termination Criteria . 114

5.4 Numerical Results On The Shortest Path Problem 115

5.4.1 Quantitative Selection Of Tuning Parameters 115

5.4.2 Scaling And Memory Requirement 117

5.4.3 Comparing RTADP And Off-line ADP On Shortest Path Problems 118

5.5 Modeling And Results Of A High Dimensional Queuing Example 121

5.5.1 Queuing Network Under Uncertain Demand and Product Yield . . 121

5.5.2 One To One Correspondence Of The Queuing Example With The
Shortest Path . 124

5.5.3 Numerical Results . 124

5.6 Conclusions . 130

6 A RISK-SENSITIVE SINGLE-PERIOD LINEAR UTILITY FOR MARKOV
DECISION PROCESSES . 132

6.1 Introduction . 132

6.2 The Functional Form Of The Proposed Myopic Risk Sensitive Utility . . . 135

6.3 Single Stage Mean-CVaRη Vs Single Stage Mean-Variance And Exponential
Multistage Utility . 138

6.3.1 Qualitative Difference On Optimizing The Summation Of Single Pe-
riod Mean-CVaRη And Mean-Variance Utilities 139

6.3.2 Multi Step Shortest Path Examples 140

6.3.3 Multistage Exponential Utility Function 142

6.4 The Source Of Deviation Between The Summation Of The Single Stage
Mean-CVaR Utility Vs The Exact Multi-stage Mean-CVaR Utility 145

6.4.1 Problem Statement 1 . 145

6.4.2 Problem Statement 2 . 149

6.4.3 Problem Statement 3 . 152

6.5 A Proposed Algorithm That Approximates The Multi-stage Mean-CVaR
Efficient Frontier For GDMDP’s . 158

6.5.1 Motivation Of Our Numerical Studies 159

x

6.6 Deriving Efficient Frontier Solutions Using The Proposed Approach On
Shortest Path Instances With Deterministic Transitions 159

6.6.1 Shortest Path With 77 Discrete States: Problem Description 160

6.6.2 Applying The Approach Using As Single period Utilities: A) The
Mean-CVaR Function B) The Mean-Variance Function 161

6.6.3 Applying The Multi stage Exponential Utility On The Shortest
Path Problem . 164

6.6.4 Deriving Efficient Frontier Solutions On 900 Discrete State Shortest
Path With Deterministic Transitions 166

6.7 Approximating The Multi-stage Mean-CVaR Efficient Frontier Using The
Proposed Approach . 169

6.7.1 Applying The Approach On A 77 Discrete State Shortest Path With
Probabilistic Transitions . 169

6.7.2 Results On 900 Discrete State Shortest Path Using The Proposed
Approach. 176

6.8 Off-line Approximate Dynamic Programming Applied To The 900 Discrete
State Stochastic Shortest Path Example 179

6.9 Chapter Conclusions . 182

7 CONCLUSION AND FUTURE WORK 183

7.1 Summary . 183

7.2 Future Work: Short Term . 184

7.2.1 Using Aggregation In RTADP Algorithm 184

7.2.2 Guided State Space Exploration In A Multi-stage Setting Via A
Lower And Upper Bounding Mathematical Programming Scheme . 184

7.2.3 To Device A Procedure That Automatically Tunes The Weights Of
The Linear Mean-CVaR Objective Function Within DP To Well Ap-
proximate Multi-stage Mean-CVaR Trade Off 185

7.2.4 Simulation Results On A Large Scale Project Portfolio Problem Us-
ing The Off-line Risk Sensitive ADP Methodology 185

7.3 Future Work: Long Term . 185

BIBLIOGRAPHY . 190

xi

LIST OF TABLES

1 The mean µ and standard deviation σ of the cost distributions associated
with the different policies according to λ values. (α=0.95) 5

2 Physical meaning of each term of the objective function. 46

3 Numerical values used for the manufacturing job shop example. 46

4 Evaluating the average performance per time period starting from st =
[100 100 413 20 0.2] of a)MIP with full information b) RTADP- Scheme
a,b,c c) 1- Step heuristic and d)Rolling horizon MIP (h = 60 and k = 1) . . 55

5 Average performance per period of the policy as derived from rolling horizon
MIP approach with a given Horizon h solved per k time periods. 56

6 Comparison between the performance gained from RTADP variances and full
dynamic programming on the stochastic shortest path as it appears at Figure
8. 63

7 Comparison between the performance gained from RTADP variances and full
dynamic programming on the stochastic shortest path with 900 states. . . 64

8 Schematic illustration of the exploration achieved by the proposed RTADP
variances. Moreover, the initial trajectory, from the start to the goal state,
generated by the LP is well represented at those figures 66

9 The influence of the parameter N on the achieved exploration rate and the
number of iterations. 115

10 The influence of the AVI tolerance parameter on the achieved exploration rate.116

11 Problem size - Exploration rate - Reduced memory requirements with respect
to the full problem. 118

12 Comparing the best of RTADP runs with the Off-line ADP algorithm on the
77 discrete state space example. 119

13 Comparing the best of RTADP runs with the Off-line ADP algorithm on the
900 discrete state space example . 119

14 Comparing the best of RTADP runs with the Off-line ADP algorithm on the
10,000 discrete state space example. 120

15 Evaluating the algorithm’s performance while varying parameter N 126

16 Evaluating the algorithm’s performance while varying parameter eV I 126

17 Cumulative results of 3 optimization strategies on the queuing network. Each
strategy is been tested on 1,000 independent sampled scenarios. 126

xii

18 For this shortest path problem with the deterministic transitions (p = 1)
this table demonstrates: the statistics that correspond to the policies derived
from the parametric summation of the single stage mean-CVaR and single
stage mean-Variance tradeoff. For each policy we demonstrate its mean µ
and the evaluation of the multi stage risk measures (σ,CV aR0.95,V aR0.95)
associated with it. 163

19 Given the transformed shortest path problem with the deterministic transi-
tions (p = 1), where the myopic cost is described by (US(st, αt, λ1 = 0.95)) =
0.95µst + 0.05CV aR0.95f(st, αt). This table demonstrates the expected per-
formance of each produced policy for λ1 = 1,λ1 = 0.95,λ1 = 0 evaluated at
the corresponding objective: E

[∑
t(US(st, αt, λ1 = 0.95))

]
. 163

20 Given the transformed shortest path problem with the deterministic transi-
tions (p = 1), where the myopic cost is described by (US(st, αt, λ1 = 0)) =
CV aR0.95f(st, αt). This table demonstrates the expected performance of
each produced policy for λ1 = 1,λ1 = 0.95,λ1 = 0 evaluated at the corre-
sponding objective: E

[∑
t(US(st, αt, λ1 = 0))

]
. 163

21 For this shortest path problem with the deterministic transitions (p = 1)
this table demonstrates: the statistics that correspond to the policies derived
from the parametric summation of the single stage mean-CVaR tradeoff. For
each policy we demonstrate its mean µ and the evaluation of the multi stage
risk measures (σ,CV aR0.95,V aR0.95) associated with it. 167

22 Given this multi stage problem with the probabilistic transitions (p = 0.9),
this table demonstrates the expected performance of each DP solution, when
for each state the myopic cost is transformed by US(st, αt, λ1) = λ1µ(st) +
(1 − λ1)CV aR0.95(f(st)). We evaluated the DP policies for λ1 = 11,λ1 =
0.89,λ1 = 0, on the following objective E

[∑
t(US(st, αtλ1 = 0.89))

]
. 172

23 Given this multi stage problem (p = 0.9), this table demonstrates the ex-
pected performance of each DP solution, when for each state the myopic cost
is transformed by ft(st, λ1) = λ1µ(st) + (1 − λ1)CV aR0.95(f(st)). We eval-
uated the DP policies λ = 11,λ1 = 0.89,λ1 = 0, on the following objective
E

[∑
t US(st, αt, λ1 = 0)

]
. 173

24 Given this multi stage problem (p = 0.9), this table demonstrates the ex-
pected performance of each DP solution, when for each state the myopic cost
is transformed by ft(st, λ1) = λ1µ(st) + (1 − λ1)CV aR0.95(f(st)). We eval-
uated the DP policies λ = 11,λ1 = 0.86,λ1 = 0, on the following objective
E

[∑
t US(st, αt, λ1 = 0.86)

]
. 174

25 Given this multi stage problem (p = 0.9), this table demonstrates the ex-
pected performance of each DP solution, when for each state the myopic cost
is transformed by ft(st, λ1) = λ1µ(st) + (1 − λ1)CV aR0.95(f(st)). We eval-
uated the DP policies λ = 11,λ1 = 0.86,λ1 = 0, on the following objective
E

[∑
t US(st, αt, λ1 = 0)

]
. 174

xiii

26 For the multi stage problem (p = 0.8) this table demonstrates: the policies
derived from the mean-CVaR tradeoff. For each policy we demonstrate its
mean µ and the evaluation of the risk measures (σ,CV aR0.95) associated
with it. 178

27 Cumulative results using the ADP strategy with the proposed summation
of single stage mean-CVaR functions on a 900 discrete state instance when
λ1 = 1 and λ1 = 0.8 . 181

xiv

LIST OF FIGURES

1 Decision Hierarchy In Modern Process System Industries. 2

2 Schematic illustration of a shortest path problem. We illustrate, how appro-
priating weighting on the objectives can yield a different policy. 5

3 Exponential increase of the CPU time for a continuous MILP formulation of
a realistic supply chain application with respect to the number of scenarios
it considers. 12

4 Pareto Optimal Frontier - Efficient Frontier. 26

5 At the left this convex utility expresses a risk taking attitude. At the middle
this linear utility expresses a risk neutral attitude. At the right this concave
utility expresses a risk averse attitude. 29

6 Infrastructure of an agent. 45

7 Exploration of the ‘evolving’ state space . 57

8 Error bounds concerning the stock level control in time series for 100 different
scenarios, using the following architectures a) RTADP- a b) Rolling horizon
MIP c) 1- Step Ahead Heuristic d) MIP with full information 58

9 Schematic illustration of the cost structure of a Stochastic Shortest Path
With 77 Discrete States. 61

10 Full Dynamic Programming result for the problem as it appears at Figure 8. 62

11 Schematic illustration of the exploration achieved by the proposed RTADP
variances. Its evident that using the right type of approximator for the un-
seen states will result to restrict the exploration and enhance computational
feasibility. 64

12 Comparison between the exploration achieved by the RTADP variances. Its
evident that using the right type of approximator for the unseen states will
result to restrict the exploration and enhance computational feasibility. . . 66

13 The Simplified Flow Diagram of a Typical Refinery. 71

14 Impact of relative timing of decisions and information flow. 72

15 Flow Diagram of a simplified BTX Supply Chain 74

16 Control volumes on the input and output tanks of each unit. 76

17 Schematic representation of sequential calls on RTADP algorithm 92

18 Schematic representation of the 3 scenarios corresponding to a legal state
transition inside the state space. S is the entire state space. Ssim is the the
sampled state space from the ε-greedy simulation. 94

xv

19 The histogram and statistics of the numerical upper bound achieved by the
solution of 500 MIP with full information. 96

20 Comparison of the tested architectures for the first case study. 97

21 Probability transition matrices and information state variables concerning
the uncertain variables. 98

22 Data concerning the operational modes of the Reformer unit and Tatoray unit. 98

23 Comparison of the tested architectures for the second case study. On the
left we display the histogram that corresponds to the upper bound on the
performance, while on the right we display the histogram derived from both
RTADP and 2 stage rolling horizon approach. We remind to the reader that
these architectures were tested on the same 500 scenarios. 100

24 Schematic implementation of the rolling horizon 2 stage stochastic program-
ming approach within the same time period. 101

25 Summary - Value of Information . 102

26 A simplified version of the structure of the proposed off-line ADP approach. 108

27 A more detailed version of the overall structure of the proposed the proposed
off-line ADP approach. 109

28 Explored states with respect to the imposed termination threshold Θ. . . . 117

29 Explored states achieved by the approach with respect to the noise level p. 117

30 Demonstrating the porion of the state space identified by the Off-line ADP
Vs the best RTADP run. The RTADP restricts the state space exploration
to a subset of the states explored by the off-line ADPapproach. 120

31 Numerical values of the queuing network. 125

32 Schematic representation of a path that leads the system from an initial state
to the designated goal states. 125

33 Cost distributions of ADP Vs Rolling Horizon MIQP. 127

34 The implementation of ADP and rolling MIQP to a specific scenario. 128

35 The implementation of ADP and rolling MIQP to a specific scenario. 129

36 Schematic representation of: a) The Single-period utility that is applied stage
wise at the reward process, b) The Multi-period utility that is applied over
the summation of the stochastic reward process. 133

37 Schematic representation of the risk measures given a single stage profit dis-
tribution. 136

38 Examples for which our proposed objective yields a wider spectrum of policies
than the mean variance formulation. 141

xvi

39 We demonstrate the difference in the weighting of the semi-standard devi-
ation, when evaluating the discounted multistage mean-CVaR trade-off on
the entire distribution against the summation of the discounted single period
utility (Eq.78-79). 148

40 For problem statement 3, this figure demonstrates the correlation of the para-
meters λ∗ and λ1 that makes the proposed objective and the exact multistage
mean - CVaR equivalent for γ and ψ values. 157

41 Schematic illustration of the cost structure of the one dimensional shortest
path problem with the 77 discrete states. We display the optimal routes for
λ1 = 0, λ1 = 0.95, λ1 = 1 and show explicitly why minimizing the summation
of individual CV aR will not necessarily minimize the multistage CV aR. . 162

42 Schematic illustration of the optimal solutions for λ1 = 1,λ1 = 0.95,λ1 = 0. 164

43 Solving the optimality equations for the 77 discrete state shortest path prob-
lem when using the multi period utility. This plot shows the condition num-
ber of the corresponding linear program as a function of the parameter ξ. . 165

44 Illustration of cost data for the 900 discrete state stochastic shortest path
problem. 168

45 For this multistage shortest path problem with the probabilistic transitions(p =
0.9) this figure demonstrates: the performance and the corresponding multi-
stage risk measures given the policies derived from DP, if we set as objective
the parametric summation of the single stage mean-CVaR tradeoff (the risk
averse parameter ranges from 0 to 1). 170

46 For this multistage shortest path problem with the probabilistic transitions(p =
0.8) this figure demonstrates: the performance and the corresponding multi-
stage risk measures given the policies derived from DP, if we set as objective
the parametric summation of the single stage mean-CVaR tradeoff (the risk
averse parameter ranges from 0 to 1). 171

47 Resulting efficient frontiers, when using multi period and intra-period utilities
for p = 0.9. 175

48 Resulting efficient frontiers, when using inter-period and intra-period utilities
for p = 0.8. 176

49 The cost distribution produced for the 900 discrete state space stochastic
shortest path problem with probabilistic transitions, when we apply the poli-
cies generated by the parameters as instructed by Table 26. 178

50 Initialization of the value table using deterministic optimization. We call the
LP optimization routine after transforming each states non positive profit
using λµ+(1-λ)CVaR. 179

51 Sampled state space after applying the Offline-ADP routine. 180

xvii

SUMMARY

The scientific domain of this thesis is optimization under uncertainty for discrete

event stochastic systems. In particular, this thesis focuses on the practical implementa-

tion of the Dynamic Programming (DP) methodology to discrete event stochastic systems.

Unfortunately DP in its crude form suffers from three severe computational obstacles that

make its implementation to such systems an impossible task. This thesis addresses these ob-

stacles by developing and executing practical Approximate Dynamic Programming (ADP)

techniques.

Specifically, for the purposes of this thesis we developed the following ADP techniques.

The first one is inspired from the Reinforcement Learning (RL) literature and is termed

as Real Time Approximate Dynamic Programming (RTADP). The RTADP algorithm is

meant for active learning while operating the stochastic system. The basic idea is that the

agent while constantly interacts with the uncertain environment accumulates experience,

which enables him to react more optimal in future similar situations. While the second one

is an off-line ADP procedure. Both approaches are developed for discrete event stochastic

systems and their main focus is the controlled exploration of the state space circumventing

in such a way one of the severe computational obstacles of DP that is related with the

cardinality of the state space.

These ADP techniques are demonstrated on a variety of discrete event stochastic systems

such as: i) a three stage queuing manufacturing network with recycle, ii) a supply chain of

the light aromatics of a typical refinery and iii) several stochastic shortest path instances

with a single starting and terminal state.

Moreover, this work addresses, in a systematic way, the issue of multistage risk within

the DP framework by exploring the usage of single-period and multi-period risk sensitive

utility functions. In this thesis we propose a special structure for a single-period utility and

compare the derived policies in several multistage instances. Finally, we briefly attempt

xviii

to intergrade the developed ADP procedures with the proposed utility to yield ADP risk

sensitive policies.

xix

CHAPTER 1

INTRODUCTION

For large scale decision making problems, approximate dynamic programming (ADP) [1] has

emerged as an effective way to approximate the conceptually elegant but computationally

inefficient dynamic programming algorithm [2]. In this thesis, I will focus on developing

and applying the ADP technique to problems from Process System Engineering (PSE). I

present a classification of PSE problems in Figure 1 and will place my contributions within

this context.

1.1 Thesis Focus On Multistage Decision Problems Under
Uncertainty

The bottom layer of this decision hierarchy involves regulatory control and such problems

are addressed via decentralized control strategies [3]. The control engineer is interesting in

controlling the set point of complex processes with Multiple Inputs and Multiple Outputs

(MIMO systems). In practise the most common solution is to match one input with a single

output in order to achieve the desired set points.

The set points usually change during the plant operation either intentionally to maximize

the plant’s financial objective or to reject long term disturbances. Solving the MIMO

without coordination will have a big impact on the systems performance. Therefore the

set points are usually inputs to Model Predictive Control (MPC) formulations, which are

numerical rolling horizon mathematical programming control strategies [4]. Significant gains

can be achieved via MPC formulations [4]. The tools that this thesis produces can address

problems formulated as an MPC, but are more suited for longer decision horizon problems,

where explicit uncertainty can be modeled and process dynamics are less of a concern. In

general, strategic problems are problems in which the future uncertainty must be taken into

consideration for the optimal solution. Examples of such problems are : 1) manufacturing

1

Regulatory Control
(PID, Logic Control)

Real Time Optimizer

Advanced Control
(Model Predictive Control)

Production Planning

Supply Chain Scheduling

Strategic

Investm ents

Value

of Industry

Plant Operation Control

Plant Optimization

Management

[year]

[month]

[week]

[day]

[min]

[sec]

complexity

Figure 1: Decision Hierarchy In Modern Process System Industries.

capacity planning problems under demand uncertainty (Elberly and Mieghem) [5] , 2) supply

chain operation and design under demand uncertainty (Santoso et al.)[6], 3) project portfolio

management problems under stochastic arrival rates and progress/failure rate uncertainty

(Rogers et al.) [7], 5) optimal pair trading problems (Mudchanatongsuk et al) [8], 6) hedge

funds (Primbs) [9], 7) technology adoption problems (Ulu and Simth) [10].

In these problems the consequences of actions taken today can significantly influence

the outcomes in the more medium to long-term future. It is important to capture the

multi-stage nature of those problems and the fact that the trajectory of the system can be

remarkably different based on decisions taken early on. In the next section, we design a

specific shortest path example in order to clarify and underline what is considered a single

stage problem versus a multistage one.

To address multistage problems the decision maker must take into consideration of all

the possible future trajectories, weigh them with a corresponding probability, and decide

accordingly. The number of trajectories-scenarios needed to be examined are exponential

to the horizon length and therefore to do this explicitly is computationally infeasible for

modest size problems.

2

Given that the size of these multistage decisions problems will be very large, this moti-

vates the development of heuristic methods to address them. In addition, as the problems

transition from tactical planning to the strategic decision-making, the measure and incor-

poration of risk into the decision making becomes important.

1.2 Handling Risk In Single Stage Problems: A Shortest
Path Example

In this section, I consider a one dimensional single stage shortest path problem with a single

starting position (x, y) = (0, 0) and a goal position (x, y) = (10, 6) (Fig.2). Via this example

I want to describe in a simplistic fashion several important concepts for this thesis. These

are: a) the State space, b) the Action space, c) what is regarded as Risk, d) the difference

of the One stage (but multi-step optimization) Vs. Multi-stage optimization, e) what is a

Policy.

This problem of reaching the goal consists of multiple steps, but has only one stage

because you do not need to revise the decisions during the traversal. The uncertainty lies

on the cost structure, since one incurs a normally distributed cost f(x,y) ∼ N(µ(x,y), σ(x,y)),

when a particular (x, y) position is visited. From a systems perspective each position is

regarded as the state of the system. Here, from each position the agent faces eight choices,

{Up,Down,Left,Right,4 Diagonal moves}. Depending on the field, such choices are often

called actions or decision variables (Mathematical Programming field) or controls (Process

Control field). All the possible states of the system compose the so-called state space,

all the possible choices compose the so-called action space. In general, if we are aware

of the state of the system, we would be able to find the best possible action that would

maximize/minimize the expected profit/cost.

My goal is to provide a methodology for large discrete event systems that would be able

to generate, via optimization, a wide spectrum of policies (in this case paths) for the decision

maker. By the term decision policy we refer to a mapping indicating what action to take

given the system state. In particular, the derived paths should be risk-sensitive, meaning

that I will optimize against a linear combination of two contradictory objectives. The

3

first objective would be to minimize/maximize the expected cost/profit, while the second

objective would worry about how badly I could do, in essence minimizing/maximizing the

objective if the worst case scenarios were to be realized.

The qualitative comments about the quantitative results-paths generated for such a one

stage but multi step single stage problem as it appears at Fig.2 are summarized as follows:

• Path 1: Minimizing the expected cost while disregarding the second objective. For

this instance, the shortest path that minimizes the expected cost is represented with

the solid line at Fig.2. The mean cost of that policy is 202 with a standard deviation

of 32.5. While the corresponding risk measure if I follow this path is 269.9. The risk

measure indicates how badly I can do, in an expected sense for the 5% of the worst

cases.

• Path 2: Minimize the risk measure as discussed above, which indicates how badly

I could do if I follow a specific path while disregarding the first objective. For this

instance, this path is represented with the dashed line at Fig.2. The mean cost is

206 with a standard deviation of 14.5. While the corresponding risk measure that

indicates how badly I can do if I follow this path is 235.9. In this case, we did not

optimize we respect to the first objective, the fact that the expected cost is close to

202 (mean of path 1) is symptomatic.

• In the case that we are interesting in optimizing both objectives, we would assign a

corresponding weight to each of them and perform the optimization. For instance,

if we equally weight them we retrieve a policy where the mean cost is 205 with a

standard deviation of 21. While the corresponding risk measure that indicates how

badly I can do if i follow this path is 248.2.

Why is this problem a single stage problem? This problem is a single stage

problem, because there is no need to revise any decisions during the execution of the plan.

In subsequent chapters the shortest path problem will be used for illustration, but will have

a multi-stage structure because the actions will not always lead to the same outcome and

the choice whether to go next will depend on what state you end up in.

4

0 2 4 6 8 10
0

1

2

3

4

5

6

y-axis

x-axis

f~ (20,0)*

f~ (18,42)

f~ (18,82)

f~ (17.5,162)

f~ (15,202)

Min expected cost (Obj.1)

Min worst cases (Obj.2)

Min (0.5 Obj.1 + 0.5 Obj.2)

Figure 2: Schematic illustration of a shortest path problem. We illustrate, how appropri-
ating weighting on the objectives can yield a different policy.

Table 1: The mean µ and standard deviation σ of the cost distributions associated with
the different policies according to λ values. (α=0.95)

Expected Cost ± How Badly I Will Do
Standard Deviation Given The Path

Minimize Expected Cost 202 ± 32.5 269.9
Minimize Expectation 206 ± 14.5 235,9
How Badly I could Do
Equally Weight Both Objectives 205 ± 21 248.2

The end goal of this work would be to utilize this linear combination of two contradictory

objectives in the multi-stage problem within promising ADP methodologies

1.3 Thesis Scope And Structure

This thesis is concerned with general multistage problems under risk neutral and risk-

sensitive objectives. For this purpose, I formulate the problems of interest as Markov

decision processes (MDP) [11] with a finite number of states and actions, and consider

indefinite planning horizons. Some problems will have dedicated goal states present, while

some other problems will not. For all the studied problem, we assume that we have a valid

model and a Markovian model for its random variables.

5

The first part of the thesis is focused on creating effective Approximate Dynamic Pro-

gramming (ADP) methodologies and finding policies that maximize/minimize a risk-neutral

objective.

The second part of this thesis develops a method to find policies that are differentiated

by sensitive behaviors. To do so we explore the usage of single and multi-period utilities

within exact DP and ADP approaches [12, 13, 14].

The structure and the contributions of this thesis are the following:

1. In Chapter 2, I provide some necessary background for this thesis. First, I examine

the issues of deterministic optimization when applied to multistage problems, and

communicate the fact that following advances in mathematical programming are em-

braced by the designed Approximate Dynamic Programming (ADP) methodologies of

this work. Then, I define the formalism of a Markov Decision Process and the main

ideas of DP. Finally, I go through some basics in utility theory and risk measures and

review several methodologies addressing the issue of multistage risk.

2. In Chapter 3, I propose several modifications to the Real Time Dynamic Programming

(RTDP) algorithm initially proposed by Barto el al [15] in order to explore the

tradeoff between the exploration of the state space and the exploitation of existing

policies. The exploration-exploitation trade off is the classic dilemma in RL-based

algorithms (Suttton)[16] . Specifically the decision maker will either exploit its existing

knowledge executing the greedy control or decide to explore different actions just

in case he/she discovers states of the world that will eventually lead the system to

achieve a better steady-state performance. The proposed RTDP modifications will

target reducing the computational obstacles associated with DP based on its different

curses of dimensionality [1].

In the third chapter I explore these issues in the context of an exemplary capacity

planning manufacturing system with inventory flow decisions, which faces uncertainty

in demand and intermediate quality, as well as several shortest path instances.

3. In Chapter 4, I formulate a large scale supply chain light aromatics case study as a

6

MDP and compare the RTADP solution against mixed integer and two-stage stochas-

tic mathematical programming rolling horizon formulations.

The motivation for this study is to quantify the impact of relative timing of decisions

and information flow. This will provide to the reader a quantitative picture about the

value of receiving information before implementing planning decisions.

This application is ideal for this study since its decision space may be characterized

by two different time scales. In practice, there are many industrial settings that share

a similar decision space.

4. In Chapter 5, I delineate a different ADP approach that is designed to perform a

controlled exploration of the state space. This approach utilizes Monte Carlo simula-

tions and Approximate Value Iteration in an iterative fashion and is regarded by this

author as an evolution to the established ADP in a heuristically confined state space

originally proposed by Choi et al [17, 18].

The proposed approach performs a controlled exploration of the state space and is par-

ticular useful for applications with dedicated goal states. I evaluate its computational

behavior with respect to the algorithmic tuning parameters and also demonstrate the

practical use of the approach in more complex applications by tailoring the manufac-

turing capacity planning example that we studied before to fit the description of a

shortest path problem. The results derived from this ADP approach are compared

against a rolling horizon mathematical programming optimization strategy.

5. In Chapter 6, I shift from risk neutral-decision-making problems to problems where

one accounts for risk sensitivity in MDP’s.

Briefly, there are essentially two ways in the literature which one can account for risk

sensitivity in MDP’s while using a discount factor. The first way uses specific single-

period utility functions US , while the second uses multi-period utility functions UM

that permit exact DP recursion.

In this chapter, we propose a parameterized structure concerning a single-period risk

7

sensitive linear utility function that can be used within exact DP and ADP algorithm

under the classic Bellman equations. This parameterized structure tries to approxi-

mate the exact multistage expected performance-risk tradeoff. We test this utility on

stochastic shortest path instances against an multi-period exponential utility.

6. Finally in Chapter 7, I summarize the work and present some possible extensions for

future work.

8

CHAPTER 2

BACKGROUND

This chapter provides the background information on which this work is built, and reviews

related work from the literature. In Section 2.1, we go over the bottlenecks of mathematical

programming when applied to generic multistage problems. Furthermore, Section 2.1 at-

tempts to communicate the value of our approach, showing how mathematical programming

advances can be applied. Section 2.2 discusses the characteristics of an MDP formulation.

In Section 2.3, we delineate the exact DP methodology and theory with respect to its con-

vergence, along with its computational obstacles. In Section 2.4 we go over basic utility

theory and review some results for risk sensitive objectives. In Section 2.5, we review state

of the art methodologies that address MDPs under risk-sensitive objectives.

2.1 Mathematical Programming Applied To Multistage Prob-
lems

Multi-stage decision-making under uncertainty has been approached both through mathe-

matical programming and dynamic programming methods.

Mathematical programming with random variables whose values will be revealed in the

future has been a subject of considerable research [6] [19] [20] [21], but runs into several

bottlenecks:

1. Solving for an expected value by sampling the future misses the opportunity to revise

actions depending on the state.

2. Solving the full problem where actions can depend on the state requires that the

branching of the future scenarios be taken into account. This by itself presents the

following problems:

• The number of branching points and scenarios is exponential in the number of

9

time periods. Therefore even writing the problem as an explicit mathematical

program can be very difficult.

• One needs fairly restrictive assumptions about how the actions and the future

interact. For example, it is very difficult to express situations in which the actions

change the nature of the underlying transitions (e.g., by revealing information.)

Receding or rolling horizon mathematical programming takes care the lack of feedback,

but runs into a compromise between the first two problems. Essentially, one can limit the

combinatorial explosion using the rolling horizon idea, but this does not solve the problem

of having choices now, that depend on the future, which are not properly evaluated. In this

thesis, we will compare the developed ADP approaches against rolling horizon mathematical

programming strategies to quantify the benefits of ADP in the face of uncertainty.

2.1.1 Deterministic Optimization Applied To Multistage Problems

Before communicating in a clear manner the value of the thesis, I will examine the limi-

tations when applying deterministic optimization to important combinatorial optimization

problems via a realistic example.

2.1.1.1 Lagragian Decomposition Combined With Sample Average Approximation in
Realistic Supply Chain Example

Mixed integer linear program (MILP) formulations are increasingly used in different dis-

ciplines (scheduling [22], biological regulatory networks [23] etc.). A relaxation approach

to the solution of large integer programming problems is to take a set of “complicating”

constraints into the objective function in a Lagrangian fashion (with fixed multipliers that

are changed iteratively). This approach is known as Lagrangian relaxation.

Using this technique Lee et al [24] and Pinto and Grossman [25] address realistic refinery

supply chain problems under uncertainty.

The uncertainty is represented in the form of a set of deterministic scenarios. The

model and logic constraints are replicated for each sampled scenario. This produces a large

deterministic problem that approximates the exact solution of the multistage stochastic

program. Currently important multistage applications are usually addressed via a Sample

10

Average Approximation (SAA) methodology (e.g. SAA can be applied in routing problems

[21], or asset investment problems [26], or even in numerous articles about supply chain

design and operation [6]).

Computational results on a realistic supply chain problem discussed in [24] are summa-

rized at Fig. 3. Given that the number of scenarios increase linearly, so do the variables

and the equations of the relaxed MILP (Fig.3 (a),(b)), but the CPU time, as shown in

Fig.3(c), to solve the MILP increases exponentially. This argument-example demonstrates

solver limitations when trying to incorporate hundreds or thousands of scenarios. Therefore

there is a need for a framework that can use deterministic numerical solutions and construct

an actual policy for multistage problems. This provides a motivation when formulating our

algorithms.

11

0 2 4 6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

12000

Time period

N
um

be
r

of
 V

ar
ia

bl
es

 in
 M

IL
P

1 scenario
2 scenarios
3 scenarios
5 scenarios

(a) Number of variables in Pinto’s MILP formulation with
respect to the number of scenarios that it considers (Pinto
and Moro [27]).

0 2 4 6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

12000

Time period

N
um

be
r

of
 E

qu
at

io
ns

 in
 M

IL
P

1 scenario
2 scenarios
3 scenarios
5 scenarios

(b) Number of equations in Pinto’s MILP formulation with
respect to the number of scenarios that it considers (Pinto
and Moro [27]).

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

Time periods

C
P

U
 (

s)

1 scenario
2 scenarios
3 scenarios
5 scenarios

(c) CPU time in Pinto’s MILP formulation with re-
spect to the number of scenarios that it considers
(Pinto and Moro [27]).

Figure 3: Exponential increase of the CPU time for a continuous MILP formulation of a
realistic supply chain application with respect to the number of scenarios it considers.

12

2.2 Markov Decision Processes

For the purposes of this thesis, the choice of describing the uncertainty is via a first order

Markov chain [11]. Markov chain is a discrete stochastic process that inherits its name

from the Markov property [11]. The term Markov property means that the conditional

probability distribution of the future system states depends only upon the present state,

and not on any past states.

Before proceeding further, some specification and definitions are in order. This thesis

mainly considers discounted infinite horizon discrete-time MDP’s. The usage of the discount

factor γ guarantees the convergence of DP, under mild assumptions. Those assumptions are

: 1) Finite state space denoted as S, 2) Finite action space denoted as A, 3) Probability space

denoted as Ω with finite support, 4) Bounded single stage rewards/costs |f̂(s, α, ω)| < M,

∀(s, α, ω) ∈ S× A× Ω.

The dynamics of discrete event systems follow the general system equation, st+1 =

Φ(st, αt, ωt+1). In words, the state of the system at time t + 1 is a function Φ of the state

st, the decision αt, and a random disturbance ωt+1 that takes place just before time t+1.

An MDP is formally defined by a tuple (S,A, Φ(·, ·, ·), f(·, ·)), where f(·, ·) denotes the

one stage expected stage-wise cost/profit function with arguments a state-action pair. Using

subscript t to denote the value of any variable at time t, and with some abuse of notation,

we write Φ(·, ·, ·) : st × αt × ωt+1 → P (st+1|st, αt), (αt ∈ A) where P (st+1|st, αt) represents

the finite support probability distribution of the successive state st+1 given the state-action

pair of st, αt under the realization of the uncertainty ωt+1. Furthermore, a decision policy

π ∈ ΠMD : s → α is a map indicating what action, α, to take for any given system state, s.

Here ΠMD represents the set of all admissible Markovian deterministic policies. Because of

the mild assumptions and the usage of the discount factor we restrict our attention to such

policies and eliminate the chance that an optimal policy can be randomized (described by

a probability distribution over the action sets).

13

2.3 Dynamic Programming

I refer the reader to Putterman [11] for an excellent introduction on DP. For a very strict

mathematical description of DP the reader is referred to Stokey et al [28].

2.3.1 The Value Function

Very loosely, DP is a methodology that converges to a fixed point the value of an unknown

function for all the system states. The converged function is the so called value function. By

the term system state we mean the minimum collection of the variables, which completely

characterizes the future behavior of the given system.

“ What is so particular of this value function?” Simply, by obtaining this function the

optimal policy for deterministic or stochastic, one stage or multi stage problems is trivially

defined given the necessary assumptions as presented at the previous paragraph. To retrieve

this function for discrete event systems, one usually results to numerical methods.

The main feature of DP is the “value function” denoted as J , which maps the system

state st to its resultant expected total discounted reward under some policy π.

Jπ(st) = E

{ ∞∑

t=0

γtf̂(st+1, π(st), ωt+1)|s0

}
, γ ∈ [0, 1) (1)

Note that I use index t to imply the current state and index t + 1 for the successive

state. f̂(st+1, π(st), ωt+1) represents the one stage stage-wise or myopic reward received by

exercising π : st → αt , (αt is the control) at a given state st, with the realization of the

stochastic variable-uncertainty ωt+1. The discount factor is denoted by γ. Its purpose is to

discount the future rewards to the present.

When using a discount factor, DP in its exact form guarantees the retrieval of a Markov-

ian deterministic optimal policy π = π∗ and the optimal value function, Jπ∗(s) (Eq.(2)).

Jπ∗(st) = max
π∈ΠMD

Jπ(st) (2)

The optimal value function Jπ∗(st) satisfy the Bellman or optimality equation. More

information about the properties of the optimality equations can be retrieved in [11, 29].

Jπ∗(st) = max
α∈A

E{f̂(st+1, α, ω) + γ
∑

st+1∈S
P (st+1|st, α)Jπ∗(st+1)|St = st} (3)

14

By St = st, we imply that the current state is a random variable St and st is one of its

realizations. The optimality equation is always conditioned on the current state realization

st.

If the state space is continuous and has some specific structure, linear dynamics and we

use quadratic cost function and Gaussian disturbances, then there are analytical expressions

(algebraic Ricatti equations [3]) that provide the optimal control (optimal policy). The

Ricatti equations work under some additional restrictions 1) that the system is controllable,

that means that the control policy affects the system states and 2) the choice of the quadratic

function must be proper, meaning that it should minimize the system’s unstable modes

[3]. This sort of formulation is very popular in the process control systems engineering

community where the state space is continuous.

In general the optimal value function ∀s ∈ S, solves the stochastic multistage decision

making problem. The optimal value function is obtained through value iteration (VI) or

policy iteration (PI) or exact linear programming (detail description,convergence proof and

analysis as well as small numerical examples of these techniques can be found in Putterman

[11] and Bertsekas [29]). I present the value iteration algorithm in the next session.

2.3.2 The Value Iteration Algorithm

The description of the classical value iteration algorithm follows:

For a given problem with a finite state space S, action space A and probability space Ω:

1. Initialize the value function J0(st) ∀s ∈ S

2. Iterate over all states st ∈ S for all actions αt ∈ A using the Bellman equation Eq.(4).

J i+1(st) = max
α∈A

{f(st+1, αt) + γ
∑

st+1∈S
P (st+1|st, αt)J i(st+1)} (4)

f(st+1, α) = Eω[f̂t+1(st+1, αt, ωt+1|st))]

i : is the iteration index note that the entire state space is swept through in each

iteration.

15

3. Terminate Bellman iteration when : (‖J i+1(st)−J i(st)‖∞ < ε), where ε is a problem

specific constant.

With the converged value function J∗, the optimal control for a given state is given according

to Eq.(5).

α∗ = argmax
α∈A

{f(st+1, α) + γ
∑

st+1∈S
P (st+1|st, α)J i(st+1)} (5)

The value iteration is a monotonic linear operator and guarantees the convergence

to a fixed point (optimal value function) [11]. In mathematics such an operator is called

contraction mapping. This means that no matter the initialization (overestimation or un-

derestimation) the value iteration will converge to the same fixed point after a finite number

of iterations. The mathematical proofs about the convergence of the DP to a fixed point

solution and the properties of the DP operator will follow at Section 2.3.4.

However, value iteration is compromised by the so called ‘curse of dimensionality (COD)’.

This refers to the proportional growth in the computational load with respect to |S| and

|A|, where the | · | operator represents set cardinality. For instance, the computational load

per a single VI iteration of a fully connected graph scales as |S|2|A|. As the cardinality

of the state and action space tend to grow exponentially with the dimensions of the state

and action variables, the computational requirement can quickly become unwieldy. For

almost all problems of practical interest, |S| and |A| are too large to admit these exact DP

approaches. Therefore, the use of discretization and interpolation schemes is unavoidable,

with the caveat that convergence can no longer be guaranteed [30].

The other exact dynamic programming algorithms are the policy iteration and the linear

programming approach. Both of these are delineated in Putterman [11].

2.3.3 The Dynamic Programming Operator

At this section I formally prove important properties of the DP operator denoted as T .

(TJ)(st) = max
α∈A

∑

st+1∈S
P (st+1|st, αt)(f̂(st, α, ωt+1) + γJ(st+1))

16

Also let’s define the operator Tπ with respect to a fixed policy π:

(TπJ)(st) =
∑

st+1∈S
P (st+1|st, αt)(π(st))(f̂(st, α, ωt+1) + γJ(st+1))

Now let’s prove an interesting property of the operator and the optimal value function

J∗.

Theorem 1.

J∗ = lim
N→∞

TNJ.

Proof. Let’s look at Jπ(s0) and split up the expectation in it in two parts:

Jπ(st) = E

[
N−1∑

t=0

γtf̂(st, πt(st), ωt+1)

∣∣∣∣∣ s0 = st

]
+ E

[∞∑

t=N

γtf̂(st, πt(st), ωt+1)

∣∣∣∣∣ s0 = st

]

Let’s look at the second term. Notice that its absolute value is less than γN

1−γ M , where M

is a constant such that |f̂(st, πt(st), ωt+1)| < M .

Recall that

(TNJ)(s0) = min
π0,...πN−1

E

[
N−1∑

t=0

γtf̂(st, πt(xt), ωt+1) + γNJ(sN)

∣∣∣∣∣ s0

]

Now using our bound on the absolute value of the second term, and the above, we can write

the following inequalities:

Jπ(s0)− γN

1− γ
M − γN‖J‖∞ ≤ E

[
N−1∑

t=0

γtf̂(st, πt(st), ωt+1) + γNJ(sN)

∣∣∣∣∣ s0

]

≤ Jπ(s0) +
γN

1− γ
M + γN‖J‖∞

Let’s minimize each term w.r.t π:

J∗π(s0)− γN

1− γ
M − γN‖J‖∞ ≤ TNJ ≤ J∗π(s0) +

γN

1− γ
M + γN‖J‖∞

Clearly as N →∞, γN → 0. Since N was arbitrary it follows that J∗ = limN→∞ TNJ .

The above proof used our assumption of finite state space to get an upper bound M on f̂ .

It needs additional assumptions to work with infinite state spaces.

We can also show that the operator T has the following additional properties:

17

Theorem 2. (Max-norm contraction) T is a maximum norm γ-contraction. That is, ‖TJ−
TJ‖∞ ≤ γ‖J − J‖∞ for all J, J .

Proof. For arbitrary functions g, h : A → R, where A is some arbitrary set, the following

property holds:
∣∣∣min

a
g(a)−min

a
h(a)

∣∣∣ ≤ max
a
|g(a)− h(a)|.

Using this property we get

|(TJ)(s)− (TJ)(s)| =
∣∣ min

α

 ∑

st+1∈S
P (st+1|st, αt)(f̂(st, α, ωt+1) + γJ(st+1)

− min
α

 ∑

st+1∈S
P (st+1|st, αt)(f̂(st, α, ωt+1) + γJ(st+1)

∣∣

≤ max
α

γ
∑

st+1∈S
P (st+1|st, αt)|J(st+1)− J(st+1)|

≤ γ‖J − J‖∞.

Since ‖TJ − TJ‖∞ = maxs |(TJ)(s) − (TJ)(s)|, the previous inequality implies ‖TJ −
TJ‖∞ ≤ α‖J − J‖∞.

Theorem 3. (Monotonicity) If J ≥ J , then TJ ≥ TJ .

Proof. Suppose J ≥ J . Then

∑

st+1∈S
P (st+1|st, αt)J(st+1) ≥

∑

st+1∈S
P (st+1|st, αt)J(st+1) ∀s ∈ S, α ∈ A

By multiplying both sides by γ and adding the term
∑

st+1∈S P (st+1|st, αt)(f̂(st, α, ωt+1)

to both sides of the inequality, we get TπJ ≥ TπJ for any decision rule π. Suppose π∗ is

such that Tπ∗J = TJ . Then TJ ≥ Tπ∗J . Also, it is clear that Tπ∗J ≥ TJ . Therefore

TJ ≥ TJ .

Theorem 4. (Offset property) Let e be such that e(st) = 1 for all st ∈ S. Then T (J +ce) =

TJ + γce for all c ∈ R.

18

Proof.

T (J + ce)(st) = maxα∈A
∑

st+1∈S
P (st+1|st, αt)(f̂(st, α, ωt+1) + γ(J(st+1) + ce(st+1)))

= maxα∈A
∑

st+1∈S
P (st+1|st, αt)(f̂(st, α, ωt+1) + γJ(st+1)) + γc

= (TJ)(st) + γce(st)

2.3.4 Contractions

As was shown in the previous section, the dynamic programming operator T is an γ-

contraction in the max-norm. In this section we will prove some useful properties of con-

tractions, and discuss some of their implications for dynamic programming. Throughout

this section we will let F be a γ-contraction with respect to some norm ‖ · ‖. For simplicity

we will assume F : Rn → Rn.

Theorem 5. The sequence {FNJ} converges for any J .

Proof. Since F : Rn → Rn, it will suffice to show that {FNJ} is a Cauchy sequence. Since F

is an α-contraction, ‖FJ−F 2J‖ ≤ α‖J−FJ‖. In general, ‖FNJ−FN+1J‖ ≤ αN‖J−FJ‖.
To show that {FNJ} is a Cauchy sequence, we need to show that for any ε > 0, there exists

some K such that ‖FMJ − FNJ‖ ≤ ε for all M, N ≥ K. For any K and M, N ≥ K,

‖FMJ − FNJ‖ =

∥∥∥∥∥
N−1∑

i=M

(F iJ − F i+1J)

∥∥∥∥∥

≤
N−1∑

i=M

‖(F iJ − F i+1J)‖

≤
N−1∑

i=M

αi‖(J − FJ)‖

≤ αK

1− α
‖(J − FJ)‖

For any ε > 0, we can find K such that

αK

1− α
‖(J − FJ)‖ ≤ ε,

hence {FNJ} is a Cauchy sequence.

19

Theorem 6. F has a unique fixed point.

Proof. The sequence {FNJ} converges to a fixed point of F , so at least one fixed point

exists. Now suppose J1 and J2 are both fixed points of F . Since FJ1 = J1 and FJ2 = J2,

this implies

‖FJ1 − FJ2‖ = ‖J1 − J2‖,

contradicting the contractive property of F . Therefore, the fixed point of F is unique.

Recall that the dynamic programming operator T is a max-norm α-contraction and

that TNJ → J∗ as N →∞. By the previous two theorems, we can conclude that J∗ is the

unique solution to the equation

J∗ = TJ∗.

This is known as Bellman’s equation. We can also use the fact that Tµ is a max-norm

α-contraction for any µ to establish the following result:

Theorem 7. A stationary policy π = {µ, µ, µ, . . .} is optimal among all policies if and only

if TJ∗ = TµJ∗.

Proof. First suppose that the stationary policy described by µ is optimal. Let Jµ be the

cost-to-go function under this policy. Since this policy is optimal, J∗ = Jµ. Also, the

equation J = TµJ is uniquely solved by Jµ. So Jµ = TµJµ =⇒ J∗ = TµJ∗ =⇒ TJ∗ = TµJ∗.

Now suppose TJ∗ = TµJ∗. This implies J∗ = TµJ∗. Since Jµ is the unique solution of the

equation J = TµJ , J∗ = Jµ, so the stationary policy described by µ is optimal.

2.3.5 A Review Of Approximate Dynamic Programming Techniques

The evolving stream of the ADP literature aims to develop conceptual frameworks that

reduce the computational obstacles of full DP and achieve a high quality solution. The first

and most significant source of computational burden is associated with |S|. The two other

sources of computational bottleneck are |A|, and the calculation of the expectation operator

within the maximization (or minimization) as seen in Eq.(4).

20

2.3.5.1 Minimizing the COD concerning |S|

Most of the approaches proposed by the Artificial Intelligence community attempt to mini-

mize |S| by intelligently sampling the state space and then building a function approximator

based on the recorded values of the sampled states. This raises both the question of how

to sample the space and what approximator to use. The naive approach of employing

uniformly spaced sampling of the state space is not attractive because it is subject to an

exponential growth with respect to the state dimension. A more efficient discretization

scheme derived from the field of statistical design is orthogonal arrays (OA) based on Latin

hypercubes [31]. This sampling scheme has been successfully used as a part of stochastic

DP method to solve a high dimensional waste-water treatment planning problem[32].

Another way to sample the state space is to simulate the system under some a priori

available policies, such as heuristics and deterministic optimal policies, and sample a finite

set of states from the simulated trajectories for constructing the value table. Lee et al [33]

investigated the performance of such an approach using two different types of function ap-

proximators: feedforward neural networks and a non-parametric local approximator called

k nearest neighbor averager. Their conclusion was that the use of the local approxima-

tor resulted in consistent and stable behavior over the value iteration, whereas the neural

networks could display unstable behavior. This finding was supported by empirical results

from case studies involving a Van de Vusse Reactor and a MMA polymerization reactor.

The test systems are characterized by highly non linear dynamics, which are common in

chemical engineering applications.

In similar spirit, Choi et al.[18] used the classical value iteration algorithm within a

small subset of state space, built by sampling simulated trajectories under various heuristic

policies. Their objective was to build a policy or a sequence of policies that improve upon

the starting policies. The set of sampled states for which the value iteration was performed

represented only a tiny fraction of the entire state space, and hence the major source of the

COD was removed. The approach’s major limitation is that it does not address the COD

associated with the action space. Hence, it only works for MDPs with a relatively small

action space, which was the case for their problems.

21

Another branch of ADP that has attracted significant attention lately is the approximate

linear programming based approach suggested by De Farias and Van Roy [34]. To solve a

DP exactly via linear programming, one must add a constraint for each state-action pair.

Alternatively, one can solve its dual problem, where the number of constraints are the same

as the cardinality of the sampled state space but the number of decision variables are the

feasible actions for each state . De Farias and Van Roy [34] suggest the use of sampling

via simulation to identify a closed set of states, and subsequently a finite number of basis

functions to parameterize the value function, in order to reduce the number of variables.

Solving the LP optimizes the coefficients of the chosen basis functions. However, it is not

clear how the basis functions should be chosen in the first place in order to achieve solutions

close to the optimal one. The selection procedure is heuristic, and it is difficult to decide

on the right complexity of the value function surface without over-fitting the function. This

approach has been applied to queuing problems where the number of state-action pairs was

1012 times the cardinality of the action space (about 18).

ADP methods that can address extremely large applications (problems with up to 106

dimensional state space) have been developed for a class of dynamic resource allocation

problems [35] [36]. One innovation the authors introduced is to rewrite the Bellman equa-

tion using a post-decision state variable, since doing so will lessen the COD associated with

the evaluation of the expectation operator. The update still requires evaluation of the ex-

pectation over the uncertain variables. However, the authors implement forward dynamic

programming, and the approach requires one specific realization of the exogenous uncer-

tainty via sampling. This way the expectation operator can be dropped. The value function

approximation strategies include separable, piecewise-linear functions, linear functions, or

other basis functions, for which the coefficients are to be estimated. To update the coeffi-

cients of theses schemes, the authors utilize a stepsize (learning rate) factor in order to avoid

potential outliers and smooth the estimation. More details about the overall approach can

be found in [36]. We note that, for these types of problems, their method gave impressive

empirical performance results compared to a MIP solution with full information.

22

2.3.5.2 Minimizing the COD concerning |A|

The second source of the COD concerning A was first tackled by MacQueen [37], where

the optimal value function was bounded to eliminate some suboptimal actions. This action

elimination technique has been used in VI and in PI (details in [11, 29]). There is a

recently published approach that addresses effectively this issue. This approach is named

evolutionary random policy search (ERPS) [38]. It turns out that the structure of the

Adaptive Action Set (AAS), that we analyze at a later section is very similar to the set of

actions proposed in ERPS. The main idea of the Adaptive Action Set (AAS), is that for

each state, the value function update will be restricted to only a small set of actions.

Their methodology works on the basis of evolutionary policy iteration. In ERPS they

prove that at each iteration the policy does not deteriorate and the learned policy converges

to the optimal policy with probability one. There are 3 main differences between the RTADP

algorithm that we will propose and the ERPS: 1) The proposed approach constructs a value

table with an increasing number of entries starting from an empty value table, while the

ERPS needs to initialize a fixed number of states; 2) in the RTADP the exploration rate

can be tuned via initialization of the value function, whilst in the ERPS the exploration

rate is fixed from the beginning; 3) the RTADP is based on asynchronous value iteration,

while ERPS on the policy iteration.

2.3.5.3 Minimizing the COD concerning the expectation operator

The classical way of circumventing this computational obstacle is to use Monte Carlo sam-

pling, while evaluating each decision. We will implement this idea in our approach later,

therefore it will be extensively discussed.

A different very attractive perspective that addresses the same issue is to interchange

the expectation with the maximization operator at the traditional Bellman equation by

posting these equations around a post state variable. Post state variable is the state of the

system after a decision. A detailed description about this notion can be retrieved in [1].

23

2.3.5.4 Value Function Approximators

As an endnote for this paragraph, we must admit that from a theoretical point of view,

accurate approximation of the value function in high dimensional applications is an impos-

sible task [39]. Approximating the value function surface with simplistic basis functions,

e.g. piecewise linear functions, is definitely a rough compromise, and is justified only if

one knows a-priori that the optimal value function structure 1. Even if one uses the non

parametric k − NN approach is subject to the fact that all sample points are close to an

edge of the sample. To be more specific consider 500 data points uniformly distributed in

a 10- dimensional ball centered at the origin. The mean distance to the nearest point is

≈0.52, this means the data are closer to the boundary than to the point, hence one must

extrapolate from a neighboring sample and not interpolate! That example shows that our

logic collapses, when dealing with high dimensional spaces. Extensive discussion of local

methods in high dimensions can be retrieved in Hastie et al [39].

The issue of structure of the optimal value function is critical. In fact to derive such a

structure may be the only way to devise fast algorithms for large MDPs. To speculate and

use complex approximation schemes for high dimensional spaces that update the coefficients

of localized basis function, like multiple adaptive regression splines [32] is currently the best

bet to achieve a good online performance. Nonetheless, this sort of an approximation cannot

produce any mathematical guarantees for the convergence of the value function surface.

2.4 Risk Measures

To analyze and account for risk due to uncertainty in decision-making, the adoption of a

quantitative measure for risk is required. Such a measure should not lead to counter-intuitive

outcomes. For example a risk measure ought to capture that portfolio diversification should

lead to risk reduction, not an increase. To ensure such intuitive rules Artzer et al [40]

defined in their seminar paper the class of ‘coherent’ risk measures as those that satisfy four

main axioms, which are sub-additivity, monotonicity, positive homogeneity, and translation

1 In Partially Observable Markov Decision Processes (POMDP) one knows that the optimal value function
is piecewise linear and convex.

24

invariance.

Let’s proceed to the formal definitions: Consider a random outcome Z viewed as an

element of a linear space Z of measurable functions, defined on an appropriate sample

space. According to the seminar paper of Artzer et al [40], a function ρ : Z → R is said to

be a coherent risk measure for Z if it satisfies the following axioms:

1. Convexity: ρ(a1Z1 + (1− a1)Z2) ≤ a1ρ(Z1) + (1− α1)ρ(Z2)∀Z1, Z2 ∈ Zanda1 ∈ [0, 1]

2. Monotonicity: If Z1, Z2 ∈ Z and Z2 > Z1 then ρ(Z2) > ρ(Z1)

3. Translation Equivariance: If α1 ∈ R and Z1 ∈ Z then ρ(Z1 + α1) = ρ(Z1) + α1

4. Positive Homogeneity: If α1 > 0 and Z1 ∈ Z then ρ(α1Z1) = α1ρ(Z1)

Commonly used risk measures like standard deviation (σ) or Value at Risk (V aR) violate

at least one of these properties and therefore can lead to counter-intuitive outcomes in

certain situations. In simple terms those measures are not appropriate measures for risk.

Numerical data sets that force these measures to violate specific axioms, as well as a more

intuitive in interpretation of the axioms , can be found in [41].

V aRα is usually meant for loss distributions and corresponds to an upper percentile

dictated by the confidence interval α. For instance, V aR95% is an upper estimate of losses

which is exceeded with 5% probability.

The formal definitions of the V aRα a for loss distributions follow:

V aRα = max{ζ ∈ R : (P (z) ≥ ζ) ≤ α}

As an alternative to the popular (V aRα), a coherent risk measure called Conditional

Value at Risk (CV aR) has been proposed in the recent risk literature. CV aRα is defined

for an arbitrary profit distribution f as: CV aRα = E[f |f < V aRα], which represents the

mean of the tail of the (α) × 100 bottom percentile of the distribution. In the above

V aRα represents the cut-off value for the corresponding percentile. The most attractive

characteristics of the CV aRα measure are: a) consistency with the mean-variance [42]

approach in one stage problems for normal loss distributions, b) convexity leading to an

25

attractive one stage optimization problem via LP even for non-normal distributions, and c)

the capacity to handle fat tails (e.g., Student-T distributions).

2.5 Pareto Optimal Frontier - Efficient Frontier

Pareto optimality, named after Italian economist Vilfredo Pareto, is a measure of efficiency

in multi-objective and multi-party situations. The concept has wide applicability in eco-

nomics, game theory, multi-objective decision-making, and the social sciences generally.

Multi-objective problems consider naturally two or more objective. Sometimes these objec-

tives are measured in different units and no agreed-upon conversion factor exists to convert

all criteria into a single metric.

R
is

k
 M

e
a

s
u

r
e

Least Risk

Measure solution

Figure 4: Pareto Optimal Frontier - Efficient Frontier.

Pareto optimality can be visualized in a scatter-plot of solutions (see Fig.5). Each

criteria (or objective function) is graphed on a separate axis. It is easy to visualize in a

problem with only two objectives, but much more difficult with three or more objective.

For the purposes of this thesis, we will focus on two objectives. To minimize/maximize

the system’s expected cost/profit and its CV aRα. It will be seen at the sixth chapter that

minimizing/maximizing the CV aRα corresponds to manipulating the standard deviation of

the semi-variance of the worst rather than the expected mean cases.

26

In a problem with two objectives, both of which are to be minimized Pareto-optimal

solutions are those in the scatterplot with no points down and to the left of them. This

scatterplot is the so called efficient frontier. Given a multistage problem each of these points

would correspond to the expected performance and risk measure of a generated policy.

2.6 Expected Utility Decision Theory

The expected utility hypothesis of Neumann and Morgenstern [43] is the cornerstone of

utility theory. It axiomatizes this hypothesis in terms of agents’ preferences via binary

preference relations over different actions given the uncertainty, and therefore is a natural

fit for optimization.

Currently, there is difficulty applying utility theory within the context of discounted

multi-stage problems. A key task of this thesis is to device a mechanism that would generate

such solutions.

Assume X and Y are the stochastic reward processes X = {x1, x2, ...} ∈ V (where V is

the set of all possible reward processes) and Y = {y1, y2, ...} ∈ V created by two distinct

policies. In this context, we want to retrieve a policy which will create a stochastic process of

state transitions and corresponding rewards and be able to express risk-time preference. The

objectives or criteria that will allow us to distinguish with a risk-time preference ordering

on V that X º Y (X is at least as acceptable as Y) are the following:

In summary, the criteria that we will use to express risk preferences in multi-stage

problems will be:

• Criteria 1: The following statement represents risk neutrality and risk sensitivity,

respectively, concerning multi-period utility and single-period utility and it is well

justified only for deterministic system because of Koopman’s [44] [45] [46] axiomatic

foundation.

X º Y ⇔ E
[∑

t

γtUS(Xt)
] º E[∑

t

γtUIntra(Yt)
]

?

This preference does not have an axiomatic foundation that will generate time-risk

27

sensitive policies when applied to multistage stochastic systems. Nonetheless, in chap-

ter 6 we will demonstrate that given a specific structure for this US , we will be in

position to well approximate at least a portion of the true multi-stage efficient frontier.

• Criteria 2: The following statement expresses risk sensitivity and risk neutrality, re-

spectively, concerning multi-period utility and single-period utility and at present it

presents the only logical formalism that expresses time-risk preferences.

X º Y ⇔ E
[
UM (

∑
t

γtXt)
] º E[

UM (
∑

t

γtYt)
]

This two criteria coincide for one stage problems. More details about accounting time-

preferences within DP are delineated at the sixth chapter.

The formalism that would allow to retrieve a risk sensitive multistage policy should

regard the summation of the corresponding Certainty Equivalence (CE) as the value function

Chung and Sobel [12]. The only class of functions that allows to write recursive equations

based on that fact are exponential functions, since their inverse are logarithmic functions.

The optimality equations based on this exponential utility are well derived by Chung and

Sobel [12] and by Avila-Godoy [47].

Let’s delineate the concept is the CE. The possible types of decision makers are : 1)

risk-seeking, 2) risk-averse, and 3) risk-neutral. The shapes of the utilities that represent

those types of decision makers are shown at Fig.4. A CE represents the maximum amount

of money we are willing to pay for some gamble. Alternately, a CE is the minimum premium

we are willing to pay to insure us against some risk. Imagine that a gambler offers you the

following bet: If a fair coin lands heads you will lose $1000, but if it lands tails he will award

you $1000. How much each of the three decision makers (Fig.4) would you be willing to

pay for this chance?

The expected utility from this gamble is half-way between the utility from winning

$1,000 and losing $1,000, since each event is equally likely. The risk taker will be willing

to pay something less from 500 dollars for this gamble. The risk neutral is willing to pay

$0 for this gamble, while the risk averse decision making would want to receive something

28

−1000 −500 0 500 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth − (w)

U
til

ity
 −

 U
(w

)

Risk Averse

−1000 −500 0 500 1000
0

0.5

1

1.5

2

2.5

3

Wealth − (w)

U
til

ity
 −

 U
(w

)

Risk Taker

−1000 −500 0 500 1000
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Wealth − (w)
U

til
ity

 −
 U

(w
)

Risk Neutral

U(w)=1.001w U(w)=w U(w)=−0.999w

Figure 5: At the left this convex utility expresses a risk taking attitude. At the middle this
linear utility expresses a risk neutral attitude. At the right this concave utility expresses a
risk averse attitude.

less than $ 500 for this gamble as insurance. The more risk-averse a person is, the lower is

his/hers certainty equivalent.

A different way to express risk sensitive attitudes is via single-period linear utilities. This

traces back to 1989 and 1994, where J. Filar et al [48] is concerned in finding policies in

discounted and undiscounted variance penalized MDP’s and Sobel M. [13] in undiscounted

MPD’s. It turns out that the discounted MDP is more difficult to analyze than the average

reward model in the context of the variance-penalized problem. One of our contributions lies

in chapter 6, since we will research the question: how can one approximate the true multi-

period mean-CVaR utility function using a linear combination of single stage single-period

mean-CVaR utilities.

2.7 Methodologies Addressing Multistage Risk

In this section, we will review methodologies that can generate Pareto optimal solution in

multi-objective stochastic optimization problems. The reviewed methodologies are: a) the

mathematical programming approach, b) the simulation based optimization approach, c)

29

the Dynamic Programming approach.

2.7.1 Mathematical Programming And Simulation Based Optimization Method-
ologies On Pareto Efficiency

The usage of mathematical programming is very popular when hedging the risk in financial

applications. First, H. Markowitz [42, 49] proposed portfolio selection via mean-variance

analysis in capital markets. He proposed a quadratic programming formulation for single

period optimizing the covariance and the profit. Rockafellar and Uryasef [50] proposed an

LP formulation that optimizes simultaneously the CV aRα and the V aRα. This LP formu-

lation is equivalent to the mean variance approach when dealing with normal distributions,

but it is a superior optimization formulation when dealing with cost/profit distributions that

exhibit heavy tails. An extension of this LP optimization to a multi stage portfolio opti-

mization problem is proposed via external sampling by Borgan [51]. The interesting feature

of their work is that they utilized various pdf’s for each instrument, in order to demonstrate

the superiority of the CV aR as a risk measure against the traditional variance.

A significant series of papers that investigate how a multistage risk measure can be

used within: a) a simulation - optimization DP framework , b) multistage programming

are the following by Cheng et al [52] [53] [54]. One of their key contributions is that they

propose the expected downside risk as a risk measure. This measure needs to satisfy the

properties of separability and monotonicity [55], in order to be able to be decomposed into

stage-wise separable functions and be used in the DP recursion. In order to achieve that

they introduce a auxiliary state variable. This state space augmentation comes in complete

agreement with the one proposed by Liu and Koevig [56]. Liu and Koevig [56] proposed a

state space augmentation, which will allow the usage of the optimality equations regardless

the chosen utility function.

A different contribution derived from this series of papers Cheng et al [52] [53] [54] is

that they compare numerically pareto efficiencies between a simulation based optimization

approach and a multi-stage stochastic mathematical programming approach. The math

program provided higher quality pareto solutions, but suffered from practicality issues in

comparison with sim-opt approach.

30

Recent work on risk for multi-stage stochastic problems on capacity expansion and NPD

can be retrieved by the research group of Professor Reklaitis [57] [58] [59] [60]. They nicely

explain, that a way to account for the multistage risk that characterizes a given policy is

to simulate it until the end of the horizon multiple times. To circumvent the COD they

introduce a state-action pseudo-utility function, in order to propagate back the optimal

decision via simulation. They utilize the separable downside risk measure, and discuss that

the majority of the other risk measures are not separable because they lack the separability

property [55]. 2

2.7.2 Dynamic Programming Methodologies

The rigorous alternative methodology to mathematical programming, in order to optimize a

multistage risk measure is the dynamic programming approach. In Section 2.6, we reviewed

the multi-stage optimization criteria and DP methodologies that adopt them.

The next section of this chapter may seem out of context. The reader may express

interest in reading the formulation of the following stochastic shortest path problem with

explicit start and goal states as an MDP, once he/she comes across this problem at the next

chapter. We choose to delineate the formal MDP formulation here, in order to facilitate

the thesis flow and familiarize the reader even further with respect to MDP’s.

2.8 The Formulation Of A Stochastic Shortest Path Prob-
lem As An MDP

As mentioned in the introduction, we initially studied the one dimensional shortest path

problem with a single starting and goal state. A high level description of the problem was

already given in the introduction. What follows is the formulation of the one dimensional

SSP as a formal MDP.

The MDP formulation requires specification of the following elements: State variables,

exogenous information variables, decision variables, transition function, one stage cost func-

tion, and objective function. The following subsections detail each of these.

2 The stage by stage propagation cannot provide the necessary information for the risk measure to be
backed up

31

2.8.1 State Variables / Exogenous Information Variables

A compact definition of state given in [1] is: a state variable is the minimal function of

history that is necessary and sufficient to model all the future dynamics of the system. For

the SSP problem, the state variable is a one dimensional vector defined as below:
[

st = Grid position at time t

]
(6)

The uncertainty is with respect to the state transition and is represented by a sequence of

random variables ω1, ω2, ω3, ... with the Markov property, meaning the future state values

depend solely on the present state and are independent of the state history. For com-

plex/practical problems like traffic congestion, higher-order Markov models may be used to

describe the traffic pattern in a more precise manner. The order selection of the Markov

model is highly case-specific and for our study we adopt a first order Markov model. Such

models describe in a probabilistic manner the state transitions and under a specific action

α, are denoted by Pα. For example, the (i, j)th element of Pα is the probability of the

transition, taking action α, from state si to sj at the next time period. For the classic SSP

problem |A| = 4, therefore one needs to store 4 (n× n) probability transition matrices3. A

methodology based on the EM algorithm which can systematically identify such matrices

from data can be retrieved in [61].

2.8.2 Decision Variables

Decisions are modeled in discrete time. The decision space A encodes all the possible

controls that are applicable to each system state st. Each action or control is concerned

with moving the system position at the discrete grid.
[

αt = North , South , East , West

]
(7)

2.8.3 Transition Function

The transition function as explained before is probabilistic:

st+1 = Pαt = P (st+1|st, αt) (8)

3|S| = n

32

Since the stochastic transition is independent, the transition to the next state follows

the conditional probability distribution Pαt and hence is dictated by the stochastic outcome

of a corresponding biased coin. The possible outcomes for the state transition are 4.

2.8.4 Contribution (Cost) Function

The one step cost produced by a decision αt at state st during one time period with random

variable ωt+1 is denoted as f̂(st, αt, ωt+1). Then, the expression for f̂(st, at, ωt+1) is:

f̂(st, at, ωt+1) = C(st+1) (9)

Where C(st+1) is the cost incurred based on the successive state.

The expectation of the one step profit is defined over the probability space Ω:

f(st, at) = E[f̂(st, at, ωt+1)] =
N∑

j=1

P (sj |st, αt)f̂(sj , at, ωj) (10)

where P (sj |st, αt) is the probability of the random variable ωt+1 to be taking the specific

realization of ωj and N is the number of transitions with non-zero probability conditioned

on st.

2.8.5 Objective Function

Usually the primary objective in this problem is to find the policy π that minimizes the

discounted expected cost over an infinite horizon.

π∗ = argmin
π

{
Jπ(s0) = E

{ ∞∑

t=0

γtf(st, π(st)) | s0

}
}

(11)

This goal is accomplished when we consider the entire state space and construct a stationary

decision function π : st → at such that each state is mapped to the best possible action.

33

CHAPTER 3

A REAL TIME APPROXIMATE DYNAMIC

PROGRAMMING APPROACH

The Value Iteration (VI) as presented at the previous chapter is termed “synchronous”,

since we iteratively need to update or backup the value function of every state of the state

space to guarantee convergence to the optimal value function. VI is a rather“safe” algorithm

to converge the value functions, meaning that one can still converge by performing less com-

putation. Variants of the VI that achieve this are termed asynchronous VI methodologies,

where the user uses some prioritizing rules to select the next state to be updated and result

to a faster convergence. Specifically, the convergence of model based reinforcement learning

for MDPs was shown by Gullapalli and Barto [62]. . A type of asynchronous value iteration

scheme is the episodic learning Real Time Dynamic Programming approach as proposed by

Barto et al [63]. The RTDP approach utilizes the dynamic programming operator to pick

an ε greedy action, by fully evaluating the expectation operator using information from the

known probability distribution and then selects randomly a successive state for the system

to visit. A significant requirement for the RTDP to guarantee convergence is an initial

overestimation of the value function for all the states (if its a maximization problem). Our

approach is a variant of the RTDP algorithm inspired by the following ideas.

In the following papers [17, 18, 64], researchers show only a tiny fraction of the state

space needs to be involved in constructing high quality policies. Ideally, this set of states

would correspond to a tight superset of all the states visited under the true optimal policy

for the given system. The reason for this can be explained as follows. Let us define the set of

states that can potentially be visited under the true optimal policy as the “relevant portion

of the state space,” which is to be denoted as SR ⊆ S. With SR being a closed set (i.e.,

there is an action, the one assigned by the optimal policy, that keeps the state within SR),

it is sufficient to perform value iteration only with SR to retrieve the optimal policy. Such

34

value iteration is termed approximate, since it is not performed on the entire state space.

During the approximate value iteration, the user: 1) assigns pessimistic value functions to

the states that are far distance wise from the ones sampled, 2) utilizes parametric or non-

parametric value function approximations for the states that are close to the ones sampled

and are needed for the necessary value function backups. The measure of distance between

the states depends on the application and can be a Frobernius norm or the Euclidean norm

or the one norm, etc. I utilize such ideas to the classic RTDP to discourage the state space

exploration.

In the proposed approach the value table starts with one entry (initial state). The

mechanism of building the simulated value table, denoted as SSim, is typically through

simulation. The proposed approach eventually focuses the computation on the states be-

longing to SSim, similarly as in asynchronous dynamic programming [15]. The key issue is

to estimate the values of the unvisited so far states. The proposed method follows a similar

logic as the above approximate value iteration techniques. For those unvisited states with

no “nearby” neighbors in the value table, we assign a pessimistic value that discourages

further exploration. For those states that have a sufficient number of registered neighbors,

their values are estimated using the non-parametric k nearest neighbor (k−NN) averager.

Traditionally exploration, which is clearly necessary for real-time methods, is performed by

not enforcing 100% of the time the ε greedy control. Here, our intention is to minimize the

exploration and to force the computations only to specific portions of the state space.

In the RTADP algorithm , the exploitation is done with respect to the following controls:

1)random actions, 2) heuristic policies, 4) mathematical numerical actions or 5) best known

stored action from previous experiences. This way, the state trajectories would be kept

within or close to the current set of visited states SSim. The goal here is to identify a

small set of states that would allow the Approximate Value Iteration (AVI) [17] [18] to be

computationally tractable, even for systems of large |S|. We note that that this proposed

approach has fundamental differences in contrast with the RTDP as first discussed in Barto

et al [15], which uses an estimator that encourages exploration by assigning optimistic values

to the unvisited states and considers the entire state space. However, that RTDP would

35

lead to the exploration of almost the entire state space, which is clearly impractical for

systems with large |S|. It is speculated from the numerical experiments that the proposed

approach provides the means for gradually building a simulated set of states SSim which

approximately encompasses SR, while iteratively computing value function estimates for the

states belonging to SSim.

Our overall approach is termed Real Time Approximate Dynamic Programming (RTADP),

as it is a modified version of Barto’s RTDP scheme. The proposed modifications focus on

alleviating the COD as a result of large |S| and |A|. Other potential sources for the COD

is the computation needed for evaluating the expectation of the reward and that needed to

calculate the transition function, both of which are not addressed in this manuscript as they

are not significant for the system of our focus. Overcoming the COD is strictly problem-

specific. Unfortunately, there is no general way to eliminate the COD for all problems.

Nonetheless the reader is referred to Powell [1], since it covers a number of general ways of

overcoming the curse of dimensionality by using continuous representations of states and

actions, and continuous value function approximations.

The second source of the COD is focused on the cardinality of the action set that

needs to evaluated per system state during the value iteration. This issue was addressed

by MacQueen [37], who proposed some action elimination techniques based on bounds.

This action elimination technique has been used in both Value Iteration (VI) and Policy

Iteration (PI) (details in [11, 29]). The decision space of the case study is represented by

a six dimensional vector. Three of its dimensions are continuous, while the other three are

discrete. We propose a concept called ‘Adaptive Action Set (AAS)’ to limit the action set

size by appropriately considering a finite number of controls. The main idea of Adaptive

Action Set (AAS), is that for each state, the value function update will be restricted to only

a small set of actions or controls. Our approach is similar to the evolutionary random policy

search (ERPS) [38] method. Other than the EPRS approach and the continuous decision

space representation proposed by [1], there has been little effort to address this source of

the COD.

The remainder of this chapter is organized as follows. In Section 3.1, I describe in depth

36

the proposed RTADP approach, the concept of the adaptive action set and the explicit

calculation of a single backup. Then in Section 3.2, I apply the RTADP algorithm at

a manufacturing job shop under uncertain demand and product yield. This exemplary

problem is formulated as a formal MDP and results are obtained during the simulation

exercises. In Section 3.3, we try to identify some potential issues of the RTADP approach

by applying it on 3 stochastic shortest path instances. Finally, at Section 3.4, we provide a

summary for this chapter.

3.1 A Real-Time Approximate Dynamic Programming
(RTADP) Approach

RTDP is a variant of value iteration and asynchronous dynamic programming. It requires

that the next state that one visits is determined by the current state, action and a sample

realization of the exogenous information. RTDP, as is introduced by Barto et al [15], is

combined with an optimistic estimate of the value function and assumes that the expectation

operator can be calculated exactly. This extends to a stochastic setting of the A-star

algorithm of AI. This initial optimistic estimate of the value function is imperative for the

RTDP algorithm to guarantee convergence, but because of it the algorithm is due to visit

almost the entire discrete state space during the training phase. This makes RTDP an

impractical tool even for a small application. To gain some insight into the computational

requirement of the RTDP, we refer the readers to Barto et al [15] for a numerical illustration

of the RTDP approach for a stochastic shortest path problem with 9,115 discrete states.

Results indicate that the value functions converge and instruct the optimal policy, when

only 2% of the total states is updated more than 100 times, 20% updated more than 10

times, and 3% of the spate space not updated at all. However, 3% saving in terms of the

state space is not sufficient for most practical problems. Therefore our modifications are

designed so that a high quality policy can be instructed after only a tiny fraction of the

state space is visited.

The RTADP approach proposed in this chapterr combines basic elements of the original

RTDP approach with the k-Nearest Neighbor (k-NN) approximation scheme outlined in

37

[33], an underestimator that discourages exploration of previously unvisited regions of the

state space and some specific ways for selecting candidate actions that comprise the AAS.

RTDP starts by performing trials, where each trial starts from a same set of starting

states and accumulates information along the state trajectories generated. It is observed

that after a finite number of trials the set of states that are visited during the trials becomes

saturated. This set is denoted by SSim hereafter. As mentioned before, the relevant state

space SR is the set of all states that belong to the trajectories followed under the optimal

policy with the same set of starting states (with a probability above some threshold in the

case of stochastic systems) [15]. From a practical standpoint, there is no algorithm that

can exactly identify this set of states for general problems with computation that scales

polynomially with respect to the number of problem parameters. The goal is to construct

SSim that encompasses SR as much as possible.

3.1.1 Formal RTADP Description

The proposed episodic procedure attempts to build an evolving value table by starting with

an empty one and gradually adding more and more entries, as specific states are encountered

in the simulation. The following steps are involved in each trial-episode of the algorithm.

Step 0a Initialize a starting state s0 as st and SSim = {s0}.

For episodes i = 1, 2, ...M , where M is a sufficiently large integer

For iterations t = 1, 2, ...h , where h is the horizon length of each episode

Step 1 Construct an Adaptive Action Set (Asub) for st. Asub(st) ⊂ A, where A is the

set of all possible controls that the decision maker can exercise at any time instance

for a given state. Details about the notion of Asub(st) and how it is numerically

constructed, along with an example, are given in sections 3.1.3 and 3.2.4

Step 2 Update the value for Jπ(st) according to Eq.(12). Every control in Asub is evaluated

with respect to the maximization operator in the Bellman equation (Eq.(12)) and the

decision-maker follows a policy that is greedy with respect to the most recent estimate

of the value function (Eq.(13)). This evaluation requires knowledge or an estimate

38

of Jπ(st+1) for all possible successor states st+1 from st. Further details concerning

this are outlined in section 3.1.4. Interested readers can find more information about

optimality and convergence for discounted infinite horizon MDPs in [11].

Jπ(st) = maxαt∈Asub
{f(st, αt) + γ

∑
st+1∈S Pr(sj

t+1|st), αtJ
π(sj

t+1)}, γ ∈ [0, 1)

(12)

α∗(st) = argmaxα∈Asub
{f(st, αt) +

∑
st+1∈S Pr(sj

t+1|st, αt)Jπ(sj
t+1)} (13)

where sj
t+1 denotes the jth possible value for st+1.

Step 3 A state st+1 is sampled from the probability distribution Pr(st+1|st, α
∗(st)), as

defined by the Markov model of the random variables. Let |Nδ(st+1)| denote the

number of state entries within δ distance from the sampled st+1. If |Nδ(st+1)| ≥ k

then SSim = SSim, else SSim = SSim ∪ st+1. (Details about this appear at section

3.1.4). Set t = t + 1 and go back to Step 1.

End

End

Termination occurs when the value table saturates (with few new entries) and ‖Jπ(si+1)−
Jπ(si)‖∞ < ε , ∀si ∈ SSim, where ε is a preset tolerance parameter. Termination can also

happen without convergence if a prespecified limit on the number of iterations is reached

beforehand. In the latter case, it is preferable to increase M by some factor, and repeat the

process, retaining the information acquired thus far.

To implement this approach, the user will need to choose a set of parameters. The user-

chosen parameters required to tailor the RTADP approach to the manufacturing system

example are described in the numerical results. Note that, if the algorithm happens to

circulate over a small cyclic graph of states, the algorithm is reset to a new iteration.

3.1.2 Initialization

For best results, the initialization procedure should be tailored to the specific application.

The approach will work either we initialize the Ssim with a random state or with a trajectory

of states using heuristics or mathematical programming.

39

A general guideline to initialize the state space is to use deterministic mathematical

programming by relaxing the exogenous uncertainty. In this case, the sampled states are

restricted to the system states sampled along the derived deterministic mathematical pro-

gramming action trace. For each state sample of that trajectory one can solve SAA math-

emaitcal programs to initialize the value function.

A different way to initialize the value functions as well as the state space is via heuristics.

A qualitative way to achieve that is described in [17, 18]

3.1.3 Key Elements of Asub

The purpose of adopting Asub is to significantly reduce the COD arising from having to

evaluate the value function of successor states for all candidate actions belonging to A. The

tradeoff is that with the use of Asub in the place of A we lose any formal guarantee that

the quality of the value estimates for each state in the table continues to increase with the

number of iterations. However, our simulation results (presented in the next section) show

that the approximation quality does continue to improve with iterations.

Elements of the Asub include:

1. Heuristics derived actions: Heuristics are policies that are derived from available

knowledge about the problem. These policies set a baseline performance to improve

upon. “Patching up” different heuristic policies into a single policy by using the DP

principle can lead to significant improvements, as illustrated in the recent literature

[17] [33]. In section 3.2.4, we describe a myopic heuristic, which we use to generate

actions for the studied example.

2. Math Programming derived actions: If we can formulate the problem of interest as

a mathematical programming model, we can include those actions instructed by it.

For example, the optimal action from value maximization over a finite horizon can be

used. To avoid the need for solving a complicated stochastic program, a particular

realization of random variables (e.g., their mean trajectories) could be used. Resulting

actions, optimal for the deterministic case, represent only suboptimal actions for the

original stochastic multi-stage problem. There are many variants of this approach and

40

it is an open question as to how much effort to invest in finding actions this way. In

section 3.2.4, we formally describe the mathematical program used to generate actions

for the current example.

3. Best known actions: These actions are derived from prior learning of the value function

in the “evolving” value table. If the state to be updated is a state never visited before,

then its best known action is empty. If the state has been visited before, a best known

action should have been stored with respect to the prior estimate of the value function.

4. Random actions: Random actions allows one to explore the whole action space in

the limit and hence the relevant state space. We generate limited random actions

by adding random perturbations to the actions generated from the heuristics and

mathematical programming.

5. Actions associated with neighboring states: These are the best known actions of the

k-nearest neighbors of the current state.

3.1.4 On Calculating Jπ(st)

In Eq.(12) the calculation of Jπ(st) involves the knowledge of the value function of all

possible successor states Jπ(st+1) for each action in Asub. During the calculation, we will

encounter one of the following three possible situations.

1: All st+1’s have values registered in the value table. We then use these values to calculate

Jπ(st).

2: Some of the st+1’s are not found in the value table. In this case we first need to find

the set of entries within δ distance of st+1 (to be denoted by Nδ(st+1)). Here we use

the weighted Euclidean distance metric d, as proposed by [33], with a user-chosen

parameter δ:

Nδ(st+1)
def=

{
s ∈ S : d =

√
(s− st+1)T W (s− st+1) < δ

}
(14)

In the above, W is a feature weighting diagonal matrix. If |Nδ(st+1)| ≥ k, we approx-

imate the value function of st+1 from the k nearest states recorded in the value table,

41

by taking an average, as follows:

Jπ(st+1) =
1
k

∑

x∈Nk(st+1)

Jπ(x) (15)

whereNk(st+1) denotes the set containing the k nearest neighbors. In [64], the authors

proved the convergence of the VI when the k−NN averager is employed for the value

function approximation.

In the case that sj has k′ < k = 4 neighbor states within the specified distance, we

use Eq.15 with just k′ states to approximate Jπ(sj).

3: The case where |Nδ(st+1)| = 0. Eq.15 cannot be used, and therefore we suggest an

initial estimation scheme for the value functions with respect to the optimal one. For

example, one can “under-estimate” Jπ(st+1) of the st+1’s that belong to scenario 3

by using a uniform lower bound of the value function. Assuming a maximization with

positive rewards, Jπ∗
t (st+1) is positive for all states. In this case, ‘0’ is an under-

estimator for such a case. This will be referred to as the “under-estimation” scheme.

Taking this further, one may also assign negative values to parts of the state space

deemed irrelevant or highly undesirable from a priori knowledge of the problem. Doing

so means these states will not be explored. Such an approach is investigated in

paragraph 3.2.5.

Although we do not recommend as a part of our method, we also analyze the effect

of over-estimating the value function for st+1’s belonging to scenario 3 by using a

uniform upper bound. The impact of doing so in learning and convergence will be

investigated in paragraph 3.2.5.

For the purposes of this chapter, we will explore the effectiveness of the proposed ap-

proach on a specific capacity planning instance as well as on shortest path problems or

GDMDP’s.

3.2 RTADP Applied At Capacity Planning

Capacity planning and allocation under uncertainty is one of the most complex and chal-

lenging problems faced in industrial manufacturing. In general, effective management of

42

such strategic decisions is crucial for the financial prosperity of an industrial firm. Typical

capacity management problems involve multiple factors that can be expanded or contracted.

Capacity expanding decisions are usually associated with significant investments and are

often irreversible, i.e., invested capital for expansion cannot be fully retrieved if one decides

to contract the excess capacity later [65]. For a complete review of the investment capacity

management literature, the reader is referred to [66]. For problems involving multi-factor

investments under single dimensional Markovian uncertainty and linear adjustment cost

structure, an analytical policy named ISD (Invest - Stay - Disinvest)1 is derived from the

optimality principle of Dynamic Programming (DP). A mathematical description of the

analytical policy for such problems can be found in [67]. In the case that the stochastic

process is multi-dimensional and/or the adjustment cost structure non-linear, however, the

ISD policy does not guarantee optimality. For such cases, one may choose to use opti-

mization to numerically retrieve a high quality policy. Historically, such problems have

been tackled via mathematical programming techniques such as Mixed Integer Program-

ming (MIP) [68]. Formulating and solving this type of multi-stage stochastic optimization

problem using mathematical programming generally entails exploring a large number of

scenarios or evaluating multi-dimensional integrals over the probability distributions, and

the computational load typically increases exponentially with the number of stages [69]. As

an alternative, researchers have explored stochastic Dynamic Programming (DP) methods,

but these suffer from an exponential growth in computation with respect to the system’s

state dimension, a problem that is typically referred to as the ”curse of dimensionality

(COD)” [2]. No matter the approach, in the general case, there is an unavoidable tradeoff

to be made between computational efficiency and solution quality for this type of problem.

The particular system of focus in this chapter is a three-stage queuing manufacturing

process, illustrated in Figure 6. The objective is to control the buffers through irreversible

1 The ISD policy partitions the space into a number of sub-regions. The Stay space is the region of state
space, where the decision-maker chooses to maintain the same capacity for every factor. The Invest region
is a point in the state space, where the decision maker will invest and therefore expand the capacity of one
or more factors. The Disinvest region is a point in the state space, where the decision maker will disinvest
and therefore contract the capacity of one or more factors.

43

capacity planning decisions and maximize the system’s economic objective. One can catego-

rize the problem as belonging simultaneously to the broad class of multi-factor investments

under uncertainty and queuing network control via dynamic capacity decisions. Specifi-

cally, the manufacturing process of interest is divided into three interdependent stages with

physical buffers (queues) and a final product inventory. The in-process inventory queued

at each stage is controlled via the simultaneous adjustment of the capacity at each stage.

The demand rate for the final product is stochastic and modeled as a first order Markov

chain. A further complicating factor in this example is the possibility of processing failure:

If a product coming out of stage 2 fails to meet required specifications, the failed product is

rerouted to stage 3 for reprocessing. At station 3 the failed product is serviced and placed

back in the queue in front of stage 2. The fraction of products that meet the specs at

each time period is also a random variable, which is also modeled as a first order Markov

chain. The decisions at each time consist of addition / subtraction of equipment units at

each stage (at certain costs) and the number of units actually used for production during

the time period. Such decision problem can naturally be mathematically formulated as a

Markov Decision Process (MDP). Nonetheless, this formulation suffers from the COD, and

this chapter will suggest a practical way to overcome it.

The state variable of the case study is a six dimensional vector and represents the in-

process inventory at each stage and the realized values of the two random variables. All

the elements of this vector are discrete-valued and we use a “flat” representation, ı.e., each

state is numbered 1, 2, ..., |S|, which is in similar spirit with [17, 18, 64].

3.2.1 Manufacturing Job Shop Under Uncertain Demand and Product Yield

As mentioned in the introduction, we study an exemplary single product manufacturing

system in which the intermediate and final product queues are controlled via capacity

adjustment and utilization by a single agent. The manufacturing process is illustrated in

Figure 6. A high level description of the problem was already given in the introduction

section and we give more details and formulate it as a formal MDP here.

The variable Wi,t represents the in-process inventory queued at each stage i at time

44

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Station 1

Queue

Decision variable V:

Releasing inventory

Main Assembly

Station 2

Queue

Completed Jobs

Realizations of the

Demand

Station 3

Queue

Testing Area

1-R

R

R: Recircualtion Rate

(Corresponds to quality of product)

Figure 6: Infrastructure of an agent.

period t and the variable It the final product inventory. The demand for the final product

is a sequence of random variables D1, D2, D3, ... with the Markov property, meaning the

future values depend solely on the present state and are independent of past states. Higher-

order Markov models may describe the demand pattern better in practice but this is highly

case-specific and for our study we choose to go with the simplest model type. For a first

order Markov chain model, the dynamics is governed by a probability transition matrix,

whose (i, j)th element represents Pr(Dt+1 = di|Dt = dj) where di is the ith possible value

for D. In this study, i = 1, · · · , 6 and therefore the transition probability matrix PD is a

6×6 matrix. In practical applications, one would need to identify these probabilities mainly

from historical data or reinforcements from the environment 2. The fraction of products

that fail to meet the specs at each time period is also represented by a sequence of random

variables denoted by R1, R2, R3, At every time period t, the random variable Rt may

take one of two possible values. The lower state value of r1 corresponds to a high product

yield and conversely the higher state value of r2 to a low product yield. Transition from

r1 to r2 may be due to an unexpected event that harms the system’s performance. The

corresponding 2× 2 probability transition matrix is denoted by PR.

2In practice, such models can be identified using hidden Markov models and by utilizing the EM
algorithm[61]

45

Table 2: Physical meaning of each term of the objective function.
A1 min{Dt+1, Stt+1} Revenue coming from satisfied demand

A2((Stt+1 − SSP)+ + (SSP − Stt)+) Penalty incurred when stock deviates from SSP

A3(w2,t+1 + w3,t+1) Holding costs at at stages 2,3
A4(

∑3
i=1 ∆Ûi,t Machines available at each stage, i = 1, 2, 3

Table 3: Numerical values used for the manufacturing job shop example.

PR =
[

0.8 0.2
0.6 0.4

]

R =
[

0.2 0.7
]

PD =

0.8 0.1 0.08 0.02 0 0
0.06 0.7 0.1 0.07 0.07 0
0.01 0.08 0.7 0.1 0.11 0
0.02 0.02 0.01 0.8 0.13 0.02
0 0.01 0.11 0.13 0.7 0.05

0.02 0.01 0.01 0.11 0.15 0.7

D =
[

7 20 35 50 70 100
]

µ1 = 10, µ2 = 15, µ3 = 10

A1 = 5 ∗ 10−2, A2 = 6 ∗ 10−3, A3 = 5 ∗ 10−4

A4 = 10−2, γ = 0.9, Sdes = 500

46

3.2.2 Formal MDP Formulation Of The Manufacturing Job SHop

The formulation of this problem as a formal MDP requires specification the following ele-

ments: State variables, exogenous information variables, decision variables, transition func-

tion, one stage profit function, and objective function. The following subsections detail each

of these.

3.2.2.1 State Variables / Exogenous Information Variables

A compact definition of state given in [1] is: a state variable is the minimal function of

history that is necessary and sufficient to model all the future dynamics of the system. For

the manufacturing job shop example, the state variable is a six dimensional vector defined

as below:

st =

It = Finished product at time t

Wi,t = Queue at stage i = 1, 2, 3 at time t

D̂t = Realized demand value at time t

R̂t = Realized recirculation rate value at time t

(16)

For a larger queueing network, one can use the same characteristic features summarized in

the above statement in defining the state variable.

As mentioned earlier, the random variables are modeled with a first order Markov model

in this study. The models that govern the probabilistic transitions among the given discrete

sets of values are completely specified by PD for D and PR for R. For example, the (i, j)th

element of PD is the probability of the demand taking the current value of dj to transition

to the value of di at the next time period. In the numerical example, the diagonal elements

of PD are chosen near 1, in order to reflect the strong inertia seen in a typical demand

profile.

Realized values of the random variables at time t, D̂t and R̂t, are assumed to be known

to the decision-maker. Hence they constitute exogenous information variables. However,

the values of these variables at future times are uncertain and are described by the cor-

responding probability distributions. It is customary to include the parameters defining

47

these conditional probability distributions of the random variables as a part of the state

vector as they capture the information available at that time period. They are therefore

called information states. With a first order Markov chain model, it is sufficient to include

just D̂t and R̂t in the system state as they completely define the conditional probability

distributions of the future random variables.

3.2.2.2 Decision Variables

Decisions are modeled in discrete time. The decision space A encodes all the possible

controls that are applicable to each system state st. Each action or control is concerned

with: a) the capacity expansion-contraction, meaning adjustment of the number of the

machines at each stage and b) the percent of the machines that are actually employed

for production at each stage. Therefore A has six dimensions, of which the three last are

continuous.

A =

Ûi,t = Number of machines at i at t

PU i,t = Percentage of Ûi,t used at t

 (17)

3.2.2.3 Transition Function

The total number of jobs TJi,t coming out from station i at time t is expressed via Eq.(18):

TJi,t = µiPUi,tÛi,t ∀t(i = 1, 2, 3) (18)

where µi is the capacity of each machine at stage i, which is assumed to be constant.

The key element in modeling the system dynamics is to take into account the physical

constraints (i.e., material balances) among the interdependent and sequential stages. Con-

sidering stage 1 to be the main assembly area of the product, we can balance the inlet and

outlet flows as shown in Eq. (19):

W1,t+1 = W1,t + Vt − TJ1,t (19)

W1,t ≥ 0, ∀t

where Vt is the number of raw (“beginning”) products coming into the system.

48

The next stage is the testing area where the product is tested extensively to ensure that

the quality requirements are met. The recirculation rate R takes one of the two values at

each time period according to the realization of the Markov chain with the transition matrix

of PR (see Table 3). Accordingly, the material balance for the queue at stage 2 is shown in

Eq. (20).

W2,t+1 = W2,t + TJ1,t + TJ3,t − TJ2,t (20)

W2,t ≥ 0, ∀t

A fraction of the product, R, fails the quality test and needs to be reprocessed at station

3. After being reprocessed the product will have a chance to pass the quality test again.

It is assumed that the product has no memory of whether it has passed or failed the test

previously.

The material balance for the queue at stage 3 is shown in Eq. (21)

W3,t+1 = W3,t + RtTJ2,t − TJ3,t (21)

W3,t ≥ 0, ∀t

The inventory of finished products after satisfying the demand at each time period is

described by (22).

It+1 = It −Dt + (1−Rt)TJ2,t (22)

It ≥ 0, ∀t

Since the stochastic processes of the demand and recirculation are independent, the

transition to the next demand and recirculation rate follows the conditional probability

distributions PD,PR and hence is dictated by the stochastic outcome of a corresponding

biased coin. The possible outcomes for the demand rate are 6, while for the recirculation

rate are 2 (the numerical details appear at Table 3).

3.2.2.4 Contribution (Profit) Function

The one step profit produced by a decision αt at state st during one time period with

random variable ωt+1 is denoted as f̂(st, αt, ωt+1). With some abuse of notation we denote

49

ωt+1 = [Dt+1, Rt+1], which is a two dimensional vector describing the outcome of the two

independent Markovian processes at time t + 1. Then, the expression for f̂(st, at, ωt+1) is:

f̂(st, at, ωt+1) = A1 min{Dt+1, It+1} −A2((It+1 − SSP)+ + (SSP − It+1)+)

−A3(W2,t+1 + W3,t+1)−A4(
∑3

i=1 Ûi,t)
(23)

In the above, the notation {·}+ is defined as y+ = max(y, 0) assuming y is a real number.

The physical interpretation of the terms in Eq.(23) and the meaning of the parameters

A1,A2,A3,A4 are given in Table 2. The numerical values of the solved instance are sum-

marized in Table 3. A high quality policy is one that achieves a good balance among the

objectives of a) controlling the stock level It close to a fixed set point SSP , b) minimizing

the queues (W2,t,W3,t) at stations 2 and 3, and c) minimizing the resources used.

The expectation of the one step profit is defined over the probability space Ω:

f(st, at) = E[f̂(st, at, ωt+1|st)] =
N∑

j=1

Pj(t + 1)f̂j(st, at, ωj) (24)

where Pj(t + 1) is the probability of ωt+1 taking the value of ωj and N is the number of

transitions with non-zero probability starting from st.

3.2.2.5 Objective Function

The primary objective in this problem is to find the policy π that maximizes the discounted

expected profit over infinite horizon.

max
π

{
Jπ(s0) = E

{ ∞∑

t=0

γtf(st, π(st)) | s0

}
}

(25)

This goal will be accomplished when we construct a stationary decision function π : st → at

such that each state is mapped to the best possible action.

Trivially, the optimal policy π∗ is the one instructed by the optimal value function. The

RTADP methodology discussed next can be applied to generate policies that are generally

suboptimal but are conjectured to be close to the optimal one.

3.2.3 Simulation Results

The results of the presented manufacturing job shop capacity adjustment problem are or-

ganized as follows: In section 5.1, we describe step-by-step a) the simulation procedure, b)

50

how Asub is numerically constructed, and c) the parameters used to characterize Nδ(st+1).

In section 5.2 we evaluate the performance of the proposed RTADP method with a heuristic

policy derived from problem insights, an ideal (but not practically implementable) solution

derived from Mixed Integer Programming (MIP), and an implementable solution based on

rolling horizon MIP. The “ideal” solution is not implementable as it is based on solving

an MIP assuming full information about future realizations of the uncertain parameters.

However, it does provide an absolute upper-bound to compare against, and demonstrates

how the knowledge of future impacts the performance.

3.2.4 Simulation Procedure

The simulation begins with an empty value table. In simulating the problem, the following

assumptions are made: a) No machine breakdowns , b) identical machines used for each

stage, c) two machines in each station at minimum (i.e., min{Ûi,t} = 2), d) negligible

holding costs, order costs, and quantity discounts for the raw materials released into the

initial queue, e) sufficient raw material availability to allow for a desired level of processing

(µ1PUi,tÛi,t) at all times, f) fixed selling price of the product as well as the operation

expenses (e.g., energy consumption, maintenance fee) over the time horizon of interest, and

g) responsive delivery of the raw materials with no delay.

Next we discuss the construction of Asub. Recall that Asub is composed of several

elements, which are constructed for the problem of interest in the following manner.

Heuristic action: The heuristic we adopt works in the following fashion. At t, the

agent receives the state information. Upon observing the realization of the random variables

(Dt and Rt), one-step-ahead predictions about the random variables are made, which we

denote by Dt+1|t, Rt+1|t, by maximizing the conditional probability. This can be done easily

since we have assumed perfect knowledge of the one step probability transition matrices.

The heuristic is myopic in that it sets to achieve the following regulatory objective at the

next time step: The one-step-ahead prediction of It+1 should be at its setpoint, SSP (i.e.,

It+1|t = SSP), and the queue for the 2nd and that for 3rd stage are zeroed (W3,t+1 = 0

and W2,t+1 = 0). Let us introduce the effective number of machines Ũi,t, which is defined

51

as Ũi,t = PU i,t × Ûi,t. Using the one-step-ahead predictions Dt+1|t and Rt+1|t, the effective

number of machines in operation at station 2 (Eq. 26), station 3 (Eq.27), and station 1 (Eq.

28) are adjusted to meet the queue level objectives, i.e., Ũi,t+1 values are chosen according

to

Ũ2,t+1 =
SSP − It + Dt+1|t

µ2(1−Rt+1|t)
(26)

Ũ3,t+1 =
W3,t − 0 + µ2rt+1|tŨ2,tDt+1|t

µ3(1−Rt+1|t)
(27)

Ũ1,t =
0−W2,t − µ3Ũ3,t + µ2Ũ2,t

µ1
(28)

Ûi,t should be bigger than Ũi,t and must have an integer value. Therefore this heuristic

chooses Ûi,t as the minimum integer that satisfies these properties. Also, when It > SSP ,

then the shop operates with minimum resources (see assumptions).

Mathematical Programming Actions:

Asub includes actions derived from math programming, which is an MIP. The decision

variables for this formulation are Ûi,t, Ũi,t ∀ i = 1, 2, 3 and t = 1, ...h (where h is the length

of the horizon of the MIP). The formulation, which requires that their realized stock is

St ≤ SSP , is:

max
∑h

t=1

(
f(st, Ũi,t, Ûi,t)

)

s.t.

g(st, Ûi,t, Ûi,t) = 0

−ε1 ≤ ∆Ûi(t) ≤ ε1

PU i,t ≥ β

It ≤ SSP

Wi,t ≥ 0, Ûi,t ≥ 2

(29)

g(st, Ũi,t, Ûi,t) denotes the material balances that must be satisfied at each system node

for consecutive time periods. The incremental change, Ûi,t+1 − Ûi,t is denoted as ∆Ûi,t,

which cannot be greater or less than ε1. Parameter β is a parameter corresponding to the

minimum percentage of the available machines that must be used at each time period. At

each iteration of the RTADP, we systematically used 7 distinct MIP, by tuning the β values

at (0.4,0.5,0.6,0.7,0.8,0.9,1) and ε1 = 6. The action at t = 1 is added to Asub.

52

If the realization of the state st is above SSP , then the MIP becomes infeasible. Specifically,

if It > SSP , we utilize the It > SSP constraint instead of It ≤ SSP in order to ensure the

feasibility and produce numerical actions from the MIP code.

To complete the Asub at each loop, we also include: four distinct random actions, a

best known action among stored actions if there is any, and the best stored actions from

the k-nearest neighbors of si (where k = 4). The random actions are generated by adding

perturbations to the heuristic and mathematical actions. The neighborhood of st is defined

by the tuning parameters δ and W . The Euclidean measure δ demarcates the “neighbor-

hood” of a particular st. The states that are recorded in the evolving value function table

within the so defined neighborhood are neighboring states. We choose δ = 12.2 and W to

be a diagonal matrix with entries W (1, 1) = 0.15,W (2, 2) = 0.1,W (3, 3) = 0.15,W (4, 4) =

4,W (5, 5) = 2000. These weights are chosen such that only those states with the same re-

alization of the random variables and similar (±10 jobs in queue 2,3) queue lengths belong

to a same neighborhood. The value k=4 was used for our numerical results.

3.2.5 Performance Comparisons

We investigate the performance of the proposed RTADP against 1) a MIP with full infor-

mation 2) a myopic heuristics-based policy and 3) a solution obtained via a rolling horizon

MIP. As mentioned in section 3.2.4, there exist several options for estimating the value

function of previously unseen states. The following subsections delve into this aspect fur-

ther. RTADP-a, RTADP-b and RTADP-c correspond to the above three policies and are

discussed in sections 3.2.5.

3.2.5.1 RTADP with an Under-Estimator (RTADP-a)

Because this is a maximization problem with positive rewards, Jπ∗(s) is uniformly positive.

Therefore, the value ‘0’ is a uniform under-estimator for all states. Under scenario 3 in

section 3.1.4 (|Nδ(st+1)| = 0), we use ‘0’ as the value of st+1. We also set h = 100 for

solved mathematical programs.

Given this scheme, RTADP successfully accumulates valuable learning of the relevant

state space and its associated value function, to yield a policy that optimizes the state

53

trajectory over a recurrent class of states. This argument is supported by Fig. 2, where it is

obvious that the exploration of the state space is significant only for the first 5,000 RTADP

value function updates (2,670 states collected). After that the frequency of encountering new

states is reduced significantly. At 100,000 updates only 8,165 states have been encountered.

New states are scarcely encountered from that point on. This implies that the ‘evolving’

state space has become ‘saturated.’ This recurrent class of states is thought to ‘cover’ the

relevant state space as it controls It close to SSP and minimizes the queues at the second

and third stage. The use of the under-estimator allows for cautious and selective exploration

of the state space, and gives a good compromise between exploration and computational

feasibility.

Assuming ergodicity, one way to evaluate the performance of a control policy in a sto-

chastic application is to simulate the closed-loop system over a sufficiently long horizon.

Table 4 summarizes the average performance per time period that the tested algorithms

achieve. Note that the MIP with full information cannot be solved for a long horizon due

to the exponential increase of the problem size. Instead, we solved a full information MIP

for 100 different scenarios, representing different realizations. Each scenario length was 300

time steps. Reported are the average performance values over the 100 scenarios. The MIP

formulation requires knowledge of the realized values of the problem’s random variables.

Hence the MIP solution represents an idealistic policy that cannot be implemented in prac-

tice. The comparison between the MIP and RTADP shows the performance gap of '14%

in favor of the MIP. The performance gap is due to a combination of the full information

assumption and sub-optimality of the RTADP-a.

Another issue to explore is the importance of considering the multistage nature of this

problem. This question can be partially answered by comparing a myopic 1-step ahead

heuristic procedure with the RTADP. Note that the 1-step-ahead heuristic policy utilizes

the current information of the random variables and 1-step-ahead predictions about them.

Its performance was ∼27% worse than RTADP-a. RTADP-a therefore gave significant im-

provement upon the performance of this simple heuristic. This confirms the fact that ADP

approaches are more suitable to treat multistage decision problems than myopic heuristics.

54

Table 4: Evaluating the average performance per time period starting from st =
[100 100 413 20 0.2] of a)MIP with full information b) RTADP- Scheme a,b,c c) 1-
Step heuristic and d)Rolling horizon MIP (h = 60 and k = 1)

Comparison Average Performance per Iteration Performance Gap
MIP 2.54 ± 0.56 -

RTADP - a 2.18 ± 0.71 ' 14.2%
RTADP -b 1.97 ± 0.92 ' 22.4%
RTADP -c 1.57 ± 0.98 ' 38%

1-Step Ahead Heuristic 1.59 ± 0.96 '37.4 %
Rolling Horizon MIP 2.01 ± 0.68 '20.88 %

A general procedure that can address multi-stage stochastic decision problems is a rolling

horizon MIP approach with a sampled future scenario. In this example an average of a given

number of scenarios, chosen based on the conditional probability distribution of the future

values for demand was used. The results of the rolling horizon MIP are summarized in

Table 5. The adjustable parameters of the rolling horizon approach are: a) the horizon

length h and b) the frequency at which the MIP will be solved (once every k steps). The

solution strategy is: a)given the system state, generate 100 independent sample scenarios

conditioned on the current realized values of the problem’s random variables and average

them, b) solve the MIP for horizon h based on the averaged trajectories and implement the

MIP’s solution for the first k steps, and c repeat a and b at the next time step defined by

k. Table 5 confirms that the quality of the rolling horizon policy is increased if we solve the

MIP at every time step (after observing the realized values of the random variables). Also,

the performance of the rolling horizon approach levels out for h > 60 The policy obtained

by applying the RTADP-a is on average 7.8% better than the one yielded by the rolling

horizon approach.

3.2.5.2 RTADP with Prior Knowledge (RTADP-b)

One may attempt to exploit prior knowledge about “irrelevant” portions of the state space

in the following manner: To every state st+1 deemed “irrelevant”, a ‘discouraging’ initial

value is assigned. For a maximization problem with positive rewards, the values for such

55

Table 5: Average performance per period of the policy as derived from rolling horizon
MIP approach with a given Horizon h solved per k time periods.

MIP Horizon MIP Solved per k periods
k=1 k=2 k=3

h =40 1.889 1.8516 1.7818
h =50 1.986 1.9128 1.8039
h =60 2.0144 1.9142 1.8239
h =65 2.0047 1.9325 1.8553
h =70 2.0085 1.9414 1.8591

‘unwanted’ or irrelevant states are assigned to be negative.

In this problem, the undesirable states are those with ‘large’ inventories. To implement

this, those states with values of Wi greater than a threshold θi, which is a tuning parameter,

were penalized. In the numerical example, we chose θi = 600,∀i . Recall that the mechanism

to impose an exploration barrier is to assume a low value for these states. We assigned a

negative value of ‘-10’ to those states, and ran the RTADP with the same seed for the

random variables as in the previous case. We termed this run RTADP-b.

Such initialization will reject the actions that will take the state trajectory to the un-

wanted parts of the state space. The simulation results were the following: a) the cardi-

nality of the evolving approximation of the relevant state space was |S| = 2, 700, and b)

the average performance per time period was decreased to 1.97 compared to 2.18 that was

previously achieved. This demonstrates the difficulty and risk associated with using such

prior knowledge: Seemingly reasonable choices can negatively impact the performance.

3.2.5.3 RTADP with an Over-Estimator (RTADP-c)

There is some numerical evidence and theoretical validation for the idea that introducing

optimism in the face of uncertainty leads to ε optimal behavior in zero sum games and

MDPs. Readers are referred to Brafman and Tennenholtz [70] for references concerning

this matter. As in their approach, our algorithm introduces no initial bias with respect to

the selection of the optimal action. In the spirit of Kearns et al [71], our approach tries

to empirically identify an irreducible set of high quality states. It is also aligned with the

56

R-max algorithm in that it will pick the greedy controls.

RTADP-c represents the proposed approach combined with an over-estimator. This type

of initialization will encourage a maximum level of exploration of the state space. The details

of the over-estimation scheme are presented in Appendix A. An important characteristic of

this scheme is that it over-estimates the value function for all unvisited states. Therefore,

for the same random seed, RTADP-c liberally explores S, without focusing the calculation to

previously visited states. This behavior is displayed in Fig.2. The state space is continually

explored due to the fact that we have random actions in Asub. If we overestimate the

true value function, the RTADP-c falsely believes that every unvisited portions of the state

space is a good candidate for the next state. A logical conclusion is that if RTADP is

combined with such an initialization scheme, it will take a long time to converge to a high

quality policy, since it will first have to explore just about the entire S. The performance

of the policy derived from RTADP-c is inferior to that from RTADP-a and b, given the

computational limitations of the current study.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7
x 10

4

Number of Updates

C
a

rd
in

a
lit

y
 o

f
th

e
 E

v
o

lv
in

g
 S

ta
te

 S
p

a
c
e

RTADP− a

RTADP− b

RTADP− c

Figure 7: Exploration of the ‘evolving’ state space .

In conclusion, the initial estimation scheme used in RTADP-a is the most effective in

57

balancing exploration and exploitation for the specific case at hand.

3.2.5.4 Finished Stock - Behavior under RTADP

This section investigates how the four aforementioned policies controls the final product

inventory. The simulation results show in in Fig. 3 are for a) RTADP-a b) 1-Step Ahead

Heuristic c) Rolling Horizon MIP, and d) MIP with full information.

0 5 10 15 20 25 30 35
400

500

600

700

S
to

c
k

0 5 10 15 20 25 30 35
400

500

600

700

S
to

c
k

0 5 10 15 20 25 30 35
400

500

600

700

S
to

c
k

0 5 10 15 20 25 30 35
400

500

600

700

Number of Time Epochs in Time Series

S
to

c
k MIP with full information

RTADP− a

Rolling Horizon MIP [h=70,k=1]

1 Step Heuristic

Figure 8: Error bounds concerning the stock level control in time series for 100 different
scenarios, using the following architectures a) RTADP- a b) Rolling horizon MIP c) 1- Step
Ahead Heuristic d) MIP with full information .

100 different scenarios, each of horizon 30, were generated using the Markov chain model.

The mean and variance of the stock level at each time point were then calculated under

each of the control policies. A larger number of scenarios (1000) were run for the RTADP-a

approach to check that the mean and variance values had indeed converged. The mean

of each discrete point of the time series for RTADP- a is very close to SSP . The error

bar shown in Fig. 3 represents one standard deviation and is smaller for RTADP-a than

those for the heuristic and the rolling horizon MIP. The MIP with full information has the

knowledge of the values of the random variables for each scenario, prior to action selection,

58

and therefore it controls the It to SSP perfectly with minimal standard deviation.

3.3 Applying The RTADP Algorithm On Stochastic Short-
est Path Instances - Exploring Potential Issues

The traditional RTDP algorithm was initially applied at shortest path instances with ded-

icated starting and goal states. In this section, I will use instances from the special class

of problems termed Goal Directed Markov Decision Processes (GDMDP’s) or stochastic

shortest path problems to demonstrate potential issues the user may face when he/she uses

RTADP. The formulation of those instances as MDP’s is shown at the previous chapter at

paragraph 2.7.

In order for the traditional RTDP to achieve the optimal policy, the user needs to assign

an optimistic value function approximator for all the states not yet explored within the state

space. The intuition behind this fact is that, the RTDP procedure will pursue constant

exploration to the unexplored regions of the state space. Therefore, it will explore almost

the entire state space and after exploration is finalized, then it will focus the exploitation

and on converging the value function values. This explains the fact that for large scale

discrete event stochastic problems, when using such an optimistic approximator for all the

unseen successive states the RTDP routine is computationally intractable.

Therefore, for the scope of this thesis, I suggested the usage of the RTADP methodol-

ogy, in order to achieve computationally tractability by restricting in a heuristic way the

exploration. Such alsgorithm sacrifices the formal convergence property to the optimal

value function, since it will not explore the entire state space, We also further “destroyed”

,in the sake of computational feasibility, the contraction property of the DP operator by

introducing the concept of the adaptive action set.

Next, I consider 3 stochastic shortest path instances. Each application differs in the cost

structure and by one order with respect to the cardinality of the state space. The intent

is to demonstrate some practical issues with respect to the RTADP approach and how one

can optimize its performance.

The examined issues are the following:

59

• How will the usage of a pessimistic versus an optimistic value function approximation

scheme for all unseen states affects the achieved value table expansion and the quality

of the constructed policy ?

• How will a potential state space initialization scheme along with a pessimistic or

optimistic value function approximation scheme help the approach to yield better

policies ?

• What is the significance of a heuristic policy applied to the states outside the sampled

ones to the overall achieved performance gained by the RTADP ?

To provide quantitative answers to such questions, I test the following RTADP variances

to the stochastic shortest path instances:

• RTADP Variance 1: RTADP + State Space Initialization Via Relaxed LP + Pes-

simistic Estimation Scheme + heuristic 1.

• RTADP Variance 2: RTADP + State Space Initialization Via Relaxed LP + Opti-

mistic Estimation Scheme + heuristic 1.

• RTADP Variance 3: RTADP + No State Space Initialization + Pessimistic Estimation

Scheme + heuristic 1.

• RTADP Variance 4: RTADP + No State Space Initialization + Optimistic Estimation

Scheme + heuristic 1 .

• RTADP Variance 5: RTADP + No State Space Initialization + Pessimistic Estimation

Scheme + heuristic 2.

Across all the stochastic shortest path instances: 1) the pessimistic value function esti-

mation, when encountering a state outside the Ssim is set to 550 , 2) we utilize the k-NN

non parametric approximation scheme, 3) the optimistic value function initialization, when

encountering states outside the Ssim is set to 0 , 4) the state space initialization scheme

is achieved via a deterministic LP (details about the LP formulation can be retrieved in

Appenxix A).

60

3.3.1 Results On A 77 Discrete State Space Example

The first instance appears at Fig.9 along with its cost structure.

0 2 4 6 8 10
0

1

2

3

4

5

6

y-axis

x-axis

1-

2-

3-

4-

5-

6-

1 2 3 4 5 6 7 8 9 100
0-

~ (20,0)*

~N (18,4)

~ (18,8)

~ (17.5,16)

~ (15,20)

~Starting state

~Goal state

Figure 9: Schematic illustration of the cost structure of a Stochastic Shortest Path With
77 Discrete States.

In each state the four compass directions of movement are possible, which cause the

agent to move with probability p in the corresponding direction on the grid and with

probability (1-p)/ 3 in a different direction. Actions that would take the agent off the grid

leave its location unchanged and they result in no penalty. The following results for this

instance correspond to parameter p set to 0.9.

The solution via full DP appear at Fig.10.

The full DP solution for this problem yields a policy which is associated with a value

function of 309 for the starting state (1,1). Below I apply the variances of the RTADP for

the same instance. To derive the performance of each variance, I test them on the same

1,000 scenarios. Each RTADP variance is applied for only 1,000 episodes each of which was

of length 50 simulated time steps.

For this instance the deterministic LP provides correct actions for the states involved

to the deterministic trajectory from the starting to the goal state. Thats no great surprise

given that p = 0.9.

For RTADP Variances 1,2,3,4 the heuristic 1 completes the policy, since these variances

61

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

x−axis

y−
ax

is

Full DP Solution

Goal State
→
↑

Figure 10: Full Dynamic Programming result for the problem as it appears at Figure 8.

essentially identify a portion of the state and therefore a partial policy. When evaluating

the value function of that policy, in the case that the system goes to an unregistered to the

table state heuristic 1 instructs the action.

Heuristic 1 instructs to use for all states the go up action except for the states:{(1, 7), (2, 7)

, (3, 7), (4, 7), (5, 7), (6, 7))}, where we should use the go right action . Similarly heuristic 2

instructs to use for all states the go up action except for the states:{(1, 7), (2, 7, (3, 7), (4, 7),

(5, 7), (6, 7))}, where we shall use the go down action.

The results that are summarized at Table 6 are rather inconclusive and that has to do

mainly because of the size of the problem. Note that via these results we want to determine:

1) Would an effective initialization scheme matter or not, 2) Should we use a pessimistic or

an optimistic estimation for the value functions of states not registered at the value table,

62

Table 6: Comparison between the performance gained from RTADP variances and full
dynamic programming on the stochastic shortest path as it appears at Figure 8.

Algorithm Online Performance States Explored
(Percentage of space explored)

Full DP 309 Entire Space
RTADP Variance 1 309.31 51/77 (66.23%)
RTADP Variance 2 309.65 59/77 (76.62%)
RTADP Variance 3 311.61 62/77 (80.52%)
RTADP Variance 4 309.75 64/77 (83.12%)
RTADP Variance 5 321.39 62/77 (80.52%)

3) how much will a heuristic that would complete the policy affect the performance, is this

element critical for our approach.

What follows is to apply the RTADP to a larger instance of 900 discrete states.

3.3.2 Results On A 900 Discrete State Space Example

The purpose of this paragraph is to demonstrate the discussed RTADP variances to a 900

discrete state space shortest path problem in order to derive useful conclusions about the

characteristics that enhance RTADP’s performance.

The following results for this instance correspond to parameter p set to 0.8. The full

DP solution for this problem yields a policy which is associated with a value function of

237 for the starting state (1,1). The cumulative results for the RTADP variances appear at

Table 7.

Heuristic 1 instructs to use for all states the go up action except for the states:{(1, 30),

(2, 60), ..., (28, 840), (29, 870))}, where we should use the go right action . Similarly, heuristic

2 instructs to use for all states the go up action except for the states:{(1, 30), (2, 60), ..., (28, 840)

, (29, 870))}, where we shall use the go down action.

63

Table 7: Comparison between the performance gained from RTADP variances and full
dynamic programming on the stochastic shortest path with 900 states.

Algorithm Online Performance States Explored
(Relative to Full DP Percentage) (Percentage of space explored)

Full DP 237 Entire state space
RTADP Variance 1 246.35 311/900 (34.56%)
RTADP Variance 2 253.46 (85.13%) 790/900 (87.78%)
RTADP Variance 3 247.43 (83.27%) 316/900 (35.11%)
RTADP Variance 4 285.21 (78.63%) 840/900 (93.33%)
RTADP Variance 5 251.83 323/900 (35.89%)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

y−
ax

is

x−axis

0 5 10 15 20 25 30
0

5

10

15

20

25

30

x−axis

y−
ax

is

RTADP Variance 3
RTADP Variance 4
Initialization

RTADP Variance 1
RTADP Variance 2

Figure 11: Schematic illustration of the exploration achieved by the proposed RTADP
variances. Its evident that using the right type of approximator for the unseen states will
result to restrict the exploration and enhance computational feasibility.

64

The results are summarized at Table 7. The results are pointing to the fact that if

RTADP is used along with a pessimistic estimation scheme, we achieve restricted exploration

and then we focus on exploitation. The derived policy from RTADP Variance 1 is very close

to the optimal policy and surprisingly we are exploring only one third of the state space. If

an optimistic estimation is used (Variance 2) along the RTADP then we will have to explore

the entire state space and then we will asympotically converge. This is not viable in large

scale problems.

Moreover, in the question of should we use an initialization scheme or a better heuristic

is indifferent given these results.

What follows is to apply the RTADP to a larger by one order of magnitude state space

of 10,000 discrete states.

3.3.3 Results On A 10,000 Discrete State Space Example

The purpose of this paragraph is to demonstrate the discussed RTADP variances to a 10,000

discrete state space shortest path problem in order to derive useful conclusions about the

characteristics that enhance RTADP’s performance.

The following results for this instance correspond to parameter p set to 0.8. The full

DP solution for this problem yields a policy which is associated with a value function of

519 for the starting state (1,1). The cumulative results for the variances appear at Table 8.

Heuristic 1 instructs to use for all states the go up action except for the states

:{(1, 100), (2, 200), ..., (98, 9800), (99, 9900))}, where we should use the go right action .

The results are summarized at Table 8. The results are similar with the previous case

and are pointing to the fact that if RTADP is used along with a pessimistic estimation

scheme, the exploration is minimized and directed to the state space where high quality

solutions lie. At Fig.12 we can notice the vast difference in the exploration that is guided

by the different RTADP variances.

65

Table 8: Schematic illustration of the exploration achieved by the proposed RTADP vari-
ances. Moreover, the initial trajectory, from the start to the goal state, generated by the
LP is well represented at those figures .

Algorithm Online Performance States Explored
(Relative to Full DP Percentage) (Percentage of space explored)

Full DP 519 Entire State Space
RTADP Variance 1 945.94 1,909/10,000 (19.09%)
RTADP Variance 2 1,068.47 (85.13%) 7,345/10,000 (73.45%)
RTADP Variance 3 960.52 (83.27%) 1,883/10,000 (18.83%)
RTADP Variance 4 1,176.5 (78.63%) 7,032/10,000 (70.32%)

0 20 40 60 80 100
0

20

40

60

80

100

x−axis

y−
ax

is

RTADP Variance 1
RTADP Variance 2

0 20 40 60 80 100
0

20

40

60

80

100

x−axis

y−
ax

is

RTADP Variance 3
RTADP Variance 4

Figure 12: Comparison between the exploration achieved by the RTADP variances. Its
evident that using the right type of approximator for the unseen states will result to restrict
the exploration and enhance computational feasibility.

66

3.4 Chapter Conclusions

For large scale problems, approximate dynamic programming has emerged as an effective

way to approximate the conceptually elegant but computationally inefficient dynamic pro-

gramming algorithm. The compromises made in ADP result in a tradeoff between the

exploration of the state space and the exploitation of existing knowledge of the values of

the already-visited states. The balance of exploitation and exploration is governed by the

subset of actions allowed in each state and the relative optimism embedded in the initial

assigned values to unexplored states.

In this chapter, we explored these issues in the context of a manufacturing system

with variable capacity and inventory decisions faced with uncertainty over the demand and

performance of the system. In this RTADP approach, a reduced action candidate set called

adaptive action set was used. Its function is to control the balance between random actions

for exploration and actions that were known to be good for the encountered state based

on limited value function updates and established heuristics. The initialization of the state

values also plays a significant role in the performance of the RTADP method. The more

optimistic the initial valuation of unexplored states, the more exploration and therefore the

higher the computational cost. In the example, the most effective scheme was the one that

is ‘neutrally pessimistic’ and not biased against any particular class of states. This was

effective in this problem because there was relatively good information on actions based on

heuristic evaluation of their immediate consequences. In problems where such knowledge

does not exist, a higher level of exploration may be required for effective actions to be

discovered.

67

CHAPTER 4

SOLVING A HIGH DIMENSIONAL LIGHT AROMATIC

SUPPLY CHAIN EXAMPLE USING RTADP

In this chapter, we implement the RTADP methodology for solving a high dimensional

supply chain network, which is to be optimized via dynamic decisions.

The specific application is the light aromatic , or else called BTX, supply chain network.

The uncertainty lies in the demand and price, whose variation is modeled using first order

Markov Chains. The main decisions are the mode and the operation of the equipment

as well as the stream flows. The resulting Markov Decision Process is addressed via the

RTADP approach.

The proposed RTADP method starts with numerical actions derived from a Mixed

Integer Linear Programming (MILP) formulation and gradually learns a superior quality

solution by interacting with the stochastic system via simulation. The performance of the

learned solution is evaluated against an ‘ideal’ solution derived using a Mixed Integer Linear

Programming (MILP) formulation, which assumes full knowledge of future realized values

of the stochastic variables, and a sample path rolling horizon MILP solution.

We study the impact of the relative timing of decisions and information flow on the

quality of the solutions.

4.1 Introduction

Supply chain management is an important optimization challenge in part because the quality

of the current decisions are depended on the future market conditions. Often, information

is received during the planning horizon and the likelihood of seeing the future states of the

system is altered. This requires that policies for different state trajectories to be found

though multi-stage optimization. Formulating and solving such problems generally entails

68

exploring a large number of scenarios or performing multi-dimensional integrals over prob-

ability distributions, which typically increase exponentially with the number of decision

stages. A more complete discussion of the complexity of multistage stochastic problems can

be found in Shapiro and Nemirovski [69].

Multistage planning and scheduling optimization problems have been posed as math-

ematical programming problems with a single scenario picked for the future, often the

expected value of the random parameters [68]. Until recently, given the limitations of the

optimization solvers, this was the state of the art.

Recently, mathematical programming and especially MILP formulations with a more

refined approach to uncertainty have been a subject of considerable research [19], but the

method runs into several bottlenecks:

1. Finding a solution that is a single set of actions misses the opportunity to revise

actions depending on the state that the system actually visits. In math programming

the goal instead of retrieving a policy that map the states to actions, it is to retrieve

numerical actions from the current state.

2. Finding policies requires that the branching of the future scenarios be taken into

account, this by itself presents the following problems:

• The number of scenarios increases very rapidly with the length of the time hori-

zon. Therefore even writing the exact multistage problem as a mathematical

program becomes a hard task.

• One needs fairly restrictive assumptions about how the actions and the future

interact. For example, it is very difficult to express situations in which the actions

change the nature of the underlying transitions (e.g., by revealing information.).

Our approach to incorporate the need to react to changing information is to adopt a

rolling horizon approach Yi and Reklatis [72] 1. The optimization is resolved at some fre-

quency with the uncertain information updated to reflect new information and also the

1This work is is an extension of [73]

69

actual outcome of the actions implemented. The length of the horizon can be adjusted to

balance the computational complexity against the need to preserve an adequate represen-

tation of the future.

Rolling horizon MILP takes care the lack of feedback, but runs into a compromise

between the first two problems. Essentially, one can limit the combinatorial explosion using

the rolling horizon idea, but does not solve the problem of having choices now, that depend

on the future and are not properly evaluated.

The above discussion has motivated us to explore Dynamic Programming (DP) as a so-

lution architecture. This requires a different set of compromises compared to mathematical

programming approaches. Most specifically, the computational and memory load for exact

DP is enormous because the full set of states must be enumerated. Therefore Approximate

DP (ADP) has been proposed. What follows are some advantages to an ADP approach.

First the underlying representation of the solution is a policy that maps states to actions.

This means that once the solution has been computed, the recovery of the actions is simply

a lookup table. Second, the underlying computation of state information and transitions is

a procedural code, rather than having to be declared in an explicit form in a mathematical

program.

Next, we first provide an overview of the problem statement and then the motivation

behind our conducted numerical experiments.

4.1.1 An Overview Of A Light Aromatic Supply Chain Case Study

In Fig.13, we illustrate a simplified flow diagram of a typical refinery and Fig.15 presents a

more detailed diagram of the specific plant configuration.

For the purposes of this work, we will restrict our attention to a typical refining process

chain namely the BTX supply chain. Light naptha, a product of the atmospheric distillation

process, is the main input for the BTX supply chain. Light naphta is processed in the

Reforming unit, where reformate oil is produced. This oil is sent to the BTX extraction

unit, where Benzene, Toluene and mixed Xylene is produced. The mixed Xylene is sent

to isomerization units (Parex unit) in order for o-Xylene and p-Xylene to be produced.

70

Reforming

unit

Hydro-

cracking

unit

BTX

extraction

unit
Parex unit

Naptha

cracking unit

Gasoline

unit

HTS unit

PDA unit

FCC unit

Residual

Gasifying

unit

Lubricant

unit

Vacuum

Crude

oil

Fuel gas

ATR

Naptha

heavy

light

Naptha

Kerosene

Diesel
Diesel

Synthesis gas
CO
Hydrogen

Lubricant

Fuel oil
Gasoline
propylene
LPG

Injection

Advanced diesel

Gasoline

Butadiene
Propylene
Ethylene

p-Xylene

o-Xylene

mix-Xylene

Benzene
Toluene

BTX supply

chain

Figure 13: The Simplified Flow Diagram of a Typical Refinery.

These five light aromatic products are the main BTX products which will be distributed

customers. The uncertainties we choose to focus on are the customer demand and the

market price and are modeled via a Markov chain.

4.1.2 Motivation Of Our Numerical Studies

The motivation for our numerical experiments is to study the impact of relative timing

of decisions and information flow. The BTX supply chain application has two different

decisions corresponding to the operational modes of units and the flows to and from the

input and output tanks attached to the units. We examine two situations: 1) the mode

and flow decisions to occur simultaneously, in other words to share the same time scale and

the same information, and 2) the mode decision precedes the flow decisions and is made

before certain information is available. Figure 14 demonstrates the relative timing of the

decisions, information revelation and state updates in the two cases. The key difference is

whether the price and the demand are revealed before or after the mode decisions are to be

made.

71

Case 1: Information is realized

after the flow decisions

Case 2: Information is realized

before the flow decisions

State

t

Modes,

Flows

Information about

Demand+Price

State

Feedback

t+1

State

t

Flows

Information about

Demand+Price

State

Feedback

t+1

Modes

Figure 14: Impact of relative timing of decisions and information flow.

The rest of the chapter will present two methodologies for approaching this problem,

dynamic programming and rolling horizon MILP. Section 4.2 will present the specific BTX

supply chain case study in the form of an MILP and then the uncertainty added to generate

a Markov Decision Process (MDP). The case study will be solved by both ADP and rolling

horizon MILP and the computational results will be discussed.

4.2 Modeling The High Dimensional Supply Chain Case
Study As An MILP

The supply chain case study is inspired from the work of Kuo and Chang [74]. The reader

can retrieve a detailed MILP model in their paper. We address the simplest possible version

of their BTX supply chain (Benzene (Bz), Toluene (Tol), Mixed Xylenes (Mx), P-Xylene

(Px) and O-Xylene (Ox)). Such network is characteristically referred at their work as single

train BTX supply chain.

The BTX supply network considered in our case studies is sketched in Fig. 15. The

simplifications from the complex case study of Kuo and Chang are the following: a) we

consider the optimization of a single refinery and not the simultaneous optimization of

three refineries, b) the network configuration considered in this work is radically different,

72

since in Kuo and Chang the chain consists out of three separate refineries. Analytically the

units involved for the operations of this chain are: three reforming units, three aromatic

extraction units, two xylene fractionation units, two (2) tatory units, two parex units and

two xylene isomar units, while our structure is composed out of one of each units in order

to ensure that such a chain can be a realistic realistic, c) we also assume that there is no

capability to export finished product unlike their case study.

4.2.1 Introduction

The main units of our BTX supply chain are : 1) One Topping unit denoted as (Top), 2)

One reformer unit denoted as (R) , 3) One BTX or so called extraction unit denoted as (B),

4) One Tatory unit denoted as (TT), 5) One Xylene Fractorization unit denoted as (XF),

6) One Iso Xylene unit denoted as (I), 7) One Parex unit denoted as (P), 9) One Terminal

(T) unit, 10) Five customers (C) for the main products, and 11) an Import facility unit

denoted as (Im).

The superstructure of our chain is given and is displayed at Figure 15. For visual

purposes the connections between the units and its output tanks are omitted.

The operational role and some further details concerning the chemistry of each unit can

be found at [74].

4.2.2 Mathematical Modeling of of the Supply Chain

The mathematic description accommodates: a) definition of the sets b) material flow equa-

tions c) hard constraints d) objective function.

4.2.3 Sets

• U = {Im, Top, R,B, TT, XF, I, P, T, C} is defined as the set that contains all the

supply chain units. An element of this set is denoted as u.

• FU = {FTop, FR, FB, FTT , FXF , FI , FT , FC}. Each element of FU is denoted as Fu and

is a set that represents the feed tanks of a specific unit u. An element of such a set is

denoted as s. We will define explicitly s for each unit t the next subsection.

73

Flow Diagram of BTX Supply Chain

Top

LN

Crude

Oil

Import Facilities

Pyrolysis

Oil

Light

Naphta
R B

Tol

C9

TT

Toluene

XF

Mix_xy

TT

Mix-xyl

B

P

I
Mix-xyl

I

MAIN PRODUCTS

BY PRODUCTS

BENZENE

TOLUENE

P - XYLENE

O - XYLENE

MIX - XYLENE

C3

C4

C5

C9

C10

Raf

Reoil

Pyoil

Customers in need of main products

o-xyl , C
9

Xylene

Fractorization

(XF)

p-xylParmex (P)

C
10

, BzTatoray (TT)

Mix-xyl, Bz, RafExtraction (B)

C
3
, C

4
, C

5
, C9, Reformer (R)

Connected wih

Product Tanks

Unit Type

Product tanks connected with units

Main

Products

Iso_mix

P-xyl

Iso_mix
Mix-Xyl

Figure 15: Flow Diagram of a simplified BTX Supply Chain .

• PU = {PTop, PR, PB, PTT , FXF , FI , FT , FC}. Each element of PU is denoted as Pu is

a set that represents the products of a specific u. An element of such a set is denoted

p. We will define explicitly p for each unit at the next subsection.

• KR is the set that defines the operational tasks that the reformer can perform. KTT

is the set that defines the operational tasks that the Tatoray unit can perform.

4.2.4 Control Volumes at each Tank

Each unit u ∈ U has a specific number of tanks that act as its input and a specific number

of output tanks. The output tanks are as many as the products of a particular unit. By

introducing control volumes at an input and output tanks of each unit we derive from first

principles the following equations :

Control Volume at an input tank of a specific unit u

74

Yu,s(t + 1) = Yu,s(t) +
∑

i

yi,u,s(t)− xu,s(t) (30)

∀i, u ∈ U, s ∈ Fu

• The inventory at the feed tank s at the next period (t + 1) is denoted as Yu,s(t + 1).

• The inventories forwarded from the supply chain units i at a particular feed tank s of

a unit u at period (t) is denoted as
∑

i yi,u,s(t).

• The amount of inventory that feeds a unit u from a feed tank s at period (t) is denoted

as xu,s(t).

If there is no connection yi,u,s(t) from a unit i to the tank s then yi,u,s(t) = 0.

Control Volume at an output tank of a specific unit u

Yu,p(t + 1) = Yu,p(t) + Pru,p(t)−
∑

i

yu,i,p(t) (31)

∀i, u ∈ U, p ∈ Pu

• The amount of product p stored at the unit u output tank at the next period (t + 1)

is denoted as Yu,p(t + 1).

• The amount of product p produced at the unit u, to be stored at the output tank at

period (t) is denoted as Pru,p(t).

• The amount of product p forwarded to the ith unit from the output tank of unit u

output tank at period t is denoted as yu,i,p(t).

If there is no connection yu,i,p(t) to a unit i from the tank p then yu,j,p(t) = 0.

The active connections regarding each unit are discussed next. We intentionally use

a loose repetitive notation concerning each units feed and output tanks. We omit the

byproduct tanks, namely C3, C4, C5, C9, C10, Raf of the terminal unit for space.

75

u
i

sui (t)y
,, (t)x su,

(t)Yu,s
i

u,i,p(t)y
(t)u,pPr

(t)Y
nU,O

Figure 16: Control volumes on the input and output tanks of each unit.

4.2.4.1 Topping unit

Eq.(32) and Eq.(33) are general equations of the material balance of the input and output

tanks of the topping unit.

• Input tank : At this unit s represents the crude oil (CO) tank .

Therefore: yi,Top,s(t) = 0 ∀i ∈ U\{Im}.

• Output tank: At this unit p represents the Light naphtha (LN) tank, which coincides

with a feed tank of the reformer unit.

4.2.4.2 Reformer unit

• Input tanks: At this unit s represents the LN tank.

Therefore: yi,R,s(t) = 0 ∀i ∈ U\{Im, Top}.

• Output tank: At this unit p coincides with PR = {p1, p2, p3}.
a) p1 = {C3, C4, C5} → yR,i,p1(t) = 0 ∀i ∈ U\{T}.

b) p2 = {C9} → yR,i,p2(t) = 0 ∀i ∈ U\{T, TT}.

c) Reformate oil is denoted by Reoil. p3 = {Reoil} → yR,i,p2(t) = 0 ∀i ∈ U\{B}.

e) O5 contains reformate oil (Reoil). For the O5 tank: yR,i,O5(t) = 0 ∀i ∈ U\{B}.

76

d) O4 contains (C9). For the O4 tank: yR,i,O4(t) = 0 ∀i ∈ U\{T, TT}.

4.2.4.3 Extraction unit

• Input tank: We define as si’s the elements of the FB = {Reoil, Pyoil}.
a) s1 = {Reoil} → yi,B,s1(t) = 0 ∀i ∈ U\{R}.

b) Pyrolysis oil is denoted by Pyoil.

s2 = {Pyoil} → yi,B,s2(t) = 0 ∀i ∈ U\{Im}. The pyrolysis oil comes from the

cracking unit, which is outside the control volume of the studied system. Therefore it

is considered as imported stream.

• Input tank: a) F1 contains Reoil. For the F1 tank: yi,B,F1(t) = 0 ∀i ∈ U\{R}.

b) F2 contains Pyrolysis oil Pyoil. For the F2 tank: yi,B,F1(t) = 0 ∀i ∈ U .

• Output tank: We define as pi’s the singleton sets that their union forms the PB =

{Bz, Tol,Mx, Raf}.
a) p1 = {Bz} → yB,i,p1(t) = 0 ∀i ∈ U\{T}.

b) p2 = {Tol} → yB,i,p2(t) = 0 ∀i ∈ U\{TT}.

c) p3 = {Mx} → yB,i,p3(t) = 0 ∀i ∈ U\{T, XF}.

d) p4 = {Raf} → yB,i,p4(t) = 0 ∀i ∈ U\{T}.

Output tanks: a) OPB
contains PB = {Bz, Tol,Mx, Raf}.

a) O1 contains (Bz). For the O1 tank: yB,i,O1(t) = 0 ∀i ∈ U\{T}.

b) O2 contains (Tol). For the O2 tank: yB,i,O2(t) = 0 ∀i ∈ U\{TT}.

c) O3 contains (Mx). For the O3 tank: yB,i,O3(t) = 0 ∀i ∈ U\{T,XF}.

d) O4 contains (Raf). For the O4 tank: yB,i,O4(t) = 0 ∀i ∈ U\{T}.

4.2.4.4 Tatoray unit

• Input tank: We define as si’s the elements of the FTT = {Tol, C9}.
a) s1 = {Tol} → yi,TT,s1(t) = 0 ∀i ∈ U\{B, Im}.

b) s2 = {C9} → yi,TT,s2(t) = 0 ∀i ∈ U\{R}.

77

• Output tank: We define as pi’s as singleton set that they union forms the PTT =

{Bz, Mx, C10}.
a) p1 = {Bz} → yTT,i,p1(t) = 0 ∀i ∈ U\{T}.

b) p2 = {Mx} → yTT,i,p2(t) = 0 ∀i ∈ U\{XF}.

c) p3 = {C10} → yTT,i,p3(t) = 0 ∀i ∈ U\{T}.

Input tank: a) F1 contains Tol. For the F1 tank: yi,TT,F1(t) = 0 ∀i ∈ U\{B, Im}.

b) F2 contains C9. For the F2 tank: yi,TT,F1(t) = 0 ∀i ∈ U\{R}.

• Output tanks: a) OPTT
contains PTT = {Bz, Mx,C10}.

a) O1 contains (Bz). For the O1 tank: yTT,i,O1(t) = 0 ∀i ∈ U\{T}.

b) O2 contains (Mx). For the O2 tank: yTT,i,O2(t) = 0 ∀i ∈ U\{XF}.

c) O3 contains (C10). For the O3 tank: yTT,i,O3(t) = 0 ∀i ∈ U\{T}.

4.2.4.5 Xylene Fractorization unit

• Input tank: We define as si’s the singleton of the FXF = {Mx}.
a) s1 = {Mx} → yi,XF,s1(t) = 0 ∀i ∈ U\{B, Im, I, TT}.

• Output tank: We define as pi’s the singleton sets that they union forms the PXF =

{Px, Ox,C9, Ix}.
a) p1 = {Px} → yXF,i,p1(t) = 0 ∀i ∈ U\{P}.

b) p2 = {C9} → yXF,i,p2(t) = 0 ∀i ∈ U\{T}.

c) p3 = {Ox} → yXF,i,p3(t) = 0 ∀i ∈ U\{T}.

d) p4 = {Ix} → yXF,i,p4(t) = 0 ∀i ∈ U\{P}.

• Input tank: a) F1 contains Mx. For the F1 tank: yi,XF,F1(t) = 0 ∀i ∈ U\{TT, I, B, Im}.

• Output tanks: a) OPXF
contains PXF = {Px,Ox, C9, Ix}.

a) O1 contains P-xylene (Px). For the O1 tank: yXF,i,O1(t) = 0 ∀i ∈ U\{P}.

b) O2 contains (C9). For the O2 tank: yXF,i,O2(t) = 0 ∀i ∈ U\{T}.

c) O3 contains O-xylene (Ox). For the O3 tank: yXF,i,O1(t) = 0 ∀i ∈ U\{T}.

78

d) O4 contains Isomarf (Ix). For the O4 tank: yXF,i,O1(t) = 0 ∀i ∈ U\{P}.

4.2.4.6 Parex unit

• Input tank: We define as si’s the singleton sets of the FP = {Ix, Px}.
a) s1 = {Px} → yi,P,s1(t) = 0 ∀i ∈ U\{XF}.

b) s2 = {Ix} → yi,P,s2(t) = 0 ∀i ∈ U\{XF}.

• Output tank: We define as pi’s the singleton sets that they union forms the PP =

{Px, Ix}.
a) p1 = {Px} → yP,i,p1(t) = 0 ∀i ∈ U\{P}.

b) p2 = {Ix} → yP,i,p2(t) = 0 ∀i ∈ U\{I}.

4.2.4.7 Isomar unit

• Input tank: We define as s1 = Ix’s since FI = {Ix}.
a) Therefore yi,I,s1(t) = 0 ∀i ∈ U\{P}.

• Output tank: p1 = {Mx}’s since PP = {Mx} is singleton. Therefore yI,i,p1(t) = 0

∀i ∈ U\{XF}.

• Input tank: a) F1 contains Ix. For the F1 tank: yi,I,F1(t) = 0 ∀i ∈ U\{P}.

• Output tanks: a) a) O1 contains (Mx). For the O1 tank: yI,i,O1(t) = 0 ∀i ∈ U\{XF}.

4.2.4.8 Terminal

• Input tank: We define as si’s the singleton sets of the FP = {Ix, Px}.
a) s1 = {Px} → yi,P,s1(t) = 0 ∀i ∈ U\{XF}.

b) s2 = {Ix} → yi,P,s2(t) = 0 ∀i ∈ U\{XF}.

• Output tank: We define as pi’s the singleton sets that they union forms the PP =

{Px, Ix}.
a) p1 = {Px} → yP,i,p1(t) = 0 ∀i ∈ U\{P}.

b) p2 = {Ix} → yP,i,p2(t) = 0 ∀i ∈ U\{I}.

79

• Input tanks: The set of byproducts is denoted by Pb = {C3, C4, C5, C9, C10, Raf} and

the set of main products

by Pm = {Bz, Tol, Mx, Ox, Px}.

Byproduct tanks: a) s1 = {C3, C4, C5} → yi,T,s1(t) = 0 ∀i ∈ U\{R}.

b) s2 = {C9} → yi,T,s2(t) = 0 ∀i ∈ U\{R, XF}.

c) s3 = {C10} → yi,T,s3(t) = 0 ∀i ∈ U\{TT}.

d) s4 = {Raf} → yi,T,s4(t) = 0 ∀i ∈ U\{B}.

Main product tanks:

e) s5 = {Bz} → yi,T,s5(t) = 0 ∀i ∈ U\{B, TT, Im}.

f) s6 = {Tol} → yi,T,s6(t) = 0 ∀i ∈ U\{B, Im}.

h) s7 = {Ox} → yi,T,s7(t) = 0 ∀i ∈ U\{XF, Im}.

i) s8 = {Px} → yi,T,s8(t) = 0 ∀i ∈ U\{P, Im}.

k) s9 = {Mx} → yi,T,s9(t) = 0 ∀i ∈ U\{TT, Im}.

• Outputs : The variables yT,C,(Pm∪Pb)(t) are decision variables.

a) yT,C,Pm(t) = DPm(t), where DPm(t) is the demand of the main products at time (t).

b) yT,C,Pb(t) = DPb(t), where DPb(t) is the demand of the

4.2.4.9 Constraints on yT,C,(Pm)(t)

We follow the mathematical formulation of Kuo and Chang [74] and allow the main product

amounts shipped to the customers to deviate from the requested demand values Dc,Pm . To

represent the amounts of backlog and surplus, we introduce two corresponding variables

LC,Pm(t) and EC,Pm(t) into the following material balance equation:

Dc,p(t)− Lc,p(t) + Ec,p(t) = yT,c,p(t) (32)

∀c ∈ C, p ∈ Pm

At the end of the horizon the total product demand for each customer should be satisfied.

This is ensured by:

80

h∑

t=0

Dc,p(t) =
h∑

t=0

yT,c,p(t) (33)

∀c ∈ C, p ∈ Pm

The parameters that prescribe the acceptable amount of surplus or backlog are the

quantities a, b:

Lc,p(t) ≤ aDc,p(t)NBc,p(t) (34)

∀c ∈ C, p ∈ Pm

Ec,p(t) ≤ bDc,p(t)NEc,p(t) (35)

∀c ∈ C, p ∈ Pm

, where NEc,p(t) and NBc,p(t) are binary decision variables.

4.2.5 Reaction and Separation Processes - The Determination of Pru,p(t)

The supply chain units are either reaction or separation units. We quantify the product

stream Pru,p(t) for the output tanks p of each unit via the following equations.

4.2.5.1 Reaction Processes

The set Ua = {Top, TT, I, R} represents all the reaction processing units within the system.

It should be noted that the reaction yield of every product of each unit is assumed to be

dependent upon the chosen operational mode and the total flow proportional to the feed

quantity. The generalized material balance of the reaction processes can be written in

bilinear form as:

Pru,p(t) =
∑

s∈Fs

∑

k∈Ku,s

xu,s(t)Binu,k(t)Y Du,s,k,p(t) (36)

∀u ∈ Ua,∀u ∈ Pu, ∀k ∈ Ku,s

, where Fs is the set of all allowable feeds of unit u ∈ Ua.

The Ku,s set represents the operational modes k of unit u for processing feedstock s.

Bin are binary variables. There variable enforce that each feed s will be processed by a

81

certain operational mode. Y Du,s,k(t) is a system parameter describing the reaction yield of

product p, given the input tank Fs with operational mode k. This bilinear constraint can be

converted to a linear as shown in [74]. Simply, one has to introduce new continuous variables

that would physically represent this bilinear form along with logical big- M constraints.

4.2.5.2 Separation Processes

The set of Ub = {B,XF,P} defines all the units within the chain that perform separation

processes.

The linear equation that quantifies Pru,p(t) for these units is:

Pru,p(t) =
∑

s∈Fs

xu,s(t)RFu,s(t) (37)

∀u ∈ Ub, ∀p ∈ PUb

, where RFu,s(t) represents design parameters for each of these units.

4.2.6 Constraints

Kuo and Chang [74] define the operability of the supply chain is ensured, if at least one the

reforming and one isomar units are in operation at each time period. For our version of

this example we will ensure with logical constraints that every unit must be in operation at

each time period, and only one operation mode can be adopted for the feed streams in each

unit. In this version of the problem, we assume five operational modes for the reformer unit

and three modes for the Tatoray unit.

The constraints associated with the MILP formulation are with respect to: a) Input

flow constraints of the units , b) Transportation constraints and c) Constraints on imported

materials.

Input Flow constraints

FBL
u,m ≤

∑
s

xu,s(t) ≤ FBU
u,m (38)

∀u ∈ Ub, ∀s ∈ Fu

, where FBL
u,m, FBU

u,m are system parameters, low and upper bounds that represent low

and upper bounds on the input flows of the separation units.

82

The hard input flow constraint for the reaction processes are:

FBL
u,m ≤

∑

s∈Fs

∑

k∈Ku,s

xu,s(t)Su,i,k(t) ≤ FBU
u,m (39)

∀u ∈ Ua, ∀s ∈ Fs

Transportation constraints The process materials are transferred from a unit to another.

The corresponding transportation capacities are in practice, the following inequalities are

included in the model:

yL
u,i,p ≤ yu,i,p(t) ≤ yU

u,i,p (40)

∀u, i ∈ U,∀p ∈ Pu

, where yL
u,i,p,y

U
u,i,p are design parameters.

Constraints on the Imported materials

The model also includes constraints on the quantity of the imported materials. Those

are expressed via the following inequalities:

yL
Im,u,s ≤ yIm,u,s(t) ≤ yU

Im,u,s (41)

∀u ∈ U,∀s ∈ Fu

, where yL
Im,i,s,y

U
Im,i,s are system parameters.

4.2.7 Decision Variables

The decision variables for this problem are:

• yi,u,s(t)∀i, u ∈ U,∀s ∈ Fu : represent the inventory that we choose to forward from a

unit i to the particular feed tank s of unit u.

• yu,i,p(t)∀i, u ∈ U,∀p ∈ Pu : represent the inventory that we choose to forward from

the output tank p of a particular unit u to other units i.

• xu,s(t)∀u ∈ U,∀s ∈ Fu : represent the inventory that we choose to feed unit u from

feed tank s.

83

• Binu,k(t)∀u ∈ {R, TT},∀k ∈ Ku,s : represents the selected modes at the Reformer or

the Tatorray at time t

• NEc,p(t) and NBc,p(t), ∀c ∈ C,∀p ∈ Pu : represents whether we should provide

surplus or backlog to a given customer at a given time period.

4.2.8 Objective Function

The MILP takes into consideration the dynamics of the system under a specific scenario

and maximizes the reward over a specified horizon h.

max{
h∑

t=1

r(t)} (42)

,where r(t) is the myopic reward. Specifically r is the net profit:

r(t) = p(t)− c(t), ∀t ∈ h (43)

4.2.8.1 Net Profit p(t)

This variable r(t) represents the net income for this system at each time period. The revenue

produced at time t is represented by:

p(t) =
∑

c

∑
p

yT,c,p(t)SPT,c,p(t) (44)

∀p ∈ (Pm ∪ Pb), c ∈ C

, where SP (t) is the selling price of each product at time t.

4.2.8.2 Net Cost c(t)

There are five sources of cost terms for this system. These are: a) the total cost of im-

ported raw materials (Cr(t)), b) the total operation cost (Co(t)) of each unit, c) the total

transportation cost (Ct(t)), d) the total inventory cost (Cs(t)), e) the total backlog cost

(Cb(t)). These are described by the following equations Eq.(48-52).

Cost of Imported Materials

Cr(t) = yIm,R,s(t)CLN(t) + yIm,B,s(t)CPyoil(t) + yIm,TT,s(t)CTol(t) (45)

+yIm,XF,s(t)CMx(t) +
∑

p

yIm,T,s(t)CPm(t)

84

, where CLN(t), CPyoil(t), CTol(t), CMx(t), CPm(t) is the cost of importing respectively

light naphtha, pyroysis gas, toluene, Mixed xylene, main products.

Operational Cost of each unit

Co(t) =
∑

u

∑
s

xu,s(t)Cfu,s(t) (46)

∀s ∈ Fs,∀u ∈ (Ua ∪ Ub)

, where Cfu,s(t) is the operational cost of each input stream s of a unit u.

Storage Costs

Cs(t) =
∑

u

∑
s

Yu,s(t)Csu(t) +
∑

u

∑
p

Yu,p(t)Cpu(t) (47)

∀s ∈ Fu,∀p ∈ P

, where Csu(t)(Cpu(t)) is the storage cost of a particular feed (product) s(p) at unit u.

Cost of Transported Materials between units

Ct(t) =
∑

u

∑

i

∑
p

yu,i,p(t)Ctu,i(t) (48)

∀u, i ∈ U,∀p ∈ P

, where Ctu,i(t) the transportation cost moving material p from unit u to i.

Backlog Cost

Cb(t) =
∑

u

∑
p

(Dc,p(t)− yT,c,p)Cbmp(t) (49)

∀c ∈ C∀p ∈ Pm

, where Cbmp(t) is the backlog cost of each main product.

4.2.9 A 2 Stage Stochastic Programming Formulation

In the second numerical case study, it is assumed that the decision space is composed out

of decisions with two different time scales. The formulation follows the classic 2 stage

stochastic programming as shown in the first chapter of Birge and Louveaux [68] with finite

scenario support. The first stage decision is the operating modes, while the second decision

are the flows that are tailored to the realized scenario.

85

4.3 Formulating the Problem as an MDP

The formulation of this problem as an MDP requires specification the following elements:

State variables, exogenous information variables, decision variables, transition function, one

stage profit function, and objective function. The following subsections detail each of these.

4.3.1 State Variables / Exogenous Information Variables

For the BTX supply chain instance modeled as an MDP, the state variable is a high dimen-

sional vector defined below:

st =

Yu,s(t)

Yu,p(t)

ŜP c,p(t) = Realized selling price of the main products to customers at time t.

D̂c,p(t) = Realized demand rate of customers at time t.

(50)

In this study the random variables are modeled with a first order Markov model. The

models that govern the probabilistic transitions among the given discrete sets of values are

completely specified by the probability matrices PDp,SPp for D and SP . For example, the

(i, j)th element of PDp,SPp is the probability of the demand and price taking the next value

of dp,j and spp,j at the next time period from the current value of dp,i and spp,i. By dp,i we

denote the ith demand realization of a product p.

Realized values of the random variables at time t, D̂c,p(t) and ŜP T,c,p(t), are assumed

to be known to the decision-maker. Hence they constitute exogenous information variables.

However, the values of these variables at future times are uncertain and are described by the

corresponding probability distributions. It is customary to include the parameters defining

these conditional probability distributions of the random variables as a part of the state

vector as they capture the information available at that time period. They are therefore

called information states. With a first order Markov chain model, it is sufficient to include

just ŜP c,p(t) and D̂c,p(t) in the system state as they completely define the conditional

probability distributions of the future random variables.

86

4.3.2 Decision Variables

The decision variables of the MDP coincide with the decision variables of the MILP formu-

lation.

4.3.3 Transition Function

The key element in modeling the systems state transition is to take into account the physical

constraints as described in Eq.(33) and Eq.(34) among the interdependent units and also

the probabilistic state transitions of the random variables.

The stochastic counterpart of the state definition is the SPT,c,p and Dc,p. These random

variables are modeled with a first order Markov model. This probabilistic model governs

the transitions of the probability distributions among given discrete sets of values. In our

numerical illustration this model has 4 states for all the main products except the Mixed

Xylene product, which is described with 2 states.

The chosen states are : 1) Low demand - Low price, 2) High Demand - Low price, 3)

High Demand - High Price, 4) Low Demand - High Price.

The reasoning behind this state representation is that quantitatively given low demand

for a product and low price, we anticipate with high probability the transition to a high

demand associated with the low price. Similarly, the high demand could stimulate an

increase in price, followed by a fall in demand and the price. This cycle is proposed as

illustration of coupled demand and price dynamics. Such patterns can be represented using

first order Markov models based on a wide variety of environmental variables.

4.3.3.1 Contribution (Profit) Function

The one step profit produced by a decision αt at state st during one time period with

random variable ωt+1 is denoted as f̂(st, αt, ωt+1) which coincides the one stage profit of

the MILP formulation. With some abuse of notation we denote ωt+1 = [D̂c,p(t), ŜP c,p(t)],

which is a five dimensional vector describing the outcome of the independent Markovian

processes at time t + 1. Then, the expression for f(st, αt) is:

f(st, at) = E[f̂(st, at, ωt+1)] =
N∑

j=1

P (sj |st, αt)f̂j(st, αt, ωj) (51)

87

4.3.4 Objective Function

The objective in this problem is to maximize the discounted expected profit over an infinite

horizon. This will be accomplished, when we find a stationary2 decision function π(st) such

that each state is mapped to the best possible action. The total return of a policy π starting

from an initial state s0 is:

F π
s0

=
∞∑

t=0

γtf(st, π(st))|s0) (52)

f(st, at) is defined at section 3.7. Trivially, the optimal policy π∗ as discussed before is

the one instructed by the optimal value function:

π∗ = arg{maxπ∈ΠF π
s0
} (53)

4.4 Information Flow And Decision Making

The following architectures are designed to study the impact of the relative timing of deci-

sions and information flow.

For the case where the mode and flow decisions occur simultaneously we will use: a)

Rolling Horizon MILP With Sampling From The Probability Distributions , b) Rolling

Horizon MILP With The Most Probable Scenario, c) a variance of a real time dynamic

programming approach named RTADP delineated at Chapter 3.

For the case, where the mode decision precede the flow decisions we will use: a) A

Rolling Horizon 2 Stage Stochastic Programming Approach, b) the RTADP approach.

4.4.1 A Real Time Approximate Dynamic Programming Algorithm

Its intuitive that for strategic planning applications we cannot solve for the optimal value

functions for the entire state space because of the curse of dimensionality. First, Barto et

al [15] introduces the important concept of the relevant state space. Assuming that we

knew the optimal policy, if it was to be simulated, the encountered states would consist the

2There is ambiguity regarding the nature of the resulting policy (stationary or not stationary). Since, if
one uses ADP methods that utilize only a vanishing fraction of the entire state space the resulting policy
may not be stationary [75].

88

relevant state space envelope. In other words a state is called relevant if it can appear with

positive probability during the application of an optimal policy.

If we were to perform approximate value iteration as explained by Lee et al [64] to this

envelope of states we would retrieve the optimal policy. Essentially this represents the fact

that we do not have to consider the entire S to come up with a close to the optimal policy,

but we need a methodology that samples selectively the state space.

Studying some proposed ADP architectures [17, 18, 64], we notice that they solve for

the value functions only for the regions that the system normally operates. To identify

such regions of the state space they would implement from different initial states heuristic

rules via simulation of the stochastic system and they store in a list the system states they

encountered. This list of states is often called value table

Our strategy is to propose modifications to the existing RTDP approach, which will

construct the value table from scratch. In principle this approach will learn a high quality

policy and continuous improve on it via episodic learning. Episodic learning is usually

defined as a learning procedure where individuals strategies are updated after each episode.

Each episode is a simulation of a particular policy for a determined horizon. At each episode

sufficient statistics regarding the different action payoffs are accumulated. In this particular

case we consider a single agent (us) and the quality of the statistics to be the value function

estimation for the sampled states.

Out of the scope of this article, but an intresting fact is that if the problem involves other

agents as well, the optimal policy of an agent would be a Markovian randomized policy,

where the individual agent policy wouldbe a probability distribution over a set of actions.

In principle, the RTADP can be applied to a multi agent setting, if we include as the envi-

ronment apart from the exogenous uncertainty (random variables) all of the other agents.

It fact a similar architecture has been applied recently with success in tracking moving-

evasive targets [76]. Recent advances in Markov Models for Multi-Agent Coordination can

be retrieved in [77] [78] [79].

A high level description of the RTADP procedure follows. First, we start given an

empty state space or value table and we gradually fill it with entries using an ε-greedy

89

episodic RTDP. From each state,we do not evaluate the entire action space, but only a set

of actions named adaptive action set. This concept has been seen in the previous chapter

and its purpose is to alleviate the COD with reprect to the action space and also to utilize

deterministic mathematical programming as a mean to provide close to optimal actions

to a stochastic setting. Our approach uses the initialization of the value function for the

unseen successive states as a parameter to tune the exploration vs exploitation trade off. By

the term exploration, we mean to explore the state space, having as goal to retrieve more

states and improve on the performance of our policy. The term exploitation, means to use

greedy actions based on the existing value table knowledge to maximum gain value. Last,

we suggest the usage of a local neighbor approximator that if used within an Approximate

Value Iteration architecture [64], it properly defines a contraction mapping.

RTDP works in episodes, meaning that each episode starts from a starting state within

the value table and accumulates valuable learning along its trajectories. It is empirically

proven that after a finite number of trials the visited states that are involved in trial trajec-

tories become saturated and belong to a closed set of states. We refer the reader to [63] for

the definition of the simulated relevant state space denoted as Ssim: This set contains all

the states that belong to the trajectory of the optimal policy. From a practical standpoint,

there is no algorithm that can exactly identify this set of states for general problems.

4.4.2 The RTADP Algorithm

The procedure below samples the state space using a greedy policy and constructs a value

table denoted as Ssim starting from an empty one by gradually adding entries, as states

are encountered in the simulation. The following steps are involved in each iteration of the

algorithm and a schematic representation appears in Figure 17.

For episodes j = 1, 2, ...M , where M is a sufficiently large integer

For iterations i = 1, 2, ...h , where h is the horizon length of each episode

Step 1 Start from a random state st ∈ Ssim.

Step 2 Construct set of actions (denoted by Asub) for st. Asub ⊂ A, where A is the set of

90

all possible controls that the decision maker can exercise at any time instance for a

given state.

Step 3 Update the value function of J(st):

J(st) = max
α∈Asub

{f(st+1, αt) + γ
∑

st+1∈S
P (st+1|st, αt)J(st+1)|St = st} (54)

α∗ = arg max
α∈A∼u

{f(st+1, αt) + γ
∑

st+1∈S
P (st+1|st, αt)J i(st+1)|St = st} (55)

Step 4 A state st+1 is sampled according to the probability distribution P (st+1|st, α
∗(st))

as defined from the Markov model of the random variables. Set t = t + 1 and we go

back to Step 1.

End

End

Note that, if the algorithm happens to circulates over a small cyclic graph of states, the

algorithm is restarted from a random state si ∈ Ssim. Empirically, one terminates with :

(‖Jπ
i+1(si) − Jπ

i (si) < ε‖∞ ∀si ∈ Ssim ⊆ S) like in VI, where ε is a tolerance parameter.

The user can apply this termination criterion, only if the state space is saturated and the

number of entries does not grow.

One can try different updating value function schemes, while implementing this RTADP

algorithm. For instance assume that the set of states to be updated in episode j, namely

Xj , is generated by simulation. Because MDPs are acyclic, we apply prioritized sweeping,

which means that after each iteration, the profit-to-go estimations are updated in the reverse

order in which they appeared during the simulation. Assume, for example, that Xj =

{xj
1, x

j
2, ..., x

j
h}. In this case the order in which the updates are performed, is xj

h, ..., xj
1.

4.4.3 Key Elements of Asub

Asub is composed out of the following sources:

91

sub

i
s

Monte Carlo

Sampling

Evaluate using

Bellman equation
*

Adaptive Action Set ()

1

2

3

4

5
7

Possible successive next state
Candidate optimal action for Initial state

6

sub

SimSimtSimSim
s or

1

1tt
ss

1t
s

Figure 17: Schematic representation of sequential calls on RTADP algorithm .

1. Mathematical Programming actions: If we can describe the problem of interest with a

deterministic mathematical model(e.g., MIP), then it is highly advisable to try actions

resulting from deterministic math program formulations. This typically constitutes a

suboptimal policy.

2. Best known actions: This action is a product of the a-priori learning with respect

to the value functions of all states in the “evolving” value table. If the state to be

updated is a state never visited before, then its best known action is empty. If the

state has been revisited, a best known action should have been stored with respect to

the prior estimate of the value function.

3. Random actions: Random controls ensure that we effectively explore the entire action

space and exclude the possibility of not visiting any portion of the state space. We

generated the random controls by random perturbations to the heuristic and mathe-

matical programming actions for state si.

4. Other candidate optimal actions, as a part of the Asub, are the best known actions of

the k −NN of state si o.

92

4.4.4 Calculating J(st)

Exact DP techniques (e.g.,VI, PI) can be applied only to MDP’s with finite S, A and

require an initial estimation of the value function ∀s ∈ S. The optimal policy created

by these techniques is not sensitive to any initial estimation scheme. Since the proposed

approach does not consider the entire state space in order to address large MDP problems,

it foregoes the formal convergence of the value functions. This section provides rules of

thumb for structuring such an estimation scheme, so as to achieve empirical convergence

and maximize the performance.

In Eq.(54) the calculation of Jπ
t (st) involves the knowledge of the value function of all

possible successive states Jπ
t (st+1) for each action in Asub. During this calculation we will

encounter one of these three possible scenarios. A schematic representation of the following

scenarios appears in Figure 18.

• Scenario 1: All {st+1} have values registered in the value table. We use these values

to calculate Jπ
t (st).

• Scenario 2: Some of the {st+1}s are not found in the value table.In this case we first

need to find the set of states within δ distance of st+1 (denoted by Nδ(st+1)). Here

we use the Euclidean distance metric d, as proposed by Lee and Lee [33], with a user

defined design parameter δ.

Find Nδ(st+1)
def=

{
s ∈ S : d =

√
(s− st+1)T W (s− st+1) < δ

}
(56)

, W is a feature weighting diagonal matrix. If |N δ(st+1)| ≥ k, then we can approximate

the value function of st+1 from the k nearest states, by utilizing a local k-nearest

neighbor approximator. The mathematical expression for approximating the value

function for each st+1 is as follows:

Jπ
t (st+1) =

1
k

∑

x∈Nk(st+1)

Jπ
t (x) (57)

where Nk(st+1) denotes the set of states representing the k nearest neighbors. The

value k=4 was used for the numerical results, where the authors proved the numerical

93

stability and convergence of the VI in various of applications using the k − NN as

approximation scheme.

In the case that sj has k′ < k = 4 neighbor states within SREL, we utilize Eq.(60)

with the k′ number states to approximate Jπ
i (sj).

• Scenario 3: The case where |Nδ(st+1)| = 0. Apparently Eq.(60) cannot be used, and

therefore we suggest an initial estimation scheme of underestimating the value func-

tions with respect to the optimal one. Nonetheless, in this application the Jπ
t (st+1)

of the st+1s that belong to scenario 3 are initialized with 0. In the previous chapter

we studied the exploration vs exploitation due to the initialization with respect to

the third scenario. Taking this further, the decision-maker may introduce a priori

knowledge, similar to Choi et al[17, 18].

s

Scenario 1

1t
s

1t
s

1t
s

1t
s

1t
s

Scenario 2

Scenario 3

Sim

Figure 18: Schematic representation of the 3 scenarios corresponding to a legal state tran-
sition inside the state space. S is the entire state space. Ssim is the the sampled state space
from the ε-greedy simulation.

94

4.4.5 A Rolling Horizon MILP Approach

A description of the rolling horizon MILP and the rolling horizon 2 stage stochastic program

is as follows:

Step 0-Initialize Set tstart = 0 and system state sstart .

Step 1-Increment Set tstart = tstart + 1 and tstop = tstart + h.

Step 2-Generate a scenario for each random variable The scenario generation mech-

anism can either be to sample the Markovian probability distribution conditioned on

the current information state or by finding the most likely scenario.

Step 3-Solve the MILP for the entire horizon tstart − tstop. The MILP will generate

a sequence of actions: αstart, αstart+1, ..., αstop and the corresponding state trajectory

sstart → αstart → sstart+1, αstart+1 →, ...,→ sstop−1 → αstop−1 → sstop.

Step 4-State Transition. Apply the decision αstart and generate according to the proba-

bility distribution the stochastic realization of the random variables. Using the model

equations realize sstart+1

Step 5-Termination Check If tstart > h. Go to Step 6 Else Go to Step 2 and set sstart =

sstart+1.

Step 6-Termination

We need to comment that if we decide to use the rolling horizon framework at a stochastic

problem there is a chance that one may violate the systems hard constraints. For instance,

assume that we predict a high demand scenario and solve the MILP based on that scenario.

The solver would generate a solution which will push large quantities of inventory to the

terminal tanks. If the actual demand realization is significantly less, we would incur storage

infeasibility at the terminal tanks. To circumvent such fact, one can impose such constraint

as soft constraints, which means they should be added as part of the objective function

with an appropriate penalty.

95

4.5 Numerical Results

This section describes the results for the BTX supply chain system for the different solution

approaches. First, we develop a solution for this application, which provides the best

possible decisions. Then, we discuss the results when information is realized after the flow

decisions and finally we discuss the results when information is realized before the flow

decisions

4.5.1 An Upper Bound On The Performance

The upper bound is an MILP assuming that all the values of the uncertain parameters

into the future are known before the decision are made. This provides an upper bound

and a measure of comparison with the RTADP and the rolling horizon MILP. This may be

considered as a way to demonstrate the value of information of knowing the future exactly.

Mean ± Standard Deviation Relative

Performance

An Upper Bound On The

Performance

1.11 *109
± 0.38*109 100%

Architectures
Performance

Frequency

Performance

Figure 19: The histogram and statistics of the numerical upper bound achieved by the
solution of 500 MIP with full information.

96

The MILP with full information is solved over 10 time periods, it was not solved for

a longer horizon due an increase in solution time. Instead, we solved a full information

MIP for 500 different scenarios, representing different random variable realizations. The

performance mean and standard deviation as well as the histogram of these simulation are

shown in Fig.19.

This represents the inherent variability in the performance of the system even when the

information to compute the actions is known.

4.5.2 Case Study 1: Information Revealed After Mode+Flow Decisions

The cumulative results for this case study appear at Fig. 20.

Mean ± Standard Deviation Relative

Performance

An Upper Bound On

The Performance

1.11 *109
± 0.38*109 100%

Rolling Horizon MILP With

Sampling From The Probability

Distributions
0.78 *109

± 0.06*109 (70 ±5.41) %

Rolling Horizon MILP With The
Most Probable Scenario

0.79 *109
± 0.06*109 (71.2 ±5.41) %

RTADP 0.85 *109
± 0.08*109 (76.5 ±7.2) %

Architectures
Performance

Figure 20: Comparison of the tested architectures for the first case study.

The parameters used to generate the following results are identical with Kuo and Chang

[74], and we therefore we dp not reproduced them here. The states of the random parameters

follow the probability transition matrices as shown in Fig. 21 and the data of the operational

mode of the Reformer unit and Tatoray unit are displayed in Fig. 22.

97

3555358.110
3

Bzc,
D

1.09.0

8.02.0

1.006.004.08.0

3.06.008.002.0

24.06.01.006.0

02.028.06.01.0

MxMx

OxOxPxPxTolTolBZBZ

BZBZ

SPD

SPDSPDSPDSPD

SPD

P

PPPP

P

7272686810
PxT,

SP

575410
MxT,

SP

7070656510
T,Tol

SP

9191858510
BzT,

SP

1110
3

Mxc,
D

255040810
3

Pxc,
D

204030110
3

c,Tol
D

254525510
3

c,Ox
D 6868656510

PxT,
SP

Figure 21: Probability transition matrices and information state variables concerning the
uncertain variables.

5.05.0

33.067.0

01

05.01.005.005.075.0

1.01.01.01.06.0

05.01.005.005.075.0

05.01.01.01.065.0

1.01.005.005.07.0

},{,

},{,

},{,

,,,

,,,

,,,

,,,

,,,

93

92

91

5

4

3

2

1

TolCMode

TolCMode

TolCMode

TopModeLNR

TopModeLNR

TopModeLNR

TopModeLNR

TopModeLNR

T

T

T

R

R

R

R

R

RF

RF

RF

YD

YD

YD

YD

YD

Figure 22: Data concerning the operational modes of the Reformer unit and Tatoray unit.

4.5.2.1 Setting Parameters For The Implementation of RTADP

The number of episodes was set to 10,000 states and each simulation trial was executed

with a horizon length of h = 10 time periods. A discount factor (γ = 0.9) was used, which

makes the impact of any states beyond 10 future time periods negligible.

The discrete event simulation of the supply chain system starts given a value table with

one entry. At each trial one can choose as starting state any state within the table. For

convenience, each trial starts with the same st.

98

To construct the Asub at each loop we include: 10 random actions, 10 sample path

MILP actions, 10 random actions by perturbing each sample path MILP action action, a

best known action, when it is available and the k best stored actions from the k-nearest

neighbors of st (k = 4). Specifically, each action leads to 512 3 successive realizations, each

of which has a certain probability.

Next, we describe the parameters δ and W that define the neighborhood of st. The

Euclidean measure δ demarcates the “neighborhood” of a particular st.

A neighboring state sN , with respect to st has the following characteristics:

Characteristic 1: The state dimensions of sN which express the tank levels Yu,s and Yu,s

should be within 100 gallons of the corresponding tank levels of st.

Characteristic 2: The information state dimensions of sN , which are ŜP c,p(t) and D̂c,p(t),

should have the same realization of the random variables of st.

The value table can be filtered to find states that satisfy the above two characteristic.

First, we define the feature weighting diagonal matrix W by weighing equally each of the

tank levels. Then, we can quantify the value of δ from Eq.(59), which corresponds to the

threshold that determines what state is considered neighboring or not.

4.5.2.2 The Implementation of The Rolling Horizon MILP

Dynamic programming algorithms are designed to address the multistage nature of such

problems. We apply the myopic rolling horizon MILP to the same instance for the same

500 scenarios.

As we can see from the results, the importance of the multistage stage uncertainty can

be captured from the difference in performance between the RTADP and the rolling horizon

MILP, which is '6% for 10 time periods. The performance gap between these two methods

is not very large, because the RTADP mainly utilized the numerical actions suggested by

the MILP. Assuming that our system is at state st, the actions generated by the MILP’s are

the ones that generate the most profit for the system. These actions are evaluated against

an expectation and a maximization operator. At the end of the RTADP routine the actions

3The successive states are 512, since there are 5 random variables. The first 4 have 4 states, while the
5th has only 2 states.

99

selected for each state are the ones that correspond to the largest on expectation myopic

reward.

4.5.3 Case Study 2: Information Revealed After The Mode And Before The
Flow Decisions

The results for this case study are summarized at Figure 23.

Mean ± Standard
Deviation

Relative

Performance

An Upper Bound On

The Performance

1.11 *109
± 0.38*109 100%

A Rolling Horizon 2 Stage

Stochastic Programming
Approach

1.05 *109
± 0.05*109 (94.5 ±5.4) %

RTADP 1.05 *109
± 0.05*109 (94.5 ±5.4) %

Architectures

Performance

F
re

q
u
e
n
c
y

PerformancePerformance

F
re

q
u
e
n
c
y

Figure 23: Comparison of the tested architectures for the second case study. On the left we
display the histogram that corresponds to the upper bound on the performance, while on
the right we display the histogram derived from both RTADP and 2 stage rolling horizon
approach. We remind to the reader that these architectures were tested on the same 500
scenarios.

Figure 24 illustrates the implementation of the 2 stage stochastic programming approach

within the same time period , on a problem where the decision space has two different time

scales. The mode decision is common across all the realizations of the random variables. The

simulation using the 2 stage stochastic programming is as follows: For periods t = 0 until

t = 10 a) the system is at state st, b) run the 2 stage stochastic programming formulation

and derive the solution, c) realize the random variables from the probability distribution, d)

read the 2 stage stochastic programming solution and apply the transition-model equation

and realize state st+1 e) set st+1 = st and return to a).

The performance gap compared to the solution with full information is only 5.5%. This

100

t=0 t=1 t=2 … t=10

time

Modes - T

Flows - F

Scenario of price

+demand

State - s
t

.

.

.

.

.

.

Figure 24: Schematic implementation of the rolling horizon 2 stage stochastic programming
approach within the same time period.

demonstrates that the flow decision are able to cope with the decisions and that the mode

decisions are not a significant constraint on the flow decisions.

The RTADP approach yields the same results as the rolling 2 stage stochastic program-

ming approach. This is because the RTADP approach chooses the same actions as the

2 stage stochastic programming for the visited states and does not find any significantly

better actions. T

4.5.4 The Value Of Information

The overall results are summarized in Fig.25. This enables us to evaluate the relative timing

of information and decisions. The timing of the mode decisions does not have a significant

effect in this case. Similarly making flow decisions before the uncertain parameters are

known is significant. The improvement that can be made with a dynamic programming

approach also depends on the performance gap. More improvement over a rolling horizon

approach is possible when the timing of the decision matters. The gap between the RTADP

solution and the full information solution gives a quantitative bound on the value of knowing

the demands and prices before the decisions have to be made. The gap between the RTADP

and the rolling horizon solutions gives the value of being able to better anticipate the impact

of the value of the future on current decisions.

101

1. Modes Decisions not terrible important

2. Pick Flow Decisions after demand is realized

Full Information – 1.11 x 109

2 Stage Rolling Horizon & RTADP 1.05 x 109

Rolling Horizon MILP 0.79 x 109

RTADP - 0.85 x 109

1. Flow Decisions are important

2. Pick Flow Decisions before demand is realized

100%

95%

71%

77%

Figure 25: Summary - Value of Information .

4.6 Conclusions

When one wants to address multistage stochastic problems, the main tools are DP and sto-

chastic mathematical programming. In this chapter, we developed an approximate dynamic

programming approach for a BTX supply chain problem. We compared this to a rolling

horizon, which is one of several was to employ mathematical programming in this context

(Balasubramanian and Grossmann) [80, 81].

The real time approximate dynamic programming approach as presented here is attrac-

tive, because one can superimpose it on a range of decision making methodologies from

complex and computationally demanding deterministic mathematical programming or sim-

ple heuristics or even exploratory randomized actions. It is not clear how much effort to

devote to developing good initial action and state trajectories versus allowing random ex-

ploration to find them. The proposed iterative methodology promises to choose the greedy

control at each time period and to not discard valuable information about how that choice

plays out in the future. Moreover, because this methodology is iterative and is based on

asynchronous value iteration it can improve online performance as the number of iterations

increase.

102

CHAPTER 5

CONTROLLED EXPLORATION OF THE STATE SPACE

VIA AN OFF-LINE ADP APPROACH

This chapter addresses the problem of finding a control policy that drives a generic discrete

event stochastic system from an initial state to a set of goal states with a specified proba-

bility. The control policy is iteratively constructed via approximate dynamic programming

(ADP) over a small subset of the state space that is evolved via Monte Carlo simulations

with the iteration. Algorithmic details of the approach are delineated and the effects of

certain user-chosen parameters of the algorithm are investigated. The method is evaluated

on several stochastic shortest path (SSP) examples and a manufacturing job shop problem

introduced in chapter 3. In order to illustrate the scaling of computational and memory

benefits with respect to the problem size, we solve SSP problems up to one million states.

In the case of the manufacturing job shop example, we compare the performance of the

proposed ADP approach with that of the rolling horizon math programming approach.

5.1 Introduction

Finding the shortest path in a graph or a network is a classic optimization problem. Exam-

ples of chemical and industrial engineering problems that have been formulated as shortest

path problems are: 1) logistic problems that involve the transportation of hazardous mate-

rials [82], 2) fast shortest path computation to GPS terminal enabled vehicles [83], and 3)

biological problems that involve parent crossover for protein generation [84]. For determin-

istic versions of SSPs, a well-known solution is the Dijkstra’s algorithm [85] with complexity

O(nlogn) where n is the number of nodes at the graph is well known. Another graph search

algorithm that uses a heuristic to guide its choice of paths is the A* algorithm [86]. How-

ever, neither of these algorithms can efficiently handle negative cost arcs or uncertainty in

the form of stochastic state transitions, where an action one chooses at a node may not lead

103

to just one node but to a set of nodes based on a probability distribution over the set.

In this context, let us consider a two dimensional SSP in which each node on the grid

corresponds to a state of the environment. In each state, the agent can choose a movement

along one of the four compass directions are possible. However, such a decision may not

necessarily move the agent along the intended direction but any of the four possible direc-

tions. The actual realized movement will be decided in accordance with the probability of

p in the intended direction and with probability (1-p)/ 3 in each of the remaining three

directions. Naturally, the closer p is to 1, the more deterministic the problem becomes and

vice versa. Actions that would take the agent off the grid leave its location unchanged with-

out any penalty. A cost is incurred based on which state is visited. Finally the objective is

to find the minimum expected cost path from a starting state to one of the goal states. A

direct generalization to the SSP problem would be to allow more than four directions for

movement from each system state. Again, each intended movement will guide the system

to a specific set of states with corresponding probabilities.

Such a problem falls under the class of multistage stochastic decision problems, which

can be solved either by stochastic programming (SP) or dynamic programming (DP). The

exact SP formulation of the multi-stage problem generally yields an intractable problem

even for the seemingly simple SSP. For the particular 2-d SSP problem discussed above, the

number of branches in the scenario tree is 4T , where T is the horizon length. Note that,

in this problem, T itself is a random variable. A reasonable heuristic solution approach for

such a multi-stage problem is a rolling 2-stage SP, in which a two-stage SP is solved at each

decision instance after the transition is realized. The two-stage SP, which must be solved

on-line, can be handled either by an efficient sample average approximation algorithm [21]

or by Benders or an equivalent Langragean decomposition.

Alternatively, DP can be used. Usefulness of DP is compromised by several computa-

tional obstacles collectively termed as the “curse of dimensionality (COD)”. The COD of

DP has motivated the development of an approach called Approximate Dynamic Program-

ming (ADP), which attempts to derive an approximate solution (i.e., near-optimal solution)

104

by using simulation and function approximation, under the formalism of dynamic program-

ming. For a thorough literature review of ADP, we refer the reader to [87],[1]. The main

thought behind ADP is to minimize the effect of the intractably large state space (to be

denoted by S) by intelligently sampling the state space and then iteratively building a value

function approximation (or value table) through Bellman iteration and function approxima-

tion. A naive approach to sampling the state space is to employ a grid of uniformly spaced

samples. With this scheme, however, the computation and storage grow exponentially with

the dimension of the state space. Instead the sampling can be focused to relevant parts of

the state space by simulating the system under the policies evolving under the iteration,

starting some a priori available policies such as heuristics. This approach was tested on

several process control and operations problems by [64] and [17, 18].

An alternative way to sample the state space is to utilize asynchronous dynamic pro-

gramming in the form of Real Time Dynamic Programming (RTDP), which was first intro-

duced by [15]. This approach uses estimates of the quality of states and actions to make

decisions. It starts with an “optimistic” valuation of all the states and then evolves the value

function of the states visited during simulation based on the Bellman’s optimality equation.

The drawback of this approach is that it can potentially explore the entire state space

before convergence, due to the optimistic initial valuation. A modification to the RTDP

algorithm has been recently proposed by [88] to address this difficulty. The approach can

control the degree of exploration and hence the explosion of the size of the value table.

It proposes to start with a rather pessimistic value function valuation for all the states to

restrict the exploration of the discrete state space and then to use a non-parametric value

function approximator and an “adaptive action set,” which keeps candidate actions for each

registered state to resolve the COD with respect to the action space. The downside is that

convergence to the optimal policy cannot be guaranteed under this scheme. Recently, there

have been several variations of the classic RTDP that improve the rate of convergence. One

such variation is the Focused Real Time Dynamic Programming proposed by [89]. This

approach focuses the computation selectively on system states based on the estimates of

their quality and the uncertainty surrounding that quality.

105

The motivation for this chapter is to provide a quantitative method to explore and

identify a relevant subset of states for stochastic shortest path (SSP) problems with random

transitions. The main contributions of this work are: a) an ADP algorithm equipped

with a structured exploration scheme for SSP problems, b) evaluation of its computational

behavior with respect to problem and algorithm parameters; c) demonstration of the use of

the approach for a realistic queuing network reformulated as a SSP, and d) comparison of

the ADP approach with a traditional mathematical programming based strategy.

The proposed approach begins by solving the corresponding deterministic SP problem,

in which movements are assumed to be completely deterministic (corresponding to the

probability p= 1). Then the algorithm is initialized by recording the corresponding values

and actions for the visited states. Note that we only begin with a “partial” policy, meaning

decisions are recorded only for those states on the optimal trajectory for the deterministic

SP problem. Then the entries are added and the values and actions for the registered states

are improved respectively by iterating between Monte Carlo simulations under the given

partial policy and Approximate Value Iteration (AVI), as proposed by [64]. This iterative

approach is terminated when the frequency of visiting states not registered in the table

drops down to a negligible level, i.e., almost all MC simulations stay in the subset of the

states registered until ending up in the goal state(s). The output of this procedure is a set

of sampled states and their valuation, which is converged within a given tolerance. This in

turn defines a policy that gives an action for any encountered state.

Within the proposed approach, the key user-chosen parameters are: a) the number of

MC simulations performed for each iteration and b) the value iteration tolerance. Those

parameters dictate the computational overhead of the approach and the exploration rate.

We will illustrate the role of these parameters through several simulation exercises.

This chapter is organized as follows. In section 5.2, the SSP we study is defined in

precise mathematical terms. In section 5.3, the proposed approach is delineated in depth.

Simulation results obtained for several SSP problems are presented in section 5.4, where key

insights learned are also highlighted. In section 5.5, a realistic queuing network example

is formulated as a SSP problem and solved. Finally in section 5.6, we summarize our

106

contributions.

5.2 Statement of SSP Problem

The formal mathematical statement of the SSP problem is formulated at section 2.8.

5.3 Overall Structure Of The Approach

As discussed at the introduction, the main idea of this quantitative approach is to focus

the computation on a small portion of the state space. To achieve this we seek to expand

the state entries in the value table gradually as the policy evolves in an iterative manner.

The set of states in the value table at iteration i will be denoted by Si. The iteration is

terminated when a certain termination criterion is met.

The overall approach is depicted in Figure 26,27. After the initialization, one iterates

between Monte Carlo Expansion (MCE), which adds entries to the value table through N

simulation runs, and Approximate Value Iteration (AVI), which updates the values and

hence the policy by iterating on the Bellman’s optimality equation. This iteration between

MCE and AVI is terminated when the frequency of encountering states not registered in

the value table before reaching the goal state drops down to a negligible level (set by the

user).

107

Initialization of

State Space And

Start

Goal

Monte Carlo
Expansion (MCE)

(N)i

Initialization

},...,,,{ 2100 Gssss

)(1 NLiii

Approximate
Value Iteration On

iApproximate

Value Iteration (AVI)

AVI Actions To Be
Used In MCE at i=i+1

Start

Goal

Termination

(N)i

0i

1ii

Goal

Start

)(NLi

Monte Carlo Expansion

Figure 26: A simplified version of the structure of the proposed off-line ADP approach.

108

• Step 1: Initialization (i=0)

– Run Deterministic Optimization

– Set },...,,,{ 2100 Gssss
• Step 2:Execute N Monte Carlo Simulations

– i=i+1
•While j<N

Start at st=s0

GoaltsIf

1i1tsIf

st

st=st+1

i(st) st+1= (st,
i(st), t)

1i1tsIf

st=s0

• j=j+1

•
N

jj ii

1
)()1(

1)1()(tii sjLjL

GoaltsIf

)(1 NLiii

)(Ni

• Step 3:Expansion Step

• Step 4:Execute Approximate Value Iteration

(AVI) On i

• Step 5: If Exit Algorithm Else Go To

Step 2

Figure 27: A more detailed version of the overall structure of the proposed the proposed
off-line ADP approach.

5.3.1 Initialization

For best results, the initialization procedure should be tailored to the specific application.

A general procedure we propose is to use deterministic mathematical programming after

relaxing the exogenous uncertainty. In this case, the sampled states are restricted to the

system states sampled along the derived deterministic mathematical programming action

trace. The initialization corresponds to iteration index i = 0 and the corresponding set of

states collected is therefore denoted by S0.

109

5.3.2 Monte Carlo Expansion

This phase appends additional states to the existing value table. Added entries correspond

to the new states that are visited during N runs of MC simulations, where N is a user-

chosen parameter. These states form an evolving set denoted as Li(j) where j = 1, · · · , N

is an index for the MC runs. At the end of N runs, Si−1 entered in the value table at

iteration i− 1 is expanded into Si by adding the set Li(N).

Note that jth MC simulation run ends as soon as a state outside Si−1 ∪ Li(j − 1) is

encountered. The inputs to the MC-Expansion subroutine are: a)the number of simulations

N , b)the starting state s0, c)a set of goal states denoted as SG. The goal set can be a

singleton or can be composed from more than one states. A formal description of the MC

expansion step follows:

Subroutine Name: MC-Expansion

Step 1 Initialize j = 1, t = 0 , γi(0)=0, st = s0,Li(0) = ∅ and γi(0) = 0.

Step 2 While j ≤ N ,

Perform one of the following three steps:

Step 2.1 For st, find the action αi
t(st). Then transition to st+1 = ϕ(st, α

i
t(st), ωt).

• If i = 0 the actions correspond to the ones produced by the initialization

procedure, in this case they correspond to the mathematical programming

action trace.

• If i 6= 0 the actions correspond to the ones produced by the Approximate

Value Iteration procedure as explained in paragraph 5.3.3.

Step 2.2 If st+1 ∈ {(Si−1 ∪ Li(j)} \ SG.

Set st = st+1 and return to Step 2.1.

End If

Else If st+1 /∈ Si−1 ∪ Li(j).

Add st+1 to the expansion list Li, if it is not already registered, → Li(j) =

Li(j − 1) ∪ st+1

110

Set st = s0

Update γi(j) = γi(j − 1) + 1
N

Update j = j + 1

Return to Step 2.

End If

Else If st+1 ∈ SG.

Set st = s0

Update γi(j) = γi(j − 1).

Update j = j + 1.

Return to Step 2.

End If

End While

Step 3 Add to Si the states within the expansion list, Si = Si−1 ∪ Li(N). γi =

γi(N).The initialization of the value function can be arbitrary 1, since the Ap-

proximate Value Iteration that follows consists of a contraction mapping.

The output of the MC-Expansion subroutine at iteration i is: a) the updated Si, b) a

measure γi(N) that quantifies how often the existing policy visits states outside the Si as a

fraction of N trials.

5.3.3 Approximate Value Iteration.

After the MC expansion phase, the approach executes an Approximate Value Iteration

(AVI), a procedure similar to the one used by [64], and updates the best known policy.

This part of the algorithm assumes that the value table contains a number of collected

system states and their value function. The AVI algorithm, as presented here, defines a

linear contraction mapping and therefore is guaranteed to converge [64].

Subroutine Name: AVI

Initialize the value function J0(st), ∀st ∈ Si

1For our numerical experiments we used the value of zero.

111

Step 1 For each st ∈ Si

Step 2 Evaluate all actions in A for st using the Bellman equation Eq.(58)

J j+1(st) = minα∈A E{f(st+1, α)}+
γ

∑
st+1∈S P (st+1|st, α)J j(st+1)

(58)

j : value iteration index. Note that the entire state space Siis swept through in each

iteration.

Step 3 Terminate when,

‖J j+1(st)− J j(st)‖∞ < eV I , ∀st ∈ Si ⊆ S

The output of the AVI subroutine is an updated decision rule for each state that belongs to

the updated value table. The decision rule for a given state is given according to Eq.(59).

α∗(st) = argminα∈A E{f(st+1, α)}+
γ

∑
st+1∈S P (st+1|st, α)J∗(st+1)

(59)

The execution of the AVI may require information about system states that are not

registered in the value table. In general, we will encounter one of the following scenarios

during each value function update:

Scenario 1: All st+1’s have values registered in the value table. We use these values to

calculate J j(st).

Scenario 2: Some of the st+1’s are not found in the value table. Depending on the appli-

cation, we treat this scenario accordingly.

For The Stochastic Shortest Path Problem: In order to use the Bellman equa-

tion, we first define a set M1 and a set M2 with the following properties. M1 =

{st+1 = Φ(st, ·, ·) : st+1 ∈ Si and P (st+1|st, ·) = 0}, M2 = {st+1 = Φ(st, ·, ·) :

st+1 /∈ Si and P (st+1|st, ·) 6= 0}. The cumulative probability TP, from a state st

under a specific action αt, of not visiting a registered to the value table state is:

TP (st, αt) =
|M2|∑

k1=1

P (sk1 |st, αt),∀sk1 ∈ M2 (60)

112

In order to utilize Eq.(60), the probabilities for each of the states that belong to

set M1 and M2 are readjusted as follows.

P (st+1|st, αt) = P (st+1|st, αt) +
TP (st, αt)
|M1| , ∀st+1 ∈ M1 (61)

P (st+1|st, αt) = 0,∀sj ∈ M2 (62)

For The Queuing Problem: This case is effectively covered in chapter 3,4. For

completeness of this chapter, we need define the details of the k nearest neighbor

non parametric approximator that is used for the numerical results.

For this scenario, we need to find the set of entries within δ distance of st+1 (to

be denoted by Nδ(st+1)). We use the weighted Euclidean distance metric d, as

proposed by [64], with a user-chosen parameter δ:

Nδ(st+1)
def=

{
s ∈ S : d =

√
(s− st+1)T Z(s− st+1) < δ

}
(63)

In the above, Z is a feature weighting diagonal matrix. If |Nδ(st+1)| ≥ k, we

approximate the value function of st+1 from the k nearest states recorded in the

value table, by taking an average, as follows:

J j(st+1) =
1
k

∑

x∈Nk(st+1)

J j(x) (64)

where Nk(st+1) denotes the set containing the k nearest neighbors. In the case

that sj has k′ < k = 4 neighbor states within the specified distance, we use Eq.64

with just k′ states to approximate Jπ(sj).

Scenario 3: The case where |Nδ(st+1)| = 0 is omitted, since the way that the approach is

designed there will always exist at least one neighbor state to st+1.

Lee et al [64] has proved analytically that synchronous VI with the usage of k−NN

consists a contraction mapping that will uniformingly converge the value function for the

sparsely sampled states. That converged function will not be the optimal value function,

since they eclectically sample the state space.

113

An intuitive interpretation that explains the reason that this scheme will result to con-

vergence follows: Assume that for each state the value function backups fall under scenario

2. The end result of the k−NN methodology will be to redistribute the probabilities of

visiting st+1’s. That by itself will define a different probability transition matrix than the

original one. This different probability transition matrix naturally will result to a different

fixed point solution.

Therefore an interesting quantitative question that one can ask is: how much can the

original entries of the probability transition be perturbed, in order to guarantee that the

k−NN converged value function will instruct a policy close to be optimal ? To the best of

our knowledge, one cannot give a quantitative answer to such a generic question. The only

way to answer something like this is via extensive simulations and is highly problem and

parameter dependent.

5.3.4 Termination Criteria

The iteration between the expansion phase and the AVI phase is terminated, when the

frequency of visiting, states outside the value table denoted as γi(N) drops below a given

threshold Θ. Inevitably in the early stage of the algorithm, the current partial policy will

visit system states outside the existing value table, due to the random outcome of the

actions. We define “frequency” as an estimate of the probability of visiting states outside

the existing value table with the existing best known policy. To evaluate the frequency, we

execute N Monte Carlo (MC) simulations given this policy . Note, that each MC run j

starts from the starting state and is terminated after we visit a st /∈ Si−1 or the goal state

sG. At each simulation that we encounter a st /∈ Si−1 , the frequency γi(j) is increased by

the quantity 1
N . (γi(1) = 0 ∀ i).

γi(j + 1) = γi(j) +
1
N

(65)

At any stage of the algorithm, the frequency can be used as a measure of our lack of

knowledge of the performance of our current policy

114

5.4 Numerical Results On The Shortest Path Problem

The computational overhead and the overall performance achieved by the algorithm is

dependent on its tuning parameters. In this section, we will optimize the usage of those

parameters when used by our approach by performing several numerical experiments.

5.4.1 Quantitative Selection Of Tuning Parameters

The exploration of the proposed approach is influenced by the following parameters: a)

the number of simulations N , performed at the MC expansion step, b) the value iteration

tolerance parameter eV I , which determines the computational load of the AVI step as well

as the quality of the actions that guide the value table expansion via the MC simulations

and c) the termination threshold parameter.

5.4.1.1 On Varying N

This numerical example is on a 30x30 grid with a) p=0.8, b) eV I=1 and c) Θ = 0.1. The cost

structure is posted at http://www.chbe.gatech.edu/lee/members /npratikakis.shtml under

section 4.1.

To examine the behavior of the approach with respect to parameter N , we set the

following experiments: 1) N =100, 2) N =200 and 3)N =500.

The outcome of the simulations is shown at Table 9. As N increases, the number of

the algorithmic iterations decreases. By the term ’iteration’, we mean the MC expansion

followed by the AVI procedure.

Table 9: The influence of the parameter N on the achieved exploration rate and the number
of iterations. .
Number Number Number
of MC Simulations of states connected of iterations
100 363 out of 900 30
200 368 out of 900 23
500 376 out of 900 17

115

5.4.1.2 On Varying eV I

For the same cost structure as before and by setting N = 100, we set eV I at 1 and at

5 respectively. If eV I is set to 5, then the AVI does not fully converge and the resulting

partial policy is somewhat random suggesting free exploration of the state space. If eV I

is set to 1, we sufficiently converge the value functions at each iteration achieving directed

and minimum exploration. (The results as appear at Table 9 are consistent, across all

tested instances.) By the term ’iteration’, we mean the MC expansion followed by the AVI

Table 10: The influence of the AVI tolerance parameter on the achieved exploration rate.
AVI Number Number
ToleranceeV I of states connected of iterations
1 363 out of 900 30
5 868 out of 900 126

procedure.

In conclusion, for this example, in order for the technique to direct and restrict the

exploration to a small fraction of the state space and thereby to be computationally efficient,

a high value of N MC simulations should be instructed as well as a low value of eV I .

5.4.1.3 On Varying The Termination Criteria

At this paragraph we consider a different example, in order to test how the termination

criterion affects the exploration behavior. Its cost structure can be retrieved from the

webpage under section 4.1 example 2. Moreover, the starting state is set as (0,1) and the

goal (0,30).

The termination threshold Θ varies from 0 to 0.05 to 0.1. As expected, the higher the

threshold, the lower the exploration, but the final policy has a higher probability of visiting

unregistered states. The results for example 2 are demonstrated in Fig. 28.

In conclusion, we need to set a small value of Θ, in order for the technique to ensure that

given the retrieved partial policy with probability 1−Θ we will not explore other states.

116

=0 |S|=187

=0.05 |S|=148

=0.1 |S|=127

Figure 28: Explored states with respect to the imposed termination threshold Θ.

5.4.1.4 On Varying p

The exploration instructed by our approach when changing parameter p is displayed at

Fig.29. By decreasing variable p, we increase the noise level. Naturally this forces our

approach to explore a larger space.

5 10 15 20 25 30
0

5

10

15

20

25

30

x-axis

y
-a

x
is

Frequency=0.1 , N=500 , e
1
=1.71

[p=1] |S|=30

[p=0.8] |S|=121

[p=0.6] |S|=239

=0.1 , =500 ,eVI=1

Figure 29: Explored states achieved by the approach with respect to the noise level p.

5.4.2 Scaling And Memory Requirement

The proposed procedure is tested on: 1) a 5x5 graph, 2) a 30x30 graph , 3) a 100x100

graph , 4) a 300x300 graph and at 5) a 1000x1000 graph, in order to capture its compu-

tational scaling and memory effect. To address the 4th and 5th problem, we employ the

initialization procedure as explained at Appendix B. Briefly the benefits of that procedure

117

are: 1) it collects a small percentage of the system states; 2) it constructs a partial policy

that with probability one will visit the goal state starting from the starting state and 3) it

initializes the value functions of the collected states so that it would require a small number

of AVI iterations for convergence. The cost structure for each of these problems is posted

Table 11: Problem size - Exploration rate - Reduced memory requirements with respect to
the full problem.
Problem Size Number of Reduced Memory
Total Number of States states connected Requirement
25 21 16%
900 367 59%
10000 1506 84%
90000 3409 96%
1000000 8803 99%

online. Note, that the achieved exploration is cost structure specific. Nonetheless, our ex-

amples demonstrate that the ratio of system states collected to the problem size is steadily

decreasing when moving to larger problems. From our numerical experiments, for a one

dimensional SSP problem which enumerates 1 million states we end up collecting approxi-

mately 1% of the whole state space. By performing the AVI only to this small subset of the

state space, significant computational savings are achieved (i.e., in this case two orders of

magnitudes). Moreover, the memory requirements are greatly reduced, since we only need

to store and perform the VI to a small sized value table.

5.4.3 Comparing RTADP And Off-line ADP On Shortest Path Problems

In this section, we will be comparing the RTADP algorithm with the Off-line ADP approach

on the three stochastic shortest path instances (77,900 and 10,000 discrete states) that were

introduced at the third chapter.

5.4.3.1 Comparison Results On A 77 Discrete State Space Example

Table 12 summarizes the results of the best of our RTADP runs and the off-line ADP

approach where N = 500 and Θ = 0 against the full DP solution.

Both algorithm perform optimally, but with the off-fine ADP we retrieve a stationary

policy over a compact set of states. In other words we have the guarantee that the retrieved

118

Table 12: Comparing the best of RTADP runs with the Off-line ADP algorithm on the 77
discrete state space example.

Algorithm Online Performance States Explored
(Relative to Full DP Percentage) (Percentage of space explored)

Full DP 309 -
Best of RTADP 309.31 51/77 (66.23%)
Off-line ADP 309.02 54/77 (70.13%)

Table 13: Comparing the best of RTADP runs with the Off-line ADP algorithm on the
900 discrete state space example .

Algorithm Online Performance States Explored
(Relative to Full DP Percentage) (Percentage of space explored)

Full DP 237 -
Best of RTADP 246.35 311/900 (34.56%)
Off-line ADP 245.41 359/900 (39.89%)

policy while executed will not visit any other of these 54 states.

5.4.3.2 Results On A 900 Discrete State Space Example

Table 13 summarizes the results of the best of our RTADP runs and the off-line ADP

approach where N = 500 and Θ = 0.01 against the full DP solution.

Both algorithms perform close to optimality while identifying only 1/3 of the state

space. The only fault of the policy produced by the RTADP algorithm is that it visits

a small number of states outside the registered value table. To circumvent this problem

the RTADP must rely to a heuristic policy that will lead the system to the registered

state space. On the contrary by executing the off-line ADP with the given parameters the

retrieved policy will visit unregistered states with a frequency of 1%. If we wanted the

frequency to drop to zero we would tune the parameter Θ = 0.

5.4.3.3 Results On A 10,000 Discrete State Space Example

Table 14 summarizes the results of the best of our RTADP runs and the off-line ADP

approach where N = 1500 and Θ = 0.001 against the full DP solution.

119

Table 14: Comparing the best of RTADP runs with the Off-line ADP algorithm on the
10,000 discrete state space example.

Algorithm Online Performance States Explored
(Relative to Full DP Percentage) (Percentage of space explored)

Full DP 519 -
Best of RTADP 940 1,993/10,000 (19.93%)
Off-line ADP 924 2,960/10,000 (29.60%)

Both algorithms perform close to optimality and they identify less than 1/3 of the state

space.

The portion of the state space identified given these two approaches is shown at Figure

30.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x-axis

y-
ax

is

Off-line ADP

RTADP

Figure 30: Demonstrating the porion of the state space identified by the Off-line ADP Vs
the best RTADP run. The RTADP restricts the state space exploration to a subset of the
states explored by the off-line ADPapproach.

A significant drawback of of the partial policy generated by the RTADP algorithm is

that it still visits a states outside the registered value table. To circumvent this problem, we

must run the RTADP longer and collect further states or we must rely on a heuristic policy

that will lead the system to the registered state space. On the contrary by executing the

120

off-line ADP with the given parameters the retrieved policy will visit unregistered states

with a specified frequency of 1%. If we wanted the frequency to drop to zero we would tune

the parameter Θ = 0 and the corresponding exploration would be greater.

5.5 Modeling And Results Of A High Dimensional Queuing
Example

The realistic queuing example is a modified version of the case study as studied in chapter

3.

5.5.1 Queuing Network Under Uncertain Demand and Product Yield

The example represents a queuing network - manufacturing process, illustrated at Fig. 6.

The objective of the problem is to maintain the inventory at station 2 and 3, at a minimum

level and to control the final product inventory,It, at the specified set point throughout the

time horizon. The control of these buffers will be achieved via resource allocation decisions.

Specifically, the manufacturing process of interest is divided into three interdependent sta-

tions with physical buffers (queues) and a final product inventory. Each station has fixed

capacity. The in-process inventory queued at each stage is controlled via the simultaneous

allocation of the capacity of each stage. The demand rate for the final product is stochastic

and modeled as a first order Markov chain. A further complicating factor in this example

is the possibility of processing failure: If a product coming out of station 2 fails to meet

required specifications, the failed product is rerouted to station 3 for reprocessing. At sta-

tion 3 the failed product is serviced and placed back in the queue in front of station 2.

The fraction of products that meet the specs at each time period is also a random variable,

which is also modeled as a first order Markov chain. The decisions at each time are the

allocation of the constant capacity of each station.

The variable Wi,t represents the in-process inventory queued at each stage i at time

period t and the variable It the final product inventory. The demand for the final product

is a sequence of random variables D1, D2, D3, ... with the Markov property, meaning the

future values depend solely on the present state and are independent of past states. For

a first order Markov chain model, the dynamics is governed by a probability transition

121

matrix, whose (i, j)th element represents Pr(Dt+1 = di|Dt = dj) where di is the ith possible

value for D. In this study, i = 1, · · · , 6 and therefore the transition probability matrix PD

is a 6× 6 matrix. The fraction of products that fail to meet the specs at each time period

is also represented by a sequence of random variables denoted by R1, R2, R3, At every

time period t, the random variable Rt may take one of two possible values. The lower state

value of r1 corresponds to a high product yield and conversely the higher state value of r2

to a low product yield. Transition from r1 to r2 may be due to an unexpected event that

harms the system’s performance. The corresponding 2× 2 probability transition matrix is

denoted by PR.

The formulation for this specific example as a formal MDP follows.

5.5.1.1 State Vector

For the manufacturing job shop example, the state variable is a five dimensional vector

defined below:

st =

Wi,t = Queue at stage i = 2, 3 at time t

It = Finished product at time t

D̂t = Realized demand value at time t

R̂t = Realized recirculation rate value at time t

(66)

Realized values of the random variables at time t, D̂t and R̂t, are assumed to be known

to the decision-maker. Hence they constitute exogenous information variables. However,

the values of these variables at future times are uncertain and are described by the cor-

responding probability distributions. It is customary to include the parameters defining

these conditional probability distributions of the random variables as a part of the state

vector as they capture the information available at that time period. They are therefore

called information states. With a first order Markov chain model, it is sufficient to include

just D̂t and R̂t in the system state as they completely define the conditional probability

distributions of the future random variables.

For a larger queueing network, one would similarly use as a state vector the buffers as

122

well as the information states of the random variables.

5.5.1.2 Decision Variables

Decisions are modeled in discrete time. The decision space A encodes all the possible

controls that are applicable to each system state st. Each action or control is concerned with:

deciding the percentage of the capacity of each stage. Therefore A has three continuous

dimensions.

A =
[

PU i,t+1 = Capacity percentage of station i at t + 1

]
(67)

5.5.1.3 Transition Function

The transition function is defined formally via the mass balances at the queues 2,3 and at

the final inventory. Details regarding these linear equations have been discussed in chapter

3.

For chapter completeness we need to define the total number of jobs TJi,t exiting station

i at time t, since this quantity appears at Fig.31. This quantity is expressed via Eq.(68):

TJi,t = µiPUi,t ∀t(i = 1, 2, 3) (68)

where µi is the invariant total capacity of each station i.

5.5.1.4 Contribution (Cost) Function

The one step cost produced by a decision αt at state st during one time period with ran-

dom variable ωt+1 is denoted as f̂(st, αt, ωt+1). With some abuse of notation we denote

ωt+1 = [Dt+1, Rt+1], which is a two dimensional vector describing the outcome of the two

independent Markovian processes at time t + 1. These values impacts the transition from a

state to a successive one. Then, the expression for f̂(st, at, ωt+1) is:

f̂(st, at, ωt+1) = 8 ∗ 103((It+1 − SSP)2 + 103(W2,t+1 + W3,t+1) (69)

The expectation of the one step profit is defined over the probability space Ω:

f(st, at) = E[f̂(st, at, ωt+1|st)] =
N∑

j=1

P (sj |st, αt)f̂(sj , at, ωj) (70)

123

where P (sj |st, αt) is the probability of ωt+1 taking the value of ωj and N is the number of

transitions with non-zero probability starting from st.

5.5.2 One To One Correspondence Of The Queuing Example With The Short-
est Path

Our goal is to construct a policy that will drive the system to the assigned goal states from

any starting state with probability at least 1-Θ.

To tailor a problem as a shortest path one needs to define: a) a set of goal states, b)

the modified cost function, c) starting states and d) stochastic transitions.

For the queueing network, we define as goal states the states with the following prop-

erties: SG = {st ∈ S : A ≤ It ≤ B ,W2,t ≤ C , W3,t ≤ D}. We assign to all goal states a

value function value J(st) = 0, ∀st ∈ SG and therefore the modified cost function includes,

that the single stage reward of a goal state under all possible actions is set to zero.

The starting state for the queuing network can be any system state outside the set of

goal states, namely s0 ∈ S \ SG.

The original transition function ϕ maps st to a successive state st+1:

st+1 = ϕ(st, αt, {D̂t+1, R̂t+1}). Each state transition holds a probability weight p that

corresponds to the Markov chain joint realizations of {D̂t+1, R̂t+1}. The modified transi-

tion function adopts the original transition function and sets all the goal states to be self

absorbing under all actions.

5.5.3 Numerical Results

The values of the parameters that are used to define the set of goal states are : A = 450 ,

B = 550 , C = 100 , D = 100. The goal states are effectively represented with a cube as

shown at Fig.32. The rest of the problem parameters can be retrieved at Fig.31.

5.5.3.1 On Varying N

To be consistent with the previous section, we examined the behavior of the approach with

respect to parameter N . By setting Θ = 0.05, eV I = 1 and varying N as follows : 1) N =50,

2) N =500 and 3)N =5000, the observed results appear at Table 15 .

124

7.02.0

5.05.0

5.05.0

R

P
R

100705035207

7.015.011.001.001.002.0

05.07.013.011.001.00

02.013.08.001.002.002.0

011.01.07.008.001.0

007.007.01.07.006.0

0002.008.01.08.0

D

P
D

6003stationofCapacity

4002stationofCapacity

4001stationofCapacity

Figure 31: Numerical values of the queuing network.

W2

W3

I

A
B

C

D

400

400

200

Start from [W2=400

W3=400

I=0]

Goal States

Start state

Figure 32: Schematic representation of a path that leads the system from an initial state
to the designated goal states.

When increasing N , we identify more states with the same computational overhead. For

N = 5, 000 we identified twice as much states as we did for N = 50 , this fact didn’t result

to a significant impact on the performance.

5.5.3.2 On Varying eV I

The importance of converging the value functions at each iteration is shown at the following

table.

In the case where N = 50, when setting eV I = 100 the output policy, given 1.000

simulation , never led the system to the goal states and therefore the average cost is ∞.

125

Table 15: Evaluating the algorithm’s performance while varying parameter N .
N Average Performance Iterations |S|

Over 1,000 Scenarios
50 770 79 2,194
500 762 38 3,265
5,000 742 29 5,810

While when setting eV I = 1, the output policy guided the system to the goal states in every

simulation run.

In the case where N = 5, 000, when choosing eV I = 100 instead of eV I = 1 the average

incurred cost is doubled. Nonetheless, both output policies led the system to the goal states

for every simulation run.

Table 16: Evaluating the algorithm’s performance while varying parameter eV I .
N Average Cost eV I |S|

Over 1,000 Scenarios
50 770 1 2,194
50 ∞ 100 3,984
5,000 742 1 8,554
5,000 1501 100 5,810

5.5.3.3 Comparing Full Information Vs ADP Vs Rolling Horizon MIQP

The cumulative results are shown at Table 17. Those reveal that the tested algorithm com-

Table 17: Cumulative results of 3 optimization strategies on the queuing network. Each
strategy is been tested on 1,000 independent sampled scenarios.

Full ADP Rolling
Information (N = 500) MIQP

Average number
of steps to reach
goal states 7.5± 3.1 7.5± 2.8 8.5± 4.2
Average Total Cost 14.7± 1.5 762± 658 1, 525± 1, 528

pare poorly with respect to the full information solution. Moreover, the ADP approach

performs significantly better than the rolling mixed integer quadratic programming ap-

proach. The fact that the standard deviation appears to be so significant is attributed to

the fact that the cost distribution have more than one modes.

The cost distributions for both architectures can be well approximated by a mixture of

126

two lognormal probability distribution functions(pdf). The parameters, the mean cost and

the total area covered by each lognormal is shown at Fig.33(a)and Fig.33(b).

Lognormal1(4.909,0.587)

Mean cost = 161

Area=47.1%

Lognormal2(7.275,0.299)

Mean cost = 1,510.47

Area=52.9%D
e
n
s
it
y

Data

Cost Distribution - Approximate Dynamic Programming

(a) Mixture of two lognormal distributions that approximate the
histogram of the cost distribution when applying the ADP opti-
mization strategy.

Cost Distribution – Rolling Horizon MIQP

Lognormal1(4.746,0. 72)

Mean cost = 149.7

Area=37.3%

Lognormal2(7.617,0.52)

Mean cost = 2,322.95

Area=62.7%

D
e
n
s
it
y

Data

(b) Mixture of two lognormal distributions that approxi-
mate the histogram of the cost distribution when applying
the ADP optimization strategy.

Figure 33: Cost distributions of ADP Vs Rolling Horizon MIQP.

Next we examine particular scenarios for the random variables and the detail implemen-

tation of the ADP Vs the rolling MIQP strategy.

5.5.3.4 On Examining Scenarios

This paragraph examines the implementation of the rolling horizon MIQP and the ADP to

two particular types of scenarios of the random variables.

For some scenarios there is small discrepancy between the projected scenario and the

one realized throughout the horizon. Therefore, the recorded cost for such scenarios is

127

minimum. For such scenarios both ADP and rolling horizon MIQP perform similarly .

For other scenarios there is at least once large discrepancy between the projected scenario

and the one actually realized. The main problem, while using the rolling MIQP approach

is the fact that the derived decisions are based on a unique sample of the random variables.

Given this it may lead the system to unwanted regions of the state space. For the realized

scenario as represented at Fig.34 at time period 5, the system occupies the state s5 =

[W2,5 = 0 W3,5 = 247 I5 = 572 D̂ = 20 R̂ = 0.7] and the rolling horizon MIQP

instructs the action α5 = [0.5 1 1], then the system transitions to state s6 = [W2,6 =

0 W2,6 = 353 I6 = 777 D̂ = 20 R̂ = 0.2]. Therefore, we incur a large penalty because

I6 deviated 277 units from the set point (SSP = 500).

0 5 10 15 20
0

200

400

600

800

Time Period

In
v
e
n

to
ry

Rolling MIQP

W
2

W
3

I
t

0 2 4 6 8
0

200

400

600

Time Period

ADP

0 5 10 15 20
0

200

400

600

800

Time Period

C
o

s
t

p
e

r
p
e

ri
o

d

Rolling MIQP

Cost=1,977

0 2 4 6
0

20

40

60

Time Period

C
o

s
t

p
e

r
p
e

ri
o

d

ADP

Cost=82.7

(a) Inventory evolution of the system and cost realization,
while implementing ADP and Rolling Horizon MIQP strat-
egy.

0 5 10 15 20
0

50

100

Time Period

D
e

m
a
n

d
 P

a
tt

e
rn

0 5 10 15 20
0.2

0.4

0.6

0.8

1

Time Period

R
e
c
ir
c
u

la
ti
o
n

 P
a

tt
e

rn

Time Period Time Period

(b) Specific realization of the random variables (Demand and
Recirculation pattern).

Figure 34: The implementation of ADP and rolling MIQP to a specific scenario.

On the contrary the actions produced by the ADP lead smoothly the system to the set

of goal states . The ADP solution records a total cost of 82.7 units and the MIQP 1,877

units.

128

Moreover, there are the scenarios for which there are at least two large discrepancies

between the projected scenario and the one actually realized as shown in Fig.35. This is

the main reason that we observed two picks at the incurred cost, when we apply a rolling

horizon MIQP. The ADP solution leads the system to the set of goal states in six steps and

records a total cost of 138.9 units, while the MIQP records a cost of 5,382 units.

0 10 20 30
0

500

1000

Time Period

In
v
e
n
to

ry

Rolling MIQP

W
2

W
3

I
t

0 2 4 6
0

200

400

600

Time Period

ADP

0 5 10 15 20
0

500

1000

1500

Time Period

C
o

s
t

p
e

r
p
e

ri
o

d

Rolling MIQP

Cost=5,382

0 2 4 6
0

50

100

Time Period

C
o

s
t

p
e

r
p
e

ri
o

d

ADP

Cost=138.9

(a) Inventory evolution of the system and cost realization,
while implementing ADP and Rolling Horizon MIQP strat-
egy.

0 10 20 30
0

50

100

Time Period

D
e

m
a

n
d

 P
a

tt
e

rn

0 10 20 30
0

0.5

1

Time Period

R
e

c
ir
c
u

la
ti
o

n
 P

a
tt

e
rn

(b) Specific realization of the random variables (Demand
and Recirculation pattern).

Figure 35: The implementation of ADP and rolling MIQP to a specific scenario.

As we can see from these results, the importance of the multistage stage uncertainty

can be captured nicely from the ADP approach, but not from rolling horizon MILP.

The next subsection delineates some technical details about the implementation of the

ADP as well as the rolling horizon MIQP.

5.5.3.5 Setting Parameters For The Implementation of ADP

The starting state used for this experiment is s0 = [400 400 0 20 0.2]. A common

discount factor (γ = 0.9) was used for all the experiments, which makes the impact to the

value function of any state transition and therefore cost accumulation beyond 10 future

time periods negligible.

129

5.5.3.6 Creating An Adaptive Action Set

Since the action space is continuous we need to address the COD with respect to the action

space. To achieve that we use the adaptive to the state action set , as proposed in [90]

This concept is used as follows: while executing the AVI, we constructed the adaptive

action independently for each value function state update. This set of actions included: a)

50 random actions, b) 10 sample path MIQP actions , c) a best known action, when it is

available and the k best stored actions from the k-nearest neighbors of st (k = 4).

We choose Z = [0.1 0.15 0.5 4 2, 000] such that the neighboring states share the

same realization of the random variables.

5.5.3.7 Formulation And Implementation of The Rolling Horizon MIQP

The MIQP formulation used for the produced results is the following:

minαt

∑h
t=1

(
f̂(st, αt, ωt+1)

)

s.t.

g(st, αt) = 0

αt ∈ R3+

Wi,t ∈ Z+

(71)

The horizon length h for which the MIQP is solved is set to 79. By g(st, αt) we denote the

material balances that must be satisfied at each system node for consecutive time periods.

A description of the classic rolling horizon algorithm can be retrieved in [90].

5.6 Conclusions

For large scale problems, approximate dynamic programming has emerged as an effective

way to approximate the conceptually elegant but computationally inefficient dynamic pro-

gramming algorithm. The compromises made in ADP result in a tradeoff between the

exploration of the state space and the exploitation of existing knowledge of the values of

the already-visited states.

In this chapter, we explored these issues in the context of a stochastic shortest path

problem and a queuing network with invariant capacity and inventory decisions faced with

130

uncertainty over the demand and performance of the system. We proposed an ADP method-

ology that is based on MC simulations and AVI that performs controlled exploration of the

state space and we performed a simulation study by evaluating the behavior of the approach

with respect to its tuning parameters. We also demonstrated via numerical experiments the

superiority of ADP compared to traditional used rolling horizon strategies, when it comes

to multistage decision problems.

Next this thesis is going to study decision making under risk sensitive criteria. We will

also attempt to couple this ADP approach with the such criteria.

131

CHAPTER 6

A RISK-SENSITIVE SINGLE-PERIOD LINEAR UTILITY

FOR MARKOV DECISION PROCESSES

Up to this point, we have studied risk neutral decision making in discrete event stochastic

systems formulated as discounted MDPs. The objective was to maximize (minimize) the

expectation of a discounted sum of stage-wise performance (cost) measure. However, when

the uncertainty is significant, the spread of performance of a resulting policy may be unac-

ceptably large to a “risk-averse” decision-maker or not wide enough for a “risk taker”. Such

a decision-maker may prefer to use a more flexible objective function that enables him to

balance the average performance and risk according to his/her preference.

6.1 Introduction

In the literature, there are essentially two ways to incorporate risk sensitivity into solving

discounted MDPs. The first way is to define a single-period or stage wise utility function

US , which includes a risk measure for a single time period or stage, as well as the expected

reward or cost. The other is to use a multi-period utility function UM , which captures a

risk measure for the multi-stage performance over some time horizon. The former is the

more common strategy since it is amenable to optimization strategies such as dynamic

programming due to the linear nature of the objective function [48]. On the other hand,

there exists no axiomatic basis to establish that this formulation will correctly account

for multistage risk preferences among policies. In contrast, the latter rests on a logical

formalism for time-risk tradeoffs [14, 56], but its practical usefulness may be compromised

by computational difficulties in deriving the optimal policy. The readers are referred to

[91] for a technical discussion on time-risk tradeoffs and to [40] for the details of axiomatic

properties of different risk measures.

In this chapter, we will propose a specific form of single period utility function US

132

tt t+1t+1 t+2t+2 t+3t+3

sstt sst+1t+1 sst+2t+2 sst+3t+3

SingleSingle--periodperiod

MultiMulti--periodperiod

Figure 36: Schematic representation of: a) The Single-period utility that is applied stage
wise at the reward process, b) The Multi-period utility that is applied over the summation
of the stochastic reward process.

that expresses risk-time preferences. Some of the key papers appeared in 1989 and 1994,

where Filar et al [48] addressed the problem of finding policies in discounted and undis-

counted variance penalized MDPs and Sobel [13] in undiscounted MDPs. Apparently the

risk measure used in forming their (Filar, Sobel) single stage utility function is the variance.

Their approach is reminiscent of the earlier work of Markowitz [42] on portfolio analysis,

where mean and variance of returns are used to formulate the problem. Specifically, the

decision-maker incorporates into the objective function penalties with respect to the vari-

ability caused by a given policy. Lets denote the mean (µ) and the variance (V ar or σ2)

associated with a single stage problem. For the single stage mean-variance optimization,

there are effectively three single stage objectives that exist:

• Parametrically maximize the Langragian λµ− (1− λ)σ2, as λ spans [0,1].

• Parametrically maximize µ subject to σ2 < λ , as λ spans [0,∞].

• Parametrically minimize σ2 subject to µ > λ , as λ spans [0,∞].

Generally, most papers explore the first objective with a fixed λ. No-one has explored the

second objective and Sobel has explored the third objective via an LP formulation [13]. In

principle all approaches are equivalent.

We also adopt the Lagragian approach, but instead of penalizing the variance, we will

substitute the variance term with the ‘conditional value at risk (CV aR)’, which corresponds

to the expected performance of the bottom tail. We conjecture that this utility function will

133

generate risk-sensitive policies in an intuitive manner for multistage stochastic problems

modeled as discrete Markov Decision Processes (MDP’s). An obvious advantage of the

CV aR over the variance is that it only considers the one-sided variance and not the spread

of the entire distribution. Details will be given in section 6.2.

Using discounting in risk neutral MDPs is popular since these problems are more subtle

and difficult without discounting. In practice one uses a discount factor close to 1 (e.g.,

0.99), in order not to change the problem significantly from the original one. The usage of a

discount factor along with a single period utility for risk sensitive decision-making presents

a major complication factor, however. According to the discounted theorem by Sobel [91],

discounting and single-period utility inherently instructs risk neutrality, since single period

utilities are linear functions (risk neutral). We refer the reader to [91] for an in depth

discussion on discounting and what it implies when it is used along with single period and

multi period utility functions. Motivated by this, in this chapter we will try to establish

for three simple cases the equivalence between the proposed single-stage utility function

and the corresponding multi-stage utility function in terms of the resulting policy. It is

revealed from our analysis that the weights in the Lagrangian function in the single-stage

utility behave non-intuitively and their choice is critical in forming an effective risk-sensitive

objective function.

The remainder of this chapter is organized as follows. In section 6.2, we formally present

the functional form of the proposed myopic single period risk sensitive utility function. In

section 6.3, we discuss its advantages over a single stage mean-variance utility and discuss

briefly the exponential multi period utility, along with their corresponding optimality equa-

tions, which will be used for comparison. In section 6.4, we derive an analytical expression

that establishes an equivalence between the proposed single period mean-CVaR utility and

the exact multi period mean-CVaR utility for a simple case. The intuitions gained from

this exercise will help us understand how the weights in the Lagrangian function should

be selected for obtaining risk-sensitive policies. In section 6.5, we propose an algorithm

that approximates the multistage mean-CVaR efficient frontier. In section 6.6 and 6.7, we

address using this approach multi-step(multi-stage) stochastic shortest path problems with

134

77 and 900 discrete states, by solving the corresponding dynamic programs with both the

linear and exponential utility functions and comparing the results. We also discuss conver-

gence issues when using exponential utility functions. Despite the rich literature concerning

risk neutral objectives, there is a lack of systematic numerical results of combining ADP

approaches with risk-sensitive objective functions. In section 6.8, we will discuss our con-

tribution along this direction. Finally, in section 6.9 we summarize our findings where key

insights learned are highlighted.

6.2 The Functional Form Of The Proposed Myopic Risk
Sensitive Utility

In this section, we propose a functional form for a myopic or single period risk sensitive

utility function. The risk measures that are included in this functional expression along with

the expected reward are: a) The conditional value at risk measure, which expresses risk

averseness and is denoted as CV aR and b) The conditional value at risk taking measure,

which expresses a risk taking attitude and is denoted as CV aRT . These risk measures will

be mathematically defined for a single stage profit distribution, which is a random variable

and is denoted as zt = f(st+1|st, αt).

The risk measure value at risk (V aRη(zt)) and the coherent risk measure CV aRη(zt)

[40] are usually meant for a loss distribution and correspond to an upper percentile of that

distribution dictated by the confidence interval η. Nonetheless, since we are dealing with

utilities we adjust these definitions to represent lower quantiles of a reward distribution.

The formal mathematical definitions of V aRη(zt) and CV aRη(zt) that correspond to

such lower quantiles of a continuous profit distribution follow:

V aRη(zt) = min{ζ1 ∈ R : P ((zt) ≤ ζ1) ≥ η} (72)

CV aRη(zt) =
1
η

∫

zt≤V aRη

P (st+1|s, αt)f(st+1|st, αt)dω (73)

ω corresponds to the realization of the uncertainty space Ω with density P (st+1|s, αt).

The formal mathematical definitions of the risk taking risk measures V aRTβ(zt) and

CV aRTβ(zt) hold for a given confidence interval β and correspond to a quantile from the

135

upper tail of a continuous profit distribution.

V aRTβ(zt) = max{ζ ∈ R : (P (zt) ≥ ζ) ≤ β} (74)

CV aRTβ(zt) = (1− β)−1

∫

zt≥V aRTβ

P (st+1|st, αt)f(sj |st, αt)dω (75)

Schematically, the risk measures V aRη(zt) and the CV aRη(zt) and the corresponding

Value at Risk Taking (V aRTβ(zt)) and Conditional Value at Risk Taking (CV aRTβ(zt))

are shown in Fig.37.

Random variable z: Single stage performance

VaRT

Probability

Maximal

value

Probability

VaR

CVaR CVaRT

Minimum

ValueF
re

q
u

e
n

c
y

Var(z)= 2+ 2

Figure 37: Schematic representation of the risk measures given a single stage profit distri-
bution.

In Figure 37, by V ar(z) we represent the variance of the distribution with respect

to the expected single stage reward, which is the summation of the corresponding semi-

variances (σ2
I and σ2

II). σ2
I,t is the semi-variance that corresponds to the density of the

profit realizations smaller that the expected single stage reward for a single time period

t, while σ2
II,t is the semi-variance that corresponds to the density of the profit realizations

greater than the expected single stage reward for a single time period t. In the case of a

normal distribution σI =
√

2
2 σ.

136

Assume that the system occupies state st and for an action αt moves the system with

specified conditional probability P (st+1|st, αt) to the set of states st+1. The physical inter-

pretation of the above risk measures for a single stage reward distribution is the following:

• V aRη(zt): Value at risk is the minimum profit not exceeded with a given probability

defined as the confidence level η, over a single period.

• CV aRη(zt): This quantity represents the expectation of the lower η percentage of the

single stage profit distribution and is a representative quantity of the profit obtained

by the worst cases cases with density η.

• V aRTβ(zt): Value at risk taking corresponds to an upper percentile of the profit

distribution. This quantity represents the maximum profit not exceeded with a given

probability defined as the confidence level 1− β, over a single time period.

• CV aRTβ(zt) is the expectation of the ‘optimistic’ tail of the profit distribution with

total density 1− β. Intuitively the coherent measure CV aRTβ corresponds to a very

optimistic estimation of the single profit under a specific action αt.

The functional form of the proposed single stage risk sensitive linear utility for discrete

event systems is:

US(st, αt, λ) =

λ
∑

st+1
P (st+1|st, αt)f(st+1|st, αt) + (1− λ)CV aRη(zt) ,if Risk Averse

∑
P (st+1|st, αt)f(st+1|st, αt) ,if Risk Neutral

λ
∑

P (st+1|st, αt)f(st+1|st, αt) + (1− λ)CV aRTβ(zt) ,if Risk Taker

This proposed myopic utility, if used in a DP framework is expected to be able to represent

both risk averse and risk sensitive multi-stage attitudes. In this chapter, we will focus on

representing risk averse attitudes in a specific class of problems often called Goal Directed

Markov Decision Processes (GDMDP).

The specific characteristic of those problems is that they have a dedicated set of goal

states , denoted as G. All these states within this set are self absorbing meaning that you

cannot escape from them under any action and their optimal value function is 0. For the

numerical applications, we will use the single stage mean-CV aRη functional form within

137

the system of optimality equations for general multistage instances with a specified set of

goal states and we will assume all the rewards to be non-positive quantities.

Jπ(st, λ, γ) = maxαt∈A US(st, αt, λ) + γ
∑

st+1∈S Pr(st+1|st, αt)Jπ(st+1, λ), st ∈ S
Jπ(st, λ, γ) = 0, st ∈ S \G

(76)

The main advantage of using this functional form as a single stage utilities, along with

the discount factor, is that one can use the traditional optimality equations in exact DP

and ADP procedures. This fact is mainly attributed to the nice properties of the expec-

tation operator with respect to linear utilities and to the fact that the usage of discount

factor guarantees the convergence of DP, under mild assumptions. These assumptions are

mentioned at the second chapter.

A second important advantage of this proposed single period utility, compared to other

commonly used single period utilities(e.g.mean-variance), is that it can handle efficiently

heavily skewed distributions. Moreover, for general multistage optimization problems the

single stage mean-CV aRη calculation can be achieved via the LP formulation as proposed

by Rockafellar and Uryasef [50]. Given this fact one can address the COD with respect to

the evaluation of the CV aRη or CV aRTβ by creating a large scale LP via sampling.

6.3 Single Stage Mean-CVaRη Vs Single Stage Mean-Variance
And Exponential Multistage Utility

In the numerical instances in section 6.6 the summation of the proposed utility is evaluated

along with the summation of the mean-variance single period utility and an exponential

multistage utility. In this section, for conceptual as well as for practical comparison pur-

poses, we analyze in a qualitative manner the difference between optimizing the summation

of the single stage mean-CVaR utility versus the summation of the mean-variance single

period utility in a multistage setting with normally distributed rewards. Therefore, we

create general shortest path examples where the summation of the proposed single period

utility will yield a wider spectrum of policies than the summation of the single period mean-

variance utility. Moreover, we delineate the usage of the exponential utilities as multi-stage

138

utilities within MDPs along with their corresponding optimality equations.

6.3.1 Qualitative Difference On Optimizing The Summation Of Single Period
Mean-CVaRη And Mean-Variance Utilities

To simplify the notation assume that for a state-action pair (st, αt): a) x̂t is the expected

single stage reward, b) σ2
I,t is the semi-variance that corresponds to the density of profit

realizations smaller that x̂t for a single time period t, c) σ2
II,t is the semi-variance that

corresponds to the density of profit realizations greater that x̂t for a single time period t 1

d) the confidence interval is set to η = 0.05 and β = 0.95. To calculate the one step CV aRη

for normal distributions, we use CV aRη = x̂t - g(η)σI , where g(η) =
√

2 exp(erf(2η −
1)2)−1(1− η)−1.(g(0.05) = 0.1086)

Using the proposed mean-CV aRη single stage utility and by setting the Langragean

parameter λ = λ1 , we try to find the sequence of actions {α0, α1, ..., αt−1, αt} that will

maximize the following expression.

max
αt

∑
t

γt(λ1x̂t + (1− λ1)CV aRη(z)) = max
αt

(
∑

t

γt(λ1x̂t + (1− λ1)(x̂t − g(η)σI,t)))

=
1

1− γ
max

αt

(
∑

t

(x̂t − (1− λ1)g(η)σI,t))

• When λ1 = [0, 1) we effectively maximize two objectives: The first is the maximiza-

tion of the expectation of a discounted sum of stage-wise rewards, while the second

objective is the minimization of the expectation of a discounted sum of the single

stage semi-variances σ2
I,t

Depending on the choice of λ1 and η, we tune the single stage ratio of the weights

between these two objectives.

• For λ1 = 1, the single stage mean-CVaR utility is risk neutral and the proposed

formulation maximizes the expectation of a discounted sum of stage-wise rewards.

When using the single stage mean-variance utility to solve the multi-stage optimization

problem, we adopt the following optimization problem. (Here, the Langragean parameter

1The statistics σ2
I and σ2

II are illustrated in Fig.37.

139

λ = λ2):

max
αt

∑
t

γt(λ2x̂t − (1− λ2)V ar(z)) =
1

1− γ
max

αt

(
∑

t

(λ2x̂t − (1− λ2)(σ2
I,t + σ2

II,t)))

• When λ2 = 1 this utility corresponds to a risk neutral solution.

• When λ2 = (0, 1) we consider three objectives: The first is the maximization of the

expectation of a discounted sum of stage-wise rewards with single stage weight λ2.

The other two objectives are the minimization of the expectation of a discounted sum

of the single stage semi-variances σ2
I,t and σ2

II,t respectively. These later objectives

are weighted at each stage with respect to a parameterized weight (1-λ2),(1-λ2). This

objective obviously tries to minimize the standard deviation with respect to deviations

that are greater than x̂t. From a decision making perspective this formulation is

uncomfortable and does not have an intuitive basis, since no-one would include as

penalties both such deviations, while trying to maximize the expected profit.

• When λ2 = 0 we minimize the expectation of a discounted sum of the single stage

semi-variances. Again, this is an uncomfortable formulation for the same reasons as

discussed above.

What follows demonstrates two general shortest path settings for which the proposed

summation of the mean-CVaR utility has the capacity to yield a wider spectrum of policies

than the summation of the single period mean variance utility.

6.3.2 Multi Step Shortest Path Examples

These general multi step shortest path examples with a single starting and goal state are

illustrated in Figure 38. Here, we assume that the uncertainty affects the single stage reward

stream and not at transition probabilities. The first shortest path example demonstrates the

capacity of the proposed utility to retrieve risk seeking policies, while the second shortest

path example demonstrated the fact that it can efficiently handle problems composed out

of single stage shewed reward distributions. In these problems, we consider performance

maximization with each single stage profit to be a non positive quantity and the goal

state to be an absorbing state.

140

The data for the first example appear in Figure 38:

• If we use the summation of the single-period mean variance utility and maximize

the expected performance we would follow a route composed out of the rectangles.

Moreover if we minimize the variance of a policy, we would follow the same route

since the multistage variance of a policy composed out of deterministic costs is 0.

Therefore, this objective can only yield a specific policy since mean and variance are

not contradicting.

• If we use the summation of the mean-CV aRTβ single stage risk seeking utility and

maximize the expected mean we would follow the route composed out of rectangles.

But, if we adopt a risk taking attitude, we would find solutions with respect to the

mean-CV aRTβ risk measure. If this single stage performance-expression: λ1x̂t + (1−
λ1)CV aRTβ(z) > −A holds for a combination of values for the parameters λ1, β then

this utility will instruct a solution-route composed out of the circle states.

y-axis

x-axis

Profit~ (-A,0)

Profit~ (-B,C2)

2.A<B

3.CVaR =-B-g()C

Assumptions

4.CVaRT =-B+g()C<A

1.A,B,C>0

Start

Goal

Profit heavily skewed

with characteristics

Mean=-C<-A , C>0

CVaR <-A-g()B

Var>B2

Start

Goal

Profit~ (-A,B2), A>0

Example 1 Example 2

Figure 38: Examples for which our proposed objective yields a wider spectrum of policies
than the mean variance formulation.

The data for the second example appear in Figure 38:

• If we use the summation of the mean variance as the objective function and maximize

the mean we would follow the route composed out of rectangles. Moreover, if we

minimize the variance of a policy, we would follow the same route, since the single

stage variance of the rectangles B2 is assumed to be less than the single stage variance

of the skewed distribution of the circle states. Therefore, this objective can only yield

141

a specific policy since mean and variance are not contradicting. This route would be

composed out of rectangle states.

• If we use the summation of the mean-CV aRη risk averse utility as the objective and

maximize the mean we would follow the route composed out of rectangles. But, if

we wanted to express a risk averse attitude by using this Langragean utility, that

would eliminate the worst cases and maximize the systems performance, then under

the condition that the single stage −C − CV aRη of the skewed single stage profit

distribution is more than −A − g(η)B, we would be able to produce a policy going

through a route composed out of circle states.

In summary, the proposed utility can yield a wider spectrum of policies than the mean

variance formulation.

6.3.3 Multistage Exponential Utility Function

Corner and Corner [92] explicitly refers that in almost 30% of their reviewed applications

people adopt exponential utility functions, while in two thirds of them they use risk neutral

formulations (linear utilities). More complex non linear utility functions (e.g. in the form of

one switch utilities) have not been used in recent Operations Research (OR) literature, since,

if such utility is used, the resulting multistage optimization is a complex non decomposable

problem.

For non linear multi stage utilities Liu and Koenig [56] make the problem decomposable

by augmenting the state space with an additional state variable. By doing that, one can

utilize valid optimality equations but then will violate one of the basic assumptions (finite S)

that guarantees the convergence of the DP operator to the optimal value function. Therefore

the convergence properties of DP are effectively destroyed.

To axiomatically marry discounting and risk sensitivity (time-risk preference), we need

to introduce a formalism which invites an exponential multi stage utility function [56]. In

fact this is the only meaningful choice for multi period utilities, since the inverse of a single

stage exponential utility is a logarithmic function and represents the single stage Certainty

Equivalence (Section 2.6). This logarithmic function can be additive over multi stages and

142

because of that it yields a form of recursive DP equations as shown explicitly in (Howard

and Matheson [93].

In this chapter, the practical implementation of the exponential utility function will be

used as a measure of comparison for the proposed single stage utility. An exponential form

of multi-period utilities is:

UM (W) =

ξW , ξ > 1 (Risk Takers)

−ξW , 0 < ξ < 1 (Risk Averse)

W is the wealth level corresponding to a reward stream produced by a given policy over a

given horizon.

An excellent treatment concerning the properties of these utilities, a complete literature

review, as well as their application to realistic applications is given in Liu’s [14] thesis.

What follows is a brief historic review of how the multi-period exponential functions

were used within finite and infinite MDP’s. The finite horizon problem using multistage

exponential utilities was first formulated in (Howard and Matheson [93]). They studied how

to find optimal policies in the class of Markovian Determinisitic policies for finite horizon

problems, and obtained the system of optimality equations, which have a unique solution.

Mainly, they used the property that the inverse of a single stage exponential function,

which is a logarithic function is additive over the stages. Based on the derived optimality

equations, they showed that the finite horizon problems can be solved using a backward

induction procedure.

One of the first that maximized the multistage expected exponential utility of total

discounted rewards over an infinite horizon was Jaquette [94]. Similarly, Chung and So-

bel [12] studied this objective for risk-averse agents and finite models with nonnegative

rewards and obtained a system of optimality equations. The derived system of equations

also appears in Coraluppi and Marcus Avila-Godoy [47] proved the correctness of the sys-

tem of these optimality equations for multistage exponential utilities for all types policies

(randomized+deterministic). Those equations will be used along this chapter.

143

6.3.3.1 Optimality Equations Of The Multi period Exponential Utility Functions And
Properties

The optimality equations for GDMDP’s with non positive rewards differ for exponential

utilities as shown in Avila-Godoy [47] are displayed below:

J i+1
M (st, ξ) = maxαt∈A

∑
st+1∈S Pr(st+1|st, αt)ξf(st+1|st,αt)J i

Inter(st+1), s ∈ S \G
JM (st, ξ) = signlnξ, s ∈ G

(77)

, where the sign function is a mathematical function that extracts the sign of a real number.

It is defined as follows:

sign(x) =

1, x > 0

0, x = 0

−1, x < 0

These optimality equations coincide for discounted and undiscounted problems. The

term
∑

st+1∈S Pr(st+1|st, αt)ξf(st+1|st,αt) represents the so called pseudo probabilities since

they do not necessarily sum to one. More details about the interpretation of the pseudo-

probabilities in a discounted or undiscounted setting can be found in Liu [14].

This section summarizes important properties about the class of exponential functions:

• Why does ξ < (>)1 signify risk averse (seeking) behavior ? Let i = signlnξ, then

UM (f) = iξw. The risk measure [14] for this function is:

RM (W) =
U
′′
M (W)

U
′
M (W)

= −logξ

When ξ > 1, the utility function is convex and RM (W) < 0, indicating the agent is

risk-seeking. While when 0 < ξ < 1, the utility function is concave and RM (W) > 0,

indicating the agent is risk-averse.

Varying the parameter ξ and solving the DP recursion, we will be able to solve for

different decision maker attitudes towards risk.

144

• The main problem with UM is that the value function may or may not exist. In

practise, the conditions needed to ensure optimality are finite state and action space.

Moreover, the value iteration converges to the optimal values starting from an initial

value function where for all states i ≥ J0
M (st) ≥ J∗M (st) Avila-Godoy. [47].

6.4 The Source Of Deviation Between The Summation Of
The Single Stage Mean-CVaR Utility Vs The Exact
Multi-stage Mean-CVaR Utility

The purpose of this section is to evaluate the summation of the single stage linear mean-

CVaR utility against the exact multi-period mean-CVaR utility on two single stage but

multi-step problems

This evaluation will induce useful intuition about the weighting factors on the statistics

involved to the optimization problem.

6.4.1 Problem Statement 1

The problem statement is the following. Assume that the system can move only along a

deterministic trajectory and for each time t the system is realizing a discounted reward from

the same normal distribution γtft ∼ N(γtµ, (γtσ)2).

What follows is the analytic evaluation of the proposed single period mean-CVaR utility

summed over an infinite horizon. The following equalities:
∑∞

t=0 γt = 1
1−γ and

∑∞
t=0(γ

t)2 =

1
1−γ2 , where γ < 1 are used in deriving the following results.

∞∑

t=0

γt(λ1E(ft) + (1− λ1)CV aRη(ft)) =
∞∑

t=0

γt(λ1µ + (1− λ1)(µ− g(η)σI)

=
1

1− γ
(λ1µ + (1− λ1)(µ− g(η)σI)

=
1

1− γ
µ− (1− λ1)

1− γ
g(η)σI

(78)

What follows next is the analytic evaluation of the exact multi period mean-CVaR utility

on the same problem over an infinite horizon. To perform this evaluation, we note that the

145

infinite discounted summation of the functions ft result to the following normal multistage

distribution D.

D =
∞∑

t=0

γtft ∼ N

(
1

1− γ
µ,

σ2

1− γ2

)

Therefore the multi-stage mean-CV aRη tradeoff becomes:

λ∗E(D) + (1− λ∗)CV aRη(D) = λ∗
1

1− γ
µ− (1− λ∗)

(
1

1− γ
µ + g(η)(

√
1

1− γ2
σI

)

=
1

1− γ
µ− (1− λ∗)g(η)

√
1

1− γ2
σI

(79)

For this simple problem, these two objectives evaluate the same policy in the following

manner: they put an equal weight 1
1−γ on the expected mean, but the main difference lies

in the weight assigned to the standard deviation of the semi-variance σ2
I .

• The summation of the single period discounted mean-CV aRη assigns the functional

weight W1(λ1, γ, η) = 1−λ1
1−γ g(η) to the standard deviation of the semi-variance σ2

I : .

• The multi period discounted mean-CVaR formulation assigns the following func-

tional form of weight W2(λ∗, γ, η) to the standard deviation of the semi-variance σ2
I :

W2(λ∗, γ, η) = (1− λ∗)g(η)
√

1
1−γ2 .

• Those two approaches would result into the same this policy if and only if W1(λ1, γ, η) =

W2(λ∗, γ, η). From this, we can derive the following equivalence relationship:

λ1 = 1− (1− λ∗)(1− γ)
√

1
1− γ2

If the problem is multi stage (0 < γ < 1) and not myopic (γ = 0) then:

– λ∗ = 0 =⇒ λ1 = 1− (1− γ)
√

1
1−γ2 .

For γ = 0.1 and λ∗ = 0 then λ1 = 0.0955

For γ = 0.5 and λ∗ = 0 then λ1 = 0.4226

For γ = 0.99 and λ∗ = 0 then λ1 = 0.9291

For γ = 0.999 and λ∗ = 0 then λ1 = 0.9776.

– λ∗ = 1 =⇒ λ1 = 1

146

– 0 < λ∗ < 1 =⇒ 1− (1− γ)
√

1
1−γ2 < λ1 < 1

Therefore, for this simple problem, for any (γ, λ∗), there is a λ1 used at the

summation of the single stage mean-CV aRη that evaluates the same as the multi

stage mean - CV aRη.

Otherwise, if the problem is myopic λ∗ = λ1.

• The corresponding surfaces to the weight functions W1(λ1, γ, η) and W2(λ∗, γ, η) are

illustrated in Figure 39. We observe that, when the range of the risk averse para-

meters λ1,λ∗ is closer to one and also the discount factor is greater than 0.8, then

the summation of the single period discounted mean-CVaR utility functions results

in a better approximation of the weight prescribed by the multi period discounted

mean-CVaR utility than if λ1,λ∗ is closer to zero. In fact when the risk averse λ1,λ∗

is closer to 0, we notice a large discrepancy between the two surfaces that prescribe

the corresponding weights. In this case for this simple problem, we realize that our

proposed utility (Section 6.2) assigns a severe weight on minimizing the σA,I . The

derived policy is not expected to correspond to a meaningful solution with respect

to the multi period mean-CV aR efficient frontier. If fact if λ1 is set close to 0 and

γ > 0.8, given our previous discussion there is no hope that the proposed objective

will evaluate the same as one solution belonging to the efficient frontier of the exact

multi stage mean-CV aR.

147

00.20.40.60.810 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Risk Averse ParameterRisk Averse ParameterRisk Averse Parameter
Discount Factor

W
ei

gh
ts

 O
n

S
em

i−
S

ta
nd

ar
d

D
ev

ia
tio

n

Single period Mean−CVaR Evaluation
Multi period Mean−CVaR Evaluation

Figure 39: We demonstrate the difference in the weighting of the semi-standard deviation,
when evaluating the discounted multistage mean-CVaR trade-off on the entire distribution
against the summation of the discounted single period utility (Eq.78-79).

148

6.4.2 Problem Statement 2

First, assume that the system can move only along a deterministic trajectory. For the first

νA time periods the system realizes a discounted reward from the following normal distrib-

ution γtgA,t ∼ N(γtµA, (γtσA)2), then for the following νB time periods the system realizes

an discounted reward from the following normal distribution γtgB,t ∼ N(γtµB, (γtσB)2).

The evaluation of the summation of the single stage mean-CVaRη for a specific choice

of η when applied to this problem follows:

νA−1∑

t=0

γt(λ1E(gA,t) + (1− λ1)CV aRη(gA,t)) =
νA−1∑

t=0

γt(λ1µA + (1− λ1)(µA − g(η)σA,I)

=
νA−1∑

t=0

γt(λ1µA + (1− λ1)(µA − g(η)σA,I)

=
(νA−1∑

t=0

γt
)
µA −

(νA−1∑

t=0

γt
)
(1− λ1)g(η)σA,I

(80)

νA+νB∑
t=νA

γt(λ1E(gB,t) + (1− λ1)CV aRη(gB,t)) =
νA+νB∑
t=νA

γtνB(λ1µB + (1− λ1)(µB − g(η)σB,I)

=
νA+νB∑
t=νA

γt(λ1µB + (1− λ1)(µB − g(η)σB,I)

=
(νA+νB∑

t=νA

γt
)
µB −

(νA+νB∑
t=νA

γt
)
(1− λ1)g(η)σB,I

(81)

νA−1∑

t=0

γt(λ1E(gA,t) + (1− λ1)CV aRη(gA,t)) +
νA+νB∑
t=νA

γt(λ1E(gB,t) + (1− λ1)CV aRη(gB,t))

=
(νA−1∑

t=0

γt
)
µA −

(νA−1∑

t=0

γt
)
(1− λ1)g(η)σA,I +

(νA+νB∑
t=νA

γt
)
µB −

(νA+νB∑
t=νA

γt
)
(1− λ1)g(η)σB,I

=
(νA−1∑

t=0

γt
)
µA +

(νA+νB∑
t=νA

γt
)
µB − (1− λ1)g(η)(

(νA−1∑

t=0

γt
)
σA,I +

(νA+νB∑
t=νA

γt
)
σB,I)

(82)

Next, we will evaluate the multi stage mean - CVaRη distribution D and will compare it

149

against Eq.(82).

D = γ0gA,0 + γ1gA,1 + ... + γνAgA,νA
+ ... + γνA+1gB,νA+1 + ... + γνA+νBgB,νA+νB

= (
(νA−1∑

t=0

γt
)
µA +

(νA+νB∑
t=νA

γt
)
µB, ((

(νA−1∑

t=0

γt
)
σA)2 + (

(νA+νB∑
t=νA

γt
)
σB)2)

(83)

If we set M1 =
(∑νA−1

t=0 γt
)
µA +

(∑νA+νB
t=νA

γt
)
µB and

M2 = (
(∑νA−1

t=0 γt
)
σA,I)2 + (

(∑νA+νB
t=νA

γt
)
σB,I)2, then the multi-stage evaluation for a risk

averse parameter λ∗ and a confidence interval η becomes:

λ∗E(D) + (1− λ∗)CV aRη(D) = λ∗M1 + (1− λ∗)(M1 − g(η)
√

M2)

= M1 − (1− λ∗)g(η)
√

M2

(84)

One can observe that the two evaluated approaches put an equal weight on the expected

mean. The main difference lies in the weights assigned to the standard deviation of the

semi-variances σA,I and σB,I .

From Eq.(82) and Eq.(84), we can derive an analytic expression for which

λ1 = f(λ∗, γ, σI,A, σI,B). The expression follows:

λ1 = 1− (1− λ∗)

√
(
(∑νA−1

t=0 γt
)
σA,I)2 + (

(∑νA+νB
t=νA

γt
)
σB,I)2(∑νA−1

t=0 γt
)
σA,I +

(∑νA+νB
t=νA

γt
)
σB,I

(85)

In the limiting case, where the system realizes rewards for νA = k1 time periods and
∑k1

t=0 γt = 1
1−γ and

∑k1
t=0(γ

t)2 = 1
1−γ2 , then Eq.(85) is the same with the result from the

previous section:

λ1 = 1− (1− λ∗)

√
1

1−γ2 σ2
A,I

1
1−γ σA,I

λ1 = 1− (1− λ∗)(1− γ)
√

1
1− γ2

(86)

If we set λ∗=0 at Eq.(85) then:

150

λ1 = 1−

√
(
(∑νA−1

t=0 γt
)
σA,I)2 + (

(∑νA+νB
t=νA

γt
)
σB,I)2(∑νA−1

t=0 γt
)
σA,I +

(∑νA+νB
t=νA

γt
)
σB,I

(87)

Let’s denote with ν ′A =
∑νA

t=0 γt and ν ′B =
∑νA+νB

t=νA
γt. Assuming that the following

statement is true, if we end up in a true statement then our initial assumption will be true:

√
(ν′AσA,I)2

2 + (ν′BσB,I)2

2

ν ′AσA,I + ν ′BσB,I
< 1

√
(ν ′AσA,I)2

2
+

(ν ′BσB,I)2

2
) < ν ′AσA,I + ν ′BσB,I

(ν ′AσA,I)2

2
+

(ν ′BσB,I)2

2
) < (ν ′AσA,I + ν ′BσB,I)2

(ν ′AσA,I)2

2
+

(ν ′BσB,I)2

2
) < (ν ′AσA,I)2 + (ν ′BσB,I)2 + 2ν ′Aν ′BσA,IσB,I

0 < (
(ν ′AσA,I)2

2
+

(ν ′BσB,I)2

2
) + 2ν ′Aν ′BσA,IσB,I

The last statement is true since ν ′A, ν ′B, σA,I , σB,I > 0. That means that for this simple

problem, if λ∗ = 0 then the summation of these linear mean-CVaRη utilities will yield the

same evaluation as the multi stage mean CV aRη if and only if 0 < λ1 < 1.

As explained before to quantify, how close to 1 should the λ1 parameter be in order to

yield the same evaluation with λ∗ = 0 is a problem specific task. Trivially, λ∗ = λ1 = 1 also

yields the same evaluation, which is a risk neutral evaluation. By performing this analysis

one can identify the range of λ1 that one can use linear mean-CV aR functions and still

produce meaningful policies that belong to the multi stage mean-CV aR efficient frontier.

Without loss of generality such analysis can be carried over to the undiscounted version of

this problem.

Based on these intuitive conclusions, we will propose a general procedure that utilizes

linear intra-period mean-CVaR utilities and targets to approximate the multi-stage mean-

CVaR efficient frontier.

151

6.4.3 Problem Statement 3

This problem statement evaluates the two pre-mentioned objectives on a time correlated

stage-wise profit function, which is expressed via: f(t + 1) = ψf(t) + (1 − ψ)w(t), where

w(t) is an i.i.d. sequence. The assumptions needed to derive similar analytical results as in

problem statements 1,2 are: 1) f(0) ∼ N(µ, σ2) and 2) w(t) ∼ N(µ, σ2).

The main difference between this problem statement and the ones appeared previously

is the time correlation aspect. At time period t = 0, we will be drawing a sample from

the normal distribution f(0), which is going to propagate given the dynamic equation

f(t + 1) = ψf(t) + (1− ψ)w(t).

If ψ = 1 that means that the sample drawn at time t = 0 will be propagated via the

dynamic equation until the end of the horizon which is k steps f(0) = f(1) = f(2) = f(3) =

... . For this case the exact multi-stage mean-CV aR objective and its proposed surrogate

objective coincide.

If ψ = 0 the problem statement 3 coincides with the problem statement 1. To facilitate

the discussion we analytically derive the distributions γ0f(0), γ1f(1), γ2f(2),

152

γ0f(0) ∼ N
(
µ, σ2

)

γ1f(1) = γ
(
ψf(0) + (1− ψ)w(1)

)

∼ N
(
(ψ + (1− ψ))γµ, (ψ2 + (1− ψ)2)(γσ)2

)

γ2f(2) = γ2
(
ψ2f(0) + ψ(1− ψ)w(1) + (1− ψ)w(2)

)

∼ N
(
(ψ2 + (1− ψ)(1 + ψ))γ2µ, (ψ4 + (1− ψ)2(1 + ψ2)(γ2σ)2

)

. . .

γkf(k) = γk
(
ψkf(k) + ψk−1(1− ψ)w(1) + ψk−2(1− ψ)w(2) + ... + (1− ψ)w(k)

)

∼ N
(
(ψk + (1− ψ)(1 + ψ + ψ2 + ... + ψk−1))γkµ,

(ψ2k + (1− ψ)2(1 + ψ2 + ψ4 + ... + ψ2k))(γkσ)2
)

. . .

. . .

What follows is the analytic evaluation of the exact multi period mean-CVaR utility for

∞ time steps. To perform this evaluation, we sum ∞ discounted normal distributions that

will consist the multistage distribution D =
∑∞

t=0 γtf(t).

D = γ0f(0) + γ1f(1) + γ2f(2) + ... + γkf(k)

= f(0) + γ(ψf(0) + (1− ψ)w(1)) + γ2(ψ2f(0) + ψ(1− ψ)w(1) + (1− ψ)w(2))

+... + γk(ψkf(k) + ψk−1(1− ψ)w(1) + ψk−2(1− ψ)w(2) + ... + (1− ψ)w(k)) + ...

=
1

1− γψ
f(0) +

(
γ

1− γψ
− γψ

1− γψ

)
w(1) +

(
γ2

1− γψ
− γ2ψ

1− γψ

)
w(2)

+... +
(

γk

1− γψ
− γkψ

1− γψ

)
w(k) + ...

The mean statistic of the multi-stage distribution µ(D) is derived as follows:

153

µ(D) =
(1

1− γψ
+

γ(1− ψ)
1− γψ

+
γ2(1− ψ)
1− γψ

+ ... +
γk(1− ψ)
1− γψ

+ ...
)
µ

=
1

1− γψ

(
1 + γ(1− ψ) + γ2(1− ψ) + ... + γk(1− ψ) + ...

)
µ

=
1

1− γψ

(
(1 + γ + γ2 + ... + γk + ...)− ψ(γ2 + γ3 + ... + γk + ...)

)
µ

=
1

1− γψ

(∞∑

t=0

γt − ψ
∞∑

t=1

γt
)
µ

=
1

1− γψ

(1
1− γ

− ψ(
γ

1− γ
)
)
µ

=
1

1− γψ

(1− γψ

1− γ
)
)
µ

=
1− ψγ

(1− γ)(1− ψγ)
µ

=
1

(1− γ)
µ

The variance of the multi-stage distribution V ar(D) is given by the following summation:

V ar(D) =

((
1

1− γψ

)2

+
(

γ(1− ψ)
1− γψ

)2

+
(

γ2(1− ψ)
1− γψ

)2

+ ... +
(

γk(1− ψ)
1− γψ

)2

+ ...

)
σ2

=
(

1 + (1− ψ)2(γ2 + γ4 + ... + γ2k) + ...

(1− γψ)2

)
σ2

=
(

1 + (1− ψ)2

(1− γψ)2
∑∞

t=1 γ2t.

)
σ2

=

1 + (1− ψ)2

(γ2

1−γ2

)

(1− γψ)2

σ2

For ψ = 0 → V ar(D) = 1
1−γ2 σ2, which is same as the variant expression derived for

problem statement 1. For ψ = 1 → V ar(D) = 1
(1−γ)2

σ2.

154

Therefore the multi-stage mean-CV aRη tradeoff becomes:

λ∗E(D) + (1− λ∗)CV aRη(D) = λ∗E(D) + (1− λ∗)(E(D)− g(η)

√
2V ar(D)

2
)

= E(D)− (1− λ∗)g(η)
√

2
2

√
V ar(D)

=
1

(1− γ)
µ− (1− λ∗)g(η)

√
2

2

√
V ar(D)

We next evaluate the sum of the proposed stage wise utility function over an infinite

horizon:

∞∑

t=0

γt(λ1E(ft) + (1− λ1)CV aRη(ft)) =
∞∑

t=0

γt(λ1E(f(t)) + (1− λ1)(E(f(t))− g(η)σI(f(t))

=
∞∑

t=0

γt(E(f(t))− (1− λ1)g(η)σI(f(t))

=
∞∑

t=0

γtE(f(t))− (1− λ1)g(η)
k∑

t=0

γtσI(f(t))

Since σI(f(t)) =
√

2
2 V ar(f(t)), we evaluate the expressions for V ar(f(t)) as follows

V ar(f(0)) = σ2

V ar(f(1)) = σ2
(
ψ2 + (1− ψ)2

)

V ar(f(2)) = σ2
(
ψ4 + (1− ψ)2(1 + ψ2)

)

. . .

V aR(f(k)) = σ2
(
ψ2k + (1− ψ)2(1 + ψ2 + ψ4 + ... + ψ(2k−1))

)

. . .

. . .

. . .

(88)

The evaluation
∑∞

t=0 γtE(f(t)) given the proposed objective coincides with µ(D) =

1
1−γ µ,∀γ, ψ

155

From Eq.(88), the evaluation of the (1− λ1)g(η)
∑∞

t=0 γtσI(f(t)) follows:

(1− λ1)g(η)
∞∑

t=0

γtσI(f(t)) = (1− λ1)g(η)
√

2
2

σ
(
1 + γ

(√
ψ2 + (1− ψ)2

)

+γ2
(√

ψ4 + (1− ψ)2(1 + ψ2)
)

+γ3
(√

ψ6 + (1− ψ)2(1 + ψ2) + ψ4
)

+ ... +

γk

(√
ψ2k + (1− ψ)2(1 + ψ2 + ψ4 + ... + ψ2(k−1))

)
+ ...

= (1− λ1)g(η)σ
√

2
2

Π1(γ, ψ)

, where Π1(γ, ψ) =
∑∞

l=0 γl
√

ψ2l + (1− ψ)2
∑l−1

i=0 ψ2i.

The mean statistic of the D distribution coincides with the mean statistic of the proposed

surrogate objective. In other words, these two objectives evaluate the same on the expected

mean, but the main difference lies in the weight assigned to the standard deviation.

Similar to problem statement 2, we can derive an analytic expression for which

λ1 = f(λ∗, γ, ψ). The expression follows:

λ1 = 1− (1− λ∗)
√

V ar(D)
Π1(γ, ψ)

If we set λ∗=0 at the previous expression then:

λ1 = 1−
√

V ar(D)
Π1(γ, ψ)

Trivially
√

V ar(D)

Π1(γ,ψ) > 0, since V ar(D) and Π1(γ, ψ) > 0.

Similar to the last 2 cases, we need to show that
√

V ar(D)

Π1(γ,ψ) < 1. This proof is in similar

spirit with the last two problems. By assuming that
√

V ar(D)

Π1(γ,ψ) < 1 is true, if we end up in a

true statement then our initial assumption will be true:

156

√
V ar(D)

Π1(γ, ψ)
< 1

√
V ar(D) < Π1(γ, ψ)

V ar(D) < Π1(γ, ψ)2

(89)

Eq.(89) can be validated analytically for any γ, ψ ∈ [0, 1]. Here, we display numerical

results as shown in Fig.40 that correlate the parameters λ∗ with λ1 for any γ, ψ. Given

this parameter correlation, for this problem statement, the summation of the single period

mean-CVaR results to an equivalent objective with the exact multistage mean - CVaR.

*

1

* Vs. 1 (For =0.99)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0

=0.2

=0.4

=0.6

=0.7

=0.8

=0.9

=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0

=0.1

=0.2

=0.3

=0.4

=0.5

=0.6

=0.7

=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0

=0.1

=0.2

=0.3

=0.4

=0.6

=0.7

=1

0 0.2 0 .4 0.6 0 .8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [0,1]

* Vs. 1 (For =0.95)

1

*

* Vs. 1 (For =0.9)

1

*

*

1

* Vs. 1 (For =0.5)

* Vs. 1 (For =0.2)

1

*

* Vs. 1 (For =0)

1

*

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0

=0.2

=0.4

=0.6

=0.7

=0.8

=0.9

=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

=0

=0.2

=0.4

=0.6

=0.7

=0.8

=0.9

=1

Figure 40: For problem statement 3, this figure demonstrates the correlation of the para-
meters λ∗ and λ1 that makes the proposed objective and the exact multistage mean - CVaR
equivalent for γ and ψ values.

157

6.5 A Proposed Algorithm That Approximates The Multi-
stage Mean-CVaR Efficient Frontier For GDMDP’s

The description of the proposed algorithm is tailored for GDMDP problems with a single

goal state. Nonetheless, one can generalize this approach and apply it to problems where

the cardinality of the set of goal states SG is more than one.

The necessary requirements for the solution of such problems are: a) the finiteness of the

state space S, b) a specified set of goal states SG, c) a finite action space A, d) a probability

space Ω with finite support and e) the assumption that the state space is a network of states

where each state can be reached from another state with positive probability.

Step 1: Pick a discount factor γ < 1.

Step 2: Solve via exact DP the problem using λ1 = 1.

• Test the derived policy for λ1 = 1, if it does not force the system to visit the goal

in a finite number of steps, then go back to step 1 and increase the value of γ.

• If the derived policy does force the system to visit the goal state, go to step 3.

Step 3: Decrease the risk averse parameter λ1 by 0.01 until λ1 = 0 and solve the exact DP.

Remember this parameter determines the weights between the single stage expected

mean and CV aRη for each state action pair

US(st, αt, λ1) = λ1E(ft(st, αt)) + (1− λ1)CV aRη(ft(st, αt))

• For each λ1, test the derived policy via Monte Carlo simulations. If you find a

λ1 that does not force the system to visit the goal in a finite number of steps,

then we have successfully determined the range of λ1’s for which this choice of

the discount factor allows you to get a valid policy that leads the system from

the start to the goal state.

• If we are not satisfied with the range of λ1’s that yield a valid policy, go to step 1

and increase the value of γ.

Step 4: Test all the policies derived for the choice of discount factor and the range of λ1’s

158

via Monte Carlo simulations. Derive the corresponding efficient frontier. If satisfied

exit algorithm.

• Up to this point, we should of have created an efficient frontier with at least 2

policies. One corresponding to λ1 = 1, which is a risk neutral policy. The other

policy may be the same for more than one values of λ1. If the second policy does

not belong to the efficient frontier, one should either go to step 1 and increase

the discount factor γ and simultaneously at step 3 decrease the increment 0.01

and repeat the entire procedure.

As seen in section 6.4, given our approach, if we decide to use a high value (e.g. 0.99)

for the discount factor, the range of the risk averse parameter λ1 that approximates the

exact multi stage mean-CVaR trade-off will be close to 1.

Determining the exact range of the λ1 parameter in a systematic manner is subject of

further research. Note, that the nature of the algorithm does not change for large scale

problems, one instead of using exact DP solutions will utilize ADP solutions.

6.5.1 Motivation Of Our Numerical Studies

The motivation of our numerical experiments is to study the mean-CVaR pareto efficiency

in multi-stage problems by applying our proposed approach. Moreover, we will demonstrate

the proposed approach within the ADP framework as presented at the previous chapter.

6.6 Deriving Efficient Frontier Solutions Using The Pro-
posed Approach On Shortest Path Instances With De-
terministic Transitions

At this section we focus on deriving pareto optimal solutions on a 77 and 900 discrete state

space shortest path examples with deterministic transitions.

In these numerical experiments, we tested two types of single period utilities which are:

a) the discounted summation of single stage mean-variance Langragian utilities, b) the

discounted summation of single stage mean-conditional value at risk Langragian utilities.

We also tested a multi period utility chosen from the class of the exponential functions.

159

6.6.1 Shortest Path With 77 Discrete States: Problem Description

We will be addressing shortest path problems a common objective is to minimize the ex-

pected cost along with the expected cost associated with the η×100% worst cases. (Usually,

for cost distributions η is set to 0.95 and not to 0.05 as assigned for profit distributions).

By assuming that each reward is a negative quantity except from the ones generated when

the system is at goal state which is zero, our formulation is equivalent to minimizing the

expected cost with positive costs and the CV aRη with respect to a cost distribution. For

the next sections, we adopt the definition that CV aRη represents the expected cost associ-

ated with the 5% of the worst cases. In Rockafellar and Uryasef [50], the authors formally

define CV aRη over a cost distribution.

Therefore for the rest of the chapter, we apply CV aRη on a myopic conditional cost

distribution f(st+1|st, αt) as a mean to generate policies and on the summation of a stream of

rewards as a mean to evaluate this multi stage risk measure. Assuming that f(st+1|st, αt) ∼
N(µ, σ) the CV aRηf(st+1|st, αt) is quantified by

CV aRη(f(st+1|st, αt)) = µ + g(η)σ

, where g(η) =
√

2 exp(erf(2η − 1)2)−1(1− η)−1 and µ, σ ≥ 0.

The cost structure of the problem of interest appears in Fig.41. The state space of this

problem can be effectively described by a one dimensional vector, since we can enumerate

all the positions at the x-y plane. For instance the position on the graph (0, 0) is numbered

as state 1, the position (0, 1) is numbered as state 2 ,..., the position (0, 6) is numbered

as state 7, the position (1, 0) is numbered as state 8,...,the position (10, 6) is numbered as

state 77. The action space includes moves only to neighboring positions (excluding those

reachable via diagonal moves). The system moves with probability 1 in the corresponding

direction. Specifically the starting state is the position (0, 0), while the end state is the

position (10, 6). One incurs a normally distributed cost g(st) ∼ N(µst , σst) based on the

state visited. Our goal is to find the path from (0,0) to (10,6), that not only minimizes

the expected cost but also minimizes the expected cost associated with the 5× 100% worst

cases.

160

6.6.2 Applying The Approach Using As Single period Utilities: A) The Mean-
CVaR Function B) The Mean-Variance Function

Here, we denote the risk averse parameter with respect to the single period mean-CVaR

(mean-VaR) as λ1(λ2). What follows is the application of the proposed approach to this

instance, when we adopt the single period mean-CVaR trade-off:

Step 1: Pick γ = 0.99.

Step 2: We use λ1 = 1 and solve the exact DP .

• It lead the system to the goal in a finite number of steps.

Step 3: Decrease the risk averse parameter λ1 by 0.01 until λ1 = 0 and solve the exact DP.

Remember this parameter determines the weights between the single stage expected

cost and the risk measure CV aRη for each state action pair

US(st, αt, λ1) = λ1E(ft(st+1|st, αt)) + (1− λ1)CV aRη(ft(st+1|st, αt)) . The η used is

0.95.

• The range of λ1 for which we can recover valid policies is λ1 = [0, 1].

Step 4: We test the derived policies with Monte Carlo simulations. The cumulative results-

efficient frontier solutions for this single stage problem appear at Table 18. We are

satisfied with the resulting efficient frontier and we exit the algorithm.

From Table 18, we observe that the summation of the mean-CVaR or the mean-VaR

Langragian single period objectives yield the same spectrum of solutions.

6.6.2.1 Evaluating The Objectives:A) E
[∑

t CV aR0.95(US(st, αt, λ1)
]

B) E
[
CV aR0.95(

∑
t(US(st, αt, λ1))

]

In Fig.42, we display the optimal trajectories for λ1 = 1,λ1 = 0.95,λ1 = 0.

For λ1 = 1, the solution corresponds to the minimum expected cost (E
[∑

t(US(st, αt, λ1 =

1))
]
=269) and to a corresponding multistage CV aR0.95 measure, which is

E
[
CV aR0.95(

∑
t US(st, αt, λ1 = 1))

]
=352.

161

0 2 4 6 8 10
0

1

2

3

4

5

6

y-axis

x-axis

f~ (20,0)*

f~ (18,42)

f~ (18,82)

f~ (17.5,162)

f~ (15,202)

1=1

f =20*

f=18.41

f=18.82

f=19.15

f=17.06

1=0.95

f =20*

f=26.25

f=34.5

f=50.5

f=56.25

1=0

� 1=0.95 visits
� 10 states

� 2 states

� Total Cost = 13* (18,42) +2*
(20,0)=N(274,208)

� CVaR0.95=304.66

� 1=0 visits
� 7 states

� 8 states

� Total Cost = 7* (18,42)
+8* (20,0)=N(286,112)

� CVaR0.95=307.8

*

*

Figure 41: Schematic illustration of the cost structure of the one dimensional shortest
path problem with the 77 discrete states. We display the optimal routes for λ1 = 0, λ1 =
0.95, λ1 = 1 and show explicitly why minimizing the summation of individual CV aR will
not necessarily minimize the multistage CV aR.

In Table 18, we observe that the policy which yields the minimum multistage CV aR0.95

measure corresponds to a range of λ1 values which is λ1 = [0.75, 0.95] and not to λ1 = 0.

This comes in agreement with the intuition provided by our analytical results as shown in

section 6.4.

To validate the correctness of this result, we form Tables 19,20, where we evaluate that

the corresponding solutions for λ1 = 0.95 and λ1 = 0 are optimal with respect to the

transformed, for λ1 = 0.95 and λ1 = 0, cost structure.

From Table 18 and Table 20, we can quantify that the policy produced when minimizing

E
[∑

t(US(st, αt, λ1 = 0))
]

will not necessary minimize E
[
CV aR0.95

∑
t(US(st, αt, λ1 = 0))

]
.

From these results, we can conclude that minimizing the summation of single stage

conditional value at risk costs is not equivalent with minimizing the conditional value at

risk of the summation of single stage costs. This agrees with our analytical results, since the

generated solutions for λ1 = 0 apparently do not belong to the multistage efficient frontier.

162

Table 18: For this shortest path problem with the deterministic transitions (p = 1) this
table demonstrates: the statistics that correspond to the policies derived from the paramet-
ric summation of the single stage mean-CVaR and single stage mean-Variance tradeoff. For
each policy we demonstrate its mean µ and the evaluation of the multi stage risk measures
(σ,CV aR0.95,V aR0.95) associated with it.

Risk Averse Parameter µ σ V aR0.95 CV aR0.95

λ1 ∈ [0.98 - 1] - λ2 = [0.97 - 1] 269 ± 1.2 40.5 ± 0.8 335.3 ± 4.5 352 ± 5.6
λ1= [0.96 - 0.97] - λ2 = [0.93 - 0.96] 270 ± 1 34.1 ± 0.8 326.1 ± 2.1 340.4 ± 2.5
λ1= [0.76 - 0.95] - λ2 = [0.67 - 0.92] 274 ± 0.5 14.4 ± 0.4 297.6 ± 1 303.7 ± 1.1

λ1= [0 - 0.75] - λ2 = [0.1 - 0.66] 286 ± 0.3 10.6 ± 0.2 303.3 ± 0.7 307.7 ± 0.9

Table 19: Given the transformed shortest path problem with the deterministic transi-
tions (p = 1), where the myopic cost is described by (US(st, αt, λ1 = 0.95)) = 0.95µst +
0.05CV aR0.95f(st, αt). This table demonstrates the expected performance of each pro-
duced policy for λ1 = 1,λ1 = 0.95,λ1 = 0 evaluated at the corresponding objective:
E

[∑
t(US(st, αt, λ1 = 0.95))

]
.

Policies with respect to E
[∑

t(US(st, αt, λ1 = 0.95))
]

the original cost structure
corresponding to

λ1 = 1 281.79
λ1 = 0.95 279.36
λ1 = 0 343.76

Table 20: Given the transformed shortest path problem with the deterministic transitions
(p = 1), where the myopic cost is described by (US(st, αt, λ1 = 0)) = CV aR0.95f(st, αt).
This table demonstrates the expected performance of each produced policy for λ1 = 1,λ1 =
0.95,λ1 = 0 evaluated at the corresponding objective: E

[∑
t(US(st, αt, λ1 = 0))

]
.

Solutions from the E
[∑

t(US(st, αt, λ1 = 0))
]

Original Cost Matrix
corresponding to

λ1 = 1 524.77
λ1 = 0.95 381.26
λ1 = 0 343.76

163

0 2 4 6 8 10 12
1

2

3

4

5

6

7

x-axis

y
-a
x
is

1=1

1=0.95

1=0

Figure 42: Schematic illustration of the optimal solutions for λ1 = 1,λ1 = 0.95,λ1 = 0.

6.6.3 Applying The Multi stage Exponential Utility On The Shortest Path
Problem

In order to use the the exponential utility to derive risk averse solution, we need to transform

the non-positive rewards to the corresponding utilities and then pick a risk averse parameter

0 < ξ < 1.

Theorem 6.2.2.a of Putterman [11] provides the basis for a primal linear programming

formulation. The LP formulation for the exponential inter-period utility is the following:

Minimize
∑

st∈S b(st)JM (st)

s.t. JM (st)−
∑

st+1∈S P (ss+1|st, αt)ξf(st+1|st,αt)JM (st+1) ≥ 0, ∀st ∈ S,∀αt ∈ A
(90)

where the b(st) arbitrary positive coefficients that must sum to 1:
∑

st∈S b(st) = 1.

For the above problem, the constraints form a coefficient matrix A. The condition num-

ber of the tall matrix A (308 rows and 77 columns) as a function of the risk parameter ξ is

displayed at Fig.43. Briefly, the condition number is a measure of stability or sensitivity of a

matrix (or the linear system it represents) to numerical operations. In other words, we may

not be able to trust the results(inverse) of an ill-conditioned matrix. In this case as ξ → 0

164

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

4

ξ

C
on

di
tio

n
N

um
be

r

f
f=f/20

Figure 43: Solving the optimality equations for the 77 discrete state shortest path prob-
lem when using the multi period utility. This plot shows the condition number of the
corresponding linear program as a function of the parameter ξ.

the condition number increases exponentially. Only matrices with condition numbers near

1 are said to be well-conditioned. A simple way to fix the condition number is to normalize

the A matrix by multiplying all the rewards by 1/20 (Fig.43), but then one changes the

nature of the problem.

Its obvious that because of the condition number this multi period utility can yield

meaningful solutions only for certain values of ξ’s. This inter-period utility can reveal only

two meaningful policies for this problem for ξ’s ranging from 0.75 to 1. The retrieved policies

match the first two policies as shown in Table 18. This approach is unable to construct the

other two policies.

In summary, this result for this seemingly easy problem indicates that the usage of

multi period exponential utilities is numerically unstable and cannot yield the full available

spectrum of risk averse policies.

165

6.6.4 Deriving Efficient Frontier Solutions On 900 Discrete State Shortest Path
With Deterministic Transitions

The cost data for this instance are available for download from the following website

http://www.chbe.gatech.edu/lee/members /npratikakis.shtml. These data are in the form

of matlab files. We also illustrate the data in Fig.44.

In order to capture correctly the time-risk tradeoff in a given GDMDP we need to set

wisely the discount factor. For this problem we set γ to be 0.995. This determines that the

optimal value function will account for 200 future moves.

What follows is the application of our approach to this problem.

Step 1: Pick γ = 0.995.

Step 2: We solve the exact DP using λ1 = 1.

• The produced policy leads the system to the goal in a finite number of steps.

Step 3: Decrease the risk averse parameter λ1 by 0.01 until λ1 = 0 and solve the exact

DP.

• The range of λ1 for which we can recover valid policies is λ1 = [0.93, 1].

Step 4: Using Monte carlo simulation, we verify that this range of λ1 creates 3 policies that

belong to the multistage mean-CVaR efficient frontier. The most risk averse policy is

the one, which corresponds to the least multistage CV aRη. This policy is produced

when λ1 = 0.98.

In order to create additional policies we would need to go go to step 1 and increase

the discount factor γ and simultaneously at step 3 and manipulate the increment

0.01. Here, we let γ unchanged but we do manipulate the increment of change for

the λ1 parameter from 0.01 to 0.001. For λ1 = 0.998, we retrieve the policy with the

characteristics as shown in Table 21.

Step 5: Hence, we have derived 4 policies that belong to the multistage mean-CVaR effi-

cient frontier and we exit the algorithm.

166

Table 21: For this shortest path problem with the deterministic transitions (p = 1) this
table demonstrates: the statistics that correspond to the policies derived from the para-
metric summation of the single stage mean-CVaR tradeoff. For each policy we demonstrate
its mean µ and the evaluation of the multi stage risk measures (σ,CV aR0.95,V aR0.95)
associated with it.

Risk Averse µ σ V aR0.95 CV aR0.95 Steps To
Parameter Reach Goal

λ1 = 1 144 ± 22 724 ± 16 1,334 ± 42 1,635 ± 55 62
λ1 = 0.998 159 ± 11 307 ± 6 668 ± 17 796 ± 19 58
λ1 = 0.99 160 ± 9 280 ± 6 613 ± 16 734 ± 21 58

λ1 = [0.93, 0.98] 161 ± 8 258 ± 5 583 ± 16 692 ± 17 58

Note, that the mean values for the policies derived when: a) λ1 = 0.99, b) λ1 = 0.998,

c) λ1 = 0.99, and d) λ1 = 0.98 are very close. In this application, we optimize mostly with

respect to the variance.

If the multi period exponential utility is applied, we generate only a single policy which

does not belong to the efficient frontier. Briefly, the characteristics of that policy are: a) Its

mean is 237± 14.35, b) its multistage variance is 434± 10.13, c) its multistage conditional

value at risk 1, 182± 50.

167

0 50 100 150 200 250
1

2

3

4

5

6

7

8

9

State
200 250 300 350 400 450
1

2

3

4

5

6

7

8

9

State

M
ea

n
C

os
t I

nc
ur

re
d

450 500 550 600 650 700
1

2

3

4

5

6

7

8

9

State
650 700 750 800 850 900
0

1

2

3

4

5

6

7

8

9

State

M
ea

n
C

os
t I

nc
ur

re
d

(a) We display the mean of each normal distribution that corresponds to the ex-
pected single stage cost incurred when visiting a particular state at a 30x30 Grid
(900 discrete state example).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

State

V
ar

ia
nc

e
O

f I
nc

ur
re

d
C

os
t

200 250 300 350 400 450
0

20

40

60

80

100

120

140

160

180

State

V
ar

ia
nc

e
O

f I
nc

ur
re

d
C

os
t

450 500 550 600 650 700
0

50

100

150

State

V
ar

ia
nc

e
O

f I
nc

ur
re

d
C

os
t

650 700 750 800 850 900
0

20

40

60

80

100

120

140

160

State

V
ar

ia
nc

e
O

f I
nc

ur
re

d
C

os
t

(b) We display the variance of each normal distribution that corresponds to the expected
single stage cost incurred when visiting a particular state at a 30x30 Grid (900 discrete
state example).

Figure 44: Illustration of cost data for the 900 discrete state stochastic shortest path
problem.

168

In summary, to optimize the time-risk tradeoff in GDMDP’s, the horizon effect can be

captured by the proper choice of the discount factor and the risk effect by the proper choice

of the risk averse parameter λ1.

6.7 Approximating The Multi-stage Mean-CVaR Efficient
Frontier Using The Proposed Approach

In this section, we will address the same problems as the ones shown in the previous sec-

tion with the additional complexity of the probabilistic transition rules. In the following

problems, the system transitions with probability p in the corresponding action direction

and with probability (1-p)/3 in a different direction.

We will derive results for the 77 discrete state space problem using both single period

and multi period exponential utilities, when p={0.9,0.8}. We will also apply our approach

on the 900 discrete state space problem for p={0.8}.

6.7.1 Applying The Approach On A 77 Discrete State Shortest Path With
Probabilistic Transitions

Here, we delineate the proposed approach for p = 0.9 and p = 0.8 .

Step 1: Pick γ = 0.99.

Step 2: We solve the exact DP using λ = 1.

• The produced policy does lead the system to the goal state in a finite number of

steps.

Step 3: Decrease the risk averse parameter λ1 by 0.01 until λ1 = 0 and solve for each λ1

the exact DP.

• The range of λ1 for which we can recover valid policies is λ1 = [0, 1]

Step 4: Each produced policy is tested via Monte Carlo simulations. The cumulative

results-solutions for these multi stage problem appear in Figure 45 and 46.

169

(1)

(1)

(1)

Figure 45: For this multistage shortest path problem with the probabilistic transitions(p =
0.9) this figure demonstrates: the performance and the corresponding multistage risk mea-
sures given the policies derived from DP, if we set as objective the parametric summation
of the single stage mean-CVaR tradeoff (the risk averse parameter ranges from 0 to 1).

170

(1)

(1)

(1)

Figure 46: For this multistage shortest path problem with the probabilistic transitions(p =
0.8) this figure demonstrates: the performance and the corresponding multistage risk mea-
sures given the policies derived from DP, if we set as objective the parametric summation
of the single stage mean-CVaR tradeoff (the risk averse parameter ranges from 0 to 1).

171

Table 22: Given this multi stage problem with the probabilistic transitions (p = 0.9),
this table demonstrates the expected performance of each DP solution, when for each state
the myopic cost is transformed by US(st, αt, λ1) = λ1µ(st) + (1 − λ1)CV aR0.95(f(st)).
We evaluated the DP policies for λ1 = 11,λ1 = 0.89,λ1 = 0, on the following objective
E

[∑
t(US(st, αtλ1 = 0.89))

]
.

Policies with respect to E
[∑

t(US(st, αt, λ1 = 0.89))
]

the original cost structure
corresponding to

λ1 = 1 344.15
λ1 = 0.89 329.06
λ1 = 0 399.77

• The following results correspond to the 77 discrete state space problem with proba-

bilistic transitions p = 0.9.

Each of the points on Figures 45,46 represent the statistics of a derived policy, which is

evaluated 100 times via 10,000 Monte Carlo simulations, in order to derive numerical

error bounds. Each of these simulation starts from the starting state (0,0) and ends

at the goal state (10,6).

For λ1 = 1, the solution corresponds to the minimum expected cost

(E
[∑

t US(st, αt, λ1 = 1)
]
=311.3) and to a corresponding multistage CV aR0.95 mea-

sure, which is E
[
CV aR0.95(

∑
t US(st, αt, λ1 = 1)

]
=450.19.

In Fig. 45, we observe that the policy which yields the minimum multistage CV aR0.95

measure corresponds to λ1 = 0.89 and not to λ1 = 0. This is in correspondence with

our theoretical analysis.

To validate the correctness of this result for p = 0.9, we form Table 22 and Table

23, where we evaluate that the corresponding solutions for λ1 = 0.89 and λ1 = 0 are

optimal with respect to the transformed, for λ1 = 0.89 and λ1 = 0, cost structure.

From Fig.45 and Table 22, we can quantify that the policy instructed by λ1 = 0

that minimizes E
[∑

t US(st, αt, λ1 = 0)
]

will not necessarily be the same policy that

minimizes E
[
CV aR0.95

∑
t US(st, αt, λ1)

]
.

172

Table 23: Given this multi stage problem (p = 0.9), this table demonstrates the expected
performance of each DP solution, when for each state the myopic cost is transformed by
ft(st, λ1) = λ1µ(st) + (1− λ1)CV aR0.95(f(st)). We evaluated the DP policies λ = 11,λ1 =
0.89,λ1 = 0, on the following objective E

[∑
t US(st, αt, λ1 = 0)

]
.

Solutions from the E
[∑

t US(st, αt, λ1 = 0)
]

Original Cost Matrix
corresponding to

λ1 = 1 612.05
λ1 = 0.89 441.24
λ1 = 0 399.76

• The following discussion correspond to the 77 discrete state space problem when

p = 0.8.

For λ1 = 1, the solution corresponds to the minimum expected cost

(E
[∑

t(ft(st, λ1 = 1))
]
=366.97) and to a corresponding multistage CV aR0.95 mea-

sure, which is E
[
CV aR0.95(ft(st, λ1 = 1))

]
=575.78.

In Fig. 46, we observe that the policy which yields the minimum multistage CV aR0.95

measure corresponds to λ1 = 0.86 and not to λ1 = 0. This is in correspondence with

our theoretical analysis.

To validate the correctness of this result for p = 0.8, we form Table 25 and Table

26, where we evaluate that the corresponding solutions for λ = 0.86 and λ = 0 are

optimal with respect to the transformed, for λ = 0.86 and λ = 0, cost structure.

From Fig. 46 and Table 25, we can quantify that the policy instructed by λ1 = 0

that minimizes E
[∑

t US(st, αt, λ1 = 0)
]

will not necessary be the same policy that

minimizes E
[
CV aR0.95

∑
t(ft(st, λ1))

]
.

173

Table 24: Given this multi stage problem (p = 0.9), this table demonstrates the expected
performance of each DP solution, when for each state the myopic cost is transformed by
ft(st, λ1) = λ1µ(st) + (1− λ1)CV aR0.95(f(st)). We evaluated the DP policies λ = 11,λ1 =
0.86,λ1 = 0, on the following objective E

[∑
t US(st, αt, λ1 = 0.86)

]
.

Policies with respect to E
[∑

t US(st, αt, λ1 = 0.86)
]

the original cost structure
corresponding to

λ1 = 1 417.5
λ1 = 0.86 392.8
λ1 = 0 396

Table 25: Given this multi stage problem (p = 0.9), this table demonstrates the expected
performance of each DP solution, when for each state the myopic cost is transformed by
ft(st, λ1) = λ1µ(st) + (1− λ1)CV aR0.95(f(st)). We evaluated the DP policies λ = 11,λ1 =
0.86,λ1 = 0, on the following objective E

[∑
t US(st, αt, λ1 = 0)

]
.

Solutions from the E
[∑

t US(st, αt, λ1 = 0)
]

Original Cost Matrix
corresponding to

λ1 = 1 689
λ1 = 0.86 524
λ1 = 0 483

174

308 310 312 314 316 318 320
40

45

50

55

60

S
ta

n
d
a
rd

 D
e
vi

a
ti
o
n

Expected Cost

308 310 312 314 316 318 320
420

430

440

450

460

C
on

d
iti

o
n
al

 V
al

u
e
 a

t
R

is
k

Expected Cost

Policies Produced By The Multi-period

Exponential Utility
Policies Produced By The Summation

of Single period - Mean-CVaR Utilities

Policies Produced By The Multi-period

Exponential Utility
Policies Produced By The Summation

of Single period - Mean-CVaR Utilities

Figure 47: Resulting efficient frontiers, when using multi period and intra-period utilities
for p = 0.9.

• The discount factor was set to 0.99. Therefore, the horizon effect fades after 100 steps.

On average starting from state 1, for p=0.9(0.8) and λ1 = 1, it takes 18.3(21.5) steps

to reach the goal. This shows that for multi-stage systems with a medium horizon

the originally proposed approach yields a good approximation of the exact multistage

mean-CVaR efficient frontier

• The cumulative results when using the exponential interperiod utilities appear at

Fig.47,48. In both cases (p = 0.9,p = 0.8), if ξ is set to less than 0.7 the VI does not

converge to a proper solution, even if the initial value obey the following necessary

condition that ensures convergence signlnγ ≥ J0
M ≥ J∗M ([47]). The reason that

VI does not converge is mainly related with the propagation of numerical errors due

to the resulting condition number . In this case, the only way to perform VI is to

uniformly scale in a heuristic fashion the single stage cost.

• The findings support the effectiveness of the proposed single period utility, since it

175

364 366 368 370 372 374
70

75

80

85

90

S
ta

n
d
a
rd

 D
e
vi

a
ti
o
n

Expected Cost

364 366 368 370 372 374
540

560

580

600

C
on

d
iti

o
n
al

 V
al

u
e
 a

t
R

is
k

Expected Cost

Policy Produced By The Multi-period

Exponential Utility
Policies Produced By The Summation

of Single period - Mean-CVaR Utilities

Policy Produced By The Multi-period

Exponential Utility
Policies Produced By The Summation

of Single period - Mean-CVaR Utilities

Figure 48: Resulting efficient frontiers, when using inter-period and intra-period utilities
for p = 0.8.

does yield multistage policies with respect to the risk measure CV aR. With the

proposed approach we trace the effective range of λ1 that yield valid policies, since

when λ1 goes to 0 the derived DP policies do not belong to an efficient frontier.

6.7.2 Results On 900 Discrete State Shortest Path Using The Proposed Ap-
proach.

In this section, we will apply the proposed approach to the 900 discrete state shortest path

example with probabilistic transitions described by p = 0.8.

Step 1: Pick γ = 0.9.

Step 2: We solve the exact DP using λ1 = 1..

As discussed before the discount factor determines the horizon effect and therefore

the whole nature of the multistage problem. For GDMDP’s applications, when using

176

a discount factor we are in danger of computing policies that will make the system

move in circles and never reach the goal. For instance, if we minimize the expected

cost and use a discount factor of 0.9 it takes the system on average 18,000 moves to

reach the goal and the average cost is 38,755. Is is intuitive that γ = 0.9 is not the

proper choice for the discount factor.

Go back to Step 1

Step 1: Pick γ = 0.995.

Step 2: We solve the exact DP using λ = 1 .

• The produced policy leads the system to the goal in a finite number of steps.

Step 3: Decrease the risk averse parameter λ1 by 0.01 until λ1 = 0 and solve the exact

DP.

• The range of λ1 for which we can recover valid policies is λ1 = [0.91, 1].

Step 4: By testing these policies via Monte Carlo simulations, we realize that, up to this

point, we have created 2 policies that belong to the multistage mean-CVaR efficient

frontier. The most risk averse policy is the one, which corresponds to the least mul-

tistage CV aRη. This policy is produced when λ1 = 0.99.

According to our methodology one should go to step 1 and increase the discount factor

γ and simultaneously at step 3 and manipulate the increment 0.01. Here, we left γ

unchanged but we do manipulate the increment of change from 0.01 to 0.0001. For

λ1 = 0.9993, we retrieve the policy with the characteristics as shown in Table 26.

The cost distribution produced when each policy is applied to 1,000 independent sce-

narios is shown next.

177

Table 26: For the multi stage problem (p = 0.8) this table demonstrates: the policies
derived from the mean-CVaR tradeoff. For each policy we demonstrate its mean µ and the
evaluation of the risk measures (σ,CV aR0.95) associated with it.

Risk Averse µ Standard CV aR0.95 Expected Number Of
Parameter Deviation Steps To Reach Goal
λ1 = [1] 194 757 1,909 82.5

λ1= [0.9993] 218 505 1,506 78.8
λ1= [0.91-0.99] 239 360 999 ± 19 78.8

Cost

F
re
q
u
e
n
c
y

1=1

1=0.9993

1=0.99

Figure 49: The cost distribution produced for the 900 discrete state space stochastic short-
est path problem with probabilistic transitions, when we apply the policies generated by
the parameters as instructed by Table 26.

178

6.8 Off-line Approximate Dynamic Programming Applied
To The 900 Discrete State Stochastic Shortest Path Ex-
ample

In this section, we will use the single period mean-CV aR0.95 utility within the ADP ap-

proach as delineated in the previous chapter.

First, we set the discount factor γ = 0.995 and choose λ1 = 1, λ1 = 0.8 and λ1 =

0.2, then we transform the single stage cost function via ft(st, λ1) = λ1µ(st) + (1 −
λ1)CV aR0.95(f(st)) and solve the corresponding deterministic LP’s. The LP solutions are

specific state trajectory that drive the system from the starting to the goal state. These

trajectories are shown in Fig.50 For λ1 = {1, 0.8, 0.2}, after applying the off-line ADP

1
=1

1
=0.8

1
=0.2

Figure 50: Initialization of the value table using deterministic optimization. We call the
LP optimization routine after transforming each states non positive profit using λµ+(1-
λ)CVaR.

algorithm, we end up collecting for each λ1 the state space depicted in Fig.51.

179

Initialization 1=1

Sampled space 1=1

Initialization 1=0.8

Sampled space 1=0.8

Figure 51: Sampled state space after applying the Offline-ADP routine.

The derived policies are evaluated with respect to 1,000 MC simulations. These results

represent pareto multistage mean-CVaR solutions. Nonetheless, there is no guarantee that

this methodology will always provide such solutions. In order for this procedure to have

a high chance to provide such solutions we would need: a) the initialization procedure to

be able to provide radically different state trajectories leading the system from the starting

state to the goal state, b) these state trajectories should have neighboring states with similar

characteristics mainly with respect to the single stage profit/cost and variance.

180

Table 27: Cumulative results using the ADP strategy with the proposed summation of
single stage mean-CVaR functions on a 900 discrete state instance when λ1 = 1 and λ1 = 0.8
.
Risk Averse Parameter p = 0.8
Vs Probability Of Successful Transition

µ = 259
λ1 = 1 σ = 452

CV aR0.05 = 1, 216
µ = 308.1

λ1 = 0.8 σ = 316.16
CV aR0.05 = 991

181

6.9 Chapter Conclusions

In this chapter, we initially summarized the ways that one can induce risk-time preferences

in MDP’s. We proposed a linear single period utility as a mean to express such preferences.

The discount factor controls the horizon effect, while the myopic risk averse parameter

determines if we will capture the multistage risk effect or not. By setting the discount factor,

the basis to identify multistage risk averse policies instructs to weigh with a parameter λ1 the

single stage expected performance and by a 1− λ1 the single stage downside risk measured

by CV aRη. The understanding of the ratio of these myopic weights is the key to produce

a multi stage efficient frontier.

Numerically and analytical examples demonstrate that when we utilize discount factors

closer to 1 then only by varying this risk averse parameter within a small range close to 1

we get create pareto solutions consistent with the multistage mean-CVaR efficient frontier.

The major contribution of this chapter is the understanding of the weighting of the

proposed myopic utility that if used within DP as well as ADP approaches will generate a

good approximation of the exact multistage mean-CVaR efficient frontier.

182

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter I summarize this work and present some possible extensions for future work.

7.1 Summary

The scientific domain of this thesis is optimization under uncertainty and risk sensitive

objectives for discrete event stochastic systems under . In particular, this thesis focuses on

the practical implementation of the Dynamic Programming (DP) methodology to discrete

event stochastic systems.

Specifically, for the purposes of this thesis we developed the following ADP techniques.

The first one is inspired from the Reinforcement Learning (RL) literature and is termed

as Real Time Approximate Dynamic Programming (RTADP). The RTADP algorithm is

meant for active learning while operating the stochastic system. The basic idea is that the

agent while constantly interacts with the uncertain environment accumulates experience,

which enables him to react more optimal in future similar situations. While the second one

is an off-line ADP procedure. Both approaches are developed for discrete event stochastic

systems and their main focus is the controlled exploration of the state space circumventing

in such a way one of the severe computational obstacles of DP that is related with the

cardinality of the state space.

These ADP techniques are demonstrated on a variety of discrete event stochastic systems

such as: i) a three stage queuing manufacturing network with recycle, ii) a supply chain of

the light aromatics of a typical refinery and iii) several stochastic shortest path instances

with a single starting and terminal state.

Moreover, this work addresses, in a systematic way, the issue of approximating the exact

multistage mean-CVaR tradeoff with the summation of a proposed intra-period mean-CVaR

utility. We identify the source of the deviation between these criteria via a small analytic

183

example , which will provide to us the intuition to complete the structure of the proposed

linear intra-period utility The proposed structure of the linear single stage intra-period util-

ity is composed out of a linear combination of the two presumed single stage statistics with

corresponding weights. This thesis opens the research question of a systematic adaptation

of these weights to yield a pareto efficient frontier.

A really significant contribution of this work is that this proposed utility can be used

along every ADP or exact DP to come up with pareto efficient policies. In fact we briefly

attempted to intergrade the developed offline-ADP procedure with the proposed approach

and we have yielded at least for on instance ADP risk sensitive policies (Section 6.6).

7.2 Future Work: Short Term

This thesis developed empirical ADP algorithms for risk-sensitive planning. The treatment

is, however, far from complete. Here, we list some possibilities for future research.

7.2.1 Using Aggregation In RTADP Algorithm

The first iteration of chapter 3 was written using the concept of aggregation around macro-

states [96]. The state space was assumed to be composed out of finite macro-states. The

macro-state is composed out of many system states as defined by some physical criteria.

The difficulty lies in the transition equation for macro-states, since for each action we

would need to simulate the transition from a system state within the macro-state to the

corresponding successive state and then retrieve its macro-state. An interesting research

would be to develop a mechanism that would automatically conclude to a right macro-state

structure without affecting the quality of the learned policy.

7.2.2 Guided State Space Exploration In A Multi-stage Setting Via A Lower
And Upper Bounding Mathematical Programming Scheme

In the proposed ADP methodologies, the state space exploration was performed via: a)

ε-greedy actions or b) MC simulations with the so far optimal policy . A quantitative

way to guide the exploration of the state space would be via the usage of an upper and

lower bounding mathematical programming scheme. For a cost setting, one can use sample

184

average approximation to generate a numerical upper bound, while one can use perfect

information (as done in Chapter 4) to generate a lower bound. There may be theoretical

worries whether these two methodologies indeed yield valid upper and lower bounds in a

multi-stage setting. After gathering this sort of information we can use it as a prior to

introduce bias with where we would want to explore or not, similar to the heuristic bias

introduced by [17, 18].

7.2.3 To Device A Procedure That Automatically Tunes The Weights Of The
Linear Mean-CVaR Objective Function Within DP To Well Approximate
Multi-stage Mean-CVaR Trade Off

In chapter 6, we identified the source of the deviation between the initially thought appropri-

ate linear intra-period utility to approximate the exact multi-stage Mean-CVaR. Specifically,

we introduced a hyper-parameter to complete its structure.

A complete understanding, about the connection between the discount factor as well as

the primary risk averse parameter choice with respect to the selection of proper weighting the

proposed linear objective, is needed. We emphasize again that given the proper weighting,

this linear utility can be used with exact DP as well as within all the constructed ADP

schemes and derive a wide spectrum of pareto efficient policies.

7.2.4 Simulation Results On A Large Scale Project Portfolio Problem Using
The Off-line Risk Sensitive ADP Methodology

The proposed tools can be used for a wide range of problem that

Extensive simulations for the problem as presented as chapter 7 are pending. We need

to propose a proper weighting scheme for the linear mean-CVaR utility, in order to generate

a wide spectrum of policies for this application. In order make the problem more realistic

and more challenging we will relax the resource constraint to enlarge the state space and

use ADP along with the proposed weighted linear risk averse utility.

7.3 Future Work: Long Term

Currently, the foundation of the Process System Engineering community is based on math-

ematical programming. The main reasons are the reliable algebraic computer languages,

185

(e.g. GAMS , G-PROMS, etc.) which allow the compact representation of the constraints,

where one line of computer code can generate thousands of constraints and the superb

solvers that solve MILP formulations very efficiently (CPLEX V.11).

Nonetheless, a different way to solve for stochastic application is via ADP methods.

Undoubtedly, these DP based methods treat endogenous uncertainty in a more natural

way. Currently we have empirical ADP approaches that work better than rolling horizon

MILP’s. For instance for large scale resource allocation problems, utilizing ADP approaches

the numerical exercises of Powell [1] prove that fact. But still its not proven that they have

an advantage over rolling horizon stochastic optimization methods.

In order for the PSE community to be susceptible to ADP methodologies, one should

develop a tool similar to GAMS and a modelling language that will make ADP attractive

and easy to use. I would characterize this as my abmitious long term project.

186

.1 Linear Programming Formulation

Assume the shortest path is to be determined between node 1 and n, where n is the total

number of network nodes. A single branch connects node i with node j. It is assumed that

a single branch connects i and j and that we do not consider flows in the opposite direction.

Thus we wish to find the set of xi,j to

min
∑n

i=1

∑n
j=1 fi,jxi,j

s.t.
∑n

k=2 x1,k = 1
∑n−1

k=1 xk,n = 1
∑n

i=1 xi,k −
∑n

j=1 xk,j = 0 ∀k = 2, ...n− 1

xi,j ∈ 0, 1 ∀i, j

(91)

, where fi,j is the cost from node i to node j.

The first two constraints assure that one action is taken from the first node, and also

one action will lead to the final node. The first constraint forces the actions into a node to

be equal to the ones directed out of the node. This formulation even if xi,j are binaries is

an LP, since the corresponding coeffient matrix is unimodular.

.2 Solving Large Shortest Path Instances Via Systematic
Initialization

Solving shortest path instances with goal states that enumerate more than 10,000 states

is a computational prohibitive task. In this case, we would need to solve the long run

average problem (γ = 1) and not a discounted horizon problem. Otherwise the solution

from the discounted horizon problem is very likely to force the system into cycles and never

to visit the goal To address such large instances using the off-line ADP approach, we device

a generic initialization procedure.

.2.1 Initialization Procedure

This procedure decomposes the problem to small independent problems providing the op-

portunity for parallel computing.

187

The primary goal given this procedure is to create a partial policy considering only a

small portion of the state space. This policy will drive the system from the start to the

goal state with probability approaching one. In our numerical experiments the goal state is

a singleton.

Subroutine Name: Initialization - Shortest Path Problem

Create A Path from s0 to sG . Run deterministic optimization and compose a set that

is defined via the following path of states

{s0, s1, ..., sn, ..., s2n, ..., s3n, ..., s(κ−1)n, ..., sG}

Create κ Subproblems

1st subproblem is defined by: Starting state s0. Goal State sn.

2nd subproblem is defined by : Starting state sn. Goal State s2n.

κth subproblem : Starting state s(κ−1)n. Goal State sG.

Use the off-line ADP Approach as delineated in Chapter 5 For Each Subproblem

Set Θ=0 for each subproblem.

The output of subproblem i is a set of sampled stated denoted as Mi

Initialize State Space S0

S0 = ∪iMi

Initialize The Value Functions ∀st ∈ S0

Starting from the kth subproblem and going backwards.

The value function estimations of the states sampled by the κth subproblem remain the

same. The value function estimations of the states sampled by the ith subproblem are

188

updated as follows: we add to all the state estimations the value function estimate of

the starting state of the ith + 1 subproblem.

189

Bibliography

[1] Powell, W. B., Approximate Dynamic Programming: Solving the curses of dimen-
sionality. John Wiley and Sons, 2007.

[2] Bellman, R. E., Dynamic Programming. New Jersey: Princeton University Press,
1957.

[3] Liptak, B. G., Instrument Engineers’ Handbook: Process Control. CRC Press, 1995.

[4] Lee, J., “Robust inferential control : A methodology for control structure selec-
tion and inferential control system design in the presence of model/plant mismatch.,”
http://resolver.caltech.edu/CaltechETD:etd-11162005-134952, 1991.

[5] Elberly, J. C. and Mieghen, J. A., “Multi-factor dynamic investment under un-
certainty,” Journal of Economic Theory, vol. 75, pp. 345–387, 1997.

[6] Santoso, T. Ahmed, S. G. M. and Shapiro, A., “A stochastic programming ap-
proach for supply chain network design under uncertainty,” European Journal of Op-
erational Research, pp. 96–115, 2005.

[7] Rogers, M.J. Gupta, A. and Maranas, C., “Real options based analysis of optimal
pharmaceutical research and development portfolios,” Ind. Eng. Chem. Res., vol. 41,
pp. 6607–6620, 2002.

[8] Mudchanatongsuk, S. Primbs, J. and Wong, W., “Optimal pairs trading: A
stochastic control approach,” Submitted to ACC.

[9] Primbs, J., “Dynamic hedging of basket options under proportional trans-
action costs using receding horizon control,” Submitted. Also availabe at
http://www.stanford.edu/ japrimbs/AutoSubmit20070813.pdf.

[10] Ulu, C. Smith, J., “Information acquisition and technology adoption,” Technology
Management for the Global Future, vol. 4, pp. 1693–1693, 2006.

[11] Puterman, M. L., Markov Decision Processes. New York, NY: Wiley, 1994.

[12] Chung, K.-J. and Sobel, M. J., “Discounted mdps: Distribution functions and
exponential utility maximization.,” SIAM Journal of Control and Optimization, vol. 35,
no. 1, pp. 49–62, 1987.

[13] Sobel, M., “Mean-variance tradeoffs in an undiscounted mdp,” Operations Research,
vol. 42, no. 1, pp. 175–183, 1994.

[14] Liu, Y., Decision-Theoretic Planning Under Risk-Sensitive Planning Objectives. PhD
Thesis, Georgia Insitute Of Technlogy, 2003.

[15] Barto, A. Bradtke, S. and Singh, S., “Learning to act using real-time dynamic
programming,” Artificial Intelligence, vol. 72, pp. 81–138, 1995.

[16] Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduction. A
Bradford Book. MIT Press, Cambridge, MA, 1998.

190

[17] Choi, J., Realff, M. J., and Lee, J. H., “An algorithmic framework for improving
heuristic solutions: Part i. a deterministic discount coupon traveling salesman prob-
lem,” Computers and Chemical Engineering, vol. 28, no. 8, pp. 1285–1296, 2004.

[18] Choi, J., Lee, J. H., and Realff, M. J., “An algorithmic framework for improving
heuristic solutions: Part ii. a new version of the stochastic traveling salesman problem,”
Computers and Chemical Engineering, vol. 28, no. 8, pp. 1297–1307, 2004.

[19] http://stoprog.org/index.html/spintroduction.html.

[20] Huang, K. and Ahmed, S., “The value of multi-stage stochastic programming in
capacity planning under uncertainty,” To appear in Operations Research, 2008.

[21] Verweij, B., Ahmed, S., Kleywegt, A., G., N., and A., S., “The sample aver-
age approximation method applied to stochastic routing problems: A computational
study,” European Journal of Operational Research, vol. 24, no. 2, pp. 289–333, 2003.

[22] Mendez, C., Cerda, J., Grossmann, I., Harjunkoski, I., and Fahl, M., “State-
of-the-art review of optimization methods for short-term scheduling of batch processes,”
Computers and Chemical Engineering, vol. 30, pp. 913–946, 2006.

[23] Dasika, M., Gupta, A., and Maranas, C., “A mixed integer linear programming
framework (milp) for inferring time delay in gene regulatory networks,” Pacific Sym-
posium on Biocomputing, 2004.

[24] Lee, H., Pinto, J., Grossmann, I., and Park, S., “Milp model for refinery short
term scheduling of crude oil unloading with inventory management,” Industrial and
Engineering Chemistry Research, vol. 35, no. 5, pp. 1630–1641, 1994.

[25] Pinto, J. and Grossmann, I., “A continuous time milp model for short term schedul-
ing of batch plants with preordering constraints,” Computers and Chemical Engineer-
ing, vol. 20, pp. 1197–1202, 1996.

[26] Blomvall, J. and Shapiro, A., “Solving multistage asset investment problems by
the sample average approximation method.,” Mathematical Programming: Series A
and B.

[27] Pinto, J. and Moro, G., “Planning and scheduling for refinery operations,” Com-
puters And Chemical Engineering, vol. 24, pp. 2259–2276, 2000.

[28] Stokey, N. and Lucas, R.E. with Prescott, E., Recursive Methods in Economics
Dynamics. Harvard University Press, 1989.

[29] Bertsekas, D. P., Dynamic Programming and Optimal Control, vol. II. Athena
Scientific, 1995.

[30] Thrun, S. and Schwartz, A., Issues in using function approximation for reinforce-
ment learning. Proceedings of the Fourth Connectionist Models Summer School (Hills-
dale, NJ) Lawrence Erlbaum,, 1993.

[31] Cervellera, C., Chen, V. C. P., and Wen, A., “Optimization of a large-scale
water reservoir network by stochastic dynamic programming with efficient state space
discretization,” European Journal of Operational Research, vol. 171, pp. 1139–1151,
2006.

191

[32] Tsai, J. C. C., Chen, V. C. P., Beck, M. B., and Chen, J., “Stochastic dynamic
programming formulation for a wastewater treatment decision-making framework. an-
nals of operations research,” Special Issue on Applied Optimization Under Uncertainty,
vol. 13, 2004.

[33] Lee, J. M., Kaisare, N., and Lee, J. H., “Choice of approximator and design of
penalty function for an approximate dynamic programming based control approach,”
Journal of Process Control, vol. 16, pp. 135–156, 2006.

[34] De Farias, D. and Van Roy, B., “The programming approach to approximate dy-
namic programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

[35] Powell, W., A. George, B. B.-A., and Simao, H., “Approximate dynamic
programming for high dimensional resource allocation problems,” Proceedings of the
IJCNN, Montreal, 2005.

[36] Powell, W. B. and Van Roy, B., “Approximate dynamic programming for high
dimensional resource allocation problems,” Proceedings of the IJCNN, Montreal, 2005.

[37] MacQueen, J., “A modified dynamic programming method for markovian decision
problems,” Journal Mathematical Analytical Applications, vol. 14, pp. 38–43, 1966.

[38] Chang, H., Fu, M., Hu, J., and Marcus, S., Simulation-Based Algorithms for
Markov Decision Processes. Berlin: Springer, 2007.

[39] Trevor, H., Tibshirami, R., and Friedman, J., The Elements of Statistical Learn-
ing. Springer, 2001.

[40] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D., “Coherent measures of
risk,” Mathematical Finance, vol. 9, pp. 203–228, 1999.

[41] Benfield, Risk Measurement in Insurance. London:
http://www.benfieldgroup.com/media+centre/research+and+publications/
risk+measurement.pdf, 2005.

[42] Markowitz, H., “Portfolio selection,” Journal of Finance, pp. 77–91, 1952.

[43] Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior.
Princeton, NJ. Princeton University Press, 1944.

[44] Koopman, B., “The axioms and algebra of intuitive probability,” Annals of Mathe-
matics, vol. 41, pp. 269–292, 1940.

[45] Koopman, B., “The basis of probability,” Bulletin of the American Mathematical
Society, vol. 46, pp. 763–774, 1940.

[46] Morse, P., “In memoriam: Bernard osgood koopman, 1900-1981,” Operations Re-
search, vol. 30, no. 3, pp. 417–427, 1982.

[47] Avila-Godoy, M., “Controlled markov chains with exponential risk-sensitive criteria:
Modularity, structured policies and applications.,” PhD Thesis, University Of Arizona.

[48] Filar, J., Kallenberg, L., and Lee, H., “Variance penalized markov decision
processes,” Mathematics Of Opearations Research, vol. 14, no. 1, pp. 147–161, 1989.

192

[49] Markowitz, H., Mean Variance Analysis in Portfolio Choice and Capital Markets.
Oxford: Blackwell, 1987.

[50] Rockafellar, R. and Uryasef, S., “Optimization of conditional value-at-risk,” The
Journal of Risk, vol. 2, pp. 21–41, 2000.

[51] Borca, B., Multi-period Constrained Portfolio Optimization Using Conditional Value
at Risk. University of Lausanne: Master of Sciencein Banking and Finance, 2004-2005.

[52] Cheng, L., SUbrahmanian, E., and Westerberg, A., “A comparison of optimal
control and stochastic programming from a formulationa and computation perspec-
tive,” Computers and Chemical Engineering, vol. 29, pp. 149–164, 2004.

[53] Cheng, L., SUbrahmanian, E., and Westerberg, A., “Design and planning under
uncertainty: Issues on problem formulation and solution,” Computers and Chemical
Engineering, vol. 27, pp. 781–801, 2003.

[54] Cheng, L., SUbrahmanian, E., and Westerberg, A., “Multi-objective decisions
on capacity planning and inventory control,” Industrial and Engineering Chemistry
Research, vol. 43, pp. 2192–2208, 2004.

[55] Li, D., “Multiple objectives and non-separability in stochastic dynamic programming,”
International Journal of Systems Science, pp. 933–850, 1990.

[56] Liu, L. and Koenig, S., “An exact algorithm for solving mdps under risk-sensitve
planning objectives with one-switch utility functions.,” In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[57] Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., and D., E., “A simulation
based optimization approach to supply chain management under demand uncertainty,”
Computers and Chemical Engineering, vol. 28, pp. 2087–2106, 2004.

[58] Subramanian, D., Pekny, J., and Reklaitis, G. V., “Simulation-optimization
framework for stochastic optimization of research and development pipeline manage-
ment,” AICHE Journal, vol. 1, pp. 96–112, 2003.

[59] Wan, X., Pekny, J., and G.V.Reklaitis, “Simulation based optimization for risk
management in multi-stage capacity expansion,” Computers and Chemical Engineer-
ing, vol. 28, pp. 971–983, 2004.

[60] Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., and Eversdyk, D., “A
simulation based optimization approach to supply chain management under demand
uncertainty,” Computers and Chemical Engineering, vol. 28, no. 10, pp. 2087–2106,
2004.

[61] Wong, W. C. and Lee, J. H., “Disturbance modeling for process control via hidden
markov models,” Dycopts Conference, 2007.

[62] Gullapalli, V. and Barto, A., “Convergence of indirect adaptive asynchronous
value iteration algorithms,” Advances in Neural Information Processing Systems, vol. 6,
pp. 695–702, 1994.

193

[63] Barto, A., Bradtke, S., and Singh, S., “Learning to act using real time dynamic
programming,” Artificial Intelligence, vol. 72, pp. 81–138, 1995.

[64] Lee, J. M. and Lee, J. H., “Approximate dynamic programming strategies and their
applicability for process control: A review and future directions,” International Journal
of Control Automation and Systems, vol. 2, no. 3, pp. 263–278, 2004.

[65] Dixit, A. and Pindyck, R. S., Investment Under Uncertainty. Princeton University
Press, Princeton, New Jersey, 1993.

[66] Mieghem, J. A. V., “Capacity management investmentand hedging: Review and re-
cent developments,” Manufacturing and Service Operations Management, vol. 5, no. 4,
p. 269 302, 2003.

[67] Eberly, J. C. and Van Mieghem, J. A., “Multi-factor dynamic investment under
uncertainty,” Journal of Economic Theory, vol. 75, no. 2, pp. 345–387, 1997.

[68] Birge, J. and Louveaux, F., Introduction to Stochastic Programming. Springer and
Verlag, 1997.

[69] Shapiro, N., “An adaptive sapling algorithm for solving markov decision processes,”
Mathematical Methods of Operations Research, vol. 53, no. 1, pp. 126–68, 2005.

[70] Brafman, R. and Tennenholtz, M., “R-max-a general polynomial time algorithm
for near optimal reinforcement learning,” Journal of Machine Learning Research, vol. 3,
pp. 213–231, 2002.

[71] Kearns, Michael. Mansour, Y. and Ng, A. Y., “A sparse sampling algorithm
for near-optimal planning in large markov decision processes,” IJCAI, pp. 1324–1231,
1999.

[72] Yi, G. and Reklaitis, G., “Optimal design of batch-storage network considering
exchange rates and taxes,” AIChE Journal, vol. 53, pp. 1211–1235, 2007.

[73] Yi, G. and Reklaitis, G., “Optimal design of batch-storage network with uncertainty
and waste treatment,” AIChE Journal, vol. 52, pp. 3473–3490, 2006.

[74] Kuo, T. and Chang, C., “Optimal planning strategy for the supply chains of light
aromatic compounds in refineries,” Computers and Chemical Engineering, vol. 32,
pp. 1147–1166, 2008.

[75] McManan, B., Likhachev, M., and Gordon, G. J., “Bounded real-time dynamic
programming: Rtdp with monotone upper bounds and performance guarantees,” Ap-
pearing in Proceedings of the 22 International Confer- ence on Machine Learning,
Bonn, Germany, 2005.

[76] Hegazy, T., Distributed Approach to Dynamic Autonomous Agent Placement for
Tracking Moving Targets. PhD Thesis, Georgia Institute Of Technology, 2004.

[77] Nair, R. Pynadath, D.-Y. M. T. M. and Marsella, S., “Taming decentralized
pomdps: Towards efficient policy computation for multiagent settings.,” In Proceedings
of International Joint Conference on Artificial Intelligence, 2003.

194

[78] Pynadath, D. and Tambe, M., “The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models.,” In Journal of Artificial Intelligence
Research,, 2002.

[79] Peshkin, L. Kim, K.-E. M. N. and Kaelbling, L. P., “Learning to cooperate via
policy search.,” In Proceedings of the Conference on Uncertainty in Artificial Intelli-
gence, 2000.

[80] Balasubramanian, J. and Grossmann, I. E., “Approximation to multistage sto-
chastic optimization in multiperiod batch plant scheduling under demand uncertainty,”
Ind. Eng. Chem. Res., vol. 42, pp. 3695 –3713, 2004.

[81] Balasubramanian, J. and Grossmann, I. E., “Scheduling optimization under un-
certainty - an alternative approach,” Computers and chemical engineering, vol. 27,
pp. 469–490.

[82] Diaz-Banez, M., Gomez, F., Toussaint, G., Ramezani, V., and Marcus, S. I.,
“Computing shortest paths for transportation of hazardous materials in continuous
spaces,” J. Food Eng., vol. 70, no. 3, pp. 293–298, 2004.

[83] Nannicini, G. Baptiste, P. B. G. K. D. and Liberti, L., “Fast paths in large-scale
dynamic road networks,” Computational Optimization and Applications, p. Published
online, 2008.

[84] Endelman, J., Gomez, F., and Toussaint, G., “Site-directed protein recombination
as a shortest path problem.,” Prot. Eng. Design and Selection, vol. 17, no. 7, pp. 589–
594, 2004.

[85] Dijkstra, E., “A note on two problems in connexion with graphs,” Numerische Math-
ematik, p. 269271, 1959.

[86] Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[87] Si, J., Barto, A., Powell, W., and Wunsch, D. e., Learning and Approximate
Dynamic Programming: Scaling up to the Real World. New York: John Wiley and
Sons, 2004.

[88] Pratikakis, N., Realff, M. J., and Lee, J. H., “Strategic capacity decisions in
manufacturing using stochastic dynamic programming,” Naval Research Logistics, Un-
der Review.

[89] Smith, T. and Simmons, R. G., “Focused real-time dynamic programming for MDPs:
Squeezing more out of a heuristic,” in Proc. Nat. Conf. on Artificial Intelligence
(AAAI), 2006.

[90] Pratikakis, N., Lee, J. H., and Realff, M. J., “A real time adaptive dynamic pro-
gramming approach for planning and scheduling,” 16th ESCAPE - 9th PSE, pp. 1179–
1185.

[91] Sobel, M., “Discounting and risk neutrality,” Technical Memorandum Number 724F.

195

[92] Corner, J. and Corver, P., “Characteristics of decisions in decision analysis prac-
tice.,” The Journal of Operational Research Society, vol. 46, no. 1, pp. 304–314, 1995.

[93] Howard, R. A. and Matheson, J. E., “Risk-sensitive markov decision processes.,”
Management Science, vol. 18, no. 7, pp. 356–369, 1972.

[94] Jaquette, S., “Markov decision processes with a new optimality criterion: Discrete
time.,” The Annals of Statistics, vol. 1, no. 3, pp. 496–505, 1973.

[95] Corallupi, S. and Marcus, S. I., “Risk-sensitive control of markov decision
processes.,” In Proceedings CISS.

[96] Bertsekas, D. and Castanon, D., “Adaptive aggregation methods for infinite hori-
zon dynamic programming,” IEEE Transactions on Automatic Control, no. 6, pp. 589–
598, 1989.

196

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Thesis Focus On Multistage Decision Problems Under Uncertainty
	Handling Risk In Single Stage Problems: A Shortest Path Example
	Thesis Scope And Structure

	Chapter 2 — Background
	Mathematical Programming Applied To Multistage Problems
	Deterministic Optimization Applied To Multistage Problems

	Markov Decision Processes
	Dynamic Programming
	The Value Function
	The Value Iteration Algorithm
	The Dynamic Programming Operator
	Contractions
	 A Review Of Approximate Dynamic Programming Techniques

	Risk Measures
	Pareto Optimal Frontier - Efficient Frontier
	Expected Utility Decision Theory
	Methodologies Addressing Multistage Risk
	Mathematical Programming And Simulation Based Optimization Methodologies On Pareto Efficiency
	Dynamic Programming Methodologies

	 The Formulation Of A Stochastic Shortest Path Problem As An MDP
	State Variables / Exogenous Information Variables
	Decision Variables
	Transition Function
	Contribution (Cost) Function
	Objective Function

	Chapter 3 — A Real Time Approximate Dynamic Programming Approach
	A Real-Time Approximate Dynamic Programming (RTADP) Approach
	Formal RTADP Description
	Initialization
	Key Elements of Asub
	On Calculating J(st)

	RTADP Applied At Capacity Planning
	 Manufacturing Job Shop Under Uncertain Demand and Product Yield
	Formal MDP Formulation Of The Manufacturing Job SHop
	Simulation Results
	Simulation Procedure
	Performance Comparisons

	Applying The RTADP Algorithm On Stochastic Shortest Path Instances - Exploring Potential Issues
	Results On A 77 Discrete State Space Example
	Results On A 900 Discrete State Space Example
	Results On A 10,000 Discrete State Space Example

	Chapter Conclusions

	Chapter 4 — Solving A High Dimensional Light Aromatic Supply Chain Example Using RTADP
	Introduction
	An Overview Of A Light Aromatic Supply Chain Case Study
	Motivation Of Our Numerical Studies

	Modeling The High Dimensional Supply Chain Case Study As An MILP
	Introduction
	Mathematical Modeling of of the Supply Chain
	Sets
	Control Volumes at each Tank
	Reaction and Separation Processes - The Determination of Pru,p(t)
	 Constraints
	Decision Variables
	Objective Function
	A 2 Stage Stochastic Programming Formulation

	Formulating the Problem as an MDP
	State Variables / Exogenous Information Variables
	Decision Variables
	 Transition Function
	Objective Function

	Information Flow And Decision Making
	A Real Time Approximate Dynamic Programming Algorithm
	The RTADP Algorithm
	Key Elements of Asub
	Calculating J(st)
	A Rolling Horizon MILP Approach

	Numerical Results
	An Upper Bound On The Performance
	Case Study 1: Information Revealed After Mode+Flow Decisions
	Case Study 2: Information Revealed After The Mode And Before The Flow Decisions
	The Value Of Information

	Conclusions

	Chapter 5 — Controlled Exploration Of The State Space Via An Off-line ADP Approach
	Introduction
	Statement of SSP Problem
	Overall Structure Of The Approach
	Initialization
	Monte Carlo Expansion
	Approximate Value Iteration.
	Termination Criteria

	Numerical Results On The Shortest Path Problem
	Quantitative Selection Of Tuning Parameters
	Scaling And Memory Requirement
	Comparing RTADP And Off-line ADP On Shortest Path Problems

	Modeling And Results Of A High Dimensional Queuing Example
	 Queuing Network Under Uncertain Demand and Product Yield
	One To One Correspondence Of The Queuing Example With The Shortest Path
	Numerical Results

	Conclusions

	Chapter 6 — A Risk-Sensitive Single-Period Linear Utility For Markov Decision Processes
	Introduction
	The Functional Form Of The Proposed Myopic Risk Sensitive Utility
	Single Stage Mean-CVaR Vs Single Stage Mean-Variance And Exponential Multistage Utility
	Qualitative Difference On Optimizing The Summation Of Single Period Mean-CVaR And Mean-Variance Utilities
	Multi Step Shortest Path Examples
	Multistage Exponential Utility Function

	The Source Of Deviation Between The Summation Of The Single Stage Mean-CVaR Utility Vs The Exact Multi-stage Mean-CVaR Utility
	Problem Statement 1
	Problem Statement 2
	Problem Statement 3

	A Proposed Algorithm That Approximates The Multi-stage Mean-CVaR Efficient Frontier For GDMDP's
	Motivation Of Our Numerical Studies

	Deriving Efficient Frontier Solutions Using The Proposed Approach On Shortest Path Instances With Deterministic Transitions
	Shortest Path With 77 Discrete States: Problem Description
	Applying The Approach Using As Single period Utilities: A) The Mean-CVaR Function B) The Mean-Variance Function
	 Applying The Multi stage Exponential Utility On The Shortest Path Problem
	Deriving Efficient Frontier Solutions On 900 Discrete State Shortest Path With Deterministic Transitions

	Approximating The Multi-stage Mean-CVaR Efficient Frontier Using The Proposed Approach
	Applying The Approach On A 77 Discrete State Shortest Path With Probabilistic Transitions
	Results On 900 Discrete State Shortest Path Using The Proposed Approach.

	Off-line Approximate Dynamic Programming Applied To The 900 Discrete State Stochastic Shortest Path Example
	Chapter Conclusions

	Chapter 7 — Conclusion And Future Work
	Summary
	Future Work: Short Term
	Using Aggregation In RTADP Algorithm
	Guided State Space Exploration In A Multi-stage Setting Via A Lower And Upper Bounding Mathematical Programming Scheme
	To Device A Procedure That Automatically Tunes The Weights Of The Linear Mean-CVaR Objective Function Within DP To Well Approximate Multi-stage Mean-CVaR Trade Off
	Simulation Results On A Large Scale Project Portfolio Problem Using The Off-line Risk Sensitive ADP Methodology

	Future Work: Long Term
	Linear Programming Formulation
	Solving Large Shortest Path Instances Via Systematic Initialization
	Initialization Procedure

	Bibliography

