
A Patient-centric, Attribute-based, Source-verifiable
Framework for Health Record Sharing

Apurva Mohan†, David Bauer†, Douglas M. Blough†, Mustaque Ahamad‡, Bhuvan
Bamba‡, Ramkumar Krishnan‡, Ling Liu‡, Daisuke Mashima‡ and Balaji Palanisamy‡

†
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

‡
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
The storage of health records in electronic format, and the
wide-spread sharing of these records among different health
care providers, have enormous potential benefits to the U.S.
healthcare system. These benefits include both improving
the quality of health care delivered to patients and reducing
the costs of delivering that care. However, maintaining the
security of electronic health record systems and the privacy
of the information they contain is paramount to ensure that
patients have confidence in the use of such systems. In this
paper, we propose a framework for electronic health record
sharing that is patient centric, i.e. it provides patients with
substantial control over how their information is shared and
with whom; provides for verifiability of original sources of
health information and the integrity of the data; and per-
mits fine-grained decisions about when data can be shared
based on the use of attribute-based techniques for authoriza-
tion and access control. We present the architecture of the
framework, describe a prototype system we have built based
on it, and demonstrate its use within a scenario involving
emergency responders’ access to health record information.

Keywords
Electronic Health Records, Attribute-based authorization,
Merkle hash trees

1. INTRODUCTION
Electronic health records (EHRs) are widely seen as a means
to improve the quality of health care and satisfaction for pa-
tients, and as a method to reduce operational costs for health
care providers and insurance companies. Beyond the use
of EHRs within individual organizations, wide-spread EHR
sharing, with the ultimate goal being that a patient’s com-
plete medical history is available anytime, anywhere, to any
qualified healthcare provider, offers even greater potential
benefits. Examples of the potential benefits of EHR shar-
ing include the complete elimination of duplicate tests, and

a huge improvement in quality of emergency care through
accessibility of health records in emergency situations.

While EHRs, in general, and EHR sharing, in particular,
offer tremendous potential benefits, they also face signifi-
cant challenges to adoption. Among these challenges, one of
the most substantial is how to ensure security and privacy
of the extremely sensitive information that is contained in
these records. In the worst case, failure to guarantee secu-
rity and privacy could result in the public losing faith in
EHR systems, which could lead to severe restrictions on the
maintenance and sharing of EHR information.

Security and privacy of EHRs is the focus of the MedVault
project [4]. This project is investigating a number of dif-
ferent ideas for ensuring security and privacy of both inter-
nal EHR systems, as well as EHR sharing systems. Top-
ics being investigated in MedVault include: secure storage
techniques for EHR repositories, secure integration of per-
sonal devices into EHR sharing frameworks, verifiable and
selective health information disclosure, attribute-based ac-
cess control for EHR data, and a privacy-preserving toolkit
for perturbation of EHR data. In this paper, we describe
a portion of this research, which focuses on a framework
for EHR sharing that incorporates attribute-based access
control techniques, and verifiable and selective health infor-
mation disclosure. The framework is designed to work with
a variety of health data sources that can sign and store in-
formation in an EHR repository in such a way as to allow
the data to be selectively disclosed in specific contexts (de-
fined by attributes of users and the environment), while still
preserving the source verifiability and integrity of data.

EHR sharing systems come in several different forms. One
is a federation of institutions, each with their own individ-
ual (and possibly distinct) EHR systems, where information
is shared between them on an as needed basis. EHR shar-
ing can also be done through personal health record (PHR)
repositories, such as Google Health [3] or Microsoft Health-
Vault [5]. In PHR repositories, patients are responsible for
collecting their own health records, but can then control
with whom the information is shared. Lastly, sharing of
EHR information can be done through repositories that ag-
gregate information from various sources as a community
service (sometimes referred to as community health records,
or CHRs). One example of this is the State of Illinois’ TOTS
(Tracking Our Toddlers’ Shots) program, which maintains a



Figure 1: Architecture of MedVault sharing framework

database of immunizations of patients in the state.1

Some research has been done in developing secure authoriza-
tion models for the federated EHR sharing situation, e.g.
[11]. In this case, integrity and verifiability of the health
records is not a problem because the data is coming directly
from a trusted source. In the case of a PHR or CHR, how-
ever, the records are collected, stored and shared by a party
other than the original health care provider. As such, the
issue of verifying that the information was actually created
by the claimed source and has not been tampered with must
be addressed in these classes of sharing systems.

Another issue with EHR sharing is having an authoriza-
tion/access scheme with the flexibility to share records with
a wide variety of authorized users, while preventing unau-
thorized disclosure. Federations and large organizations typ-
ically have dedicated system administrators who can define
and maintain complex authorization policies, but in PHR
and CHR systems, there must be a way for the patient to ex-
press their desired information disclosure policies. As such,
although the expressiveness and security of the policies have
to be maintained, defining and maintaining them should in-
volve minimum effort.

In this paper, we present the MedVault sharing framework,
which is a patient-centric, source verifiable framework for
storing and sharing EHR information. In this framework,
we incorporate secure minimum information disclosure tech-
niques, as proposed for example in [10], for source verifiabil-
ity and integrity of records. The framework’s authorization
module is an attribute-based system, where the patient spec-
ifies authorization policies based on specific attributes (with
specific values) that the requester must hold in order to gain
authorization to access the records. The overall architecture
of our sharing framework is inspired by the HHS use case
scenarios for consumer access to clinical information, and

1http://www.idph.state.il.us/health/infect/totsfs.htm

emergency responders access to health records [7].

The main contributions of this paper are:

1. presentation of a comprehensive EHR sharing frame-
work and a working prototype system based on it,

2. integration of the concepts of data source verifiability,
selective disclosure, and fine-grained attribute-based
access control using both static and dynamic attributes,

3. demonstration of these concepts and the EHR sharing
framework in a scenario involving emergency respon-
ders access to EHR information.

The rest of the paper is organized as follows. Section 2 covers
system architecture and concepts, Section 3 describes the
MedVault prototype implementation details, while Section 4
presents demonstration of one real life scenario. Section 5
presents related work, and Section 6 discusses continuing
work.

2. SYSTEM ARCHITECTURE AND CON-
CEPTS

The system architecture of the MedVault sharing framework
is shown in Figure 1. The health records reside in a source
verifiable repository. A user wishes to access the records of
a particular patient. The requesting user connects to his
user agent using some generic interface—in our prototype
system, a Web browser. The user agent makes access re-
quests to the patient agent on the user’s behalf. The Health
Information Service allows the querier to locate the avail-
able repositories and the types of records available for the
patient in question. Upon receiving a request from a user
agent, the patient agent notifies the user agent of the at-
tributes required to complete the access. The user agent
then aggregates the relevant attributes from a set of At-
tribute Providers (APs). APs put these attribute values



into signed digital credentials. The APs’ public keys can be
presented to the verifying authority (in this case the patient
agent) in a certificate signed by a Certificate Authority, or
they can be gathered a priori through other channels when
the patient agent has an existing trust relationship with an
AP. The patient agent, authorization module, and access
policies are co-located with the repository, either logically
or physically depending on the implementation. The pa-
tient agent mediates access to the repository and enforces
the patient’s authorization policies. For an approved access,
it also sends the health record information back to the user
agent, which relays it back to the user’s local device.

Section 3.1 describes the back-end database used in our
prototype system. Section 3.2 describes the two agents in
our design. Section 3.3 presents the authorization module.
Section 3.4 describes the Health Information Service. Sec-
tion 3.5 discusses the user interfaces of our system. In the
remainder of this section, we discuss some of the high-level
concepts that are at the core of our system’s operation.

2.1 Source verifiability and integrity of health
records

If a patient is presenting a copy of his/her own medical
record to a medical provider in a situation where the medical
provider is expected to provide treatment based on the infor-
mation, it is reasonable to ask how much trust the medical
provider should put into such a record. In the most obvi-
ous example, a patient may manufacture a fake past medical
problem (accident, surgery, back trouble) to get a prescrip-
tion under false pretenses. However, there are many other
circumstances where a patient might be tempted to forge or
alter records. For example, a patient who has chosen not to
get vaccinations (or not to vaccinate a child) might forge a
vaccination record to avoid legal/contractual requirements
or arguments with medical providers. A patient receiving
psychiatric medication might alter the record to show a con-
dition that they consider less stigmatizing. All of these can
have serious consequences for both the patient and the larger
community. We address this problem through source verifi-
able records.

In current practice, a source verifiable record usually means
one in which it is possible to go back to the originator of the
record to check its veracity. This is usually done over inse-
cure channels such as telephone and fax. Besides the low se-
curity of the current practice, there is the obvious problem of
the source being unavailable due to time constraints (for ex-
ample, nobody in the office during the weekend or at night),
no longer being in existence (for example, a doctor retired
or moved from private practice to teaching), or communica-
tions difficulties (phone number/address changed; source is
not willing to give information over an unsecured channel).

In this paper, a source verifiable record is one that is cryp-
tographically signed by its originator, such that its authen-
ticity and integrity can be checked without communicating
with the source. Along with the cryptographic signature,
a chain of trust to well known and long-lived authorities
should be stored by the patient. An example of a chain of
trust is the certificate path in X.509 [6].

Source verifiability, by itself, is not difficult to achieve. A

health care provider can simply sign an entire set of records
when providing them to a repository. A third party can
then verify authenticity and integrity of the set of records.
However, our patient-centric approach dictates that the pa-
tient maintain control over which individual records are dis-
closed within a particular context. Thus, it is necessary to
allow disclosure of some subset of these records, while still
providing source verifiability. This selective disclosure with
verifiability is difficult to achieve in a practical manner. One
trivial approach is to have the health care provider sign each
individual item in a health care record when providing it to a
repository. However, this approach is not scalable, because
a large record could have tens of thousands of individual
items in it, and the provider would have to generate that
many signatures before sending the record to the repository.
Third parties receiving health information would also have
to verify many signatures with this approach.

Our approach to source verifiability with selective disclo-
sure centers on the use of redactable signatures [17], using
the scheme of [10]. This scheme uses modified Merkle-hash
trees and X.509 certificates in order to allow the efficient ver-
ification of individual items. By combining trees originally
generated and signed by different entities, records created
by different entities and at different times can be efficiently
verified together. Using a redactable signature can be two
orders of magnitude faster to verify than simply signing each
record item individually [10].

2.2 Attribute-based authorization
Attribute-based authorization is a recent paradigm in au-
thorization systems. Attribute-based systems provide fine-
granularity, high flexibility, rich semantics and other nice
features like partial authentication and natural support for
role-based access control [20]. In attribute-based systems,
authorization permissions are mapped to user attributes (with
specific values). A user has to prove that he holds these at-
tributes (with specified values) to be authorized to access the
desired resources. A unique feature of our approach is that
we combine the use of quasi-static attributes like the role
of the user or the name of the user’s employer with highly
dynamic attributes such as the user’s location, the time, and
characteristics associated with an emergency situation (see
Section 4 for an example of this).

Attribute providers (AP) are entities that verify users’ at-
tributes and certify them. They create digitally signed cre-
dentials and provide them to the user. Our definition of an
AP differs from that of an identity provider (IdP) in that an
IdP only certifies identity related attributes, and a user usu-
ally has a small number of IdPs. On the other hand, there
could be many APs providing attributes about a given user,
and these attributes may or may not be identity related. A
host of possibilities for APs exists. APs could operate under
direct control of the user, functioning similarly to an IdP, or
they could be aggregators and providers of publicly-available
information, or they could be business or government enti-
ties exchanging information under contractual agreements.
Other viable models for APs will undoubtedly arise, as well.

There are multiple modes in which attribute information can
be gathered from APs and supplied to the patient agent. In
one mode, the user agent can retrieve the (digitally signed)



attributes and present them to the patient agent. In a sec-
ond mode, the patient agent can be responsible for collecting
attributes. This can be done under explicit authorization
from the user via a cryptographic token given by the user
agent to the patient agent and forwarded to an AP. Alterna-
tively, the patient agent might retrieve attributes from APs
that hold publicly-available information about the user, or
it might contact APs with which it has contractual agree-
ments, and thus not require explicit authorization from the
user. A final mode of operation uses a combination of user-
agent-supplied and patient-agent-retrieved attributes. For
example, the user agent might present static attributes in
the form of a digital credential, and the patient agent might
be responsible for querying dynamic attributes.

An AP can belong to a broad range of entities. For example,
an AP could be a medical licensing board that can certify the
role of medical professionals like doctors, EMTs, and nurses,
or a location service that can certify the current location of
the user, or an employer certifying its employees’ association
with the organization. In the case of the licensing board, the
attribute has long term validity. It can be pre-fetched and
stored in the user agent. However, highly dynamic attributes
like location must be fetched in real time.

2.3 Basis in health care systems
Although our system is a prototype running on machines in
our research laboratory, it is carefully designed with actual
healthcare systems in mind. The database schema used in
our prototype health record repository is based on VistA,
which is the electronic health record system used by the
VA Hospitals (see Section 3.1 for a partial description of
the schema). The concept of a patient agent controlling ac-
cess to a patient’s health records is specifically designed to
work either with a personal health record repository such as
GoogleHealth or Microsoft HealthVault, or with a commu-
nity health record repository. Other aspects of the design,
as well as the demonstration scenario described in detail in
Section 4, follow key ideas presented in several use case sce-
narios developed by the American Health Information Com-
munity for the U.S. Department of Health and Human Ser-
vices (HHS) [7].

The primary HHS use cases upon which our design is mod-
eled are “Consumer Empowerment: Consumer Access to
Clinical Information” and “Emergency Responder – Elec-
tronic Health Record”. The concept of an HIS, including a
patient/repository directory service, is present in these use
cases, as are entities very similar to our attribute providers
(although that terminology is not used). Several aspects of
our policy-based and patient-controlled information disclo-
sure approach are in close agreement with the “Consumer
Access” use case. Finally, many of the steps in the demon-
stration scenario described in Section 4 closely follow aspects
of these use cases. Thus, we are confident that both the con-
cepts and design of our prototype system are transferable to
the electronic health record sharing environments that are
emerging in the U.S. today.

2.4 Security model and assumptions
The Medvault sharing framework is designed with a large,
high-level infrastructure in mind. While it inherits a great
deal of security from its components – including standard

cryptographic functions, minimal-disclosure credentials, and
redactable signatures – our focus is generally on the larger
architecture.

We assume that all cryptography used is secure, that there
exists a trusted PKI infrastructure for professional/licensed
entities (i.e., hospitals, doctors, and emergency personnel),
that trusted entities are not compromised, and that trusted
authorities exist to certify employment, position, emergency
situations, the location of entities, and other such attributes.
Attribute Providers are trusted by the patient agents that
consume their attributes. The Health Information Service
is globally trusted to carry out its patient lookup service
correctly (failure to do so could lead to denial of service
but no leakage of sensitive health information). Agents are
trusted by whoever they are acting on behalf of.

The primary privacy threat addressed is the release of ei-
ther: a) too much information from a patients’ records to
an authorized individual, or b) any information to an unau-
thorized individual. A second threat addressed is the modi-
fication and/or forgery of records. While untrusted records
can have some usefulness, medical personnel may not bother
to look up patient records, if they are likely to be forged or
otherwise unreliable. Providing these two properties, i.e.
fine-grained patient control over information disclosure and
data verifiability/integrity allows both patients and health
care providers to have enough trust in the system to use it.

3. DESCRIPTION OF PROTOTYPE SYSTEM
IMPLEMENTATION

3.1 Back-end database
The current prototype system uses a sample database based
on the VistA electronic health record and health informa-
tion system [8]. The health records are stored in a back-
end database, which is a MySQL database instance in our
prototype. VistA is built on a client-server architecture,
which ties together workstations and personal computers
with graphical user interfaces at Veterans Health Admin-
istration (VHA) facilities, as well as software developed by
local medical facility staff. VistA also includes the links that
allow commercial off-the-shelf software and products to be
used with existing and future technologies. This provides
sufficient motivation to use VistA for modeling our sample
database as it can be readily extended for future extensions
to the MedVault project. Figure 2 shows part of the schema
for our sample database using an entity-relationship schema
diagram.

This part of the schema includes the Patient, Insurance
Company, and Visits made by the patient to the Health
Institutions. Each Visit can generate one or more Docu-
ments and Orders/Consults. The attribute that denotes the
primary key for each entity is denoted by bold, underlined
attribute names. For example, the MRID attribute, indi-
cating the membership identifier for each patient, is the pri-
mary key for the patient entity. Bold lines indicate total
participation of an entity in a relationship. For example,
as the figure shows, every patient has an Insurance entity.2

The cardinality of the entities in the ensuing relationships is

2One of the possible values for the Insurance entity is ’None’.



Figure 2: Database schema related to doctor’s visits

indicated as 1:1, 1:N and M:N. For example, the 1:N cardi-
nality for the Patient makes Visit relationship indicates that
a single patient can be associated with many visits but each
visit must be associated with a single patient. The Docu-
ments entity models direct outcomes of the office visit, e.g.
measurements of the patient’s vital signs, notes from the
doctor’s examination, and results of basic tests performed
in the doctor’s office. The Orders/Consults entity, on the
other hand, models any medical prescriptions, outside tests,
or referrals that may have been ordered for the patient.

The signature information for the source verifiable records is
held in the same database as the records themselves, in a set
of tables matching the medical record tables. Records can
either be signed before being inserted into the table (as is the
expected mode of operation), or later as needed. When the
records are read, the signature data can be read at the same
time and sent with the records. We have implemented a
personal health record (PHR) repository in the current pro-
totype. This repository contains PHRs from many patients
who are distinguished by their patient IDs. The database
schema contains tables to hold meta-data, actual medical
data, and the signature data. The signature data contain
the hashes of a verification path for a Merkle hash tree, us-
ing the redactable signature scheme described in Section 2.1.

3.2 Identity agents
There are two types of identity agents used in the system:
user agents and patient agents. User agents operate on be-
half of people trying to access a patient’s medical records,
including medical personnel, friends, and family. In the
demonstration scenario described in Section 4, we focus on
medical personnel. Patient agents mediate access to said
records, and are described in detail below. User agents are
not strictly required, but we use them in our prototype sys-
tem for symmetry. User agents hold credentials, perform pa-
tient searches, handle various lookups, and can act as Web
proxies for their users.

The primary function of a patient agent is to mediate access
to the patient’s health records. This agent could take dif-

ferent forms, depending on where it resides and with what
type of systems it interacts. When interacting with a PHR
repository, the agent could be a distinct software component
directly controlled by the patient, and it could be resident
either on the repository or on a separate system. In this way,
it is possible to use our framework with an existing unmod-
ified PHR system (such as Google Health [3] or Microsoft’s
HealthVault [5]) as the back-end data repository.

In another use case for electronic records, the repository
might be under the control of a third party, e.g. a commu-
nity health record (CHR) system operated with the specific
intent to support the overall health care system (rather than
providing benefits to specific patients who use the service,
as in the PHR case). Even in the CHR case, the patient
should be able to exert some control over how their records
are used. The patient agent in this type of system could be
embodied within a set of patient-specified disclosure poli-
cies, which are then consulted by the access control software
on the system prior to releasing any records about the pa-
tient. In this case, there is likely to be a system policy on
disclosure of records, in addition to the patients’ policies.

In our current prototype, the patient agent is embodied
within the access control module of a repository, which im-
plements a combination of the system’s policy and patients’
policies. The manner in which policies are combined is de-
scribed in Section 4.

3.3 Authorization module
The MedVault policy engine is built using XACML (Extensi-
ble Access Control Markup Language), an OASIS standard
that uses XML schema for representing authorization and
entitlement policies [2]. The schema facilitates inclusion of
custom attributes in the policy that are verified while mak-
ing access decisions. Some terminologies: a resource refers
to the object to which access is requested. A subject refers
to the user that has requested access to a resource, and an
action describes what action a subject wants to take on a
particular resource. Attributes are ways to describe a sub-
ject/resource/action.

Our current prototype categorizes major parts of a patient’s
health records into three resources, namely Chronic Condi-
tions, Prescriptions, and Other. A subject could be a doctor
or other medical professional (e.g. EMT or nurse) wanting
to access a patient’s records and an action could be a read
or write on the resource. In the current demo, attribute
providers provide five attributes, including both quasi-static
and dynamic attributes. Two (static) attributes specify the
role and the employer of the person requesting access to the
resource (e.g. doctor, nurse, EMT). A third (dynamic) at-
tribute indicates where the request is from (location). The
last two attributes are related to the emergency response
scenario described in Section 4. The fourth (dynamic) at-
tribute indicates the organization that has been assigned to
respond to an incident, e.g. county fire department, ambu-
lance company, etc. The final (dynamic) attribute specifies
the location of a patient involved in an incident. (In most
cases, this is initially the same as the incident location, but
it changes as the patient is transported to an emergency care
facility.)



There is a default patient policy, which is used to govern ac-
cess to patients’ records in the absence of explicitly specified
preferences. Patients are also provided with an interface to
set policies themselves and for the subsets of policies that the
patient doesn’t (or chooses not to) set, the default policies
are applied and the policies are written to an XML policy
file, which governs access to the resources. Our current pol-
icy specification interface is fairly limited and so we do not
describe it herein. We are actively researching the design
of a simple interface for policy specification that maintains
most of the power and flexibility describable in XACML. In
addition to a patient’s XML policy file, there is a separate
XML policy file that describes the system policies.

As an example, suppose there is an accident involving pa-
tient X and the policies enable doctors to access his EMR
only when they are at the hospital and EMTs to access
the record when they are within 1 mile of the accident site.
When doctor Y wants to access the EMR of X, she contacts
X’s patient agent and queries the policies set by X. The pa-
tient agent of X lets Y know what attributes are required
to access the resources for X (in this case, her role and her
location). Y then returns to the agent with these attributes,
certified by one or more attribute providers. Next, the pol-
icy engine generates a request XML with the subject and
attributes. The request is matched against the policies, and
a permit or deny decision is returned by the policy engine
in the form of an XML response.

3.4 Health information service
The health information service is a lookup service, which
has information about how many health record repositories
each patient has, where these are located, and what doc-
ument categories are contained in these repositories. This
information is linked to a unique patient ID for each patient
and the HIS can be queried using this patient ID. Although,
in the current prototype, we assume that each patient’s ID
is known to the querier, this may not be the case for a real
system. Thus, our future plans include implementing a pa-
tient locator service as part of the HIS, which will be able
to connect to health registries. These registries would store
patients’ information like SSN, driver’s license number, ad-
dress, etc., and map it to the patient’s ID. It should be
possible to query these health registries with a parameter
like a driver’s license number and get the patient’s ID in
response. This concept of a registry is consistent with the
vision spelled out in the use case entitled “Emergency Re-
sponder – Electronic Health Record”, available on the De-
partment of Health and Human Services’ Web site [7].

3.5 System interfaces
There are two user interfaces in the prototype system. First,
a query interface for an entity to request access to health
records. Second, a Google Maps interface for the adminis-
trator to manage the locations of the entities.

The query interface is a Web browser used by the querying
entity. The querier uses the Web browser to authenticate
to its agent and to interact with the HIS and the patient
agent. The Web browser interface eliminates the need for a
specialized client and can be used via desktops, laptops or
handheld devices. Screen shots of the interface are shown in
Figures 3, 5 and 7.

The Google maps interface, shown in Figures 4 and 6, is used
for controlling and displaying the location of the different ac-
tors in the demonstration (see next section). Different actors
in the demo are represented by markers on the map. The
location of the querying entity is one of the attributes used
in controlling access. The location of the querier is changed
by dragging the corresponding marker to the desired loca-
tion. The new location is passed on to the location attribute
provider. Upon request, the new location is disclosed by the
attribute provider.

3.6 Miscellaneous system details
The MedVault system is implemented in the Java program-
ming language. Medvault uses Java’s native API for most of
its cryptographic implementation and the Bouncy Castle [1]
API and library for key generation. RSA is used for signa-
tures (because it provides faster verification than DSA) and
SHA-256 is used as the default hash algorithm. There is a
single certificate authority for the system that issues X.509
public key certificates to different entities. Entities in the
system use signed tokens to communicate with other enti-
ties. The tokens contain nonces generated by the querier
and patient’s agent to protect against replay attacks.

4. DEMONSTRATION SCENARIO
The functionality of the system is demonstrated by a real life
scenario, where an emergency responder accesses a health
record repository to access documents required to provide
emergency care at an incident location. In this scenario,
there are four actors, a patient involved in an incident, a
man passing by the incident location, a 911 operator, and
an EMT who is dispatched to the incident location.

In this demo, the patient’s policy requires two attributes
with specific values for access, and the system policy re-
quires three additional attributes. The five attributes are
‘user role’, ‘user location’, ‘incident location’,
‘user RespondedToIncident’ and ‘user AffiliateEmployer’. Sev-
eral attribute providers are implemented to certify the values
of these attributes for the querier.

The patient’s policy for the role ‘EMT’ states that:

• an EMT can never access documents in category“Other”,
and

• an EMT can access documents in categories “Chronic
conditions” and “Prescriptions” if a valid emergency
condition exists, as defined in the associated system
policy.

The system policy is defined for critical access permissions.
In the demo, the system policy states that:

• an EMT can access “Chronic conditions” and “Pre-
scriptions” documents when:

– he is an employee of an affiliate institution, and

– that institution is responding to an emergency,
and



– he is close enough to the incident site,3.

The two policies are combined in a hierarchical fashion,
where the system policy overrides the patient’s policy.

The demo scenario is as follows. A man is walking his dog in
a park and notices someone lying in the bushes. When going
over to see if the person needs help, the man notices that
the person appears to be unconscious and has some blood
on his head. He immediately calls 911 and, while taking a
closer look at the person, sees a wallet sticking up through
a pocket. The 911 operator dispatches an ambulance to the
park and encourages the man to check the wallet. When the
man finds a driver’s license with the person’s name (“Carl
Johnson”) and address, this info is forwarded to the EMTs
who use it to access the system to get the health records of
the person.

As the ambulance is en route to the incident, one of the
EMTs logs in to his agent using his username and pass-
word. The EMT then enters Carl’s name and address to
query the HIS about his patient ID and available reposito-
ries.4 The HIS sends back a list of available repositories for
Carl, as shown in Figure 3. It also includes the categories
of documents available in each of them. Figure 4 shows the
situation where the EMT is far from the ‘incident location’.
He tries to access records for Carl Johnson by contacting his
agent at the repository and sending his required attributes.
Since he is far from the ‘incident location’, the request is de-
nied. This situation is shown in Figure 5. When the EMT
moves closer to the ‘incident location’ (as shown in Figure
6), he retries and this time his access request is granted.
The system automatically checks the signature of the pro-
viding doctor and indicates to the EMT that Carl’s health
records are authentic. The EMT sees the records (shown
in Figure 7), which contain a prescription for insulin. He
then views the doctor’s notes from Carl’s last visit, which
indicate that Carl has been having some trouble controlling
his blood sugar levels.

When the EMTs arrive on the scene, they already have a
tentative diagnosis of diabetic shock. They immediately
test Carl’s blood sugar, which indicates that he is hypo-
glycemic, and they administer glucagon, which reverses the
effects of insulin. Carl’s vital signs begin to improve almost
immediately and the EMTs place him in the ambulance and
transport him to the ER. During the ambulance ride, Carl
regains consciousness but is quite disoriented. He is brought
to the ER, where he continues to improve and is given some
follow-up treatment. During this time, the ER doctors are
able to access Carl’s complete health records. (Due to space
constraints, we do not show details of these accesses.) When
Carl is judged to be stable, he is checked into the hospital
for a few days so that his condition can be monitored to try
to determine a corrective course of action for his medication.

In this example scenario, we see that access to the patient’s
health records can be critical for early diagnosis. In this
3’Close enough’ is defined by a configurable parameter,
which is set to one mile in our current demonstration setup.
4Since the current implementation has not yet implemented
the patient locator service, we assume in the actual demo
that Carl’s patient ID is known to the EMT.

Figure 3: List of available repositories from the HIS

specific example, a delay in diagnosing the cause of uncon-
sciousness might actually have been fatal. On the other
hand, the carefully defined policies, together with the abil-
ity to verify both static and dynamic attributes (the latter
in real time), ensures that the patient’s privacy is protected
by giving access only to EMTs who are dispatched to this
emergency, rather than to all EMTs at any time. In addi-
tion, the system is auditable, based on log files that maintain
details of all access requests.

5. RELATED WORK
In this section, we will compare our research prototype with
other research and commercial systems. Microsoft Health-
Vault [5] is a PHR service offered free of charge. The users
store their record in Microsoft’s repository and can share
their records with other users. In the HealthVault ecosys-
tem, there are many applications providing value added ser-
vices based on the user’s PHR. Google offers a similar service
Google Health [3] with similar features. Our system differs
from both of them in various aspects. First, our system
offers source verifiability and integrity of the PHRs. Health-
Vault supports digital images with signatures but most of
the data is entered either by the user or by the source with-
out signatures. Google Health does not support digital im-
ages nor source verifiability. Second, our system has a fine
granularity for authorization. Policies can be set for differ-
ent granularities of the health records. The authorization is
attribute-based, so the patient does not need to know indi-
viduals, a priori. In both HealthVault and Google Health,
authorization is identity-based and the user has to manually
give permissions to each identity. Our system also has sup-
port for spatial and temporal constraints, which does not
exist in the other systems.

Cassandra [11] was proposed by Becker, et al., as an access
control system for large scale distributed systems. It was
proposed as a system for national electronic health record
system for UK. Cassandra is role-based; it supports credential-
based access control and it has a formal semantics for query
evaluation and for the access control engine. Since Cassan-
dra was proposed as an EHR service, its access control policy
specification and maintenance is quite involved, whereas in



Figure 4: EMT is far from the incident location

Figure 5: The EMT’s access request is denied

Figure 6: EMT is close to the incident location

Figure 7: The EMT’s access request is approved



our system specifying the policy and changing it is achiev-
able through a GUI. Cassandra is a role-based system and
does not incorporate spatio-temporal constraints in its au-
thorization decisions.

OASIS is a role-based trust management system which was
proposed by Eyers, et al., as a platform for providing elec-
tronic health record service [13]. This service is also tar-
geted as an EHR service and shares most of the character-
istics of Cassandra. Ahn, et al., proposed a framework for
role-based access control with delegation for healthcare in-
formation systems [9], [21].

Hu, et al., proposed context-aware access control for dis-
tributed healthcare applications [16]. Their main focus is on
using context-information in role-based access control and
integrating several services using a single portal. There are
several distinctions as compared to our approach. The Med-
Vault sharing framework includes source-verifiability and se-
lective disclosure, which are not present in [16]. Our autho-
rization is based on attribute-based policies where the sub-
ject’s, resource’s and environment attributes are included
in the policies. This provides greater flexibility and control
compared to combining roles with five specific context types,
as in [16]. In MedVault, we have attribute providers, which
certify attribute values for queriers whereas the issue of cer-
tifying how a role relationship is created is not addressed
in [16]. Finally, our approach is patient-centric, where the
patient has some control over how her data is shared, as op-
posed to the enterprise oriented approach of [16], where the
system administrator composes and maintains all disclosure
policies.

Several attribute-based systems for authorization and access
control have been developed recently for different applica-
tions. A few examples are cited here. Goyal, et al., pro-
posed a system for fine-grained access control for encrypted
data [14]. Gunter, et al., developed an attribute-based mes-
saging system where email senders can dynamically create
a list of recipients based on their attributes [12]. The Med-
Vault sharing framework differs from these systems in sev-
eral respects. First, instead of using attribute-based encryp-
tion, as in these systems, MedVault uses attribute-based
policies for authorization and access control. To enable this,
we address the problem of attribute assertion and retrieval
by introducing APs into the system. This also provides the
flexibility of introducing a wide variety of attributes into
the system. New APs can be added to the system with no
change in the framework. In addition, MedVault provides
a complete framework for health records sharing, including
aspects unique to this application area such as source veri-
fiability and selective disclosure.

Another attribute-based health records system currently un-
der development is the “security infrastructure and national
patient summary” being developed as part of the Swedish
national eHealth system [15]. It is being undertaken by a
national association in Sweden, which is currently owned by
county councils and local authorities. Like MedVault, the
access control system in this proposed system is based on
attribute-based policies and is being implemented in XACML.
Although their access control system works in a way similar
to ours, there are many critical differences between the two

systems. First, MedVault is a patient-centric system where
the patients describe their own authorization policies, which
work in conjunction with system policies, as opposed to the
Swedish system, which has only system defined policies. Sec-
ond, the Swedish system relies on users’ employers as their
sole attribute providers, whereas MedVault allows for dif-
ferent attribute providers that can assert a wide variety of
user attributes. These attributes may be static or dynamic,
and many of the attributes we envision would be difficult,
if not impossible, for a user’s employer to assert. Finally,
the Swedish system does not provide the key properties of
source-verifiability and selective disclosure provided in our
framework.

6. FUTURE/CONTINUING WORK
Our prototype system is an evolving effort and we are con-
tinuing to add modules to it. One of these will allow health
records to be uploaded directly into the back-end database.
The database is populated a priori and currently can only
be changed by manual construction of database insertion
commands. We are changing this so that various sources
of health data, such as hospitals, doctors’ offices, and pa-
tients’ personal health devices can upload data directly into
the repository. Each data source will have its own public-
private key pair, which can be used to verify the authenticity
of the data.

Another research effort is to include redactable signatures
on data with dependencies. The idea here is that medical
data is inherently linked, and on many occasions, reveal-
ing one record, unaccompanied by other records on which
it depends, might lead to incomplete information or even
misinformation. Merely suggesting to a patient that certain
records are related and should only be disclosed simulta-
neously could result in non-compliance and enforcing such
dependencies cryptographically is a superior solution. We
have developed a scheme to cryptographically enforce de-
pendencies between data that are selectively disclosed, and
we are currently implementing this and integrating it into
the MedVault framework.

Another dimension of work is to improve the interface for
capturing patients’ policies in a natural and effortless man-
ner. The current prototype has a simple interface which
allows the patient to specify required attributes (and their
values) for the three health categories of “Chronic Condi-
tions”, “Prescriptions”, and “Other”. However, the current
interface allows only a few attributes. The current interface
provides a quick way to define policies and test the proto-
type, but is not suitable for general patient use. We are
working to understand how to improve the usability of this
interface and to capture policies from all types of patients,
from the novice who is satisfied with a very simple policy to
the advanced, highly privacy conscious patient, who desires
a specific policy for different individual pieces of her medical
record.

Although attribute-based systems provide some nice fea-
tures, they present some research challenges as well. First,
the formal security properties of attribute-based policies are
not guaranteed. In the general case, where there are no
constraints on the policies, the safety of these policies is
undecidable. For a safe and practical policy, we need to



define suitable constraints to make the safety of these poli-
cies decidable. We propose to solve this problem by using
a query-based safety model, where the patient will be able
to query the safety of his resources by providing a set of
attributes, actions and resources. The authorization mod-
ule will have a sub-module which will analyze whether the
given resource can be accessed by a subject with the given
set of attributes. Second, to make an authorization decision
it may be required to comply with a number of policies. Of-
ten there are conflicts in these policies [18] and in this case,
these policies need to be combined using policy combina-
tion algorithms. Several methods have been proposed for
doing these combinations [19]. The proposed solutions solve
only part of the problem and several aspects like choosing
particular combinations in run time depending on environ-
mental attributes, basic security premise like separation of
duty, etc., are not incorporated in these models. In our fu-
ture work, we plan to build an authorization module that
incorporates these ideas.

We have presented the design and initial prototype imple-
mentation of an important MedVault subsystem for EHR
sharing, which covers attribute-based access control and ver-
ifiable and selective health information disclosure, as well
as several dimensions of future planned enhancements. The
MedVault project in general is an active research effort jointly
conducted by Georgia Tech and Children’s Healthcare of
Atlanta. MedVault efforts are dedicated to investigating
concepts, models, techniques, and architectural designs for
ensuring security and privacy of both internal EHR sys-
tems and EHR sharing systems. In addition to verifiable
and selective health information disclosure and attribute-
based access control for EHR data, other important top-
ics being investigated in MedVault include: secure storage
techniques for EHR repositories, secure integration of per-
sonal devices into EHR sharing frameworks, and a privacy-
preserving toolkit for perturbation of EHR data.

7. REFERENCES
[1] Bouncy castle crypto API for Java.

http://www.bouncycastle.org/java.html.

[2] eXtensible Access Control Markup Language
(XACML).
http://java.sun.com/developer/technicalArticles/Security/xacml/xacml.html.

[3] Google Health. https://www.google.com/health.

[4] MedVault project Web site.
http://medvault.gtisc.gatech.edu.

[5] Microsoft HealthVault.
http://www.healthvault.com/Personal/index.html.

[6] Public-key infrastructure (x.509) (pkix).
http://www.ietf.org/html.charters/pkix-charter.html.

[7] U.S. Dept. of Health and Human Services, HealthIT
Use Cases. http://healthit.hhs.gov/ -> ”Standards and
Certification” -> ”Use Cases”.

[8] WorldVistA. http://worldvista.org/.

[9] G. Ahn and B. Mohan. Role-based authorization in
decentralized health care environments. In Eighteenth
Annual ACM Symposium on Applied Computing,
page , March 2003.

[10] D. Bauer, D. Blough, and D. Cash. Minimal
information disclosure with efficiently verifiable
credentials. In 4th Workshop on Digital Identity

Management, pages 15–24, 2008.

[11] M. Y. Becker and P. Sewell. Cassandra: flexible trust
management, applied to electronic health records. In
17th IEEE Computer Security Foundations Workshop
(CSFW), 2004.

[12] R. Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and
H. Khurana. Using attribute-based access control to
enable attribute-based messaging. In IEEE Annual
Computer Security Applications Conference (ACSAC
’06), December 2006.

[13] D. M. Eyers, J. Bacon, and K. Moody. Oasis
role-based access control for electronic health records.
In IEEE Software, pages 16–23, February 2006.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute based encryption for fine-grained access
conrol of encrypted data. In ACM conference on
Computer and Communications Security (ACM CCS),
page , 2006.

[15] M. Hagner. Security infrastructure and national
patent summary. In Tromso Telemedicine and eHealth
Conference, 2007.

[16] J. Hu and A. Weaver. Dynamic, context-aware access
control for distributed healthcare applications. In
Pervasive Security, Privacy, and Trust (PSPT), 2004.

[17] R. Johnson, D. Molnar, D. Song, and D. Wagner.
Homomorphic signature schemes. Topics in Cryptology
– CT-RSA 2002, 2271:244–262, 2002.

[18] E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. In IEEE
Transactions on Software Engineering, pages 852–869,
Nov/Dec 1999.

[19] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and
E. Bertino. Xacml policy integration algorithms. In
ACM Transactions on Information and System
Security (TISSEC), pages 852–869, February 2008.

[20] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. In IEEE
Computer, page , 1996.

[21] L. Zhang, G. Ahn, and B. Chu. A role-based
delegation framework for healthcare information
systems. In ACM Symposium on Access Control
Models And Technologies (SACMAT), page , 2002.


