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EMPIRICAL PHI-DISCREPANCIES AND QUASI-EMPIRICAL
LIKELIHOOD: EXPONENTIAL BOUNDS

Patrice Bertail1, Emmanuelle Gautherat2 and Hugo
Harari-Kermadec3

Abstract. We review some recent extensions of the so-called generalized empirical likeli-
hood method, when the Kullback distance is replaced by some general convex divergence.
We propose to use, instead of empirical likelihood, some regularized form or quasi-empirical
likelihood method, corresponding to a convex combination of Kullback and χ2 discrepancies.
We show that for some adequate choice of the weight in this combination, the corresponding
quasi-empirical likelihood is Bartlett-correctable. We also establish some non-asymptotic
exponential bounds for the confidence regions obtained by using this method. These bounds
are derived via bounds for self-normalized sums in the multivariate case obtained in a pre-
vious work by the authors. We also show that this kind of results may be extended to
process valued infinite dimensional parameters. In this case some known results about self-
normalized processes may be used to control the behavior of generalized empirical likelihood.
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1. Introduction
Empirical likelihood has been introduced and studied by Owen [34, 35], see Owen [36] for a com-

plete overview and important references. The main idea underlying empirical likelihood consists of
maximizing a profile likelihood or multinomial likelihood supported by the data, under some linear
constraints induced by the model. It can also be seen as an extension of “model based likelihood” used
in survey sampling when some marginal constraints are available (see Deville and Sarndal [15], Hartley
and Rao [23]). Owen and many followers (see Owen [36]) have shown that one can get a useful and
automatic non-parametric version of Wilks’ theorem, stating that the log-likelihood ratio convergences
to a χ2 distribution.

Generalizations of empirical likelihood methods are available for many statistical and econometric
models as soon as the parameter of interest is defined by some linear moment constraints (see Newey
and Smith [33], Qin and Lawless [39]). It can now be considered as an alternative to the generalized
method of moments (GMM, see Smith [43]). Moreover just like in the parametric case, this log-
likelihood ratio is Bartlett-correctable. This means that an explicit correction leads to confidence
regions with third order properties. The asymptotic error on the level is then of order O(n−2) instead
of O(n−1) under some regularity assumptions (see Bertail [5], DiCiccio et al. [17]).
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The empirical log-likelihood ratio may also be naturally seen as the minimization of the Kullback
divergence between a measure Q, dominated by the empirical distribution of the data Pn, and Pn,
under linear or non-linear constraints imposed on Q by a model to be tested (see Bertail [5], Bertail
et al. [9]). Then if the model is true, asymptotically, this distance is zero and the inversion of the test
provides a natural confidence region for the parameter of interest. The use of other pseudo-metrics
instead of the Kullback divergence K has been suggested by Owen [35] and many other authors. For
example, the choice of relative entropy has been investigated by DiCiccio and Romano [16], Jing and
Wood [27] and led to “Entropy econometrics” in the econometric field (see Golan et al. [22]). Related
results may be found in the probabilistic literature about divergence or the method of entropy in mean
(see Broniatowski and Kéziou [11], Csiszár [14], Gamboa and Gassiat [21], Léonard [29], Liese and
Vajda [30]). Some generalizations of the empirical likelihood method have also been obtained by using
Cressie-Read discrepancies (see Baggerly [2], Corcoran [12]) and led to some econometric extensions
known as “generalized empirical likelihood” (see Newey and Smith [33]), even if the “likelihood”
properties and in particular the Bartlett-correctability in these cases are lost (see Jing and Wood
[27]). Bertail et al. [7] have shown that Owen’s original method in the case of the mean can be
extended to any regular convex statistical divergence or ϕ∗-discrepancy (where ϕ∗ is a regular convex
function) under weak assumptions (see also Bertail et al. [9]). We also call this method “empirical
energy minimizers” by reference to the theoretical probabilistic literature on the subject (see Léonard
[29] and references therein).

One goal of this paper is to study a family of discrepancies for which we have a non-asymptotic
control of the level of the confidence regions -a lower bound for the coverage probability- for any
parameter size, including process valued parameters. The basic idea is to consider a family of di-
vergences consisting in a linear combination (with rate ε ∈ [0, 1]) of the Kullback divergence and
the χ2 divergence, called quasi-Kullback. Then we minimize the dual expression of this divergence
under the constraints of the model. It can be seen as a quasi-empirical likelihood or a regularized
log-proximal empirical likelihood (see for instance Ausslender et al. [1], for the use of such divergences
in the convex literature). The domain of the corresponding divergence is the whole real line making
the algorithmic aspects of the problem much more tractable than for empirical likelihood when the
number of constraints is large.
Moreover, this approach allows us to keep the interesting properties of both discrepancies. On the one
hand, from an asymptotic point of view, we show that this method is still Bartlett-correctable for an
adequate choice of ε, typically depending on n. Regions are still automatically shaped by the sample,
as in the empirical likelihood case without the limitation stressed by Tsao [44]. On the other hand,
for any fixed value of ε, it is possible to use the self-normalizing properties of the empirical divergence
to obtain non-asymptotic exponential bounds for the error of the confidence intervals.

The layout of the paper is the following : in part 2, we present the main notation and duality
concepts related to empirical energy minimizers or ϕ∗-discrepancy minimizers. In part 3, we introduce
the notion of quasi-Kullback divergences and prove that the corresponding generalized quasi-empirical
likelihood problem is Bartlett correctable for an adequate choice of the parameter ε. In part 4, we
show that generalized quasi-empirical likelihood may be controlled by the square of a self-normalized
sum, allowing for a precise control of the the coverage probability of confidence regions, even for large
parameter (with size smaller than n/log(n)). This paves the way for studying more general process
valued parameters in part 5. A short sample simulation study, showing the advantage (robustness)
and weakness of the corresponding confidence regions, is provided in part 6. Last section presents
proofs of Theorem 3 and Corollary 1.

2. Empirical ϕ∗-discrepancy minimizers
Let (X ,A,M) be a general measurable space endowed with a space of signed measures. Working

with signed measures is very important for establishing the existence of solutions for the generalized
empirical likelihood problem (see also Bertail et al. [9]). Let f be a measurable function defined from
X to Rr, r ≥ 1. For any measure µ ∈ M, we write µf =

∫
fdµ and if µ is a density of probability,

µf = Eµ(f(X)).
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2.1. Notation: ϕ∗-discrepancies and convex duality
In the following, we use the same notations as in Bertail et al. [9]. Let ϕ be a convex function. Its

support d(ϕ) is defined as {x ∈ R, ϕ(x) <∞}. We assume that it is non-void. We denote respectively
inf d(ϕ) and sup d(ϕ), the extremes of this support. For every convex function ϕ, the Fenchel-Legendre
transform is given by

ϕ∗(y) = sup
x∈R
{xy − ϕ(x)}, ∀ y ∈ R.

ϕ∗ is then a semi-continuous inferiorly convex function. We denote by ϕ(i) the derivative of order i of
ϕ (when it exists).

The following assumptions for the function ϕ are classical in the convex literature.
H1 ϕ is strictly convex and d(ϕ) contains a neighborhood of 0 ;
H2 ϕ is twice differentiable on a neighborhood of 0 ;
H3 ϕ is normalized so that ϕ(0) = 0, ϕ(1)(0) = 0 and ϕ(2)(0) > 0.
H4 ϕ is differentiable on d(ϕ), that is to say ϕ differentiable on int{d(ϕ)}, with ϕ′ has right and

left limits on the respective endpoints of the support of d(ϕ), where int{.} is the topological
interior.

H5 ϕ is twice differentiable on d(ϕ)∩R+ and, on this domain, the second order derivative of ϕ is
bounded from below by some constant m > 0.

Under the hypotheses H1, H2, H3, the Fenchel dual transform ϕ∗ of ϕ also satisfies these hy-
potheses.

The ϕ∗-discrepancy (see Csiszár [14]) Iϕ∗ between Q and P, where Q is a signed measure and P a
positive measure, is defined by

Iϕ∗(Q,P) =
{ ∫

X ϕ
∗ (dQ

dP − 1
)
dP if Q� P

+∞ else. (1)

Its properties are studied at length for instance by Léonard [28], Liese and Vajda [30], Rockafellar
[40, 41, 42], where references may also be found. For general ϕ∗-discrepancies, the following duality
representation is a consequence of Borwein and Lewis [10] on convex functional integrals (see also
Broniatowski and Kéziou [11], Léonard [29]).
We denote λ′ the transposed vector of λ.

Theorem 1. Let P ∈M be a probability measure with a finite support and f be a measurable function
on (X ,A,M). Let ϕ be a convex function satisfying assumptions H1-H3. If the constraints are
qualified, that is, if

Qual(P) :
{
∃T ∈M,Tf = b0 and
inf d(ϕ∗) < infX dT

dP ≤ supX dT
dP < sup d(ϕ∗) P− a.s.,

then, we have the dual equality

inf
{Q∈M,(Q−P)f=b0}

{Iϕ∗(Q,P)} = sup
λ∈Rr

{
λ′b0 −

∫
X
ϕ(λ′f)dP

}
. (2)

If ϕ also satisfies H4, then the supremum on the right hand side of (2) is achieved at a point λ∗ and
the infimum on the left hand side at Q∗ is given by

Q∗ = (1 + ϕ(1)(λ∗′f))P.

This theorem essentially states that if the constraints are satisfied at least by a measure, which
support belongs to the domain of the convex function ϕ∗ then the primal and the dual problem are
equal (with no gap). It is fundamental to work not on set of probabilities but rather of measures. This
also explains what is called the empty set problem in the empirical likelihood literature (see Tsao [44]).
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Let X1, ...Xn be random vectors defined from a probability space (Pr,A,Ω) on X =Rp with
common probability measure P ∈M. We now consider the empirical probability measure Pn =
1
n

∑n
i=1 δXi , where δXi is the Dirac measure at Xi. We remark that, on the set defined by

Mn = {Q ∈M with Q� Pn} =
{
Q =

n∑
i=1

qi δXi , (qi)1≤i≤n ∈ Rn
}
,

there always exists a signed measure Q satisfying the first constraint in Qual(P).

2.2. Empirical optimization of ϕ∗-discrepancies
Let X1, ...Xn be i.i.d. r.v.’s defined on X =Rp with common probability measure P ∈M. The

parameter of interest θ ∈ Rq is supposed to be the solution of some M-estimation problem EPf(X, θ) =
0, where f is a regular differentiable function from X×Rq → Rr. We assume that f takes its values in
Rq, that is r = q. The over-identified case r > q can be treated similarly by first reducing the problem
to the strictly identified case (see below and Qin and Lawless [39]).
Empirical likelihood and its extensions may actually be seen as a plug-in rule. For a given ϕ, we define

βP(θ) = inf
{Q∈M, Q�P, Qf(.,θ)=0}

{Iϕ∗(Q,P)} .

This can be seen as a projection of P on the model of interest for the given pseudo-metric Iϕ∗ . If
the model is true at P, that is, if EPf(X, θ) = 0, then βP(θ) = 0.

The plug-in estimator of βP(θ) for fixed θ is given by βPn(θ), denoted by βn(θ).

βn(θ) = inf
{Q∈Mn, Qf(.,θ)=0}

{Iϕ∗(Q,Pn)}

This quantity may be seen as a test of βP(θ) = 0 and may be inverted to build a confidence region for
θ.
The corresponding random confidence region is simply defined by

Cn(η) = {θ ∈ Rq |∃Q� Pn with Qf(., θ) = 0 and nIϕ∗(Q,Pn) ≤ η} ,

where η = η(α) is a quantity such that

Pr(θ ∈ Cn(η)) = 1− α+ o(1).

For Q inMn, the constraints can be rewritten as (Q− Pn)f(., θ) = −Pnf(., θ). By Theorem 1, we
get the following dual representation which transforms the original program into a much simpler em-
pirical process problem. This representation is at the core of most properties obtained on generalized
empirical likelihood:

βn(θ) := inf
{Q∈Mn,(Q−Pn)f(.,θ)=−Pnf(.,θ)}

{Iϕ∗(Q,Pn)}

= sup
λ∈Rq

{
Pn
(
− λ′f(., θ)− ϕ(λ′f(., θ))

)}
. (3)

The parameter λ is simply the Kuhn & Tucker coefficient associated to the original optimization
problem. By remembering that under the assumptions H1-H4, ϕ typically behaves like x2/2 in the
neighborhood of 0, the dual representation essentially behaves like a quadratic program in λ. This
explains why generalized empirical likelihood essentially behaves asymptotically like the square of a
self-normalized sum. In the following, we will also use the notations

fn = 1
n

n∑
i=1

f(Xi, θ), S2
n = 1

n

n∑
i=1

f(Xi, θ)f(Xi, θ)′ and S−2
n = (S2

n)−1.
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We state the following theorem which is a minor variation of Bertail et al. [7] :
Theorem 2. Let X, X1, ..., Xn be in Rp, i.i.d. with probability P and θ ∈ Rq such that EPf(X, θ) = 0.
Assume that S2 = EPf(X, θ)f(X, θ)′ is of rank q and that ϕ satisfies the hypotheses H1-H4. Assume
that the qualification constraints Qual (Pn) hold. For any α in ]0, 1[, set η = ϕ(2)(0)χ2

q(1−α)
2 , where

χ2
q(.) is the χ2 distribution quantile. Then Cn(η) is a convex asymptotic confidence region with

lim
n→∞

Pr(θ /∈ Cn(η)) = lim
n→∞

Pr(nβn(θ) ≥ η)

= lim
n→∞

Pr
(
nf
′
nS
−2
n fn ≥ χ2

q(1− α)
)

= α.

The proof of this theorem starts from the convex dual-representation and follows the same argu-
ments as Bertail et al. [7] and Owen [36] for the case of the mean.
Remark 1. If ϕ is finite everywhere then the qualification constraints are not needed (this is for
instance the case for the χ2 divergence). However, in the case of empirical likelihood or the generalized
empirical method introduced below, this actually simply puts some restriction on the θ which are of
interest as noticed in the following examples.

2.3. Basic examples
It is easy to check that Cressie-Read discrepancies (see Cressie and Read [13]) fulfill the assumptions

H1-H4 so that Theorem 2 applies for this kind of divergence. Indeed, a Cressie-Read discrepancy
can be seen as a ϕ∗-discrepancy, with ϕ∗ given by:

ϕ∗κ(x) =
(1 + x)κ − κx− 1

κ(κ− 1) , ϕκ(x) =
[(κ− 1)x+ 1]

κ
κ−1 − κx− 1
κ

for some κ ∈ R. This family contains all the usual discrepancies, such as Relative Entropy (κ → 1),
Hellinger distance (κ = 1/2), the χ2 (κ = 2) and the Kullback distance (κ→ 0).

We give two examples to illustrate the impact of the choice of ϕ∗ on the generalized empirical
likelihood program.
Empirical likelihood and the Kullback discrepancy. In the particular case ϕ0(x) = −x − log(1 − x)
and ϕ∗0(x) = x− log(1 + x) corresponding to the Kullback divergence for measures

K(Q,P) = −
∫

log(dQ
dP

)dP+
∫

(dQ− dP),

the dual program obtained in (3) becomes, for the admissible θ,

βn(θ) = sup
λ∈Rq

(
1
n

n∑
i=1

log(1 + λ′f(Xi, θ))
)
.

As a parametric likelihood indexed by λ, it is easy to show that 2nβn(θ) is asymptotically χ2(q) when
n→∞, if the variance of f(X, θ) is definite. It is also Bartlett-correctable DiCiccio et al. [17]. Using
a duality point of view, the proof of the Bartlett-correctability is almost immediate, see Mykland
[32] and Bertail [4, 5]. For a general discrepancy, the dual form is not a likelihood and may not be
Bartlett-correctable, see DiCiccio et al. [17] and Jing and Wood [27] for the relative entropy E defined
by E(Q,P) = K(P,Q).

Moreover, we necessarily have the q′is > 0 and the optimization program implies in this case that∑n
i=1 qi = 1, that is the solution is a probability, so that the qualification constraint essentially means

that 0 belongs to the convex hull of the f(Xi, θ). This is in particular the reason why we may obtain
very bad coverage probability for empirical likelihood as explained in Tsao [44]. Indeed the results of
Tsao [44] show that taking the convex hull of the points (the largest confidence region for empirical
likelihood) may yield too narrow confidence regions, when n is small compared to q.
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GMM and χ2 discrepancy. The particular case of the χ2 discrepancy corresponds to ϕ2(x) = ϕ∗2(x) =
x2

2 . βn(θ) can be explicitly calculated. Indeed, we get easily that λ = S−2
n fn so that, by Theorem 1,

the minimum is attained at Q∗ =
∑n
i=1 qiδXi with

qi = 1
n

(1 + f
′
nS
−2
n f(Xi, θ))

and

Iϕ∗2 (Q∗,Pn) =
n∑
i=1

(nqi,n − 1)2

2n = 1
2f
′
nS
−2
n fn,

which is exactly the square of a self-normalized multivariate sum which typically appears in the
Generalized Method of Moments (GMM), see also Bertail et al. [8].

Notice that, unlike to the Kullback discrepancy, we may charge positively some region outside of
the convex hull of the points, yielding larger (that is too conservative) confidence region.

Remark 2. If S2
n is of rank l < q, write S2

n = R′
(

∆n 0
0 0

)
R, where ∆n is invertible of rank l,

R =
(

Ra
Rb

)
is an orthogonal matrix with Ra ∈ Ml,q(R) and Rb ∈ Mq−l,q(R). By straightforward

arguments, the duality relationship still holds and becomes

βn(θ) = sup
λ∈Rl

{
−λ′Rafn −

1
2λ
′∆nλ

}
= 1

2n (Rafn)
′
∆−1
n (Rafn).

Notice that (Rafn)(Rafn)′ = ∆n. This means that if S2
n has rank l < q we can always reduce the

problem to the study of a self-normalized sum in Rl and that, from an algorithmic point of view, this
reduction is carried out internally by the optimization program. From now on, we will assume that
S2
n is of rank l = q.

3. Quasi-Kullback and Bartlett-correctability

3.1. How to choose the divergence
The previous results are all asymptotic results. A natural statistical issue is how the choice of ϕ∗

influences the corresponding confidence regions and their coverage probability, for finite sample size
n, in a multivariate setting.
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Figure 1. Coverage probability for different discrepancies

To illustrate this fact, we use different discrepancies to build confidence intervals for the mean
of the product of a uniform r.v. with an independent standard Gaussian r.v. (a scale mixture) on
R6. Figure 1 represents the coverage probability obtained by Monte-Carlo simulations (100 000 rep-
etitions) for different divergences and different sample sizes n. Asymptotically, all these empirical
energy minimizers are theoretically equivalent in the case of the mean Bertail et al. [7]. However, this
simulation clearly stresses their distinct behavior for small sample sizes. Empirical likelihood corre-
sponding to K performs very badly for small sample size, even with a Bartlett-correction. However,
the χ2 divergence (leading to GMM type of estimators) tends to be too conservative. These problems
tend to increase with the dimension of the parameter of interest a well known fact in the empirical
likelihood literature. For very small sample size, Tsao [44] obtained an exact upper bounds for the
coverage probability of empirical likelihood for q, the parameter size, less than 2, which confirms our
simulation results. It also sheds some doubt on the relevance of empirical likelihood when n is small
compared to q.

3.2. Quasi-Kullback or log-proximal divergence
The main underlying idea of this section is that we want to keep the good properties of the Kullback

discrepancy and to avoid some algorithmic problems linked with the behavior of the log of the Kullback
discrepancy in the neighborhood of 0. For this, we will introduce family of divergences, the quasi-
Kullback. For ε ∈]0; 1] and x ∈]−∞; 1[ let,

Kε(x) = ε x2/2 + (1− ε)(−x− log(1− x)).

This kind of discrepancies is actually currently used in the convex optimization literature and may
be seen a regularized log-proximal method (see for instance Ausslender et al. [1]). The resulting
optimization algorithm leads to efficient tractable interior point solutions even when the number of
constraint is large.
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We call the corresponding K∗ε -discrepancy, the quasi-Kullback discrepancy. The parameter ε > 0
may be interpreted as a regularization parameter (proximal in term of convex optimization). This
family fulfills our hypotheses H1-H5. Its Fenchel-Legendre transform K∗ε has the following explicit
expression, for all x in R:

K∗ε (x) = −1
2 +

(2ε− x− 1)
√

1 + x(x+ 2− 4ε) + (x+ 1)2

4ε

−(ε− 1) log
2ε− x− 1 +

√
1 + x(x+ 2− 4ε)
2ε .

Note that the second order derivative of Kε is bounded from below: K(2)
ε (x) ≥ ε. Moreover, the

second order derivative of K∗ε is bounded both from below and above: 0 ≤ K
∗(2)
ε (x) ≤ 1/ε. These

controls ensure a quick and regular convergence of the algorithms based on such discrepancies. The
corresponding “quasi-empirical likelihood” may be seen as a “regularized” empirical likelihood.

The following theorem establishes sufficient conditions on the regularization parameter ε to obtain
the Bartlett-correctability of quasi-empirical likelihood.

Theorem 3. Under the assumptions of Theorem 2, assume that f(X, θ) satisfies the Cramer con-
dition: lim||t||→∞|EP exp(it′f(X, θ))| < 1, as well as the moment condition EP||f(X, θ)||s < ∞, for
s > 8. If ε = εn = O

(
n−3/2/ log(n)

)
then the quasi-empirical likelihood is Bartlett-correctable up to

O(n−3/2).

The proof is postponed in last section.
This choice of ε is probably not optimal but considerably simplifies the proof. An attentive reading of
Corcoran [12] shows that, if ε is small enough, the statistic is still Bartlett-correctable. Unfortunately,
as our discrepancy depends on n, Corcoran’s result cannot be applied directly and does not allow ε
to be precisely calibrated. We conjecture that, at the cost of tedious calculations, the rate of εn in
o(n−1) is enough, at least to get Bartlett-correctability up to o(n−1).
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Figure 2. Cover probabilities and Quasi-Kullback

Figure 2 illustrates the improvements coming from the use of Quasi-Kullback. It presents the
coverage probabilities of the usual discrepancies given in the introduction, as well as the ones for
Quasi-Kullback discrepancy (for a given value of ε = 0.5) on the same data. As expected, the Quasi-
Kullback discrepancy leads to a confidence region with a coverage probability much closer to the
targeted one, especially with a Bartlett adjustment even for an ε which is not close to 0.

4. Exponential bounds for self-normalized sums and quasi-empirical
likelihood

As seen in theorem 2, the behavior of generalized empirical likelihood is asymptotically governed by
the behavior of the square of a self-normalized multivariate sum. We are now interested in controlling
this behavior of quasi-empirical likelihood for finite n. We will show that indeed it is possible to relate
it to self normalized vector. For this, we use some exponential bounds obtained by Bertail et al. [8].
For the sake of completeness, we recall two types of bounds, which will allow us to control the finite
behavior of quasi-empirical likelihood.

Theorem 4. Suppose that S2 is of rank q. Then the following inequalities hold, for finite n > q and
for u < nq,

a) if f(X1, θ) has a symmetric distribution, without any additional moment assumption,

Pr
(
nf
′
nS
−2
n fn ≥ u

)
≤ 2qe−

u
2q ; (4)
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b) for general distribution of f(X1, θ) with kurtosis γ̃4 <∞, for any a > 1,

Pr
(
nf
′
nS
−2
n fn ≥ u

)
≤ 2qe1− u

2q(1+a) + C(q) n3q̃e
− n
γ̃4(q+1) (1− 1

a )2

(5)

with q̃ = q−1
q+1 , γ̃4 = EP(‖S−1f(X1, θ)‖42) and C(q) = (2eπ)2̃q(q+1)

22/(q+1)(q−1)3̃q
≤ (2eπ)2(q+1)

(q−1)3̃q
≤ 18.

Moreover for nq ≤ u, we have

Pr
(
nfnS

−2
n fn ≥ u

)
= 0.

Part a) in the symmetric multidimensional case follows from an easy but crude extension of Ho-
effding [25] (or Eaton and Efron [19], Efron [20]). The exponential inequality (4) is classical in the
unidimensional case. Other type of inequalities with suboptimal rate in the exponential have also
been obtained by Major [31].

In the general multidimensional framework, the main difficulty is actually to keep the self-normalized
structure when symmetrizing the original sum. Another difficulty is to have a precise control of the
behavior of the smallest eigenvalue of the normalizing empirical variance. The second term in the right
hand side of inequality (5) is essentially due to this control. The crude bound obtained in part a)
allows us to use a multidimensional extension of a symmetrization lemma by Panchenko [37]. However
for q > 1, the bound of part a) is clearly not optimal. A better bound, which has not exactly an
exponential form, has been obtained by Pinelis [38]. It essentially says that in the symmetric case the
tail of the self-normalized sum can essentially be bounded by the tail of a χ2 distribution (up to a
constant equal to 2e3/9). This bounds gives the right behavior of the tail (in q) when n grows, which
is not the case for a). However, in the unidimensional case a) still gives a better approximation than
Pinelis [38]. It can still be used in the multidimensional case to get crude but exponential bounds as
prove in Bertail et al. [8]. For these reasons, we also recall some results of Theorem 4 when using a χ2

type of control. This essentially consists in extending lemma 1 of Panchenko [37] to non exponential
bound.

In the following, we denote fq the density function of a χ2(q) distribution, which is given by
fq(x) = 1

2q/2Γ(q/2)
xq/2−1e−

x
2 , with Γ(p) =

∫ +∞
0 xp−1e−xdx and let F q denote the survival function

(F q(x) =
∫ +∞
x

fq(y)dy).

Theorem 5. We use the same notation as in the Theorem 4. Then the following inequalities hold,
for finite n > q and for u < nq,

a) (Pinelis 1994) if f(X1, θ) has a symmetric distribution, without any additional moment as-
sumption,

Pr
(
nf
′
nS
−2
n fn ≥ u

)
≤ 2e3

9 F q(u), (6)

b) for general distribution of f(X1, θ) with kurtosis γ̃4 <∞, for any a > 1 and for 2q(1+a) ≤ u,

Pr
(
nf
′
nS
−2
n fn ≥ u

)
≤ 2e3

9Γ( q2 +1)

(
u−q(1+a)

2(1+a)

) q
2
e−

u−q(1+a)
2(1+a) + C(q) n3q̃e

−
n(1− 1

a )2

γ̃4(q+1) (7)

Moreover, for nq ≤ u, Pr
(
nf
′
nS
−2
n fn ≥ u

)
= 0.

Remark 3. In the best case, past studies gave some bounds for n sufficiently large, without an exact
value for "sufficiently large". Here, the bounds are valid for any n. All the constants are also explicit.
This bound may also be used to give some ideas on the sample size needed to reach a given confidence
level (as a function of q and γ̃4).

The following corollary implies that, for the whole class of quasi-Kullback discrepancies, the finite
sample behavior of the corresponding empirical energy minimizers can be reduced to the study of a
self-normalized sum.
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Corollary 1. Under the hypotheses of Theorem 2, the following inequalities hold, for finite n > q,
for any η > 0, for any n > 2εη

q ,

Pr(θ /∈ Cn(η)) = Pr(nβn(θ) ≥ η) ≤ Pr
(
nfnS

−2
n fn ≥ 2εη

)
. (8)

Else if n ≤ 2εη
q , Pr(θ /∈ Cn(η)) = 0.

Then, for n > 2q, bounds (4-7) may be used with u = 2εη.

Remark 4. In Hjort et al. [24], convergence of empirical likelihood is investigated when q is allowed
to increase with n. They show that convergence to a χ2 distribution still holds when q = O(n 1

3 ) as n
tends to infinity.

Our bounds show that even if q = o (n/log(n)), it is still possible to get asymptotically valid confi-
dence intervals with our bounds. Notice that the constant C(q) does not increase with q as can be seen
in Figure 3.
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(q
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Figure 3. Value of C(q) as a function of q

A close examination of the bounds shows that essentially qγ̃4 has to be small compared to n for
practical use of these bounds. Of course practically γ̃4 is not known, however one may use an estimator
or an upper bound for this quantity to get some insight on a given estimation problem.

Notice that the bounds are non-informative when ε→ 0, which corresponds to empirical likelihood.
Actually, it is not possible to establish an exponential bound for this case. If we were able to do so,
for a sufficiently large η, we could control the confidence region built with empirical likelihood for any
level 1 − α. This would contradict the statements of Tsao [44], which gives a lower bound for the
attainable levels.

5. Generalization to process valued parameters
In this section we will consider the setting where the parameter of interest is itself a process value

parameter indexed by some class of functions or may be approximated by such parameter. Applications
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of this type appear naturally in many semi-parametric models, which may be seen as infinite M-
parameters. Another typical example is the case of confidence interval of cumulative distribution
functions on a compact set.

For this we consider the following abstract empirical process framework (see van der Vaart and
Wellner [45] for details). F is a subset of functions of a normed space of function here L2(P) =
{h, EP(h2) <∞} endowed with ||h||2,P =

(
EP(h2)

)1/2
. We assume that L∞(F) is equipped with the

uniform norm

‖P‖F = sup
h∈F

∣∣∣∣∫ hdP
∣∣∣∣ .

To avoid measurability problems, we assume that expectations (resp. probabilities) are outer ex-
pectations (resp. outer probabilities) so that weak convergence is interpreted as Hoffman-Jørgensen
convergence (see van der Vaart and Wellner [45] for details). For the same reason, we will also assume
that F is image admissible Suslin (for the definition of the image admissible Suslin property see Dud-
ley [18], sections 10.3 and 11.1.). This ensures that the classes of the square functions and difference
of square functions are) P-measurable (see Dudley [18]). In the following, it is assumed that F is a
Donsker Class of functions with envelop H satisfying

0 <
∫
H2dP <∞. (9)

Notice that if H is an envelop of the class then H + 1 is also an envelop, so that we may assume
without loss of generality that H ≥ 1. The empirical process n1/2(Pn − P) indexed by F converges
(as an element of L∞(F)) to a limit GP, which is a tight Borel measurable element of L∞(F) with
uniformly || ||2,P continuous sample paths f → GP (f). Extensive references and results on empirical
processes indexed by class of functions and conditions on F to be Donsker may be found in van der
Vaart and Wellner [45].

We are now interested in the infinite value parameter θ = (Pf)f∈F = (EPf)f∈F and write θ(f) = Pf
for the component of θ on a particular f .

For an infinite parameter, the initial problem would be to solve the semi-infinite optimisation problem

βn(θ) = inf
{Q∈Mn,Qf=EPf, f∈F}

{Iϕ∗(Q,Pn)}.

However this not possible directly. Several approaches have been recently proposed in the literature
to handle such problems. A first one is to discretize the problem and to retain a reasonable number
of constraints (typically of order n1/3, see Hjort et al. [24]) before applying the empirical likelihood
procedure. Another way to discretize the problem is to consider what is called in the statistical-
learning literature a skeleton class approximating F . One problem is of course the choice of the
constraints and the loss of efficiency induced by this choice. Another simpler proposition is to try to
maximize the empirical likelihood program component by component and to try to catch the worst
possible matching (see Varron [46]). In this case, we can still obtain non asymptotic bounds for the
empirical likelihood program using previous results on self-normalized processes.

Instead of solving the initial problem, we try to solve the programs defined by

∀f ∈ F , βn(f) = inf
{Q∈Mn, Qf=EPf}

{Iϕ∗(Q,Pn)}.

and to consider the concentrated empirical likelihood function

β̃n(θ) = sup
f∈F
{βn(f)}.
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Then, using the duality principle of the first part, we have the following result provided that the
constraints qualification are satisfied for any f. In practice this may be very difficult to check and this
is one of the reason why we advocate the use of a divergence of the quasi Kullback type. In this case
we simply have by using the same arguments as before

β̃n(θ) = sup
f∈F

{
sup
λ∈R
{Pn (−λ′(f − Pf)− ϕ(λ′(f − Pf)))}

}
≤ sup

f∈F

{
(Pnf − Pf)2

2εPn(f − Pf)2

}
= 1

2nε sup
f∈F

(
∑n
i=1 f(Xi)− Pf)2∑n
i=1(f(Xi)− Pf)2

As a consequence, the concentrated empirical likelihood is now controlled by a self-normalized process.
Such control has been obtained under different type of hypothesis in the probabilistic literature : see
for instance Bercu et al. [3].

Under the hypotheses that F be a permissible class (in the sense of Pollard (1984)) of real, mea-
surable, centered and normalized functions. If it is assumed that

(1) F is a countable class with finite bracketing numbers in L2(P)
(2) E = supn>0 E

[
supf∈F max(

√
nPn(f); 0)

]
< +∞,

(3) the class F is symmetric in the sense that if f ∈ F then −f ∈ F
then we obtain, using theorem 1.1 of Bercu et al. [3], that for any ε ∈ [0, 1], δ > 0 and α >

√
2, there

exists γ and n0 depending on F , ε, α and δ such that, for n ≥ n0 and for any x in [0, γ
√
n],

Pr
(
β̃n(θ) ≥ 2ε(x+ αE)2

)
≤ 4 exp

(
− x2

4α2(1 + δ)

)
.

However since this control depends on (unknown) constants (themselves depending on ε and the
class of functions) there is still some room for improvements.
Moreover it should be mentioned that a precise control of the eigenvalues of the covariance function
is needed for a valid bound to exist. This is by no mean astonishing and it is implicitly assumed in
condition E < +∞.

Indeed if we consider the particular case where F = {f(x) = 1x<y, y ∈ R} then the parameter
θ = F is the cumulative distribution function and in that case we have the control

β̃n(θ) ≤ 1
2ε sup

y∈R

[
(Fn(y)− F (y))2

Fn(y)(1− Fn(y))

]

and it is known from Jaeschke [26] that nβn(θ) is always equal to ∞, as well as E = +∞. It follows
that in the case of a cumulative repartition function that we can only control the empirical likelihood
over a compact set in the interior domain of the support of F .

6. Simulations and calibration

6.1. Non-asymptotic regions
Previous simulations studies (see Bertail et al. [6]) show that, for small values of n, the values of η

are quite high, leading to confidence regions that may be too conservative but that are very robust.
In the following

• “Symmetric bound” corresponds to η obtained by inverting the Pinelis inequality in the sym-
metric case, that is the quantile of a χ2.

• “NS”, for “Non-symmetric”, corresponds the η obtained by inverting the general exponential
bounds, from Theorems 4b) or 5b).

Numerical results show that the profile quasi-likelihood gets wider as ε increases. As a consequence,
the asymptotic confidence intervals become wider. With the non-asymptotic bounds, the behavior
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of the corresponding confidence region as ε increases is more delicate to understand. The profile
likelihood gets wider but the η’s corresponding to the symmetric bound and NS bounds decrease like
1/ε. These two behaviors have contradictory effects on the confidence regions Cn(η). It seems that
the effect of the decrease of η dominates: the confidence regions get smaller when ε increases. For
higher dimension or for a smaller α, the two contradictory effects could be balanced.

In Figure 4, we build confidence regions for the mean of a two-dimensional data, for two sample
sizes (n = 500 and 2000) and two distributions :

1) a Gaussian scale mixture, that is realizations of U ∗ N , where U and N are respectively
independent uniform r.v.’s on [0,1] and standard gaussian r.v.’s;

2) the discrete distribution d1 defined by

1
100 · δ(10,10) + 0.81

4
∑

a,a′=±1
δ(a,a′) + 0.09

2
∑
a=±1

(
δ(a,10) + δ(10,a)

)
.

We give in Figure 4 the corresponding 90% confidence regions, using respectively the asymptotic
approximation from Theorem 2, the symmetric bound from Theorem 5a) and the general bounds (NS)
from Theorems 4b) and 5b) with the true kurtosis.
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scale mixture: n = 500 data

scale mixture: n = 2000 data

distribution d1: n = 500 data

distribution d1: n = 2000 data

Figure 4. Confidence regions, for 2 distributions and 2 data sizes. Legend : red
point true mean, green star empirical mean, pink doted line asymptotic confidence
region (Theorem 2), red doted line confidence region based on the exponential bound
under symmetry (Theorem 5.a), blue continuous line confidence region based on the
exponential bound under non symmetry distribution (Theorem 5.b), green doted line
confidence region based on the exponential bound under non symmetry distribution
(Theorem 4.b)

For small sample size, as expected, the confidence regions obtained with NS bounds are quite large
(for our discrete data and n = 500, the regions are too large to be represented on the figure) with
a coverage probability close to 1. On the contrary, the asymptotic confidence regions are small but
when the distribution has a large γ̃4, the coverage probability can be significantly smaller than the
targeted level 1 − α. Thus the use of NS bounds are essentially justified to protect oneself against
exotic distributions.

6.2. Calibration of asymptotic confidence regions
Corollary 1 does not allow for a precise calibration of ε for finite sample size. Indeed, the finite

exponential bounds essentially say that the larger ε is (close to 1), the better the bound. This
clearly advocates that, in term of our bound sizes, the χ2 discrepancy leads to the best results.
This is partially true in the sense that the χ2 leads immediately to a self-normalized sum which
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has quite robust properties. However, it can be argued that, for regular enough distributions, the χ2

discrepancy leads to confidence regions that are to too conservative confidence intervals. The result on
Bartlett-correctability suggests that the bias of the empirical minimizer for quasi-Kullback is smaller
for very small values of ε (see also Newey and Smith [33] for arguments in that direction). Choosing
adequately ε could result in a better equilibrium and a compromise between coverage probability and
the adaptation to the data.

From a practical point of view, several choices are possible for calibrating ε. A simple solution is
simply to use cross-validation (either bootstrap, leave one-out or K-fold methods). Of course, this is
very computationally-expensive but the use of a quasi-Kullback distance eases the convergence of the
algorithms. It is not clear how the use of cross-validation and thus the use of an ε depending on the
data will deteriorate the finite sample bounds.

Figure 5 allows us to compare the asymptotic confidence regions built with the Kullback discrepancy
(K0), the χ2 (K1) and the Quasi-Kullback (Kε) with ε chosen by cross-validation, for a parameter
in R2. The algorithm leads to ε ' 0.7 for the scale mixture example and ε ' 0.6 for a standard
exponential distribution .

scale mixture: 15 data exponential distribution: 25 data

Figure 5. Asymptotic confidence regions for data driven Kε.

Figure 6 represents the coverage probability obtained by Monte-Carlo (25 000 repetitions) simula-
tions of scale-mixture distribution with q = 6 for Kε with data driven ε and some specific choice of
ε, for different sample sizes n.
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Figure 6. Coverage probability for different values of ε in terms of n.

In the multidimensional case (q > 1), with n finite, the volume of the confidence region for the quasi-
Kullback divergence remains closed to the volume of the ellipsoid corresponding to the χ2 divergence
with a better coverage probability.

The "adaptative" value of ε decreases with n. Over our 25 000 Monte-Carlo repetitions, the mean
value of ε is 1 for n = 15 and n = 20 (that is cross-validation automatically select the χ2 divergence
for small n. It decreases to 0.7 for n = 100.

For smooth distributions like our scale mixture, the coverage probability of the confidence region
constructed with the calibrated Kε is close to the targeted one. Moreover, the region is small and
adapts to the data.

A. Technical details

A.1. Proof of Theorem 3
Write βεn(θ) for the value of n times the sup in the dual program (3) when ϕ = Kε. β0

n(θ)
corresponds to the log likelihood ratio for Kullback discrepancy ϕ = K0 and β1

n(θ) corresponds to
the minimization of the χ2-divergence ϕ = K1. Let En be either the true value of E[β0

n(θ)]/q or an
estimator of this quantity such that empirical likelihood is Bartlett-correctable when standardized by
this quantity. We denote

T εn = 2βεn(θ)
En

.

Then, using DiCiccio et al. [17] (see also Bertail [5]), under the Cramer condition and assuming
EP||f(X, θ)||8 <∞, the Bartlett-correctability of T 0

n implies that

Pr
(

2β0
n(µ)
En

≥ x
)

= F̄χ2(x) +O(n−2),
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where we denote F̄Z(.) =
∫ +∞

0 dP(z), when Z ∼ P. This equality implies in particular that

F̄T 0
n
(η − n− 3

2 ) = F̄χ2(q)(η) +O(n− 3
2 ). (10)

Now, we can write

T εn = 2
En

sup
λ∈Rq

{
n∑
i=1

λ′f(Xi, θ)−
n∑
i=1

Kε(λ′f(Xi, θ))
}

≤ 2
En
{
εβ1
n(θ) + (1− ε)β0

n(θ)
}
.

In other words

T εn ≤ T 0
n + ε

[
T 1
n − T 0

n

]
.

This implies

F̄T εn(η) ≤ F̄T 0
n+ε[T 1

n−T 0
n](η).

We also have from (10)

F̄T 0
n+ε[T 1

n−T 0
n](η) ≤ Pr(T 0

n + n−
3
2 ≥ η) + Pr(|T 1

n − T 0
n | ≥ ε−1n−

3
2 )

= F̄T 0
n
(η − n− 3

2 ) + Pr(|T 1
n − T 0

n | ≥ ε−1n−
3
2 )

= F̄χ2(η) +O(n− 3
2 ) + Pr(|T 1

n − T 0
n | ≥ ε−1n−

3
2 ).

If we take ε of order n−3/2 log(n)−1, the last term in the right hand side of this inequality is of order
O(n−3/2). This can be shown by using for example the moderate deviation inequality for T 1

n and
the fact that T 0

n is already Bartlett-correctable. It follows that the corresponding discrepancy is still
Bartlett-correctable, at least up to the order O(n−3/2).

A.2. Proof of corollary 1
Following the arguments of the remark of Theorem 2, we use the dual form and expand Kε near 0.

Then we get

sup
λ∈Rq

{
−nλ′fn −

1
2

n∑
i=1

(λ′f(Xi, θ))2K(2)
ε (ti,n)

}

≤ sup
λ∈Rq

{
−nλ′fn −

1
2

n∑
i=1

(λ′f(Xi, θ))2ε

}
. (11)

Indeed, by construction of the quasi-Kullback, we have K(2)
ε ≥ ε. If we write l = −ελ, the right hand

side of inequality (11) becomes

n

ε
sup
l∈Rq

{
l′fn −

1
2 l
′S2
nl

}
= n

2εf
′
nS
−2
n fn.

Thus we immediately get

Pr(θ /∈ Cn(η)) ≤ Pr
(n

2 f
′
nS
−2
n fn ≥ ηε

)
.
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