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Abstract 

Image analysis for ornamental crops is discussed with examples from the bedding plant 

industry. Feed-forward artificial neural networks are used to segment top and side view 

images of three contrasting species of bedding plants. The segmented images provide 

objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height.  

On each imaging occasion, each pack was scored for quality by an assessor panel and it is 

shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores 

for the three species respectively. Stereoscopy for crop height and uniformity is outlined 

briefly. The methods discussed here could be used for crop grading at marketing or for 

monitoring and assessment of growing crops within a glasshouse during all stages of 

production. 

Keywords: Image analysis; Artificial neural networks; Ornamental crops; Crop scanning 
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1. Introduction 

 

Monitoring the growth and development of crops in commercial glasshouses requires accurate 

quantification of a wide range of plant characteristics from plant height and flower cover to 

indications of the presence of pests and diseases. Ehret et al. (2001) reviewed automated 

monitoring for glasshouse crops and Caponetto et al. (2000) discussed the use of sensors to 

monitor the crop environment. Langton et al. (2004) discussed direct measurement of the crop 

response to environment while Koumpouros et al. (2004) discussed image processing for 

distance diagnosis in pest management. 

 

Modern digital imaging technology is used widely for routine monitoring in industry, and 

particularly in food production (Brosnan and Sun, 2004) and software methods developed for 

industrial applications can be readily adapted for grading, on-line sorting and management of 

individual high value ornamental plants (Brons et al., 1993; Timmermans and Hulzebosch, 

1996). Image grading systems are used for individual plants such as pot-plants on moving 

tracks or belts and machine graders for trays of seedlings where individual seedlings can be 

clearly distinguished from their neighbours. However, the general problem of assessing an 

area of tightly packed plants or a batch or pack of plants is much less well developed.  Image 

analysis methods for complex structures such as beds or packs of flowering plants are much 

more challenging and present many difficulties both in the collection and the processing of 

the images. 

 

Ehret et al. (2001) discuss applications of digital imaging for monitoring glasshouse crops, 

but do not present any practical results. For many producers, grading and monitoring is 

tackled almost exclusively by a combination of manual measurement and visual inspection 
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which is highly labour-intensive and subjective. Computer vision systems and image analysis 

offer the potential to automate detailed measurement and assessment of plants as crops, not 

just individual plants and as a first step towards this goal, we develop reliable methods for 

routinely extracting important attributes from images of multiple ornamental plants in packs. 

Plant height and height variation is an important quality attribute and we discuss methods for 

determining leaf canopy heights using single fixed side images. Recent research (Song et al. 

2007) has shown the feasibility of stereoscopic methods for height measurement using 

overhead images and future development of stereoscopic methods should allow height 

information to be collected for tightly spaced crops on benches or growing floors where side-

imaging is not feasible. 

 

Commercial protected glasshouse crop environments allow many important environmental 

factors (e.g. lighting and temperature) to be partly or totally controlled during growth. 

Currently, most crop husbandry management decisions during production are based on 

experience, frequent visual inspection of the crop and time-consuming manual methods such 

as tracking plant heights using hand measurement of pre-selected plants in a growing crop 

(e.g. poinsettia tracker, Harwood and Hadley, 2004). The aim of this paper is to relate overall 

plant quality to key plant characteristics measured from digital crop images using automated 

image analysis methods. The methodology is applied to bedding plants in packs and could be 

used directly for imaging individual packs on a grading line at marketing. Stereoscopy is not 

discussed in detail here but we do show how height information from a stereoscopic image 

can be used to improve the fit of a plant quality model.  
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2. Materials and Methods 

2.1. Plants and image acquisition 

Bedding plant crops are grown in packs containing typically 12, 24 or 30 plants and must 

meet tight marketing specification often with a tight marketing schedule. A range of bedding 

plant species including pansy (Turbo yellow) in spring 2006 and dianthus (Festival Cherry 

Picotee), viola (Bicolour-Magnifico) and cyclamen (Silverado Scarlett) in autumn 2006 were 

grown simultaneously at a UK commercial grower and at a large research glasshouse facility 

located at WHRI (University of Warwick, UK).  The various species were typical examples of 

commercial plant crops selected to represent dense and sparse leaf canopy cover and flower 

distributions, and also wide height variations (see www.warwick.ac.uk/go/cropimaging 

for example images). All plants were subjected to a range of treatments, reported in detail 

elsewhere (Edmondson et al., 2007). At the end of production, 72 packs of pansy, 24 packs 

each of cyclamen and dianthus, and 48 packs of viola (24 packs of 24 small plants and 24 

packs of 12 large plants) were selected for imaging and quality assessment. Only the 

cyclamen, dianthus and viola results are discussed in detail here but the pansy is used to 

illustrate the application of stereo imaging for bedding plants. 

 

Images were collected both at the end of production and after two weeks of simulated shelf-

life. A single fixed image captured from the side of each pack allowed estimates to be made 

of mean leaf canopy height and flower height. Red-green-blue (RGB) colour digital images 

were captured, at a resolution of 8521136  pixels, from all packs routinely under controlled 

conditions in a purpose-built light-box from a fixed height (0.5 m) and orientation directly 

above and to one side (0.4 m) of each pack, using a pair of standard commercially available 

digital cameras.  
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Although three-dimensional representations of objects are used widely in medicine and 

biology, applications in agriculture are rare (Takizawa et al., 2005), with few developments in 

commercial horticulture. In situations where it is difficult or impossible to collect side view 

images (e.g. during plant production), the three-dimensional representation proves to be an 

important tool for routine plant quality assessment and crop scheduling. A detailed discussion 

of the recovery of height information from stereo images is beyond the scope of this paper, so 

will not be discussed further; however a detailed description of the methods used here for 

determining individual pixels heights is given by Song et al. (2007) and Song (2008). The 

stereo algorithm used here provided a matrix of heights corresponding to the original image 

file, allowing a map of the canopy surface to be constructed. 

 

2.2. Image segmentation 

 

The first step in analysis was segmentation into multiple regions of interest (sets of pixels), 

corresponding to different objects or parts of objects. A comprehensive discussion of the 

principles of image processing is provided by Jain (1989) and applications in the biological 

sciences are discussed by Glasbey and Horgan (1994). Our main aim was to identify 

important plant features (e.g. leaves and flowers) from individual images, which was achieved 

by classifying individual pixels into disjoint groups based on the similarity of the colour 

characteristics and vertical positioning (height), relative to a fixed base point, of each pixel. A 

wide range of possible approaches to image segmentation have been described in the research 

literature (see for example Pal and Pal, 1993 and Cheng et al., 2001) but in general, the 

selection of an appropriate segmentation algorithm depends largely on the type of image and 

the application. For our purposes, unsupervised approaches such as k-means and fuzzy c-

means (MacQueen, 1967; Bezdek, 1981) were found to be slow and unreliable so a 
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supervised learning method was developed. This used a training data set, consisting of pairs 

of input and target outputs, to develop a model that allocated all valid inputs to only one of a 

small number of output classes. 

 

Artificial neural networks are widely applied to problems in image processing (Egmont-

Petersen et al., 2002) and have been found to be particularly useful for classification problems 

generally in agriculture (Jayas et al., 2000; Cerna and Chytry, 2005). More specifically they 

have been used both in computer vision applications for classification of potted plants (Brons 

at al., 1993; Timmermans and Hulzebosch, 1996; van Kaam, 2001) and for complex 

knowledge acquisition, manipulation and extraction of data for other horticulture applications 

(Woodford, 2008). Feed-forward neural networks provide a powerful and general framework 

for representing non-linear relationships between input and output variables; for a detailed 

description see for instance Bishop (1995). For classification problems involving mutually 

exclusive classes, the most widely used error function (Ripley, 1994; Bishop, 1995) for 

training feed-forward neural networks is: 

r k

rkerk ytE )(log . 

This represents the cross-entropy between the logarithm of the predicted class membership 

rke ylog  and the observed indicator of class membership,
rkt for K  mutually exclusive classes 

and R  training pixels. To avoid over-fitting, it is common to use the sum of squares of the 

weights C  as a penalty on the fit criterion E to give CE . This penalty is called weight 

decay and it reduces the 'noisiness' of the fit by reducing the magnitude of weights at each 

step in the fitting algorithm; the degree and smoothness of fit is controlled by the weight 

decay term . 

An unbiased estimate of the misclassification rate is found by using n-fold cross-validation 

(Stone, 1974; Bishop, 1995), with cross-validated misclassification rates (CVMR) determined 
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by counting zero if the predicted class (class with the largest predicted probability 
rky ) is 

correct and one otherwise. A more sensitive method is to use logarithmic scoring, where 

rke ylog  is the score for the true class k  and zero is the score for the other classes, giving 

cross-validated logarithmic scores (CVLS); mean logarithmic scores, across the R  training 

cases, provide a useful measure of separation for discrimination between classes (Titterington 

et al., 1981). 

 

2.3. Image colour characteristics 

 

Each pixel in an NM  image can be readily allocated to an appropriate class (e.g. leaf or 

flower) by a simple visual inspection of the image and, by replicating this process for sets of 

randomly selected pixels a large training database of pixel characteristics can be created. The 

colour values for each pixel, in each RGB digital image file, are given by mnr , mng  and mnb  

where, for the data used here, the red, green and blue colour intensities are measured on an 8-

bit scale from 0 to 255. The colour properties of each pixel are best expressed in the 

normalised colour space using the red mnR  and green mnG  chromatics and the overall 

intensity
mnI where: 
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The pixels neighbouring each pixel are also important for determining its classification (see 

for example Foucher et al., 2004), therefore the local region properties based on the 8-

connected neighbourhood region for each pixel were also calculated. The mean red mnR  and 
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green 
mnG  chromatics and intensity 

mnI  within the 8-connected region for each pixel are 

given by the following expressions: 
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Standard deviations of the red )sd(Rmn
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 chromatics and the intensity 

)sd(Imn
 within the 8-connected spatial region can be defined, and constrained to lie in the 

interval ]1,0[ , in an analogous manner to conventional standard deviations for each pixel. 

 

2.4. Image analysis 

 

The extraction of quantitative information from images, such as counts of objects, areas, 

distances and boundaries, is the aim of much image analysis (Glaseby and Horgan, 1994). 

Previous work has investigated the relationship between hand measured plant attributes and 

overall quality for other ornamental plant species (Parsons, 2004; Parsons et al., 2006) and 

has shown that a small number of key factors usually account for a large proportion of the 

variability in recorded quality assessments. The four most important of these characteristics 

are defined here and methods are described for their estimation from segmented images;  

(i) Leaf and flower cover. The percentage leaf and flower cover within an image were 

estimated by calculating the percentage class membership based on counts of the 

number of pixels in each class in the segmented image. 

(ii) Leaf and flower cover uniformity. The variability in leaf and flower cover across each 

pack image was used to estimate uniformity. The image was sub-divided into regions 

covering the individual cells of a pack and the coefficient of variation of the 

percentage cover across these regions provided an estimate of pack uniformity. 
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(iii) Leaf canopy height and shape. Leaf canopy heights were estimated from side view 

images by sub-dividing each image into a grid which, for our images were 24 x 24 

pixels representing a square of area 1 cm
2
, and then determining the proportion of leaf 

material within each grid square. The centre of the lowermost (and uppermost) square 

in each column within the grid designated as leaf material, that is a square containing 

 50% leaf material, directly below (above) a square designated as non-leaf material 

(< 50% leaf) was used as an estimate of the lower (upper) extent of the canopy. Given 

upper and lower limits within each column, a quadratic curve was fitted across the 

width of the image grid and estimates for the mean height and linear and quadratic 

coefficients were determined using regression analysis (Sen and Srivastava, 1997). 

(iv) Leaf and flower colour. The leaf greenness index was estimated as the normalized 

colour characteristic given by the mean value of mnG100  (Section 2.3) for all pixels 

identified as belonging to class leaf. Similar definitions, lead to estimates for flower 

blue and red normalized colour characteristics being given by mnB100  and 

mnR100 . 

Nine characteristics, denoted as 
rkz  where 91,2r , were estimated for each of the k  

packs for each species; (i) leaf cover (%), (ii) flower cover (%), (iii) leaf uniformity (%), (iv) 

flower uniformity (%), (v) leaf canopy height (cm), (vi) leaf canopy height squared (cm
2
), 

(vii) leaf greenness (%), (viii) flower blueness (%) and (ix) flower redness (%).  

 

2.5. Plant quality scores 

 

An assessment panel comprising 20 members of the WHRI (University of Warwick) staff 

were randomly selected from individuals with an interest in horticulture. Assessors from both 

a horticultural (specialist) and non-horticultural (non-specialist) background were used. Packs 
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were scored for quality by each member of the panel at two separate occasions, two weeks 

apart. On each occasion, two assessments were made on consecutive days using a different 

randomized ordering of the packs on each assessment day. Packs were assessed visually and 

each panel member gave a score indicating their own independent assessment of the quality of 

the plant material using a scale where 1 = very poor, 2 = poor, 3 = average, 4 = good and 5= 

very good quality. The ability of individual panel members to repeat their quality scores was 

assessed by calculating the Spearman rank correlation coefficient after the randomized change 

in pack number. The mean quality score for each pack was calculated as the weighted mean of 

the individual scores from the 20 panel members, using the individual correlations as weights 

(all correlations were positive). This resulted in a mean score 
kq  for each of the K  packs for 

each species that gave little or no weight to those panel members who were unable to 

consistently replicate their scores on the same material at each occasion. 

 

2.6. Statistical models 

 

The effect of the pack characteristics, described in Section 2.4, on the pack mean quality score 

(Section 2.5) for each species were investigated using the multiple regression model 

 )E(

9

1

0

r

rkrk zq , 

where  )E( kq  denotes the expected quality score for pack k , and 0  and r  are regression 

coefficients that are estimated from the data. Assuming a Normal distribution for the response 

variable 
kq , the regression coefficients were estimated using generalized estimating equations 

(Hardin and Hilbe, 2002), that accommodated a first order autoregressive correlation model 

for the repeat scores on the same packs made at two occasions separated by two weeks. 

Model fitting proceeded using the open source statistical software R (R Development Core 
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Team, 2007) and the gee procedure library. The significance of individual regression 

coefficients was assessed using Z-statistics based on the robust variance estimator, the 

goodness of fit for each species model was assessed using an adjusted 2

adjR  value and 

diagnostic plots were used to check the model assumptions. 

 

3. Results 

 

3.1. Image processing 

Fifty pixels were randomly selected from each of the 48 available cyclamen and dianthus side 

images, and visually classified into one of three mutually exclusive classes (flower, leaf and 

other) using the Image Processing Toolbox (version 5.1) available in Matlab (The MathWorks, 

2007). Similarly, 25 pixels were randomly selected from each of the 96 available cyclamen 

side images and visually classified. The number of pixels selected within each image was 

based largely on pragmatic considerations and for the most complex networks the ratio of data 

records to network weights was never less than 30:1; the overall performance of the networks 

were not unduly sensitive to the number of selected training pixels. The nine colour 

characteristics, described in Section 2.4, were calculated for each of the sampled pixels and 

neural networks, with 10 input layer nodes and 3 output layer nodes, were fitted using 

function libraries available in the open source statistical package R (R Development Core 

Team, 2007). All data, model fitting code and example processed side and top view images 

for dianthus, cyclamen and viola are available from the authors at 

www.warwick.ac.uk/go/cropimaging.  

 

 

 



 12 

3.2. Stereoscopy 

The image stereoscopy work is reported elsewhere (Song et al. 2007 and Song 2008) and is 

not discussed in detail here. However, Figure 1 illustrates the use of stereoscopy to generate a 

false colour relative surface height map for a pansy pack in centimetres. The false colour 

contour map accurately represents the relative height of the flowers and leaves in the image 

and can be used for capturing information about the uniformity and habit of a crop. With 

proper calibration, the algorithm can also be used to calculate absolute crop height for crop 

growth monitoring (Harwood and Hadley, 2004) but this application is beyond the scope of 

this article and will not be discussed further here. 

 

3.3. Segmentation 

CVLS, based on 10 replications of ten-fold leave-one-pixel-out cross-validation, were not 

unduly sensitive to the weight decay parameter used for values 1.0 , so the largest of the 

tested values (0.01) was selected to give the smoothest fit to the data without loss of 

predictive power. There was little substantive improvement in fit for more than 3 hidden layer 

nodes for any of the species used here, so the best performing network for segmenting side 

images consisted of 10 input nodes, 3 hidden layer nodes and 3 output nodes; 30 weights 

connecting the input nodes to the three hidden layer nodes, 9 weights connecting the hidden 

layer nodes to the outputs and three weights connecting the bias node to each output – 42 

weights in total. No attempt is made here to fully optimize the networks for robust 

performance, for instance by pruning redundant nodes and weights; this would be required for 

practical implementation in a commercial system, but is not discussed here for reasons of 

brevity. The observed mean CVLS for dianthus, viola and cyclamen (0.070, 0.175 and 0.036) 

indicated that on average each pixel was classified correctly with a probability of 0.932, 0.840 

and 0.965; considerably better than would be achieved by purely random allocation of pixels 
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to the three designated classes (0.333). The misclassification tables (cross-tabulation of true 

versus predicted classes) for these networks gave no indications that the networks performed 

differentially better at classifying pixels into any of the individual classes and the final trained 

networks for dianthus, viola and cyclamen gave good segmentation of images into flowers 

and leaves, misclassifying 2.25%, 6.83% and 1.38% of pixels respectively. 

 

Segmentation for the dianthus crop was challenging due to lack of visual distinction between 

white flower parts and the white polystyrene pack and for this example, height information 

was obtained using stereoscopic methods. Data were collected from top view images using 

random pixel selection in exactly the manner and number described for the side view images 

and visually classified into one of four mutually exclusive classes (flower, leaf, pack and 

compost). In addition to the nine colour characteristics, described in Section 2.4, pairs of 

stereo images for dianthus were used to calculate heights at each point in the image. Figure 2 

shows measured heights from single fixed side view images for individual packs of dianthus 

plants and mean pack heights measured from matched stereo pairs of the corresponding 

packs. The plot error bars indicate the pixel to pixel height variability for each pack image, 

showing how fixed side view heights simplify the true within and between plant height 

variability within a crop. The individual estimated absolute and relative pixel heights, 

determined by calibration based on either the distance between camera and pack or on the 

maximum height recorded within a pack respectively were also included as inputs to the 

neural networks, as a means of discriminating between pixels located on flowers and packs 

possessing similar colour characteristics, but located at differing heights within the crop 

canopy. 
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As for the side view image networks, a weight decay parameter of 0.01 was used for the ANN 

for the top view images that comprised 10 input nodes and 4 output nodes for cyclamen and 

viola, and 12 input nodes (2 additional nodes for absolute and relative crop heights) and 4 

output nodes for dianthus. The observed mean CVLS for dianthus, viola and cyclamen (0.103, 

0.109 and 0.125) indicated that on average each pixel was classified correctly with a 

probability of 0.902, 0.897 and 0.882. The trained networks for dianthus, viola and cyclamen 

gave good segmentation of images into flowers and leaves, misclassifying 4.08%, 3.62% and 

4.12% of pixels respectively. Misclassification rates were generally not as good for the top 

view images as for the side view images, because of the greater depth and complexity of the 

images, due mainly to the shading of underlying material from leaves and flowers further up 

the plant canopy. The results of the segmentation for dianthus are illustrated in the right-hand 

pane of Figure 3. The flowers and the polystyrene pack are sufficiently well distinguished to 

make good estimates of class cover; leaf = 66.8%, flower = 19.4%, pack = 5.1% and compost 

= 8.7%. 

 

3.4. Plant quality models 

 

The quality scores from the panel of 20 assessors were weighted and averaged, using the 

methods described in Section 2.5, to give a mean score 
kq  for each of the K  packs for each 

species. Models of the form described in Section 2.6 were fitted to data for each species using 

the model selection methods described by Parsons et al. (2006). Estimated regression 

parameters and standard errors are shown for each species in Table 1. Diagnostic plots of 

model residuals showed no significant departures from the model assumptions. 
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The parameter estimates in Table 1 describe the affect of each attribute on overall plant 

quality. In general, increasing leaf and flower cover increased assessments of pack quality and 

the significant negative coefficients for leaf greenness indicated that quality assessments 

improved for packs that had darker green coloured leaves than those packs that had paler 

leaves. For dianthus and cyclamen, flower colour was also important, with coefficients 

indicating a preference amongst the assessment panel for darker red coloured flowers. A more 

even distribution of flowers across the visible pack surface improved quality for cyclamen, 

whereas for viola the opposite effect was observed and quality improved when flower 

uniformity indicated that flower cover was more variable across the visible pack surface 

although the reason is unclear. Leaf canopy height showed a clear maximum in quality at 

approximately 11cm for dianthus, but for the range of pack heights available for viola quality 

increased as pack heights decreased. Models accounted for 88.5%, 81.7% and 70.4% of the 

variation in quality scores for dianthus, viola and cyclamen respectively. The relationship 

between observed and predicted quality scores for each pack, based on the fitted models, is 

shown in Figure 4. 

 

4. Discussion 

 

Artificial neural networks based on colour characteristics from individual pixels and 

surrounding pixels together with information on height obtained from stereo pairs of images, 

performed well in segmenting all the images used here. Where segmentation based on pixel 

data alone is poor, information about the typical shape of objects or knowledge of the spatial 

arrangement and textures of objects could also be incorporated into the networks (Egmont-

Petersen et al., 2002). Random pixel selection worked well for the well-populated classes 
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discussed here but for detecting rarer classes such as disease systems, a more structured 

sampling procedure could be appropriate.  

 

Our image segmentation work has been based mainly on ANNs but an alternative method can 

be based on support vector machines (Vapnik, 2000; Karatzoglou et al., 2006), a supervised 

machine learning method that is becoming increasing popular (Karimi et al., 2006). We have 

little direct experience of support vector machines but the literature suggests that support 

vector machines are at least as powerful as ANN methods therefore a comparison of the two 

methods for classification of plant quality could be of value.  

 

Our models accounted for 88.5%, 81.7% and 70.4% of the variation in quality scores for 

dianthus, viola and cyclamen respectively but it should be remembered that the panel quality 

scores were themselves estimates and were subject to considerable variation. Our view is that 

the image analysis scores are in fact more objective and more reliable than panel scores and 

the high level of correlation between the two sets of scores confirms that image analysis 

methods can routinely capture the same information that a human assessor can reliably 

capture. For accurate estimates of heights and more detailed descriptions of the canopy shape 

and variability of a growing crop in a commercial setting, three-dimensional images can be 

captured from cameras directly above the crop. We have shown that this can be achieved 

using a single camera collecting images at two fixed positions, but the similar results could be 

obtained using a pair of cameras or from a single moving camera collecting a series of images 

over a growing crop. These are currently areas of active research. 

 

Although we have concentrated on image analysis for grading and crop monitoring, we would 

also expect, more generally, that digital imaging would be capable of detecting localised pest 
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and disease or other types of plant damage. The imaging sensors could also be easily 

combined with additional sensors to monitor automatically for stress using infra-red 

temperature (Langton et al., 2004), chlorophyll fluorescence (Van Kooten et al., 1991; DeEll 

et al., 1999), spectral information (Zwiggelaar, 1998) and potentially other sensors at the 

same time that the crop was being visually imaged. 

 

5. Conclusion 

 

The development of methods for image processing and statistical modelling of quality scores 

for routine quality control of ornamental bedding plant crops has been reported. Artificial 

neural networks have been used to segment digital images into regions of interest and key 

morphological and chromatic characteristics of the crops have been incorporated into 

statistical models that explain much of the variation in overall quality scores made by a panel 

of assessors. The morphological and chromatic characteristics for each ornamental plant pack 

provide a rich source of information that have the potential to assist in making complex 

decisions regarding the scheduling and quality management of a growing plant crop. In the 

near future, we would expect machine vision and intelligent image analysis software to 

become of key importance in the monitoring and control of growing crops especially in 

protected crop environments in glasshouses.  
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Figure 1. A false colour image, showing crop canopy height (cm) for an individual pack of 

bedding plants, and the original pack image with the area selected for height determination. 

 

Figure 2. Measured heights from single fixed side view images of individual packs of plants 

and mean heights measured from matched stereo pairs of the corresponding packs for 

dianthus. Bars represent one standard deviation. 

 

Figure 3. Images showing dianthus plants at marketing (left) and segmented into four classes 

(right); red pixels represent flowers, green pixels leaves, white pixels the polystyrene pack 

and black pixels the growth medium. 

 

Figure 4. Observed and predicted quality scores, based on the fitted statistical models, for 

each species.
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Table 1. Parameter estimates, standard errors (s.e.) and Z statistics for crop quality models for 

each species 
Parameter Species 

 Dianthus Viola Cyclamen 

 Est. s.e. Z Est. s.e. Z Est. s.e. Z 

          Constant 0.224 1.205 0.19 4.921 3.095 1.59 -2.408 2.440 -0.99 

Leaf cover (%) 0.032 0.007 4.54 0.129 0.031 4.12 0.057 0.025 2.25 

Flower cover (%) 0.015 0.006 2.43 0.091 0.030 3.03 0.061 0.024 2.55 

Leaf uniformity (%) - - - - - - - - - 

Flower uniformity (%) - - - -0.007 0.002 -3.91 0.002 0.001 2.86 

Leaf height (cm) 0.345 0.060 5.76 -0.191 0.026 -7.43 - - - 

Leaf height
2
 (cm

2
) -0.016 0.004 -4.52 - - - - - - 

Leaf greenness (%) -0.091 0.024 -3.77 -0.246 0.021 -11.59 -0.078 0.034 -2.28 

Flower blueness (%) - - - - - - - - - 

Flower redness (%) 0.083 0.011 7.19 - - - 0.051 0.009 5.79 
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