
Cosmos: A Wiki Data Management System

Qinyi Wu Calton Pu Danesh Irani

College of Computing
Georgia Institute of Technology

Atlanta, GA
{qxw, calton, danesh}@cc.gatech.edu

ABSTRACT
Wiki applications are becoming increasingly important for
knowledge sharing between large numbers of users. To pre-
vent against vandalism and recover from destructive edits,
wiki applications need to maintain the revision histories of
all documents. Due to the large amounts of data and traf-
fic, a Wiki application needs to store the data economi-
cally and retrieve documents efficiently. Current Wiki Data
Management Systems (WDMS) make a trade-off between
storage requirement and access time for document update
and retrieval. We introduce a new data management sys-
tem, Cosmos, to balance this trade-off. To compare Cos-
mos with the other WDMSs, we use a 68GB data sample
from English Wikipedia. Our experiments show that Cos-
mos uses one-fifth of the disk space when compared to Medi-
aWiki (Wikipedia’s backend) and performs faster than other
WDMSs at document retrieval.

Keywords
Revision control, social media

1. INTRODUCTION
Social media applications, such as wikis and blogs, are grow-
ing fast and attracting millions of users around the world
to share and exchange knowledge. Wikipedia, ranked 7th

in overall web traffic [8], is the most popular of such sites.
With over forty thousand requests a second and over thou-
sands of new revisions created daily, it is critical that the
underlying wiki data management system be efficient.

To recover from vandalism behavior [10, 17] and destructive
edits, wiki systems have been maintaining the entire revi-
sion histories of their documents. Current approaches either
use traditional version control systems (VCSs) or database
management systems (DBMSs) for their data management.
VCSs use disk space economically because they only store
the differences between consecutive revisions of a document,
but they are not suitable for retrieving earlier revisions of
a document. On the other hand, DMBSs store revisions in
their entirety allowing them to efficiently retrieve any ver-
sion of a document, but use disk space inefficiently due to
disregarding overlapped content between consecutive revi-
sions. Using a data dump from English Wikipedia, our ex-
periments show that the space consumption between these
two approaches can be more than thirty times.

This paper introduces a new Wiki Data Management System
called Cosmos. Cosmos balances the trade-off between stor-

age requirement and access time. We use a data structure,
called partial persistent sequences (PPSs) [19], to represent
a document and its revision history. PPSs only maintain one
copy of all the characters that have been inserted into a doc-
ument. Furthermore, each character has a unique identifier,
which is persistent over the time. A revision only maintains
a selected set of identifiers, which can be used to restructure
its content at anytime. PPSs use disk space economically
due to its feature of one-copy per character. They can also
be implemented efficiently on DBMSs to achieve fast docu-
ment update and retrieval.

Our contributions in this paper consist of two parts:

• Design and prototyping of a Wiki Data Management
System, Cosmos. Cosmos balances the trade-off be-
tween efficient storage and fast retrieval time provided
by current systems. We implement the necessary func-
tionality to support document retrieval and update.

• An experimental evaluation that compares Cosmos with
the current systems by using a data dump from English
Wikipedia [7]. We compare the performance of Cos-
mos on data storage and access time with two popular
wiki systems. One is TWiki [6], which uses a VCS-
based approach. The other is MediaWiki [3], which
uses a DBMS-based approach. Our experiments show
that Cosmos uses one-fifth of the disk space compared
to the DBMS-based approach and provides the best
performance for document retrieval.

Roadmap In Section 2, we first discuss the issue of data
management in wiki systems, and then introduce the data
structure–PPS and explain its application to WDMSs. Sec-
tion 3 gives implementation detail of Cosmos. After that,
we present our experimental results in Section 4. We survey
related work in Section 5 and conclude in Section 6.

2. DATA MANAGEMENT IN WIKI SYSTEMS
2.1 Data Management
Wiki systems usually have some form of revision control for
maintaining the revision histories of their documents. The
common functionalities include putting a new document un-
der revision control, checking in a new revision of a docu-
ment, and checking out a particular revision. However, the
revision control management of wiki systems is much sim-
pler than those of source control in software configuration

management [12]. First, new updates can only be applied
to the latest revision of a document. No branching is al-
lowed in the revision history. Second, there is no concept of
product space [12], which defines different versions of data
objects and their relationships. Instead, each document in-
dependently maintains its revision history.

In wiki applications, a document consists of a sequence of
characters. It can be updated by insert and delete opera-
tions. A new revision is created when a user commits his
modification to the wiki data storage system. We assume
each document has a document identifier Did so that we
can decide whether two revisions belong to the same doc-
ument. We also assume that each revision has a unique
identifier Rid. Many revision control systems automatically
generate revision numbers. For example, MediaWiki incre-
mentally assigns a number to a new revision. In general, a
wiki system uses the following three methods to manage its
data:

• creation<document name, content>: creates a new
document with the given content. This method cre-
ates a unique Did for the new document and a new
Rid for this first revision.

• update<Did, content>: creates a new revision for the
document identified by Did. This method creates a
new Rid for the new revision.

• retrieval<Did, Rid>: retrieves the revision identified
by Rid for the document Did.

2.2 Partial Persistent Sequences
A document is normally represented in a sequence data
structure such as array or linked-list. Ordinary sequence
data structures [13] are ephemeral in the sense that an up-
date (i.e., insert and delete) destroys the old version. For ex-
ample, in an array, an insert operation will change its struc-
ture to reserve the space for new elements, and a delete will
reclaim the space for the deleted elements. However, wiki
applications must maintain the old revisions of a document.
In order to manage these revisions efficiently, we introduce
a new data structure–partial persistent sequence (PPS). A
PPS makes a sequence data structure persistent [14] in the
sense that old revisions can always be accessed. We call
it partially persistent because only the latest revision can
be modified. For further detail, please refer to our techni-
cal report [19]. In this section, we describe its concept and
supported operations to make this paper self-contained.

Conceptually, a partial persistent sequence (PPS) consists
of a sequence of characters. Each character is uniquely in-
dexed by a rational number. We call the rational position
indexes position stamps. For example, the position stamps
for “abc” are 0, 0.5, and 1 respectively. A PPS never deletes
any elements. It has only one operation INSERT . For a
newly inserted character, the PPS first locates the position
stamps that are neighboring to the inserting point. Then it
assigns a rational number that falls with the range of these
two neighbors. In Figure 1, 0.3 and 0.4 are the neighbors.
‘e’ is now indexed by 0.35. In the INSERT operation, a
new position stamp must fall within the range of its two

neighbors in order to correctly record the order of charac-
ters in a document. Algorithms that are used to compute
new position stamps are called encoding schemes. Examples
of encoding schemes include dyadic rational numbers, which
halving the interval between two neighbors, and Farey ra-
tional numbers, which choose mediant of two neighbors [18].

0.1 0.2 0.3 0.4
a b c d

0.1 0.2 0.35 0.4
a b e d

0.3
c

before insertion

after insertion

e

Figure 1: A PPS example

2.3 PPS Representation of a Document and its
Revision History

We use a PPS to represent the entire content of a document’s
revision history. A document consists of two parts: mapping
and revision. The mapping part records the correspondence
between position stamps and their corresponding characters.
The revision part contains the position stamp information
for each revision. Even though the content of a document
can be updated by insert and delete operations, the PPS
never deletes anything. To correctly construct the content
of a revision, the revision maintains an array of position
stamps for those characters it contains. Figure 2 illustrates
the idea. A document is represented by a PPS, which con-
tains five position stamps. There are two revisions defined
on it: Ridi and Ridj . Ridi corresponds to the character se-
quence “c0c1c2c4”, and Ridj “c2c3c5”. To obtain a revision,
we first obtain the array, and then sequentially concatenate
the characters they point to.

c0 c1 c2 c3 c4 c5

ps0 ps1 ps2 ps3 ps4 ps5

ps0 ps1 ps2

ps2 ps3 ps5

Ridi

Ridj

ps4

PPS

Figure 2: A document’s PPS representation and two
of its revisions

3. COSMOS-A WIKI DATA MANAGEMENT
SYSTEM

Figure 3 shows the system architecture of Cosmos. It pro-
vides a library for wiki data management. Cosmos uses
Berkeley DB [16] as its backend storage system. Berkeley
DB is a general-purpose database engine that supports ef-
ficient data management on key/data pairs. In our imple-
mentation, all data are constructed in the form of key/data
pairs. We describe our data schema in Section 3.1 and im-
plementation issues in Section 3.2.

3.1 Data Schema
Figure 4 shows the data schemas used by Cosmos. The re-
vision history of each document is managed by two tables:
the content table and the revision table. The content table

Berkeley DB Library (C++)

document 2

document 1

Disk

wiki data management library
(create, update, retrieve)

R
eq

ue
st

s
on

do

cu
m

en
ts

document 3
document 4

Figure 3: Architecture of Cosmos

key
mapping table

position stamp
data

character
… ...

key
revision table

revision identifier
data

position stamp array
… ...

documents

key
latest-revision table

document identifier
data

character sequence
… ...

Figure 4: Data schemas used by Cosmos

stores the mapping between a position stamp and its corre-
sponding character. The revision table stores the position
stamps of each revision. To obtain a particular revision,
Cosmos first obtains its position stamp array from the revi-
sion table, then look up the content table for their mappings.
Since most retrieval requests ask for the latest revisions, we
materialize the latest revisions of all documents in a sepa-
rate table: the latest-revision table. Its keys are document
identifiers Dids.

3.2 Implementation Issues
Indexing In our implementation, we use B+tree as the
access method for the content table, and Hash as the ac-
cess method for the revision table and the latest-revision
table. These are two built-in access methods in Berkeley
DB. We choose B+tree for the content table because the leaf
nodes keep pointers to their neighbors to speed up sequen-
tial traversal. This is important to guarantee fast document
retrieval. The ordering of position stamps is consistent to
the sequential structure of a document. In a revision’s po-
sition stamps, it is likely that the mappings of consecutive
position stamps are stored sequentially in a B+tree’s leave
node. This reduces the amount of disk seek time and in-
creases cache hits due to data locality. This is confirmed by
our experiments for sequentially reading a document’s revi-

sion history. For the revision table and the latest-revision
table, we use hash access methods because it outperforms
B+tree to serve random requests and maintains less internal
information for the index structure.

Diff utility We use GNU diff [2] to compare the differences
between two revisions. diff outputs differences between files
line by line. Since a PPS creates a new position stamp for ev-
ery character, it essentially requires a character-based diff -
utility. In our earlier implementation, we created two tem-
porary files, one character per line, and then executed diff
to collect the output. However, this did not work well for
two reasons. First, it is very expensive to convert a kilobyte-
size file into a temporary file. Second, the diff utility does
not output satisfactory result especially for those revisions
that have significant difference. For example, if a revision
contains one paragraph. Its next revision removes this para-
graph and adds several new paragraphs. To find the longest
common sequence between these two revisions, diff tries to
match the characters in the old paragraph to the characters
in the newly inserted paragraphs, which is not the intended
result. The major problem is that the characters lose their
context information after we convert them into a temporary
file with one character per line. Therefore, in our current
implementation, we choose the word-based granularity and
construct the temporary files in the form of a word per line.

Limited precision bits Position stamps are rational num-
bers. A PPS can run out of precision bits for new char-
acters due to the restrictions of the underlying computer
architecture. There are two solutions to this problem. One
is to use a specialized floating-point library [15] to overcome
these restrictions, and the other is to create multiple PPSs
for a document. If a document runs out of precision bits
when creating a new revision, we create a new PPS based
on the content of the new revision. Future edits will be redi-
rected to the new PPS. Under this approach, each PPS has
a unique identifier. A revision needs to maintain which PPS
it belongs to. The experiments in Section 4 uses this strat-
egy. The best strategy for solving the problem of limited
precision bits will be conducted as future work.

Compressed position stamps in a revision Each re-
vision records the positions stamps for all the character it
contains. If we keep one position stamp per character, the
size of position stamps would become larger than the content
of the revision itself. Cosmos avoids this problem by stor-
ing position stamp information in a compact form. For the
characters whose position stamps are assigned contiguously,
we only store the position stamps of the left-most charac-
ter and the right-most character and the distance between
the consecutive characters. In our current implementation,
newly inserted character sequence evenly divides the space
between the two characters neighboring with the inserting
point. For example, if we insert “cde” between ‘a’ and ‘b’
with position stamp being 0.1 and 0.9 respectively, the po-
sition stamps for the new characters would be 0.3, 0.5, and
0.7 respectively. Instead of saving each of them individu-
ally, the new position stamps are saved in the compact form
< 0.1, 0.9, 0.2 >, where 0.1 is the position stamp of the left-
most character, 0.9 the right-most character, and 0.2 the
distance between the consecutive characters.

4. EXPERIMENTS
We compare the storage requirements performance of Cos-
mos with two other wiki applications: MediaWiki and TWiki.
We choose these for their different approaches in the under-
lying data management, which we detail below:

• MediaWiki uses MySQL as its backend storage system.
MediaWiki maintains three tables: page table, revision
table, and text table. The page table records the meta-
information associated with a document such as the
identifier of its latest revision and its byte length. The
revisions of all the documents are stored in the revi-
sion table. When a new revision is created, it is au-
tomatically assigned a unique integral identifier. The
revision table also records the meta-information such
as update timestamp and username. The text table
stores the real content of all the revisions. We follow
MediaWiki’s schema and import Wikipedia data dump
into MySQL for our experiments.

• TWiki uses RCS [4] as its backend storage system.
Since, only the latest revision is allowed to be updated,
RCS has only one branch in its revision tree with each
revision is incrementally labeled as 1.1, 1.2, In our
experiments, we store the revision history of each doc-
ument by creating a file with the document name and
checking in all its revisions in chronological order.

4.1 Experiment Setup
Hardware configuration All experiments are conducted
on a 64-bit GNU/Linux machine with Intel Core 2.83GHz
CPU, 4GB RAM, and 1-Terabyte SATA hard disks.

Software configuration We used MediaWiki 1.13.5 with
MySQL version 5.1.30 and TWiki with RCS 5.7.

Data set Wikipedia provides full-text access to all docu-
ments and their revision histories. We use a dump of the En-
glish Wikipedia (enwiki-20080103-pages-meta-history.xml.7z
[7]) which is around 850GB in size. It has more than two
hundred thousand documents, with over 35 million revisions
in total. We use the WikiXRay parser[9] to import the data
into a MySQL DBMS. We do not use the whole data set
due to space and computation constraints. Instead, we uni-
formly sample 10 percent of documents and store their re-
visions in different systems. In the sampled data set, there
are 20,039 documents and 3,053,829 revisions. The rest of
experiments use this sampled data set.

4.2 Disk Space Consumption
In this experiment, we import the sampled data into the
three systems and study their performance in terms of disk
space consumption. Figure 5 shows the result with each bar
representing the total disk space consumption for a partic-
ular system.

The bar labeled with “Raw” is the amount of disk space
to store the sampled data in plain-text files. The amount
of disk space in MediaWiki is slightly higher than Raw for
two reasons. First, MediaWiki stores the entire content of
each revision without considering the overlapped content be-
tween consecutive revisions. Therefore, it takes at least as

Raw MediaWiki TWiki Cosmos
0

10

20

30

40

50

60

70

80
Disk space consumption

G
ig

ab
yt

es

67.634 67.719

2.292

12.681

Figure 5: Total disk space consumption for the sam-
pled data set

much disk space as Raw. Second, MediaWiki uses some
disk space to maintain an index structure for the text ta-
ble. TWiki consumes the minimal amount of disk space be-
cause it only stores the delta difference between consecutive
revisions. Cosmos takes one-fifth of disk space compared
to MediaWiki, but five times more disk-space than TWiki.
Theoretically, Cosmos only stores one-copy of every char-
acter, and revisions only store the position stamps of the
characters in the revision. Since, for a new revision it takes
less disk space to store the position stamps than the entire
content, Cosmos is able to save disk space significantly. For
this reason, the disk space of Cosmos should be close to that
of TWiki. However, as discussed in Section 3.2, we have to
flatten PPSs periodically. Therefore, it consumes more disk
space than TWiki, but is still significantly better than Me-
diaWiki.

From the above experiment, we can see that the revisions
contain a large portion of overlapped content. Otherwise,
TWiki would not be only 3% of disk space compared to
Raw. This is due to the fact that the size of a document
normally gets stabilized after hundreds of revisions. New re-
visions may just paraphrase some sentences or correct some
grammar errors. Therefore, the delta between consecutive
revisions becomes very small compared to the whole content.
Since both TWiki and Cosmos have the capability of stor-
ing only the delta difference between consecutive revisions,
we expect they perform best for those documents that have
long revisions. To confirm this observation, we categorize
documents based on their revision length and import their
revision history into these three systems. Figure 6 shows
the results. We create three categories with the length of
revision history being (0, 100], (100, 1000], and (1000, +∞].
We can see that both TWiki and Cosmos perform better
for the documents with long revision history, namely cate-
gories (100, 1000], and (1000, +∞], which shows that they
are especially useful for well-established documents.

4.3 Latest Revision Retrieval
Wikipedia receives millions of requests daily [8]. Most re-
quests retrieve the latest version of a document. Providing
efficient access to this data has a direct impact on users’ ex-
perience at Wikipedia. In this experiment, we measure the

Figure 6: Disk space consumption for different cat-
egories

0 5000 10000
0

10

20

30

40
Retrieval Requests for the Latest revisions

the i−th document

re
sp

on
se

 ti
m

e
in

 m
ill

is
ec

on
ds

← TWiki

← MediaWiki

↓ Cosmos

MediaWiki
TWiki
Cosmos

Figure 7: Response time for reading the latest re-
vision of all the documents in the sampled data set.
The x-axis is the i-th document in the sampled data
set. The documents are ordered in ascending order
according to the revision size.

performance of the three systems in serving these kinds of
requests. Figure 7 shows the result. TWiki and MediaWiki
have similar performance. (We draw MediaWiki in bold to
differentiate these two curves.), but there are more fluctu-
ations in the TWiki results. Cosmos performs best with a
response time of a few milliseconds on average. We con-
sider two reasons for this. First, Cosmos materializes the
latest revisions of all documents in a separate table. Even
though MySQL in MediaWiki indexes their revisions, the
index structure is much larger than that of Cosmos because
all the revisions (not just the latest one) are put in a single
table. Therefore, Cosmos traverses a much smaller index
structure than MySQL. Second, TWiki stores the latest re-
vision of a document and its deltas in a single file. The cost
of obtaining the latest revision is equal to the cost of reading
this file from the underlying file system. Parsing this large
file could contribute to the high cost in TWiki. A better un-
derstanding of this problem requires a look into the internal
implementation of RCS in TWiki and we leave this as future
work.

MediaWiki TWiki Cosmos
0

1

2

3

4

5

6
Total retrieval time for the sampled data set

ho
ur

s

Figure 8: Total time for sequentially read all revi-
sions of the sampled documents

4.4 Chronologically Retrieve the Revisions of
a Document

Some applications have the requirement of reading the entire
revisions of a document in chronological order. For example,
a lot of research [10, 11, 17] has been conducted to study the
statistical significance of documents for vandalism detection
and their content evolvement. Considering most popular
wiki systems contain thousands of documents with millions
of revisions, it is important to support efficient revision re-
trieval to satisfy this requirement. In this section, we first
present the experimental result for reading the entire revi-
sion history of the sampled data set. To obtain a deeper
understanding on the performance of three systems we then
present the results for three individual documents.

To compute the total retrieval time for the sampled data
set, a workload generator processes one document at a time
and sends retrieval requests for its revisions in chronological
order to those systems. We collect timestamp information
before and after the execution to compute the response time
for each request. Finally, we sum up the response time of
all the requests to obtain the total retrieval time. Figure 8
shows the result. Cosmos reduces the total retrieval time
at a factor of eight compared to MediaWiki and a factor of
seven compared to TWiki.

To better understand on their performance, we conduct an-
other set of experiments to measure the total retrieval time
for individual documents. We choose a document based
on two factors: the length of its revision history and its
size. The documents at Wikipedia have variable-length of
revision history. Some have few than a hundred of revi-
sions, while others have thousands of revisions. The sizes
of documents also vary, ranging from several kilobytes to
hundreds of kilobytes. To choose documents that are repre-
sentative, we draw the histogram of data size for documents
in the sampled data set and obtain the information for what
kinds of documents count for the major content. From Fig-
ure 9, we can see that documents with the revision length
ranging between 500 and 3000 accounts for the major por-
tion of data size. In our experiments, we randomly choose
three documents with revision length around 500, 1500, and
3000, namely “Roman Emperor”, “Northern Ireland”, and

0 2000 4000 6000 8000 10000 12000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9 Revision Size Histogram−−English

number of revisions per document

gi
ga

by
te

s

Figure 9: Histogram of revision size

0 100 200 300 400 500
0

10

20

30

40
Topic: Roman Emperor −− 480 revsions

the i−th revision

re
sp

on
se

 ti
m

e
in

 m
ill

is
ec

on
ds

← TWiki

← MediaWiki

↓ Cosmos

MediaWiki
TWiki
Cosmos

Figure 10: Response time for sequential retrieval
requests

“Tourism”.

We have two observations based on the results in Figure
10-12:

• As the length of revision history increases, the perfor-
mance of TWiki gets closer to MediaWiki.

• Both TWiki and Cosmos perform worse than Medi-
aWiki in reading the first revision of a document. For
example, in the “Roman Emperor” document, it takes
Cosmos 78 milliseconds to get a revision, TWiki 225
millisecond, and MediaWiki 74 millisecond. But after
the first revision, both Cosmos and TWiki perform at
an order of magnitude fast than MediaWiki.

There are three possible reasons for these results:

• Cosmos stores one-copy for each character in a docu-
ment. Each revision only stores the position stamps
for the characters it contains. Since the size of posi-
tion stamps is much smaller than the actual content of
a revision, Cosmos reads much less data than that of
MediaWiki, which reduces disk I/O cost significantly.

0 500 1000 1500
0

5

10

15

20

25

30
Topic: Tourism −− 1335 revsions

the i−th revision

re
sp

on
se

 ti
m

e
in

 m
ill

is
ec

on
ds

← MediaWiki

← TWiki

↓ Cosmos

MediaWiki
TWiki
Cosmos

Figure 11: Response time for sequential retrieval
requests

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35
Topic: Northern Ireland −− 2934 revsions

the i−th revision

re
sp

on
se

 ti
m

e
in

 m
ill

is
ec

on
ds

← MediaWiki

← TWiki

↓ Cosmos

MediaWiki
TWiki
Cosmos

Figure 12: Response time for sequential retrieval
requests

• TWiki only materializes the content for the latest re-
vision of a document. Old revisions are represented in
the form of delta, i.e. as differences between revisions.
To get a particular revision, TWiki applies the deltas
backward to reconstruct that revision. Therefore, it is
slowest to get the oldest revision. That explains why
the curves of TWiki go down slightly in all three cases.
The response time of the first revision of TWiki being
two orders of magnitude higher than other revisions is
because it has to read the latest revision and applies
the delta difference all the way back to the very first
revision. After that, the data needed for construct-
ing the rest of revisions is in memory. Since the cost
of applying delta to the latest revision is much faster
than the cost of reading data from disk, it is efficient to
get the rest of revisions. However, the performance of
TWiki becomes worse as the length of revision history
increases. As can be seen from Figure 10 to Figure 12,
the average response time of TWiki increases. because
the computation cost of applying delta to the latest
version of a document starts to become influential.

• MediaWiki has to read a much larger data set than
the two other systems, it suffers from high I/O cost.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Histogram of update interval

update interval in seconds

fr
eq

ue
nc

y

Figure 13: Histogram of update interval

Another reason is that revisions of a document are not
stored sequentially on disk. MediaWiki uses B+tree
to index its revisions and use the revision identifiers
as keys. Because the way MediaWiki organizes its
data, revisions from the same document are not as-
signed contiguous identifiers, which increases disk seek
time significantly.

4.5 Update Requests
Users create many new documents and revisions at Wikipedia.
Figure 13 shows the update frequency of Wikipedia in 2007.
The x-axis is the elapsed time between consecutive updates
measured in seconds. On average, there is a new update
every two seconds.

In our experiments, we measure the three systems’ perfor-
mance on update requests by composing 1500 documents
with total 28193 revisions. A workload generator sequen-
tially sends update requests to these three systems. Each
time, the workload generator randomly chooses a document
and sends an update request to create a new revision for that
document. We collect the timestamp information between
and after the execution to calculate the response time. The
result is shown in Figure 14. MediaWiki and TWiki perform
better among the three systems in terms of response time. It
takes almost constant time to insert a new entry into Medi-
aWiki. TWiki is slightly worse because it needs to read the
content of current version and compute the delta difference.
By comparison, Cosmos has a much higher cost than other
two systems due to the current implementation for diff util-
ity. Cosmos calls diff utility from command-line by starting
a system shell in C++, then parses the result file. Further-
more, word-based diff is more expensive than the line-based
diff because it includes additional cost of converting files to
temporary files with one word per line. We will further in-
vestigate the impact of diff utility on the performance of
update requests as the future work. From Figure 14, we can
see that the average response time of Cosmos is around 80
milliseconds, which is enough to support the current work-
load at Wikipedia. Therefore, Cosmos is able to provide
satisfactory performance for update requests.

5. RELATED WORK

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150
Update requests

the i−th request

re
sp

on
se

 ti
m

e
in

 m
ill

is
ec

on
ds

↓ MediaWiki ↓ TWiki

← Cosmos

MediaWiki
TWiki
Cosmos

Figure 14: Response time per revision for writing
1500 documents with 23455 revisions

Data structures for text sequences Many kinds of data
structures to represent text sequences have been proposed
in the literature [13] such as linked lists, and gap arrays.
These data structures are used to represent a document in
memory and support efficient insert and delete operations
during an editing session. When the editing session is over,
the document is stored on disk as a sequence of characters.
They do not address the concern of version management.

Version control systems Version control systems are used
to automate the storing, retrieval, logging, identification,
and merging of revisions. Traditional VCSs (such as CVS
[1], RCS [4], and Subversion [5]) are mainly used for archiv-
ing purpose and not target on these online version manage-
ment systems that need to not only support version control,
but also support a large amount of traffic for document up-
date and retrieval. TWiki [6] reports a performance impact
if there are more than 20,000 pages put under RCS. There-
fore, many wiki systems choose a DBMS to support its ver-
sion control by relying on its mature technique in indexing,
replication and clustering. In the DBMS-based approach,
the versions of a document are stored independently on disk
and are indexed by access methods such as B+tree and Hash.
An update request creates a new version. A retrieval request
reads a version by using its version identifier. The DBMS-
based approach supports fast read and write. However, it
disregards the overlapping content between consecutive ver-
sions and a major portion of disk is used for storing redun-
dant data. Cosmos balance the tradeoff between these two
approaches and support efficient document update and re-
trieval with much less disk space.

Persistent data structures Various persistent data struc-
tures have been proposed in the literature due to their use-
fulness in a variety of applications such as computational
geometry and programming languages [14]. The PPS data
structure is one kind of persistent data structures. It never
deletes the content of old versions and preserves necessary
position information so that any version can be dynamically
reconstructed out of the structure. Strictly speaking, PPSs
are partially persistent in that all versions can be accessed
but only the latest version can be updated compared to fully
persistent data structures that updates can be applied to

any of the revisions. We take the first initiative to make a
sequential data structure persistent and apply it to version
control for document management. A distinctive feature of
our approach is that it is declarative. Versions are repre-
sented are key/data pairs, which can be efficiently managed
by any key/data management systems such as Berkeley DB.
By comparison, old approaches are constructive. They need
to maintain necessary timestamp information and pointers
to the data in old versions. Reconstructing an old version
requires a traversal of the structure by following the pointers
based on the meta-information.

6. CONCLUSION
We propose a new wiki data management system, Cosmos,
to achieve a balance between low disk-space consumption
and efficient document retrieval and update. We present its
design and implementation, based on partial persistent se-
quences, as well as demonstrate its performance using a rep-
resentative sample (68GB) of Wikipedia data. Our experi-
ments show Cosmos consumes one-fifth of the disk-space and
achieves an order of magnitude speed-up in document re-
trieval when compared to MediaWiki (stored on the MySQL
relational database). When compared to version control sys-
tems, although Cosmos consumes five times as much disk-
space, it decreases the sequential revision access time by a
factor of five.

We note that the document update time for Cosmos is higher
than that of MediaWiki and TWiki, but at about 100ms it
is well within the human reaction time. We plan to improve
this by investigating other options for word based diff as
well as different encoding schemes for the partial persistent
sequence data structure.

7. REFERENCES
[1] CVS. http://www.nongnu.org/cvs/.

[2] GNU diffutils.
http://www.gnu.org/software/diffutils/.

[3] MediaWiki.
http://www.mediawiki.org/wiki/MediaWiki.

[4] RCS. http://www.gnu.org/software/rcs/.

[5] Subversion. http://subversion.tigris.org/.

[6] TWiki. http://twiki.org/.

[7] Wikipedia data dump download.
http://download.wikimedia.org/enwiki/.

[8] Wikipedia statistics. http:
//en.wikipedia.org/wiki/Most_viewed_article.
[Online; accessed March-2009].

[9] WikiXRay. http://meta.wikimedia.org/wiki/
WikiXRay_Python_parser. [Online; accessed
March-2009].

[10] Thomas B. Adler and Luca de Alfaro. A
content-driven reputation system for the wikipedia. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 261–270, New
York, NY, USA, 2007. ACM Press.

[11] Luciana S. Buriol, Carlos Castillo, Debora Donato,
Stefano Leonardi, and Stefano Millozzi. Temporal
analysis of the wikigraph. In WI ’06: Proceedings of
the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence, pages 45–51, Washington, DC,
USA, 2006. IEEE Computer Society.

[12] Reidar Conradi and Bernhard Westfechtel. Version
models for software configuration management. ACM
Comput. Surv., 30(2):232–282, 1998.

[13] Charles Crowley. Data structures for text sequences.
http:

//www.cs.unm.edu/~crowley/papers/sds/sds.html.

[14] J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan.
Making data structures persistent. In STOC ’86:
Proceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 109–121, New York,
NY, USA, 1986. ACM.

[15] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre,
Patrick Pélissier, and Paul Zimmermann. Mpfr: A
multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw., 33(2):13,
2007.

[16] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.
Berkeley db. In USENIX Annual Technical
Conference, FREENIX Track, pages 183–191, 1999.

[17] Reid Priedhorsky, Jilin Chen, Shyong (Tony) K. Lam,
Katherine Panciera, Loren Terveen, and John Riedl.
Creating, destroying, and restoring value in wikipedia.
In GROUP ’07: Proceedings of the 2007 international
ACM conference on Supporting group work, pages
259–268, New York, NY, USA, 2007. ACM.

[18] Vadim Tropashko. Nested intervals tree encoding in
sql. SIGMOD Rec., 34(2):47–52, 2005.

[19] Qinyi Wu and Calton Pu. Partial persistent sequences
and their application to collaborative editing.
Research Report GIT-CERCS-09-07, Georgia Institute
of Technology, 2009.

