
Longevity, Age-Structure, and Optimal Schooling
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Noël BONNEUIL∗

Institut national d’études démographiques,
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governs the relationship between longevity and education. This relation-

ship is revisited here from the perspective of optimal period school life ex-

pectancy, obtained from the utility maximization of the whole population

characterized by its age structure and its age-specific fertility and mortal-

ity. Realistic life tables such as model life tables are mandatory, because

the age distribution of mortality matters, notably at infant and juvenile

ages. Optimal period school life expectancy varies with life expectancy

and mortality. The application to French historical data from 1806 to

nowadays shows that the population age structure has indeed modified the

relationship between longevity and optimal schooling.

keywords: longevity, schooling, school life expectancy, age structure.
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1 Introduction

Ben-Porath (1967) suggested a “mechanism” according to which longer life

spans imply larger investment in human capital. This mechanism is central to

several new growth theories in the field of unified growth theory. For example,

Boucekkine et al. (2002, 2004) argued that early increases in life expectancy,

mediated by the Ben-Porath mechanism, are at the origin of modern growth:

longer lives would induce longer schooling and higher rates of human capital

accumulation, giving rise to a new growth regime which allows the escape from

the Malthusian trap.

French historical data are accurate enough to give us an insight into the

relationship between longevity and education, at the moment of both the school-

ing and the mortality transitions. From the accurate estimates of female life

expectancy at birth by French départements from 1806-10 to 1901-05 of Bon-

neuil (1997a) and from French schooling rates in 1837, 1850, 1867, and 1876

(Bonneuil, 2014), we regressed the time series of the growth rate of female life

expectancy (tested to be stationary) on the growth rate of the female schooling

rate (also tested to be stationary) in 1837-50, 1850-67, and 1867-76. On 82 French

départements, these regressions yield 11 positive correlations (for départements

located erratically on the territory), 6 negative, and 65 non significant. Then, in

spite of the scarcity in time, the absence of clear correlation raises doubts that

the relationship between longevity and schooling would be unequivocal.

3



In a quantity-quality trade-off model à la Becker (1991), Hazan and Zoabi

(2006) show that the Ben-Porath mechanism may not always work because an

increase in longevity affects not only the return to schooling (quality of children),

but also the return to quantity or the optimal total number of children. The

latter effect mitigates the Ben Porath mechanism and can in principle negate it.

Under homothetic preferences, Hazan and Zoabi (2006) find that when fertility

is endogenous, an exogenous increase in children’s longevity has no effect on

schooling. Hazan (2010) questions the Ben-Porath mechanism explicitly. He

starts from the cohort model of Boucekkine et al. (2002): all individuals of

all cohorts are identical and make decisions about their lifetime consumption,

schooling, and work time. Attending school for a longer time has a cost in terms

of foregone labor income but this schooling time also induces a gain because

longer schooling means higher wages in the labor market. In the case of a perfectly

rectangular survival function, increased longer longevity leads to longer schooling

only if the total expected number of hours spent at work during one’s lifetime

also rises. Hazan (2010) tested this property on US data for consecutive 10-year

cohorts born between 1840 and 1970, to find that the total number of hours

worked did not increase, and to conclude that the Ben-Porath mechanism was

not relevant for the US during this period. Cervellati and Sunde (2009), however,

argued that the connection between the total number of hours spent at work

during an individual’s lifetime and the Ben-Porath mechanism does not hold for

non-perfectly rectangular survival functions.

4



All the studies referred to so far are based on individual decision-making

where agents decide about their optimal consumption stream and their lifetime

accumulation of human capital over lifetime for a given ad-hoc survival func-

tion. Hazan (2010) and Cervellati and Sunde (2009) used a continuous time

(homogeneous) cohort model, incorporating a schooling time decision model like

in Boucekkine et al. (2002). Cervelatti and Sunde (2013) illustrated their argu-

ment on a discrete-time version of their cohort model. Boucekkine et al. (2007)

introduced within-cohort heterogeneity into this model, which adds formidable

complications. However, decisions relative to education are not individual; on the

contrary, at least in continental Europe, education is run mainly by the State.

For example, control over education in France dates back at least to 1837, when

the government started to invest substantial human and material resources in

schooling. It withdrew university degrees from private education in 1880, made

primary schooling free in 1881, and education became non-clerical and manda-

tory in 1882. The State finances schools and teachers, with individuals who send

their children to state-run schools, which constitute the large majority of teach-

ing establishments, having practically nothing to pay. State schools have been

organized in this way until now in most European countries. Nineteenth century

France offers an exemplary case, and Ben Porath’s hypothesis that governments

would respond to increasing longevity by lengthening schooling time can be tested

in the context of a rapidly changing demography and deliberate State policies to

increase schooling time for boys and girls.
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We innovate by relying on the alternative criterion of optimal period schooling,

which is the only one so far to involve the whole age structure, in contrast to

individual follow-up. The State’s expenditures depend on the ratio of schooled

children to tax-payers, and this ratio is a function of the age structure. For an

equivalent mortality level and population size, at each date, a population in a low

fertility regime has comparatively more contributors and fewer schooled children

than a population in a higher fertility regime.

A basic formulation of the optimal period schooling equivalent could be the

following: given the age structure of the population, its current fertility and

mortality levels, would a planner seeking to maximize social welfare (say with

respect to the Benthamite criterion) lengthen schooling in response to rising life

expectancy? In contrast to the individual-cohort perspective adopted in the

related literature, the key component of the period schooling optimum problem

is that the decisions have to be taken on the basis of the overall demographic

structure. Therefore, the current age structure of the population determines

schooling decisions, whereas it is ignored in the literature on individual schooling

decisions. Put simply, the main reason supporting the argument that longer life

implies longer education is that the proportion of people above the maximum

school completion age increases as mortality decreases. But this holds true only

if the proportion of people under that age does not increase faster. Following a

cohort, as did Hazan (2010) or Cervellati and Sunde (2009, 2013), is equivalent

to fixing fertility at a constant value over time. The conditions of the moment
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however vary with fertility, so that if the proportion of people in school increases,

compared to the proportion out of school, greater longevity may not be enough

to offset higher fertility, leading to a decrease in schooling, at the optimum. The

relationship between length of life and schooling will thus depend on the balance

between the additional young from higher fertility and the additional old from

improved survival.

We shall then work with the concept of the fictitious cohort,1 where the forces

of change affecting people of successive ages living at the same time are applied to

a fictitious group of people born at a same time and who would experience these

age-specific forces successively as they age. A fictitious cohort built for each date

and its associated stable population for this date will yield the conditions of the

moment at that date. The tool of fictitious cohort is common in mathematical

demography (Bonneuil, 1997b). The associated concept to the fictitious cohort

is “school life expectancy”, which is defined as “the total number of years of

schooling (primary to tertiary) that a child can expect to receive, assuming that

the probability of his or her being enrolled in school at any particular future

1A fictitious cohort over the period, say, [t, t + 1) consists of, say, 100 people, born during

this period and experiencing over their lifetimes the mortality schedule prevailing in this period.

Its attrition over age characterizes the mortality conditions of the moment [t, t+ 1). This is the

basis for computing the widely used period life expectancy, which is the expected age at death

of the fictitious cohort, and the total fertility rate, which is the no less widely used expected

total number of children born to a woman of the fictitious cohort during her entire life if she

were exposed to the fertility conditions of the moment [t, t+ 1).
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age is equal to the current enrollment ratio at that age.”2 The period school life

expectancy is then the sum over all ages of the probabilities at a given date to

remain in school.

The conditions of the moment consist in the expected age of the oldest

schooled individual at time t, the consumption schedule by age at t, the leisure

schedule by age at t, the fertility schedule by age at t, and the life table at t.

To make decisions, social planners use their knowledge of these conditions of the

moment, not their knowledge of the stocks of population or of the school expe-

rience of each cohort present at t. In demography, family policies are based on

period fertility rates, whose sum is the total fertility rate. This rate is used to

define population policies, no matter the total number of children born to each

cohort of women at time t. Similarly, period life expectancy summarizes the

mortality rates of the moment in a fictitious cohort, and insurance policies are

decided on the basis of period life expectancy, not of cohort life expectancies. So-

cial planners cannot modify past variables and are aware that, if the conditions

at date t were maintained for long enough, the population would converge to

the stable population associated with the fertility schedule and the life table at t

(“ergodicity” theorem (Cohen, 1979)). The decisions of social planners are based

not on the mortality, fertility, educational, consumption, and income histories of

each cohort, but on current conditions, which are measured through age-specific

mortality, fertility, and schooling rates and through consumption and age-specific

2https://www.cia.gov/library/publications/the-world-factbook/fields/2205.html
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income prevailing at the current period.

We shall study the optimal schooling rule adopted by a social planner and

see how this rule responds to increased longer longevity. For the sake of clarity,

we shall assume that the planner fixes the income transfer rates from working

to non-working ages (people at school and pensioners) in such a way that the

budget is never in deficit. Allowing the planner to borrow (subject to a no-Ponzi

game condition) complicates the technicalities, but handling the age structure

is already onerous (leading to nonlinear functional integral equations). So, we

impose zero deficit at any date. By doing so, we offer a symmetrical setting to

the one adopted in the cohort-individual literature. In the latter, the individual

(representing the fictitious cohort) is followed-up over his/her lifetime (inter-

temporal optimization). We focus on the demand side, with emphasis on the

population age structure, to identify the cases where this mechanism fails to be

optimal, even when education supply is not at stake.

In Section 2, we derive optimal period schooling from conditions of the mo-

ment through a maximization program to be solved by the social planner. In

Section 3, we show how the period optimal schooling is modified when life ex-

pectancy or fertility are varied. We shall specify the model with realistic model

life tables, and, in Appendix, present analytical yet unrealistic cases (constant,

linear, and Gompertz mortality). We shall situate empirical cases of French

départements in the space defined by fertility, life expectancy, and schooling. We

shall draw the trajectory of France as a whole in this space and discuss optimal
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schooling with demographically realistic assumptions. Our main result is that

the relationship between longevity and schooling is mediated by infant mortality

and by fertility, so that Ben Porath’s claim that longer life is positively associ-

ated with longer schooling holds true only in countries with low mortality and

low fertility. The contrary holds true in countries before or at the onset of the

demographic transition.

2 Period optimal schooling, through the ficti-

tious cohort

Instead of tracking individuals’ life-cycle decisions as in Ben Porath’s frame-

work, we consider an alternative setting where schooling decisions are taken by

a government which optimizes social welfare at each date. Its program is:

maxc(t,.),l(t,.),AS(t) V (t) =
∫ Ā

0 p(t, a)u(c(t, a), `(t, a)) da, ∀t, (1)

where AS(t) is the age of the oldest schooled individual, Ā is the maximal life

span, and where, at age a and time t, p(t, a) represents the total number of people

and c(t, a) consumption per head; each individual of age a has one unit of time

available, shared between `(t, a) in leisure and 1−`(t, a) in labor supply for active

people or in time spent in school for schooled children, and u is the continuously

differentiable strictly concave utility function, assumed additively separable in

consumption and leisure.
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The budget constraint of the government at date t is:

∫ Ā

0
p(t, a)c(t, a) da =

∫ AR

AS(t)
(1− `(t, a))p(t, a)w(t, a) da, (2)

where w(t, a) denotes wages at age a and time t. Equation (2) equalizes total

consumption of individuals at every age at date t with labor income earned by

all active individuals at t. The age at retirement AR is not a control variable, but

taken here as constant for the sake of simplicity, because we focus on schooling.

Problem {1, 2} is age-structured, in contrast to models of Ben Porath’s mech-

anism based on individual follow-up. One may question the fact that the govern-

ment’s objective function is not inter-temporal. First, governments have short-

term horizons often limited by the electoral cycle. Second, by maximizing at each

date, we isolate the pure effect of the age structure, whereas individual follow-up

isolates pure life cycle effects and misses collective disparity. Third, planners

wish to know what to decide from the conditions of the moment: they are free

to repeat this exercise with projected demographic forces into the future, and

then, at each future date, to adapt policies to the projected conditions of the

moment (this is exactly what is done with fertility and mortality). And the age

structure associated with the demographic forces of the moment are obtained by

the ergodicity theorem (Cohen, 1979).

Using the concept of fictitious cohort, we define the school life expectancy as:

S(t) :=
∫ AS(t)

0
(1− `(t, b)) db. (3)

It corresponds to no actual cohort, but to a fictitious one, which at age b would
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have spent (1−`(t, b)) time units in school. It measures the conditions of schooling

of the moment t. In contrast to the literature focusing on individual schooling

decisions, the schooling variable S(t) measures aggregate time at school spent

by all individuals aged between 0 and AS(t) at time t. In practice, it is the

total time spent in primary, secondary, and tertiary education at a given period

(e.g. Done, 2012). AS(t) is a control variable, whereby the planner decides

at which age individuals can no longer remain in school. Schooling starts at

t = 0 by construction. In practice, governments may set the age for entry into

schooling and the age for exit. We consider only the latter, following the literature

developing Ben Porath’s hypothesis.

We specify wages to depend on the school period life expectancy, as:

w(t, a) = ι(a) exp(θ(S(t)), (4)

where ι describes a schedule of wages across age, after controlling for date. We

assume that for given total schooling S, productivity at work is an increasing

function of S, say exp(θ(S)), where θ(.) is an increasing and concave production

function. This follows the specification in the literature around Ben Porath with

individual maximization. Wages at age a and time t depend on the age profile ι

and on school life expectancy S(t) in a multiplicative and separable way, for the

sake of tractability. Equation (4) implies that a higher school life expectancy S(t)

increases wages at date t for all ages. There is no empirical evidence to support

this claim, but it may hold true anyhow: for example, Done (2012) reports that,
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in sub-Saharan Africa, school life expectancy is 9 years of age with low wages

across all ages while in the Western world, schooling life expectancy is 16 years

of age with much higher wages at each age.

We now solve the program. State variables are the age-specific population

p(t, a) and the total schooling time S(t); control variables are consumption c(t, a),

leisure `(t, a), and the age AS(t) of the oldest schooled individual.

The Lagrangian is built from (1) and (2), after replacing with the right-hand

side of (4). The first-order condition obtained by differentiating with respect to

consumption c is:

u′c(c(t, a), `(t, a)) = λ, ∀a. (5)

The first-order conditions obtained by differentiating with respect to `(t, a):

for a > AS(t) u′`(c(t, a), `(t, a)) = λeθ(S(t))ι(a)

for a ≤ AS(t) p(t, a)u′`(c(t, a), `(t, a)) = λ
∫ AR
AS(t) p(t, b)(1− `(t, b))eθ(S(t))θ′(S(t))ι(b) db.

(6)

The first-order conditions obtained by differentiating with respect to AS(t) yields

the relationship between schooling time and population:

1
θ′(S(t))

=
∫ AR
AS(t)

p(t,a)
p(t,AS(t))

(1− `(t, a)) ι(a)
ι(AS(t))

da. (7)

Equation (7) is also:

∫ AR

AS(t)
p(t, a)(1− `(t, a))ι(a)θ′(S(t)) da = ι(AS(t)) p(t, AS(t)), (8)
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or, for the sake of economic interpretation:

∫ AR
AS(t) p(t, a)(1− `(t, a))ι(a)(1− `(t, AS(t)))eθ(S(t))θ′(S(t)) da =

(1− `(t, AS(t)))eθ(S(t))ι(AS(t)) p(t, AS(t)),

(9)

where the left-hand side is the marginal benefit from increasing AS(t), which

depends on the curvature of the return function through S(t) and on the age

structure of the active population. The right-hand side is the marginal social

loss, which consists of the income forgone by postponing entry into the labor

market until age a = AS(t). In contrast to the formulas derived in Boucekkine

et al. (2002), here the schooling decision depends on the age-structure.

Equation (7) is the counterpart of Equation (9) of Cervellati and Sunde (2009:

5) associated with the individual-based life-cycle model of the Ben Porath mech-

anism. Notably, the age class size p(t, a) at time t and age a has replaced the

unconditional probability for an individual of surviving to age a. These authors

followed an individual, assimilated to a cohort, and used cohort school life ex-

pectancy (but there is a single cohort) as control variable. By construction, they

did not deal with population, but only with survival of the cohort along with

age. The decisive difference with us is that (7) involves not only survival, but

age pyramids, which mix survival and fertility.

We now combine fertility and mortality of the moment. This operation re-

sults in an age-structured population reflecting the combined conditions of the

moment. For this population associated with the fictitious cohort, fertility and

mortality are constant over time; their values are those taken at moment t. By
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definition, this population is stable.

3 Stable population associated with the condi-

tions of the year t

A stable population is a population closed to migration and characterized

by constant fertility and mortality. These forces determine the age structure.

Conversely, a stable age structure characterizes given fertility and mortality flows.

The stable population associated with the conditions of the moment t, namely

mortality µ(t, a) and fertility φ(t, a), has its population growth rate ρ(t) given by

the Lotka equation:

1 =
∫ Ā

0
σ(t, a)e−ρ(t)aφ(t, a) da , (10)

where σ(t, a) = 1 − exp(−
∫ a

0 µ(t, u) du) is the period survival function at t. An

empirical population has no reason to be stable, but, following Lotka, at the

moment t, its forces of death (µ(t, a)) and its forces of life (φ(t, a)) are synthesized

in the intrinsic growth rate ρ(t) solution of (10). At each time t fixed, consider a

population of size P0(0) := P (t) endowed with a fertility schedule φ0(a) := φ(t, a)

for all ages a and a mortality distribution µ0(a) := µ(t, a). According to Lotka’s

equation, its growth rate is equal to the intrinsic growth rate ρ0 = ρ(t). This

population with constant fertility φ0(.) and mortality µ0(.) has an age pyramid

p0(τ, a) := P0(0)eρ0τ
σ0(a)e−ρ0a∫ Ā

0 σ0(b)e−ρ0b db
(11)
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at time τ , where σ0(a) = exp(−
∫ a

0 µ0(u) du, and a population size P0(τ) =

P0(0) exp(ρ0τ). The time τ runs from 0 to ∞ for each date t, so that the stable

population characterized by p0(τ, a) corresponds at time τ to the conditions of

the fixed moment t. The age structure

σ0(a)e−ρ0a∫ Ā
0 σ0(b)e−ρ0b db

(12)

is independent of the time τ .

We now replace the previous notation indexed by 0, which we introduced for

pedagogical reasons, by the notations φ(t, a), µ(t, a), σ(t, a), ρ(t), and P (t). At

time τ , the total number of people is

pt(τ, a) := P (t)eρ(t)τ σ(t, a)e−ρ(t)a∫ Ā
0 σ(t, b)e−ρ(t)b db

(13)

aged a in this stable population (e.g. Bonneuil, 1997) depends on the mortality

µ(t, a) and the population growth rate ρ(t), which themselves do not depend on

the kinematics inherent in the stable population and indexed by the time τ . We

leave the subscript t to pt(τ, a) to remind that the forces of death and fertility

are those at t, but that the associated stable population involves another time,

denoted by τ . The population size P (t) at time t is the initial population for the

kinematics of the associated stable population pt(τ, a), τ = t, · · ·.

By replacing pt(t, a) by its expression in Equation (13) for τ = t, Equation (7)

becomes:

1

θ′(S(t))
=
∫ AR

AS(t)

σ(t, b)

σ(t, AS(t))
(1− `(t, b)) ι(b)

ι(AS(t))
e−ρ(t)(b−AS(t)) db. (14)
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At constant fertility, if the life expectancy increases, µ(t, a) decreases for every

age a and e−
∫ b
a
µ(t,u) du increases, but ρ(t) also increases and e−ρ(t)(b−a) decreases.

So the two effects are in opposite directions.

In Equation (14), the term depending on period life expectancy e0(t) defined

as e0(t) :=
∫∞

0 aµ(t, a)σ(t, a) da =
∫∞

0 σ(t, a) da is

σ(t, b)

σ(t, AS(t))
e−ρ(t)(b−AS(t)) = e

−
∫ b
AS(t)

µ(t,a) da
e−ρ(t)(b−AS(t)), (15)

whose derivative is:

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))(−

∫ b

AS(t)

∂µ(t, u)

∂e0(t)
du− (b− AS(t))

∂ρ(t)

∂e0(t)
) . (16)

The direction of the co-variation of longevity and schooling is given by the

sign of ∂S(t)/∂e0(t). Because

∂( 1
θ′(S(t))

)

∂e0(t)
= − 1

θ,2(S(t))
∂θ′(S(t))
∂e0(t)

∂S(t)
∂e0(t)

, (17)

and thanks to the assumption that θ is increasing and concave (∂θ
′(S(t))
∂e0(t)

< 0),

∂S(t)/∂e0(t) = ∂(1/θ′(S(t)))/∂e0(t).

The effect on 1
θ′(S(t))

of an increase in period life expectancy e0(t) on 1
θ′

depends

then on the sign of:

∂( 1
θ′(S(t))

)

∂e0(t)
=

∫ AR
AS(t)(1− `(t, b)

ι(b)
ι(AS(t))

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))

(−
∫ b
AS(t)

∂µ(t,u)
∂e0(t)

du− (b− AS(t)) ∂ρ(t)
∂e0(t)

) db .

(18)

or

∂( 1
θ′(S(t))

)

∂e0(t)
=

∫ AR
AS(t)(1− `(t, b)))

ι(b)
ι(AS(t))

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))

(−
∫ b
AS(t)

∂(ρ+µ(t,u))
∂e0(t)

du) db .

(19)

17



From (10), we obtain ∂ρ(t)
∂e0(t)

from the Lotka equation:

∂ρ(t)

∂e0(t)
=

∫ Ā
0 (−

∫ a
0
∂µ(t,v)
∂e0(t)

dv)e−ρ(t)aσ(t, a)φ(t, a) da∫ Ā
0 ae−ρ(t)aσ(t, a)φ(t, a) da

, (20)

which is positive, because ∂µ(e0(t),u)
∂e0(t)

< 0: empirical observation as well as mor-

tality models indicate that mortality decreases at all ages when life expectancy

increases.

Substituting ∂ρ(t)
∂e0(t)

into Equation (19) yields:

∂( 1
θ′(S(t))

)

∂e0(t)
=

∫ AR
AS(t)(1− `(t, b))

ι(b)
ι(AS(t))

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))

(−
∫ b
AS(t)

∫ Ā
0

(−
∫ a

0

∂µ(t,v)
∂e0(t)

dv)e−ρ(t)aσ(t,a)φ(t,a) da+
∂µ(t,u)
∂e0(t)

∫ Ā
0
ae−ρ(t)aσ(t,a)φ(t,a) da∫ Ā

0
ae−ρ(t)aσ(t,a)φ(t,a) da

) du db

=
∫ AR
AS(t)(1− `(t, b))

ι(b)
ι(AS(t))

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))

(−
∫ b
AS(t)

∫ Ā
0

(
∫ a

0
(
∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

) dv)e−ρ(t)aσ(t,a)φ(t,a) da∫ Ā
0
ae−ρ(t)aσ(t,a)φ(t,a) da

) du db.

(21)

Marchand and Thélot (1991) explain that, until the nineteenth century, usual

daily work coincided with daylight, and that work hours had been remaining

the same, be it in town or in countryside, varying only with seasons. They do

not mention any age component, but their description is consistent with the fact

that age had no effect on the duration at work. OECD publishes incidences of

employment by usual weekly hours worked and by quinquennial age class only

from 2000 onwards.3 From these data, we computed the mean total number of

worked hours by age class: for France, this number was 36.5 (sd=0.3) for men

and women aged 20-24, 37.9 (sd=0.3) for the 25-29, 38.3 (sd=0.2) for the 30-34,

3http://stats.oecd.org/Index.aspx?DataSetCode=AVE HRS&Lang=fr
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38.3 (sd=0.3) for the 35-39, the 40-44, and the 45-49 age classes. The proximity

of these numbers allows us to assume that the age profile of labor supply in one

individual’s day is constant with age, then:

∀b ∈ [AS(t), AR], 1− `(t, b) = 1− `(t, AS(t)) . (22)

Then
∂( 1
θ′(S(t))

)

∂e0(t)
has the sign of:

f(e0(t), φ(t, .)) :=
∫ AR
AS(t)

ι(b)
ι(AS(t))

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t))

(−
∫ b
AS(t)

∫ Ā
0

(
∫ a

0
(
∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

) dv)e−ρ(t)aσ(t,a)φ(t,a) da∫ Ā
0
ae−ρ(t)aσ(t,a)φ(t,a) da

) du db,

(23)

where φ(t, .)) is the fertility pattern underlying the value of the population growth

rate ρ(t) with respect to Equation (10).

Figure 1 shows the value of ∂µ(t,a)
∂e0(t)

from Ledermann model life tables, which

are very realistic,4 contrary to analytical formulas, which at best capture only

certain age intervals (after 40 years for a Gompertz curve, for example). Figure 1

shows that infant ages, up to 4 years, are determinant in the computation of

∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

: with increasing life expectancy, this importance of infant ages

gradually vanishes, and the sign of
∂( 1
θ′(S(t))

)

∂e0(t)
becomes more dependent on what

occurs at old ages. In contrast to what happens at low life expectancy, ∂µ(t,u)
∂e0(t)

−

∂µ(t,v)
∂e0(t)

for old ages dominates for high life expectancy. It is lower than values

of this expression for younger ages, so that the sign of ∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

changes.

4Model life tables are of common use in demography. Ledermann model life tables are

semi-parametric, resulting from regressions performed at each age on some 300 empirical life

tables.

19



-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

30 35 40 45 50 55 60 65 70 75 80

age=0 year

age=1 year
2 years

3 years

4 years
510

age=70 years

50

µ(age)/  e0

life expectancy at birth

60

Figure 1: Value of ∂µ(t,a)
∂e0(t)

with respect to life expectancy. Ledermann model life

tables.
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Subsequently, the sign of
∂( 1
θ′(S(t))

)

∂e0(t)
changes, too. The shape of the life table is then

determinant in the relationship between longevity and optimal schooling time.

Age
15 20 25 30 35 40 45 50

-0.02

-0.01

0.00

0.01

0.02

0.03
e  =300

e  =400

e  =500

e  =600

e  =700

  (60) µ
e0

  (v) µ
e0

- d( )
0

a

a

v

Figure 2: Example of values taken by
∫ a

0 (∂µ(u)
∂e0
− ∂µ(v)

∂e0
) dv as a function of age a

and with respect to life expectancy e0. Ledermann model life tables.

The sign of ∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

is modulated by e−ρ(t)(t)aσ(t, a)φ(t, a) and by

e
−
∫ b
AS(t)

µ(t,u) du
e−ρ(t)(b−AS(t)): we propose to specify the fertility schedule and ex-

amine the relationship between longevity and schooling through their determi-
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nants which are fertility and mortality.

4 Empirical analysis

Our theoretical analysis has shown that the relationship between longevity

and schooling is mediated by the age structure, if the social planner maximizes

collective well-being from the conditions prevailing at the period, which is realis-

tic. The case of nineteenth century France is exemplary because France experi-

enced a century of literacy transition, with the literacy rate rising from 23% on

average in 1806 to 96% in 1906, and a century of demographic transition, with

an average life expectancy rising from 36 years in 1806-10 to 47 years in 1906-10

and a Coale overall fertility index that fell from 0.39 in 1806 to 0.22 in 1906.

France is also a well-documented case (Bonneuil, 1997; Bonneuil and Rosental,

1999, 2008). It allows us to examine the diversity of demographic and literacy

conditions in a historical follow-up, marked by State schooling policies.

4.1 The relationship between schooling and longevity varies

with the demographic transition

Equation (23) shows that
∂( 1
θ′(S(t))

)

∂e0(t)
depends on the improvement in mortality

at young ages. At the onset of the demographic transition, mortality decreases

faster at young ages than at any other age. This is due, among other reasons, to

the fact that a large proportion of infants and children in the old demographic
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regime died from water-borne diseases, often through dehydration resulting from

diarrhea caused by poor water quality. The mortality decline was triggered by

improvements in hygiene, the cleaning of contaminated reservoirs, the filtering

of water supplies, especially in cities, and the eradication of unsafe health prac-

tices (Bonneuil and Fursa, forthcoming). Perrenoud and Bourdelais (1998) also

point out the diminishing virulence of smallpox in Europe as contributing to the

mortality decline among children, especially in the 2-4 age group. So, when life

expectancy at birth e0 remains under approximately 50 years, the term ∂µ(t,v)
∂e0(t)

at low age v is relatively high, and the term
∫ a

0 (∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

) dv is positive for

most values of u, as Figure 2 shows on Ledermann’s model life tables (which

are built on historical data). Then from Equation (23),
∂( 1
θ′(S(t))

)

∂e0(t)
< 0 (expected

schooling decreasing with longevity). The major decline in infant mortality rel-

ative to mortality at other ages implies a larger proportion of children surviving

and going to school. Juvenile mortality did not decrease so quickly, however.

The population includes more young children, but not many teenagers, whose

mortality decreased less rapidly. As a consequence, the average total number of

expected schooling years decreases while longevity increases.

Conversely, in the post-transition era, life expectancy at birth e0 is higher,

infant mortality is already low, and mortality at older ages has declined substan-

tially, so that the term
∫ a

0 (∂µ(t,u)
∂e0(t)

− ∂µ(t,v)
∂e0(t)

) dv is negative for many values of u, as

Figure 2 shows. Then
∂( 1
θ′(S(t))

)

∂e0(t)
> 0. As a consequence, the average total number

of expected schooling years increases with longevity.
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4.2 Mortality

Mortality studies have shown that mortality is regular with age only over

short periods, say a year, subsequently across different cohorts living at the same

time. Cohort mortality patterns on the contrary look irregular, because a cohort

successively experiences uneven conditions. This is the reason why models of

mortality are meaningful only for fictitious cohorts at a given period, and always

unrealistic for actual cohorts followed-up over time.

In the Appendix, we present two toy cases: constant and linear mortality,

to show that the relationship between longevity and schooling rapidly becomes

complicated. We also present the more realistic case of Gompertz mortality,

because it is a well-known mortality model, realistic only after 40 years of age.

However, as infant mortality plays a major role, only the case of model life tables

is worth considering.

The model life tables we use (Ledermann, 1969) are semi-parametric, indexed

by a single parameter e(t), close to the life expectancy at birth:

log10(1− e−
∫ 5

0
µ(t,a+u) du) = γ1

a + γ2
a log10(100− e(t)) (24)

where γ1
a and γ2

a, a = 0, 5, · · · , 85 were estimated by Ledermann (1969) from

some three hundred empirical life tables. With this semi-parametric formula, we

compute ∂µ(t,u)
∂e0(t)

and ∂ρ(t)
∂e0(t)

numerically.
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4.3 Fertility

We introduced the age structure through the simple stable population model.

The population growth rate ρ(t) then appears in Equations (19) and (20). Rather

than treating this population growth rate as exogenous, we gain better insight

into the demographic processes at work by revealing its dependence on fertility

with respect to Equation (10).

Coale and Trussel (1974) calibrated the semi-parametric model of realistic

five-year fertility schedules:

φ(t, a) = M(t)n(a)em(t)ν(a) (25)

where n(a) and ν(a) are given distributions by age. The parameter M(t) ≥ 0

represents a fertility level, m(t) ≥ 0 conditions the shape of the distribution:

m > 0 reflects family limitation, m = 0 the absence of family limitation. We

obtain the yearly fertility schedule by cubic spline on the cumulated function

∫ a
15 φ(t, u) du.

4.4 Age profile of wages

Statistics of wages by age are scarce. None are mentioned in the impor-

tant book by Chevallier (1887) on wages in nineteenth century France. Only

recent statistics are available, such as those published by Aeberhardt, Pouget,

and Skalitz (2007) for the period 1978-2005: wages earned by men over 45 in-

crease slightly compared to those of younger age classes. This is due mainly to
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the increase over this period in the proportion of highly skilled wage-earners, for

whom wages increase the most with age, whereas the age profile is almost flat

for unskilled and low-skilled workers (Aubert and Crépon, 2003). For the year

1978, for men under 30, the ratio of wages to those of men aged over 45 is 0.37

and for men aged 30-45 it is 0.88. The unknown age profiles before the year 1978

should be closer to the uniform distribution, especially before WWII when the

French population was mostly rural. Because ι(b)/ι(AS(t)) ≥ 1 for b > AS(t)

and increases with age b, the age profile ι(.) reduces the weight given by high

mortality to young age classes. Consequently, using the 1978 French age profile

for ι(.) lower bounds the probability that ∂(1/θ′(S(t)))/∂e0(t) is negative, while

using the uniform distribution for ι(.) upper bounds it. For each year between

1978 and 1988, we fit an age profile by yearly age to the three values presented by

Aeberhardt, Pouget, and Skalitz (2007) through a continuous function consisting

of one constant before age 21 (to avoid that the interpolated wage before 21 takes

too low a value) and three linear interpolations from ages 21 to 65 by one-year

interval, with continuity constraints at ages 21, 30, and 45. We then solve a

system of linear equations equating the mean wages obtained by interpolation

to the recorded values and minimizing the variation of the slope over the age

interval 22-65. Table 4.4 presents the resulting 1978 yearly age profile grouped

into five-year classes to save space.

The computation of ∂(1/θ′(S(t)))/∂e0(t) is robust to the age profile ι(.): as

expected, with the uniform distribution, this quantity remains in the negative
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Table 1: Age profile of wages regrouped in five-year age classes

age percent age percent age percent age percent age percent

15-19 0.56 20-24 0.71 25-29 1.43 30-34 2.02 35-39 2.33

40-44 2.65 45-49 2.76 50-54 2.65 55-59 2.55 60-64 2.45

half plane for longer than with the 1978 age profile, but the difference is tiny:

at fixed total fertility rate and shape parameter m, ∂(1/θ′(S(t)))/∂e0(t) under

the uniform distribution for ι(.) crosses the zero line at a life expectancy at birth

which is less than 0.5% on average higher than with the 1978 age profile.

4.5 Results

Figure 3 shows the computation of f(e0(t), φ(t, .)) for Lederman life tables

(with e0(t) varying) and for Coale-Trussel fertility schedules φ(t, .) (with m and

M varying). As we mentioned, both fertility and mortality patterns are both

realistic, and the result no longer comes from a simplifying assumption on these

schedules. The value of the total fertility rate (TFR(t):=
∫ Ā

0 φ(t, a) da) is given

on each (m,M) to help situate the level of fertility.

Figure 3 shows that f(e0(t), φ(t, .)) and subsequently
∂( 1
θ′(S(t))

)

∂e0(t)
change with

respect to life expectancy and with fertility,

For example, with m ≈ 0 for nineteenth century France (Bonneuil, 1997a),

we situate French départements over the course of the demographic transition.

The population of the Calvados département was one of the earliest to embark on
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Figure 3: Value of
∂( 1
θ′(S(t))

)

∂e0(t)
, varying with life expectancy (Ledermann model life

tables) and Coale-Trusssel fertility, m the parameter of family limitation, and

TFR the total fertility rate. The wage age profile ι(.) is the French one in 1978

presented in Table 1. In this Figure, ρ(t) is always positive.
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fertility decline and experienced an almost stationary fertility during the nine-

teenth century: TFR=3.11 and e0 = 47.5 in 1806; TFR= 2.74, and e0 = 45.8

in 1906 (Bonneuil, 1997a). Calvados then began in the positive half plane of

∂( 1
θ′(S(t))

)

∂e0(t)
= 0 in Figure 3a to move to negative values. This comes from the fact

that this département started its demographic transition early, with relatively

low mortality and fertility levels, but mortality decreased slightly while fertil-

ity did not decline fast enough, leading Calvados to increase the proportion of

young age classes and to cross the zero line of
∂( 1
θ′(S(t))

)

∂e0(t)
= 0 in the direction of

negative values. At the other end of the spectrum of the transition, the French

département of Finistère, whose population was one of the last to enter the fertil-

ity decline (TFR= 8.09, e0 = 28.7 years in 1806; TFR= 4.11, e0 = 39.5 years in

1906),
∂( 1
θ′(S(t))

)

∂e0
remains negative during this period (Figure 3a), although travel-

ing toward positive values, which are attained at the beginning of the twentieth

century. This comes from the fact that these demographic conditions correspond

to a “young” age pyramid, which puts
∂( 1
θ′(S(t))

)

∂e0
in the negative half plane of

Figure 3a). The move toward positive values corresponds to the aging process

caused mostly by declining fertility. So, for the same country, at the same epoch,

namely nineteenth-century France, we find locations with positive signs, others

with negative signs.

Figure 4 shows what the direction of the relationship between longevity and

period school life expectancy would have been if a social planner had solved

Equation (1), taking into account the demographic conditions of the moment.
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In nineteenth-century France, even if the relationship between the increase in

schooling rate and in life expectancy is ambivalent at the département level, as

we mentioned in the introduction, the demographic transition at the national

level was accompanied by a series of State policies most often directed toward

increasing schooling for both sexes, finally consistent with the maximization pro-

gram (1).

Between 1830 and 1895, the still young age structure of the French population

should have prompted governments to reduce the length of schooling in order to

maximize well-being. Schooling was still not mandatory and was dominated by

clerics. However, French governments, aware that the country’s future (at the

possible price of optimal well-being) depended upon the people’s literacy, began

to implement policies in favor of schooling: the Guizot law of 1833 required

that villages with at least 500 inhabitants have a boy’s school (école primaire

élémentaire), that higher-level primary schools (école primaire supérieure) be

set up for vocational training of poor pupils, and that each département had a

teaching training college for primary school teachers (école normale primaire).

The Falloux law of 1850 required each municipality to open a school for girls,

and the Duruy law of 10 April 1867 provided for the development of girls schools

and for free school access for boys and girls in municipalities (communes) that so

wished.

High schools for girls were created in 1880, but only the wealthiest could access

them at that time. Jules Ferry, minister of Public Education and Arts, addressing
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the President of the Republic on the 25 of January 1880, described the immense

improvement in primary schooling: from 1837 to 1877, he claimed that the total

number of pupils had increased by 82 percent, the total number of schools by

36 percent, (75 percent for secular schools), girls schools had multiplied four-fold

and the total number of teachers had risen by 85 percent, with a pupil-teacher

ratio that had fallen from 53 to 1 to 48 to 1.

From 1896 onward, Figure 4 shows that, except during the two World Wars,

∂( 1
θ′(S(t))

)

∂e0(t)
becomes definitely positive, while both life expectancy at birth and ex-

pected schooling were increasing. This is corroborated by the Astier law of 1919,

which fostered the development of technical schools. The return of f(e0, φ(.))

during the two World Wars to negative values is attributable to the fall in both

fertility and mortality. In terms of the relationship between longevity and school-

ing, it is also coincided —although certainly by chance— with the introduction

of fees to attend high school by the Vichy regime (1940-44). The high values

of
∂( 1
θ′(S(t))

)

∂e0(t)
after the war are consistent with the increase in schooling, notably

through the Berthoin reform of 1959, which made schooling mandatory until 16

years of age (although it was not enforced until 1971).

In the problem of the relationship between longevity and schooling, one could

ignore the role played by fertility, because children attending school are of a

certain age. This would be a mistake, as it would mean using a mortality sched-

ule which ignores the specific pattern of infant mortality. The relationship in

fact depends on fertility as well as on mortality, because fertility determines the
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population growth rate and the age structure, which appears as pt(t,a)
pt(t,AS(t))

in Equa-

tion (14) for the general case or through ρ(t) in Equation (23) in the case of the

stable population of the moment.

A very good way to capture the conditions of the moment in a real population

is to fit the stable population associated with the fertility and the mortality

schedules of this moment.5

Figure 4 shows the trajectory of f(e0, φ(.)) for these stable populations asso-

ciated with the conditions of each year between 1806 and 1988 in the whole of

France. The age-specific fertility distribution is known only from 1892 onward

(for the whole of the country). From 1806 to 1892, the age-specific schedule of

1892 is used with the TFR deduced from the Coale fertility index reconstructed

by Bonneuil (1997a). Over the course of France’s demographic transition, which

took place during the nineteenth century, when life expectancy was still low,

f(e0, φ(.)) is negative. With life expectancy increasing, this function becomes

positive, with two abrupt returns to negative values during the World Wars, on

account of the higher wartime mortality.

5Reminder: we never assume that the empirical population is stable; we compute the con-

ditions of the moment t given by Lotka’s intrinsic growth rate ρ(t) (equation (10)) and by the

associated stable population having the mortality and fertility schedules of the moment t. We

do this at each year t between 1806 and 1988. The time series of the conditions of the moment

are reflected by the time series of the associated stable populations
(
(pt(τ, a))τ,a

)
t=t0,···,tf

and

the associated intrinsic growth rates (ρ(t))t=t0,···,tf (where the initial date is t0 and the last date

tf ).
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The wage age profile ι(.) is the French one presented in 1978 in Table 1.

33



After the effect of declining fertility, we again find the key role played by

infant mortality, which declined continuously (except during crises such as the

1870-71 Franco-Prussian war or the World Wars) between 1806 and 1988. The

zero line was crossed by
∂( 1
θ′(S(t))

)

∂e0(t)
when the variations of the mortality rate µ

became dominated by the changes at old ages, and specifically in Figure 4, for

period life expectancies over 46 years.

So, from Figures 3 and 4, in the case of θ strictly concave, the Ben-Porath

proposition that schooling grows with longevity appears to be optimal only in

post-transitional countries, and in conditions of sufficiently low mortality and

low fertility. In countries currently experiencing the transition, especially in those

where mortality is still high and fertility not high enough to attain the complete

replacement of the population, the age structure is relevant, and longer life is no

longer associated with schooling in a Ben Porath-like manner.

5 Conclusion

Schooling has been a political process, whereby planners adapted (or not) to

changing conditions. Policies involving demographic forces and favoring collec-

tive well-being over the interests of individual cohorts and the situations inher-

ited from the past should adapt to conditions of the moment. By maximizing

the collective utility associated with the conditions of the moment, we escaped

the premise that individual decision-making governs the relationship between

34



longevity and education.

By doing so, we revealed the role played by the age structure in the relation-

ship between longevity and schooling. We showed that optimal period school life

expectancy varies with life expectancy and mortality, and that the direction of

this relationship is negative for young age pyramids, associated with high fertil-

ity and high mortality. The effect of an increase in life expectancy on expected

schooling is thus dependent on the age structure. The realistic case of model

life tables associated with model fertility schedules shows that the relationship

between longevity and schooling depends on both life expectancy and fertility, in

a non linear manner. With varying fertility and mortality, as was the case during

the demographic transition, the direction of this relationship changes. The posi-

tive relationship between longevity and schooling claimed by Ben Porath (1967)

holds true only for ‘ old” enough age pyramids, corresponding to post-transitional

populations. It does not hold true for “young” populations.

Our analysis of French historical data from 1806 to the present has shown

that the population age structure has indeed modified the relationship between

longevity and optimal schooling. The French case shows that governments in the

nineteenth century may not have complied with the objective of maximal well-

being, and may have had higher views of what was good for the country, if not

for the people. The maximization program, however, indicates what should have

been done in order to maximize well-being: the deviation from this program tells

us about the gap between economics and politics.
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The method of the fictitious cohort, fundamental in demography and essential

to understanding how a situation is changing at a given moment, may have

been mistakenly ignored in economics. Our study of the relationship between

longevity and schooling shows that the certainties derived from individual-based

frameworks are overturned when age structure and conditions of the moment are

fully addressed.
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Appendix: constant, linear, and Gompertz mor-

tality

Constant mortality: ∀u, ∂µ(t,u)
∂e0(t)

= k constant From Equation (20),

∂ρ(t)

∂e0(t)
= −k (26)

and from Equation (10):

∂( 1
θ′(S(t))

)

∂e0(t)
= 0 , (27)

the increase in life expectancy has no effect on schooling.

In particular, if µ(t, u) = µ, e0(t) = 1
µ
, ∂µ(t,u)
∂e0(t)

= − 1
e0(t)2 is constant with age

and Equation (27) holds true.

Linear mortality: µ(t, x) = Bx The linear case is not realistic, but is of inter-

est here because it is the simplest departure from the case of mortality constant

with age. Then

σ(t, a) = e−
B
2
a2

e0(t) =
∫ Ā

0 σ(t, a) da = ( π
2B

)
1
2

(28)
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which yields:

∂µ(t,u)
∂e0(t)

= − π
e0(t)3u

∂ρ(t)
∂e0(t)

= π
2e0(t)3

Vm+A2
m

Am

(29)

where Am and Vm are the period mean age at procreation and the variance of the

age at procreation:

Am =
∫ Ā

0 ae−ρ(t)(t)aσ(t, a)φ(t, a) da

Vm = −A2
m +

∫ Ā
0 a2e−ρ(t)(t)aσ(t, a)φ(t, a) da

(30)

Finally:

∂( 1
θ′(S(t))

)

∂e0(t)
= (1− `(t, AS(t))) π

2e0(t)3∫ AR
AS(t)(b− AS(t))(b+ AS(t)− Am − Vm

Am
)σ(t, b) ι(b)

ι(AS(t))
e−ρ(t)(b−AS(t)) db

(31)

Equation (31) shows that for AS(t) high enough,
∂( 1
θ′(S(t))

)

∂e0(t)
> 0, which would

validate the Ben-Porath mechanism. The problem is that the decrease of ∂µ(t,u)
∂e0(t)

with age described in Equation (29) is contrary to real-world experience.

Gompertz mortality The Gompertz law of mortality is a close approximation

of the observed force of mortality after 40 years of age. It relies on two parameters

A for the level and γ for the increase with age:

µ(t, a) = Aγa with γ > 1 and A < 1. (32)

The survival function is then an exponential of an exponential: in no circum-

stances can a simple exponential portray an empirical human survival function.
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Differentiating with respect to life expectancy e0(t) yields:

∂µ(t, u)

∂e0(t)
= (

∂ ln(A)

∂e0(t)
+ u

∂ ln(γ)

∂e0(t)
)µ(t, u) (33)

which is negative because ∂ ln(A)
∂e0(t)

< 0 and ∂ ln(γ)
∂e0(t)

< 0. After integration by parts:

∫ b

0

∂µ(t, u)

∂e0(t)
du =

A

ln γ
(
∂ lnA

∂e0(t)
(γb − 1) +

∂ ln γ

∂e0(t)
(bγb − 1

ln γ
(γb − 1))) (34)

Hence:

∫ b

AS(t)

∂µ(t, u)

∂e0(t)
du =

A

ln γ
(
∂ lnA

∂e0(t)
(γb−γAS(t))+

∂ ln γ

∂e0(t)
(bγb−AS(t)γAS(t)− 1

ln γ
(γb−γAS(t))))

(35)

and

∂ρ(t)

∂e0(t)
=

1

Am

A

ln γ

∫ Ā

0
(
∂ lnA

∂e0(t)
(1−γa)− ∂ ln γ

∂e0(t)
(aγa− 1

ln γ
(γa−1)))σ(t, a)φ(t, a)e−ρ(t)a da

(36)

with again Am =
∫ Ā

0 ae−ρ(t)aσ(t, a)φ(t, a) da. Equations (35) and (36) introduced

into Equation (19) yield a computable formula. It remains however hard to inter-

pret because the relationship of A and γ as functions of e0 are not straightforward.

This is better to work with model life tables, which are obtained from empirical

data, and for which there is no need to compute which values of the parameters

correspond to a given life expectancy. The difficulty arises because Gompertz,

although good at describing mortality after 40 years of age, gives a poor fit before

that age, especially at infant and juvenile ages.
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