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         A snapshot is all it takes   

                      to encode object locations into spatial memory

 

Harry H. Haladjian & Fabien Mathy 

 

Research highlights: 

 We compared spatial memory accuracy in visual short-term and short-term memory. 

 Spatial memory did not improve when stimuli were viewed for longer than 200-ms. 

 Spatial compression was reduced on longer displays, but overall error was not. 

 No evidence for the grouping of nearby discs into clusters to aid performance. 

 Results suggest a fast non-independent extraction of global spatial information. 
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Abstract 

This study investigates the accuracy of spatial memory for sets of objects by comparing localization 

accuracy in short-term memory and visual short-term memory. Observers in the short-term memory 

condition viewed masked displays containing 1 to 10 discs (1-second per item), and then reported the 

locations of these discs. Compared to a previous study that presented the same stimuli briefly (50 ms 

or 200 ms for all items, exposures more typical of visual short-term memory tests), observers were—

not surprisingly—better at reporting the correct number of discs but localization accuracy did not 

improve significantly. Additionally, responses were spread among different clusters and not focused 

on individual clusters in all exposure durations. These results indicate that spatial information for a set 

of objects is extracted globally and quickly, with little benefit from extended encoding durations that 

could favor some deliberative forms of chunking.  

 

Keywords: spatial memory; short-term memory; visual short-term memory; subitizing; chunking; 

clustering analysis 
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Snapshot encoding of spatial information:  

Location memory for visual-short-term- and short-term-memory exposures  

 

1. Introduction 

Visual short-term memory and visual attention both have been studied in order to identify the 

stages in which perception is faced with capacity limitations. The capacity limit in memory, for 

example, can affect the quality of simultaneous object representations, where less information about 

distinct objects can be retained when a greater number of objects must be remembered. A debatable 

limit of four “slots” for memory has been commonly cited in this literature (e.g., Cowan, 2001; Luck 

& Vogel, 1997; Zhang & Luck, 2008). The memory for visual information also may be limited by the 

capacity of attentional processes, such as an individuation mechanism in early vision that can “index” 

up to four items (Pylyshyn, 1989). This limit of four items is observed in enumeration studies, for 

example, where counting errors increase substantially for sets larger than four (e.g., Dehaene & 

Cohen, 1994; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008; Trick, 2008). The fast and error-free 

counting of up to four items, called “subitizing”, is thought to be facilitated by the visual 

individuation or indexing mechanism (Trick & Pylyshyn, 1989, 1993). 

A recent study, however, found a higher subitizing range when observers reported numerosity 

by marking the locations of a set of items (Haladjian & Pylyshyn, 2011). In this study, observers were 

shown masked displays with 2-9 randomly-placed discs at very brief durations (50 to 350 ms). After 

the mask, observers marked the locations of each disc on a blank computer screen. In addition to 

measuring spatial memory for sets of objects, this reporting method provided a numerosity estimate. 

Enumeration performance was found to be high for displays with up to six items when using the 

localization method, but only around four items when using a conventional reporting method with 

Arabic numerals (the limit typically reported for subitizing). This increased capacity may be 

attributed to the reporting method, since the act of “pointing” to the locations of the discs may engage 

a memory involved in motor responses (e.g., Goodale & Milner, 2004). Another possible explanation 

for the increased capacity is the result of perceptual grouping, where nearby discs are grouped 
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together for more efficient storage in visual short-term memory (Cowan, 2001; Mathy & Feldman, 

2012). Effectively, the proximity of two discs can form a cluster and result in non-independent spatial 

information for the two discs that can be encoded in a more compact way into a single slot in 

memory, resulting in a greater number of available slots for the encoding of other discs. That 

information processing systems can overcome capacity limitations whenever a form of relational 

information can be computed in the data has received particular attention recently in the visual short-

term memory literature (Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain, 2009; Bays & Husain, 

2008; Bays, Wu, & Husain, 2011; Brady, Konkle, & Alvarez, 2009, 2011; Fougnie & Alvarez, 2011; 

Magnussen, Greenlee, & Thomas, 1996; Olson & Jiang, 2002; Wheeler & Treisman, 2002; Xu, 

2002). This hypothesis will be tested using clustering techniques in order to determine whether or not 

grouping is used by observers to encode more information about objects in the localization task. 

A second related question is whether this putative organization in memory operates in a 

lossless (Mathy & Feldman, 2012) or a lossy manner (Brady & Alvarez, 2011), respectively by 

allowing the exact original data to be reconstructed from the compressed data or by computing 

ensemble statistics prior to compressing data (Cowan, 2001; Della Sala, Gray, Baddeley, Allamano, 

& Wilson, 1999; Feldman, 1999; Jiang, Olson, & Chun, 2000; Mathy & Feldman, 2012; Sargent, 

Dopkins, Philbeck, & Chichka, 2010). By analogy, these two forms of compression would be popular 

file formats such as .png/.gzip or .jpeg/.mpeg. Effectively, there is a possibility that exact information 

about item locations can be compressed so that a greater number of items can be unpacked from a few 

chunks (Mathy & Feldman, 2012). As it is possible to recall a series of 50 numbers, such as 2-4-6-8-

10-12-...100, by retaining the shorter description “pair numbers from 2 to 100”, it is possible to retain 

the location of several items organized with regularity (e.g., “• • • • • • •”) without loss of the original 

information. This lossless form of compression would imply a correct report of a limited set of items, 

with total loss of information for items that could not be encoded because of capacity limitations. An 

alternative hypothesis is that, due to a spreading of processing resources, the computation of ensemble 

statistics would tend to bias the representation of all individual items (Brady & Alvarez, 2011) with 

the prediction that a complete set of items is encoded globally and reported in a distorted fashion. 

These hypotheses will be tested in the following manner: a greater number of discs are expected to be 
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reported in a less precise manner if the compression process operates in a lossy manner (with no 

accuracy distinction in the reports of all discs, as they all would be encoded using equal resource 

allocation), whereas fewer discs should be reported more precisely using a lossless compression 

process (with better recall of the first individual discs or the first group of discs for which a limitation 

in capacity would not be reached, and particularly bad recall of a subset of discs for displays that 

would exceed capacity).  

A third question we addressed was whether or not a grouping of spatial information occurs on 

these displays for short and long exposures. We expected long viewing durations to enhance more 

deliberate chunking processes for encoding location information into short-term memory. Greater use 

of grouping with longer exposures would demonstrate that top-down factors contribute to improve the 

storage of spatial information in memory. Instead of constraining the spreading of processing 

resources at short durations, longer exposure durations could allow more flexible storage of items, 

especially for those items that form groups.  

To investigate these questions, we examined chunking strategies in spatial memory using a 

task that required observers to remember object locations on displays containing randomly-placed 

discs, and we compared performance for visual short-term memory and short-term memory 

exposures. Observers viewed masked displays containing 1 to 10 discs using typical short-term 

memory exposures for measuring spans, that is, 1-second per item (for instance, used in the spatial 

span task by Lewandowsy, Oberauer, Yang, & Ecker, 2010, although their presentation of the stimuli 

is serial). We compared these results to the previous studies that presented the same stimuli for 50 ms 

or 200 ms for all items – exposures more typical of visual short-term memory displays (data from 

Haladjian & Pylyshyn, 2011; Haladjian, Singh, Pylyshyn, & Gallistel, 2010). We examined whether 

grouping of objects by proximity occurred and whether perceptive grouping or deliberative chunking 

strategies were used to create more compact representations. We expect that with longer viewing 

exposures, intentional chunking strategies may be used to both increase the accuracy of localization 

performance and to correlate with a more lossless form of compression than with shorter exposures.  

Our results show that localization accuracy did not improve significantly with longer 

exposures. Additionally, responses were spread among different clusters and not focused on 
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individual clusters. We discuss why this indicates that spatial information for a set of objects is 

extracted globally and quickly, with little benefit from extended encoding durations.  

 

2. Methods 

2.1 Participants 

Thirty-six students and staff members from the Université de Franche-Comté were recruited 

for voluntary participation in this experiment during the summer trimester (2011); no payment was 

given. Two participants were removed from the analyses due to high variability in performance. 

2.2 Apparatus 

The experiment was programmed in MATLAB using Psychophysics Toolbox extension 

(Brainard, 1997). The stimuli were presented on a laptop running Windows XP, with a 38 x 22 cm 

LCD screen (1600 x 900 pixels & 60 Hz refresh). 

2.3 Stimuli 

The test stimuli were identical to those used in Haladjian & Pylyshyn, 2011, and comprised of 

1-10 identical dark gray discs on a slightly lighter gray background (~1° viewing angle in diameter). 

The discs were randomly placed within a 22° x 13° region in the center of the laptop screen with a 

minimum distance of ~3° between discs (to minimize crowding). The discs were presented 

simultaneously for 1-10 seconds at a rate of 1-second per disc (e.g., a display with 2 discs was 

presented for 2 seconds, and a display with 9 discs was presented for 9 seconds). These low-contrast 

stimuli were designed to minimize after-images and optimize the effectiveness of the subsequent 

random-dot texture mask that was presented for 1 second.  

2.4 Procedure 

Each trial began with a 2-second presentation of a blank gray screen with a central fixation 

cross. The disc stimulus then appeared for the designated duration based on the number of discs on 

the stimulus (stimulus durations ranged from 1-10 seconds). This display was followed by a 1-second 

random-dot texture mask to limit viewing durations and prevent after-images. Finally, a blank gray 

screen appeared and observers used a computer mouse to place markers (“X”) on each of the 

perceived disc locations; then, they pressed the space bar to initiate the next trial at their own pace. 
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See Figure 1 for a schematic of a trial in this experiment. The program presented 10 trials for each of 

the display numerosities in a randomized order, for a total of 100 trials. The experimental session 

lasted less than 30 minutes.  

2.5 Analyses 

Enumeration accuracy was determined by comparing the number of discs on a stimulus 

display to the number of markers placed on the response display. For localization accuracy, stimulus-

response pairs were established using Delaunay triangulation and nearest-neighbor methods in 

MATLAB. The triangulation process basically connects the nearest-neighbor discs in an optimal 

manner and creates a triangular mesh, where no discs fall inside another triangle and avoids long or 

extremely thin triangles (see Appendix Figure A for an example). Each of the response markers are 

individually added to this process to find the most likely stimulus disc and response marker 

correspondence (based on distance). Once a response marker was paired with a stimulus disc, the 

Euclidian distance between these two locations was computed to provide an estimate of the 

localization error. Also, the Delaunay triangulation procedure was performed on all the response 

coordinates, and the lengths of the triangle segments produced by this method were used to examine 

the localization errors in the responses (i.e., to identify spatial compression by comparing the average 

distances among the stimulus discs to the average distances among the responses). In all the analyses 

of variance (ANOVA) models reported, subject ID was included as a random factor to control for 

between-subject variability.  

Since the current design only differed by using longer presentation durations than those used 

in previous similar studies (Haladjian & Pylyshyn, 2011; Haladjian, et al., 2010), we compared the 

results from all these studies to determine if increased exposure to the test stimuli improved task 

performance. That is, we wanted to measure the benefit of increasing the presentation durations from 

200-ms or less to several seconds for displays with multiple discs.  
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Figure 1. Schematic of the experimental design for the localization task. 

 

3. Results 

3.1 Enumeration Accuracy 

The proportion of trials with the correct number of markers placed on the screen was very 

high in this experiment—an expected result since displays were presented long enough to allow 

observers to freely count all of the discs as they encoded their locations (in the debriefing, all 

participants reported that they counted the discs most of the time during the experiment). 

Nevertheless, there were more counting errors on displays with more than six items. These errors 

increased at a much lower rate than the results from the previous studies that used very brief 

presentation durations (Haladjian & Pylyshyn, 2011; Haladjian, et al., 2010). Figure 2 plots the 

proportion of trials that were enumerated correctly as a function of display numerosity for 50-ms 

displays (very short exposure), 200-ms displays (short exposure), and displays lasting for one-second 

or more (long exposure).  

An ANOVA comparing average proportion of trials with correct responses was conducted, 

with duration and numerosity as fixed factors and the subject ID as a random factor (to correct for 

between-subject differences). The ANOVA results indicated significant main effects for numerosity 

(F(7,1737) = 428.3, p < .001, 2
p = .63) and duration (F(1,152) = 263.4, p < .001, 2

p = .63), with an 

interaction (F(7,1065) = 43.2, p < .001, 2
p = .22). Additionally, for each numerosity, an ANOVA 
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was performed to examine differences between the duration conditions. The ANOVAs for duration 

were significant for all numerosities except 3 to 5, with post-hoc analyses indicating significantly 

different performance among all three duration conditions for numerosities of 6 and greater (F’s > 15, 

p < .001). These results indicate, not surprisingly, that longer viewing durations allow for more 

accurate recall of the number of items present on a stimulus display by providing observers enough 

time to count the number of discs while encoding locations. The primary interest of this study, 

however, is the performance on the localization of these discs, which will be the focus of the 

remainder of the analyses.  

 

 

F igure 2. Proportion of trials with correct enumeration; long exposure (N = 34) and short /very short 

exposures (for both, N = 152; data collected in Haladjian & Pylyshyn, 2011 and Haladjian, et al., 2010). 

Note: Error bars represent 95% confidence intervals. 

 

3.2 Localization Accuracy 

Localization accuracy was measured as the distance between paired response markers and 

stimulus discs. Spatial information was expected to be better encoded for as many as four items given 
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the expected short-term memory capacity during these longer viewing durations, but possibly for 

more than four items given the hypothesis that longer exposures would allow chunking to occur. 

Performance for longer exposures, therefore, should translate into a flat curve with lower localization 

errors for display numerosities of up to four items if no chunking occurred, or more items if some 

could be chunked. The results did not indicate such trends: there was an overall average error of 60 

pixels (or ~2° viewing angle) and a regular logarithmic increasing magnitude of errors as the display 

numerosity increased. Figure 3 plots these results along with results from the previous studies with 

50-ms and 200-ms exposures.  

The ANOVA examining the magnitude of localization errors indicated significant main 

effects for numerosity (F(7,1917) = 148.4, p < .001, 2
p = .35) and duration (F(1,168) = 82.9, 

p < .001, 2
p = .33), but with no interaction (F(7,1130) = 1.3, p = .254, 2

p = .01). ANOVAs 

comparing the duration for each numerosity separately found significant differences in performance 

for numerosities 2 to 7, with the very short duration (50-ms) being significantly worse than the other 

two durations for numerosities 2 to 6, and the short (200-ms) condition being slightly better than the 

other two durations for numerosity 7. In other words, the localization error was globally highest in the 

shortest exposure, but there were few differences between the short and long exposures. This 

indicates that errors in spatial memory depend more on the number of items that need to be processed 

rather than the duration of exposure to the stimuli, with localization accuracy almost at ceiling after 

200-ms of exposure. These results suggest that, as long as a few hundred milliseconds are allowed for 

observing the displays, spatial information can be encoded quickly and globally, but not sequentially, 

since there was no increase in localization accuracy for the long viewing condition where observers 

had time to visit all locations individually.  

The magnitude of localization errors also was examined only for the first response made on a 

display (Figure 4) in order to analyze localization errors without the cumulative increase in errors 

made with each subsequent click when multiple responses were required (i.e., any display with more 

than one item). This analysis particularly intended to test whether similar encoding quality for all 

discs occurs by spreading a global resource among them. The alternate prediction was that a 
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deliberate form of chunking would result in a better allocation of the available resource for serially 

encoding the items, resulting in a lossless compression of the first chunks or the first items in 

memory. The ANOVA examining the magnitude of localization errors for the first response made on 

the display indicated a similar trend as above, with a significant main effect for numerosity 

(F(7,1922) = 37.4, p < .001, 2
p = .12) and duration (F(1,202) = 49.6, p < .001, 2

p = .20), with no 

interaction (F(7,1182) = 0.6, p = .64, 2
p = .01). ANOVAs comparing the duration for each 

numerosity separately found significant main effects of duration for numerosities 2 to 8, with the very 

short 50-ms duration being significantly worse than the 200-ms condition for all numerosities and 

worse than the long exposure only for numerosity 2. There were fewer cases in the long exposure 

condition (data from only 34 subjects), and thus produced larger error bars and limits the 

interpretation of the results for the longer exposures, but the trend seems to be closer to the 200-ms 

than the 50-ms condition. These results again suggest that spatial information tends to be encoded 

quickly and globally (not sequentially) because there was no decrease in localization errors in the long 

viewing condition, which was also evident in the first response made in each trial.  

Additionally, ANOVAs for each duration separately indicated a main effect of numerosity for 

all exposure durations, with post-hoc analyses indicating that the performance for numerosities of 4 

and higher was significantly worse than for smaller numerosities. This also indicates that errors in 

spatial memory depended more on the number of items that needed to be processed rather than the 

duration of exposure to the stimuli, with localization accuracy almost at ceiling after 200-ms of 

exposure. Since this trend in errors was true even for the first response made on the screen, it suggests 

that the reproduction of locations for making these responses is obtained from an “ensemble” statistic 

or some sort of non-independent representation of disc locations.  
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F igure 3. Average localization errors for all responses for long and short exposures. Note: Error bars 

represent 95% confidence intervals.  

 

 

F igure 4. Average localization errors for the first response made on a display, for long and short 

exposures. Note: Error bars represent 95% confidence intervals. 
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3.3 Compression E ffects 

We observed less compression of spatial information for trials with longer encoding 

durations. In these trials with longer exposures, the responses did not show as much shortening in the 

lengths of the Delaunay triangle segments as in the shorter exposure trials. As previously described, 

the triangulation was performed for stimulus displays and subject responses (separately), which 

created an optimal triangular mesh of connections. Shorter Delaunay triangle segments in the 

responses (compared to the stimulus) would indicate that observers reported disc locations as being 

closer to each other than they actually were. This systematic compression of space was seen in the 

localization data from previous studies where the shortest exposure duration produced the most 

compression (Haladjian, et al., 2010). Figure 5 plots these compression effects as the average lengths 

of the Delaunay triangle segments on the stimulus displays minus the length of these segments on the 

response displays. A smaller value on Figure 5 indicates a more accurate representation and 

reproduction of the distances between objects. For displays with more than four items, we see a 

decrease in this compression as the viewing duration increases. In other words, the localization errors, 

though similar in magnitude, did not take the more systematic form of spatial compression in the 

longer viewing condition. The sort of error that did occur may be similar to a rigid shift of coordinates 

where distance between items was more accurate, but the items were misplaced on the screen. (See 

Appendix Figure A for an example of this compression in an observer’s response.) 

An ANOVA was performed on this compression measure and found significant main effects 

for numerosity (F(6,1563) = 49.4, p < .001, 2
p = .16) and duration (F(1,152) = 28.9, p < .001, 

2
p = .16), with an interaction (F(6,915) = 3.0, p < .01, 2

p = .02). Separate ANOVAs for each 

numerosity indicate significant main effects of duration for all numerosities except 7 and 9. Post-hoc 

analyses showed significantly less compression for the longer viewing duration for the numerosities 5 

to 9. The compression-like errors tended to decrease with larger numerosities likely because displays 

with fewer discs have larger distances between them (and thus more room for error). Alternatively, 

observers may have a more accurate memory for the overall spread of items on the stimulus displays 
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when viewed for longer durations, suggesting a slightly better encoding process when there is more 

time to view the displays (although still prone to the same amount of errors on average).  

Overall, these results can be interpreted as an improvement in the spatial representation when 

the stimuli were viewed for longer durations, though this is a minor benefit (a decrease in 

compression of ~20 pixels on average, or 0.75 degrees, and a small effect size of 16% of the variation 

in performance due to the duration conditions). The observation that performance was both less 

compressed and similarly prone to localization errors in the longer duration seems paradoxical but can 

in fact be explained by a more exact report of the disc patterns (resulting in less compression), 

although the whole patterns were not correctly reported on the screen (resulting in localization errors). 

The average localization errors were therefore comparable in the short and long conditions, but 

qualitatively different. This supports the possibility that items recalled from memory with shorter 

encoding time are more prone to compression in memory, especially since extended response times 

affect the ability to maintain items in visual short-term memory and makes them more susceptible to 

such compression errors (Sheth & Shimojo, 2001).  

 

 

F igure 5. Compression errors based on the computation of Delaunay triangulation segments for long 

and short exposures. Note: The numbers indicate the average lengths of the Delaunay triangle segments 
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on the stimulus displays minus the length of these segments on the response displays; a smaller value 

indicates a more accurate representation. Error bars represent 95% confidence intervals.  

 

3.4 Grouping Analysis 

To examine whether or not grouping strategies were used to aid spatial memory, the discs on 

the stimulus displays were grouped into four regions using k-means clustering methods (for related 

topics, see Pothos & Chater, 2002). We set k to four, following the idea discussed in our introduction 

that working memory capacity is limited to four slots, and we hypothesized that the encoding process 

would likely rely on any available clusters that could be used to maximize encoding efficiency. This 

clustering method designated a disc’s membership to one of four cluster regions on a display based on 

the mean distances between the discs – a process that identified the discs most likely to be grouped 

together based on proximity (we only analyzed trials containing five or more discs). Each observer 

response was then assigned to one of these four regions by associating it with the nearest centroid of a 

cluster within a region (see Appendix Figure B for an example of the clustering procedure). The 

results indicated that observers were highly likely to make at least one response in each of these four 

cluster regions, but some of the items within the regions could be missed (see Figure 6). The ANOVA 

on the proportion of trials with missed clusters indicated significant main effects for numerosity 

(F(4,1246) = 11.2, p < .001, 2
p = .04) and duration (F(1,160) = 29.8, p < .001, 2

p = .16), without an 

interaction (F(4,639) = 2.2, p = .07, 2
p = .01). To further examine the effects of duration, ANOVAs 

for the individual numerosities were conducted and indicated significant main effects of duration for 

the numerosity conditions of 5, 6, and 7. Post-hoc analysis controlling for multiple comparisons only 

found a significant difference in the numerosity condition of 6, where the 50-ms condition had 

significantly more missed clusters than the 200-ms condition (mean difference = 0.04, p < .001). 

Additionally, separate ANOVAs on the proportion of trials with missed clusters for each 

duration found main effects for numerosity in the very short (F(4,638) = 8.9, p < .001, 2
p = .05), 

short (F(4,639) = 5.7, p < .001, 2
p = .03), and long durations (F(4,132) = 3.2, p = .02, 2

p = .09). 

Post-hoc analysis found significantly more missed regions: in the very short exposures for numerosity 
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of 5 when compared to 7, 8, and 9, as well as numerosity of 6 compared to 8; in the short exposure, 

the numerosity of 5 had significantly more missed regions than all other numerosities; and in the long 

condition, there were more missed regions in numerosity of 5 than of 8. One possibility to keep in 

mind is a missed region may correspond to a missed item from the display (a miscounted trial) or may 

be the result of region assignment errors due to mis-localization errors. Nevertheless, although there 

may be some errors in the k-means clustering procedure, these errors should be uniform among the 

duration conditions and any differences in performance should still be evident. 

These results indicate a global encoding of spatial locations instead of a sequential encoding 

of locations: in over 90% of trials with five or more objects on the screen, there was at least one 

response in all of the clusters. In other words, the observers noticed that something was present in 

each of the four cluster regions but, as we will discuss in the next section, they did not remember 

precisely the exact content within these regions. An opposite strategy favoring the intentional 

grouping of objects would have tended to show a greater proportion of missed regions given that the 

observer would have targeted a sequential report of the clusters, better encoding a first subset of 

objects, and having less room for the last objects given a hypothetical limitation in the number of slots 

available in short-term memory. 
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F igure 6. Proportion of trials with any cluster missed (by display numerosity on x-axis) for long and 

short exposures. Note: Error bars represent 95% confidence intervals. 

 

4. Discussion 

While some studies have focused on whether there exists two distinct processes for 

enumerating numerosities within and beyond the putative subitizing range of four items (e.g., Burr, 

Turi, & Anobile, 2010), the present study rather focused on whether there exists different processes 

for enumerating numerosities by examining longer exposure time to the stimuli. Because the present 

study described the accuracy of the spatial representations of a small set of discs in short-term 

memory with durations that offered the observers enough time to count the number of items in the 

field of the view, we focused our analysis on the memory for spatial information and we compared 

the new data to previous data where similar performance was measured on more rapid presentations 

typical of visual short-term memory experiments. Our analyses also examined how clustering can 

affect encoding and whether encoding is subject to a compression process that can become less lossy 

with greater encoding time. The rationale was that perceptual grouping allows items to be aggregated 

into larger structures (Feldman, 2007), which tends to free space in memory. Our hypothesis was that 

short-term memory displays (longer exposures) would enhance a sequential encoding of the available 
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clusters, resulting in more precise memorization of spatial information, especially for the first 

encoded items. By opposition, we hypothesized that more rapid displays would encourage a global 

encoding of spatial information resulting in lossy compression of the spatial information.  

The current findings provide no evidence for a sharp discontinuity in the encoding of spatial 

information between exposure durations. The results indicate that the encoding of spatial information 

occurs quickly and does not benefit from extended exposure to the stimulus. Contrary to our 

expectations, the longer viewing durations in this study, which provided ample opportunity to encode 

locations into short-term memory, did not improve localization performance from the previous studies 

using shorter viewing durations (Haladjian & Pylyshyn, 2011; Haladjian, et al., 2010). This suggests 

that there is no substantive optimization of spatial memory for longer durations that a priori offers 

more time for the effortful encoding of spatial information. Observers tend to encode the global 

spatial properties and not individual items or individual chunks of clusters – even when the number of 

items to recall was below the capacity of short-term memory (around four, if we refer to the theories 

mentioned in our introduction). This implies that the resource for processing spatial information is 

distributed across all items rather than divided into slots dedicated to encoding a few items almost 

perfectly. This result also supports the idea that the difficulty observed in the Corsi block task 

depends more on other factors than coding spatial locations (Gmeindl, Walsh, & Courtney, 2011), 

since spatial locations do not seem to be encoded serially and independently in short-term memory. 

Additionally, the discs on the stimulus displays were not clearly clustered into subsets and 

encoded as separate groups into short-term memory. When dividing the stimulus displays into four 

regions using k-means clustering, it was evident that observers tended to report that something was 

present in all regions of the display, even when making errors as to the precise number of items 

present within each region. The results indicate that there is no grouping effect for short or long 

viewing durations, but rather there is a global encoding that is influenced by the overall spread of 

items on the display. Since the stimuli were designed to avoid crowding by maintaining a distance of 

at least 3° between the discs (Bahcall & Kowler, 1999; Intriligator & Cavanagh, 2001), as opposed to 

previous manipulations in which the items were organized in accordance with Gestalt grouping 

principles (e.g., Woodman, Vecera, & Luck, 2003), these results where some items were missed 
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within regions cannot be attributed to crowding per se, but may be related to the attentional limits that 

occur under brief presentation durations.  

One way to interpret the limits on localization accuracy in this study is to consider location as 

an object feature, and with more objects there are more features to remember. Localization accuracy 

might decrease as a function of the number of objects because of the required time for attention to 

move to each object and encode the relevant features. When the visibility of these displays is limited 

and there are more items than can be automatically individuated (e.g., via visual indexing), one may 

notice that there are an uncountable number of objects in addition to the four that were indexed. In 

order to accurately localize all the objects on such a display, one needs to encode each location into 

short-term memory and thus will face the limit imposed by the number of available “slots” in short-

term memory. This may not be the case in our study, however, since localization accuracy was 

essentially the same whether the observer viewed the display for short durations (200 ms) or much 

longer durations (> 1000 ms). It does not seem that longer exposures to the stimuli can enhance 

memory for spatial information than what is encoded within the 200-ms exposures. Therefore, it is 

likely that an ensemble statistic is computed of the average spread (and possibly configuration) of the 

objects on the display rather than an encoding of individual locations. Additionally, it does not seem 

that a short-term memory limitation is at play in terms of “fixed slots” since there is an increase in 

localization errors for each numerosity within the four slot limit suggested by such theories. If each 

object location was assigned to a memory slot, there should be no performance difference within the 

capacity of short-term memory capacity (up to four items)—contrary to our results.  

Overall, the current results do not seem to support a fixed slot theory of short-term memory 

(Zhang & Luck, 2008) for spatial memory because the encoding of spatial information is not clearly 

allocated for each viewed item or groups of items, but rather encoded on a more global scale (e.g., as 

relationships between objects). That localization accuracy seems to be near optimal in as little as 200-

ms suggests that an overall snapshot of locations is extracted quickly and is used as the primary guide 

for localization. This seems to suggest that there is a hierarchical encoding of scene features (Brady & 

Alvarez, 2011), where the location of objects is a global property that is encoded first, separate from 
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individual features. Further studies, however, are required to better understand the relationship 

between global and individual object representations, especially in terms of spatial memory.  

A possible limitation of the current stimuli is that they were designed to prevent crowding, as 

mentioned earlier, with a minimum distance of ~3° between the discs. This may have reduced the 

presence of cluster-able groups of discs, and thus made it more difficult to employ a chunking 

strategy by the observers. It may be useful to conduct a future study that carefully controlled the 

appearance of clusters rather than relying on the random clusters created by the current experimental 

design. Additionally, a reason why localization may have failed to improve in this study is due to the 

lack of landmarks to aid spatial memory, which have been shown to increase localization accuracy in 

previous studies (e.g., Lee, Shusterman, & Spelke, 2006). This may also account for the increase in 

localization error found with each additional response made, as there is no stable frame of reference to 

constrain such errors. Additional versions of this experiment using landmarks to guide localization 

may reveal further useful information about spatial memory. 

 

5. Conclusion 

In a localization task with very short exposures to the stimuli, Haladjian & Pylyshyn (2011) 

found a subitizing range in visual-short-term memory that was close to the capacity of short-term 

memory (Miller, 1956). The current study simply questioned how spatial information would be 

encoded using a more appropriate timing for measuring short-term capacity (i.e., 1-second per item). 

In sum, the results from the current study suggest that the greater subitizing range observed in 

previous studies (Haladjian & Pylyshyn, 2011; Haladjian, et al., 2010) is not likely due to grouping 

strategies used to aid information processing capacity. Most spatial information is encoded globally in 

a “snapshot”, and not from simply fitting the information for each separate item into a limited number 

of slots in short-term memory. The resulting lossy-type errors support the possibility that object 

locations are not encoded in representations independently of each other (see Brady & Alvarez, 

2011). Since no evidence for chunking was found, further research is required to determine the cause 

of the increased subitizing range when reporting numerosity by pointing to locations. 
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Appendix 

 

 

F igure A . Example of Delaunay triangle simplexes and compression effects. The black circles 

correspond to the stimulus discs and the lighter crosses correspond to the responses from a sample trial; 

connections between the circles or crosses are the segments identified from the Delaunay triangulation 

procedure. As this image shows, the distances between the responses are closer to each other than the 

distances between the stimulus dots. 
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F igure B . Example of regions created by the k-means clustering for a single trial, where k = 4. The 

black circles represent the locations of the stimulus discs on a display from a sample trial (x and y axes 

correspond to screen dimensions). The grey crosses correspond to the observer’s responses. To 

determine whether or not a response was made within a region, each response was paired with the 

nearest centroid of the cluster in a region (designated by an asterisk; the dashed line indicates to which 

region centroid a response was linked). In this trial, a response was made in all four regions. 
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