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ABSTRACT
In real-time collaborative editing systems, users create a
shared document by issuing insert, delete, and undo oper-
ations on their local replica anytime and anywhere. Data
consistency issues arise due to concurrent editing conflicts.
Traditional consistency models put restrictions on editing
operations updating different portions of a shared docu-
ment, which is unnecessary for many editing scenarios, and
cause their view synchronization strategies to become less
efficient. To address these problems, we propose a new data
consistency model that preserves convergence and synchro-
nizes editing operations only when they access overlapped
or contiguous characters. Our view synchronization strategy
is implemented by a novel data structure–partial persistent
sequence. A partial persistent sequence is an ordered set of
items indexed by persistent and unique position identifiers.
It captures data dependencies of editing operations and en-
codes them in a way that they can be correctly executed on
any document replica. As a result, a simple and efficient
view synchronization strategy can be implemented.

Keywords
collaborative editing system, data consistency model, per-
sistent data structure

1. INTRODUCTION
With the technological advance in real-time collaborative
editors (such as SubEthaEdit [2], Coward [34] and TeNDaX
[15]), more and more documents are coauthored. The col-
laboration includes the process of preparing a presentation
with colleagues [1] to the more structured sharing of docu-
ments in business process management [13]. As a result, a
document is no longer shared as an atomic unit. Instead,
it is processed at a finer granularity such as sections, para-
graphs, or even sentences. To maintain data consistency,
this type of communication must be carefully coordinated
due to concurrent editing conflicts.

This paper focuses on a data-dependency preservation
(DDP) consistency model (Section 3) and its correspond-
ing view synchronization strategy for collaborative editing
systems. In the targeted editing scenario, a shared docu-
ment is replicated at multiple sites connected by communi-
cation networks. The user at each site can update his/her
local replica by issuing insert, delete, and undo operations
anytime and anywhere. Local updates are executed immedi-
ately for fast response time. The underlying editing system
is responsible for view synchronization among all replicas by

broadcasting local updates to other sites.
Several data consistency models for collaborative editing

systems have been proposed in the literature [10, 17, 20,
29]. They require 1) all document replicas converge to the
same view; and 2) execution of editing operations conform
to the happen-before precedent order defined by Lamport’s
Clock Condition [14]. These earlier data consistency models
are conservative in the sense that the happen-before rela-
tion captures potential causality, not necessarily real causal-
ity. For example, if two accountants work on the financial
reports of different departments through a shared spread-
sheet, there is no real causality between the editing opera-
tions from these two accountants. We are aware that there
are scenarios that people work closely on a shared document.
For example, the web page for the 2008 Olympic Game at
Wikipedia was updated more than a thousand times dur-
ing August 2008 [33]. In these scenarios, the happen-before
relationships may closely mimic real causalities. However,
the temporary violation of cause-effect order is generally re-
garded acceptable in these non-mission-critical scenarios as
long as the final version contains all the updates.

View synchronization strategies have been proposed in
the past to resolve editing conflicts such as locking, trans-
action mechanisms, and turn-taking protocols [11]. These
approaches have limited use in real-time collaborative edit-
ing scenarios due to high overhead in lock management and
restricted collaboration. A well-accepted approach is called
Operational Transformation (OT) [10] due to its non-blocking
feature in view synchronization. The limitation of OT is
that each operation has to be transformed with all its con-
current operations and all operations that happen after it if
they reach other sites out of order. Li et al. [16] analyzed
one of OT algorithms and shows that when an editing op-
eration is broadcast to a remote site, the complexity of its
transformation cost is O(n2) on average and O(n3) in the
worst case, where n is the number of editing operation in
the history.

To address the above problems, the first contribution of
this paper is the DDP consistency model that requires con-
vergence and preserves data-dependency precedent order on
execution of editing operations. The data-dependency prece-
dence preservation property is more relaxed than the happen-
before precedence preservation property (as defined in OT).
Therefore, the DDP consistency model allows higher con-
currency and can be enforced more efficiently (see below).
Concretely, a data dependency is defined on a pair of oper-
ations if they modify overlapped or contiguous characters.
Users working on different portions of the document can
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collaborate efficiently without any interference.
The second contribution of the paper is an efficient and

simple method to enforce the DDP consistency model, based
on a view synchronization strategy that uses a novel data
structure–partial persistent sequence (PPS). A PPS is an or-
dered set of items indexed by persistent and unique position
identifiers. This new data structure is able to create a global
position identifier for every character, which carries enough
information to directly locate its right position in any docu-
ment replica. With the help of this data structure, it is also
straightforward to construct an undo operation to cancel the
effect of any editing operation. This greatly simplifies our
view synchronization strategy for shared documents edited
by insert, delete, and undo operations. Furthermore, the
position identifiers are totally ordered, we can maintain a
PPS in a search tree (such as a B-tree). In section 5.1, we
show that the computational complexity of our view syn-
chronization strategy is bounded by O(m), where m is the
number of operations that are data-dependency related in
an editing history. Finally. the PPS data structure allows
us to easily capture the data dependency between any pair
of editing operations that modify overlapped or contiguous
characters. As a result, editing conflicts due to shared access
can be efficiently detected and resolved.

Roadmap. The paper is organized as follows. Section 2
first gives a brief background for collaborative editing sys-
tems. Then we introduce the notion of logical view and
physical view of a document. Based on these two levels of
view, we describe two types of logical view synchronization
approaches and explain why we choose one of them. Section
3 defines the DDP consistency model. Section 4 first gives
a formal definition for PPSs, and then shows how this new
data structure maintains the two levels of view of a docu-
ment and its properties. In Section 5, we show the appli-
cation of PPSs to view synchronization and undo handling.
Section 6 covers related work. We conclude in Section 7.

2. COLLABORATIVE EDITING SYSTEMS
A collaborative editing system (CES) consists of a set of
users editing a shared document, located on sites connected
by communication networks. For simplicity, each site has
one user. The users collaborate in a real-time fashion to
create a shared document. Each site maintains a replica
of the shared document and executes four types of activi-
ties: 1) generate local insert, delete, and undo operations;
2) broadcast local updates to other sites; 3) receive opera-
tions from other sites; 4) execute operations (either local or
remote update).

A collaborative editing scenario is shown in Figure 1.
Three users work on a shared document with initial con-
tent “abcd”. The vertical lines represent the elapse of time.
Circles represent locally generated operations, which are ex-
ecuted immediately. Arrows represent the propagation of
local operations to other sites. In this scenario, user1 adds
‘e’ at offset 0, and simultaneously user2 adds ‘f ’ at offset
2. After executing o1 and o2’s updates, user3’s document
replica is modified to “eabfcd”. o3 deletes ‘c’ at offset 4.
The three operations are executed in different order at each
site. As a result, appropriate view synchronization strategies
must be used to maintain a consistent view among users.

CESs must also support undo operations so that users
can reverse their recent changes. We handle undo opera-
tions through the notion of compensation, which does not

o1
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o3

o2

abcd abcdabcd

o1: insert ‘e’ at offset 0

o2: insert ‘f’ at offset 2

o3: delete ‘c’
site1 site2 site3

Figure 1: A collaborative editing scenario
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Figure 2: Two views of a document

remove the footprint of an editing operation from the edit-
ing history. Instead, a new operation is created to cancel its
effect. The advantage of this compensated-undo approach
is that an undo operation is treated like a normal insert or
delete operation. Therefore, the view synchronization strat-
egy does not need to be changed. We will devote a separate
section for discussing the compensated undo approach in
Section 5.2.

2.1 Two Levels of View on Documents
From a user’s perspective, a document consists of a sequence
of characters. If a new character is inserted, a portion of the
sequence will be shifted right to vacate the space for the new
character. Correspondingly, if a character is deleted, a por-
tion of the sequence will be shifted left to reclaim the space.
On the other hand, the underlying editing system keeps the
characters of the document in a selected data structure, such
as an array and a linked list. Figure 2 illustrates the idea
by a linked list. We call the sequence data structure from
the user’s perspective logical view and the implementation
data structure from the editing system’s perspective physical
view. In the rest of the paper, we use the term document as
abbreviation for the logical view of a document and the term
physical document as abbreviation for the physical view of
a document.

At the logical view, a document is defined by a sequence
of characters E = 〈ci ∈ Σc, 1 ≤ i ≤ n, n ∈ N〉, where
Σc is the alphabet of the document. 〈〉 denotes an empty
sequence of characters, E[i] the i-th element of E, E[i, j] the
subsequence 〈ci, ci+1, ..., cj〉, |E| the length of E.

When a document is first created, it is initialized to an
empty sequence of characters E0 = 〈〉. Each INSERT or
DELETE operation transforms the document from Ei to
Ei+1. We use Ek to denote the version of E as transformed
by a sequence of INSERT and DELETE operations of
cardinality k. An INSERT operation adds a new character
into the sequence. A DELETE operation removes a charac-
ter from the sequence. The sequence of operations o0o1...on

that creates the history of document is its logical-view edit-
ing history. These two operations are defined as follows:

• INSERT (p,x): p ∈ N, x ∈ Σc. It adds the character
x at the p-th position in Ei. This operation updates
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Figure 3: Two types of approaches in logical view
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Ei to Ei+1 such that

– Ei+1 = Ei[1, p− 1] ◦ x ◦ Ei[p, n], where n = |Ei|.
◦ denotes concatenation of sequence.

• DELETE(p): p ∈ N. It removes the character at the
p-th position in Ei. This operation updates Ei to Ei+1

such that

– Ei+1 = Ei[0, p− 1] ◦ Ei[p + 1, n], where n = |Ei|.
As suggested in Figure 2, the physical view reflects how a
document is really implemented in the editing system and
stored on disk. Clearly, editing operations defined on the
logical view do not necessarily match the operations defined
on its physical view. For example, an insertion at the logical
view will be translated to an operation of pointer redirection
at the physical view if the linked-list data structure is used.
An operation defined on the logical view is said to be in its
logical form. An operation defined on the physical view is
said to be in its physical form. Even though a document
uses the sequence abstraction to represent its logical view,
there are many choices of data structures to represent its
physical view such as linked-lists, arrays, and piece tables
[6]. Depending on the chosen data structure, we will have a
different set of rules for mapping editing operations between
the logical view and the physical view. We will give an
example for the mapping after we introduce PPSs in Section
4.

2.2 Logical View Synchronization
In a CES, users update a document by issuing INSERT and
DELETE operations. The editing system is responsible for
synchronizing the logical view of all document replicas in a
timely fashion. There are two types of approaches to do the
synchronization.

• The logical-level approach is illustrated by Figure 3.a.
An operation is generated on its logical view in step
(1). The operation is mapped to its physical form in
step (2). Meanwhile, it is broadcast to site2 in its
logical form in step (3). After the arrival at site2, the
logical view may not be the same as the one when
it is generated at site1. Therefore, in step (4) the
remote update operation has to be transformed by the
transformer in a way such that it can correctly locate
its right position. Finally, the operation is merged
into its physical view in step (5). Since view update
operations are exchanged in their logical forms, we call
this logical-level approach.

• The physical-level approach is illustrated by Figure
3.b. The local operation follows the same path in
the step (1) and step (2) of the logical-level approach.
However, the operation’s mapped form is broadcast to
site2 in step (3). After receiving this remote update,
site2 updates its physical view in step (4) and appends
it to its editing history. Finally, the system refreshes
its logical view at step (5). Since view update oper-
ations are exchanged in their physical forms, we call
this physical-level approach.

In the logical-level approach, an editing operation defined
at the logical view does not have a global position identifier.
When it is broadcast to other sites, it is possible (when under
contention) that its position identifier becomes invalid. For
example, in Figure 1, when o2 is generated, it is in the form
of INSERT (2, f). The intended position is the one between
‘b’ and ‘c’. However, after broadcast to site1, the offset 2
is no longer the originally intended position. Instead, the
offset has to be adjusted based on the logical-view editing
history at site1, which consists of INSERT (0, e). We can
shift right the offset of o2 right by 1 to decide the right off-
set. Similarly, if there is a DELETE in the past history, we
have to shift left the offset of o2 by 1. This is the basic idea
behind the OT approach. The transformation could become
fairly complicated when there are multiple sites involved in
the editing session. In a well-known example, suppose that
three users start to edit a document with initial content
“abc”. The following operations are generated simultane-
ously. user1 inserts ‘x’ between ‘a’ and ‘b’; user2 inserts ‘y’
between ‘b’ and ‘c’; user3 deletes ‘b’. The expected correct
final version would be “axyc” because we have the relative
order of ‘a’, ‘x’, ‘b’ and ‘b’, ‘y’, ‘c’. However, if not pro-
cessed appropriately, a view synchronization algorithm may
produce “ayxc” at all the sites [29]. Due to the necessity of
transformation, the logical-level approach has three limita-
tions:

• The transformation procedure is computation expen-
sive because each editing operation has to be trans-
formed against all concurrent operations and the op-
erations that happened after it if they arrive at other
sites out of order. For example, in Figure 1, o3 have
to be transformed against o1 and o2 at site1.

• Each operation has to encode some type of data struc-
ture to maintain the timing information in order to
detect concurrency and decide the right transforma-
tion path. The most used data structure is version
vector [22]. Both its size and its maintenance are
concerns, especially in mobile collaborative editing in
which users can come and go during an editing ses-
sion. Even though we can apply some dynamic space
management to shrink its size [24], it adds significant
complexity during implementation.

• It is hard to undo an operation. First, an undo op-
eration has to go through similar transformation pro-
cedure. Second, additional efforts have to be taken in
order to identify the do-undo pair in the history be-
cause we can not determine the undo form of an editing
operation by looking at its logical form directly. For
example, in Figure 1, after executing o2 and o1 in this
order at site2, the logical view is updated to “eabfcd”.
If user2 wants to undo its own last update o2, we can



not simply inverse its effect by DELETE(2) because
2 does not point to ‘f ’ any more. Therefore, we either
need to analyze the history to figure out the right posi-
tion parameter for undoing o2, or maintain additional
information to identify the do-undo pair by creating
some types of identifiers [28].

In the following sections, we show that by using appro-
priate data structures to implement the physical view, the
physical-level approach to logical view synchronization can
bypass the limitations described above for the logical level
approach. If designed properly, editing operations defined
on the physical view can carry enough information such that
each site can directly locate its right position, avoiding the
cost for transforming operations and the cost for carrying
timing information. Since the physical-level approach to
synchronization requires a data consistency model that is
independent of the underlying physical view, we define such
a data consistency model in Section 3, followed by the in-
troduction of the PPS data structure in Section 4.

3. DDP CONSISTENCY MODEL
A data consistency model defines correctness criteria for ex-
ecution of CESs from the users’ perspectives. Therefore, it
is defined on the logical view of a shared document. Our
consistency model, called DDP, consists of two properties:

• convergence property : it states that a shared document
replicas converge to the same logical view after execut-
ing replica updates if no new operation arrives, and if
all nodes are connected. The resulting view contains
all generated updates.

• data-dependency precedence preservation property : it
states that if one operation oj data-depends on oi, then
oi should be executed before oj at all the sites. We say
oj data-depends on oi, denoted as oi → oj , if

– oj deletes the character inserted by oi.

– oj inserts a character contiguous to the character
inserted by oi.

The convergence property requires that all document repli-
cas converge to the same value. This is different from seman-
tic consistency, which demands that the converged value is
also meaningful in the application context [7]. Semantic con-
sistency requires domain specific knowledge, which is hard
to verify by relying on pure system approaches. An example
is two users trying to fix a grammar error in the sentence
“There should be student” at the same time [29]. One inserts
‘a’ after “be” while the other inserts a ‘s’ after “student”.
After the modification, the sentence becomes “There should
be a students”, which is not semantically correct. Therefore,
current CESs enforce converged views and leave semantic
consistency to the interpretation of end users.

The data-dependency precedence preservation property
guarantees that editing operations are executed within their
surrounding context. For example, if a user writes “a day”,
then inserts a “nice” between these two words, he expects
the execution of the insertion for the phrase “a day” is ex-
ecuted first, the insertion for the word “nice” second. Here
the “a day” is the context for “nice”. Another example is if
the user inserts a word first, then deletes it, he also expects
the execution of the insertion first and the deletion second

at all the sites. Editing operations not data-dependency re-
lated are allowed to be executed in any order. Therefore,
users working on different portions of the document can col-
laborate efficiently without any interference.

4. PARTIAL PERSISTENT SEQUENCES
A PPS is an ordered set of items indexed by persistent and
unique position identifiers that are rational numbers. For
example, the position identifiers for the PPS “abc” could be
0, 0.5 and 1 respectively. We call the position identifiers in a
PPS position stamps to differentiate them from the indexes
in traditional sequences.

4.1 Data Model
A PPS is defined by a pair (S,M), where

• S: a set of unique rational numbers, which are called
position stamps. S = {si ∈ Q, 1 ≤ i ≤ n, n ∈ N}.

• M : a mapping function from S to Σ, where Σ is a
finite set of characters. Σ contains a null character φ
that is different from any other characters allowed in
user applications. Let Σc = Σ − φ.

The position stamps in S are totally ordered by less than <
defined on Q. For si ∈ S, we use si+1 to denote the next
position stamp in S such that si < si+1 and ¬(∃sx ∈ S, si <
sx < si+1). Similarly, we use si−1 to denote the previous
position stamp of si in S. We use S[si, sj ] = {sx|sx ∈ S, si ≤
sx ≤ sj} to denote the set of position stamps that fall within
the range of si and sj (inclusive).

A physical document is defined by a PPS. The history
of physical view is defined by a set of physical documents
{(Sk, Mk), 0 ≤ k ≤ n}, where each physical document in
the history is called a version of (S, M). When a physical
document is first created, its initial version is an empty PPS
S0 = {0, 1}, M0 = {0 �→ φ, 1 �→ φ}. A physical document is
updated by ADD and HIDE operations. An ADD opera-
tion adds a new position stamp into Sk and a new mapping
into Mk. A HIDE operation changes the mapping in Mk.
Each ADD and HIDE operation (õi) transforms (Sk, Mk)
to (Sk+1, Mk+1). The sequence of operations õ0õ1...õn that
creates the history of physical document is its physical-view
editing history. These two operations are defined as follows:

• ADD(si, si+1, x): si, si+1 ∈ Sk, x ∈ Σc. It adds the
character x between the character indexed by si and
the character indexed by si+1. Let snew ∈ Q be a
position stamp that satisfies the constraint of si <
snew < si+1. It updates (Sk, Mk) to (Sk+1, Mk+1),
where

– Sk+1 = Sk

⋃{snew}
– Mk+1 = Mk

⋃{snew �→ x}
• HIDE(si): si ∈ Sk. It changes the mapping of si

from its old value x to the null character φ. It updates
(Sk, Mk) to (Sk+1, Mk+1), where

– Sk+1 = Sk

– Mk+1 = Mk − {si �→ x}⋃{si �→ φ}.
From the above definitions, it can be seen that a HIDE

operation does not change the set of position stamps in a



PPS. (This is similar to the notion of “tombstone” in dis-
tributed systems to solve the ambiguity on update/delete
operations [27]). But an ADD operation will add a new ele-
ment, snew , into the set. The value of snew must fall within
the range between sk and sk+1 defined in Sk. This is im-
portant in order to maintain the uniqueness of each position
stamp and the right position of the newly inserted character
in Sk+1. The algorithm that computes the value of snew

is called an encoding scheme. Partial persistent sequences
leave the freedom of choosing a particular encoding scheme.
For example, we can compute snew in dyadic rational num-
bers, which halving the interval between si and si+1 into
two, or in Farey rational numbers, which choose mediant
of si and si+1 [31]. We assume that all sites use the same
encoding scheme in the rest of the paper.

Example 1. Suppose we choose dyadic rational numbers as
the encoding scheme. For a newly created PPS, we have
S0 = {0, 1}, M0 = {0 �→ φ, 1 �→ φ}. The operation ADD(0,
1, a) updates the PPS to S1 = {0, 0.5, 1}, M1 = {0 �→ φ, 1 �→
φ, 0.5 �→ a}. Then the operation HIDE(0.5) further up-
dates it to S2 = {0, 0.5, 1}, M2 = {0 �→ φ, 1 �→ φ, 0.5 �→ φ}.

4.2 Mapping Between Two Levels of View
In this section, we show how to establish the mapping be-
tween these two levels of view for documents implemented
by PPSs. The mapping from the physical view to the logical
view is defined by a PIECE operation that returns the se-
quence of characters whose position stamps are not mapped
to φ. Even though a PPS keeps the position stamps of all
the characters inserted in its physical-view editing history, a
user only works on those characters whose position stamps
are not mapped to φ by the HIDE operation. We call the
characters returned by PIECE visible characters of the PPS.
The concatenation of a character sequence str with φ is still
a character sequence such that str ◦ φ = str. The concate-
nation of two null characters is still the null character such
that φ ◦ φ = φ. PIECE is defined as below:

• PIECE(Sk[si, sj ], Mk) = Mk(si) ◦ Mk(si+1)◦, ..., ◦
Mk(sj), where si, si+1..., sj ∈ Sk.

PIECE(Sk[si, sj ], Mk) returns the sequence of visible char-
acters whose position stamps falls with the range of si and
sj (inclusive). PIECE(Sk[s1, sn], Mk), where n = |Sk|, re-
turns the sequence that contains all visible characters. For
brevity, we use PIECE(Sk, Mk) to denote PIECE(Sk[s1,
sn], Mk) without writing the range explicitly. If PIECE(Sk

[si, sj ], Mk) = φ, then it denote the empty sequence 〈〉 from
a user’s point of view.

Next we show how to map the logical view to the physical
view. As discussed in Section 2.1, users edit a document by
issuing editing operations defined at its logical view, which
need to be mapped into the forms on its physical view. The
mapping rules are defined below:

• Rule 1: an INSERT (p,x) on Ek is mapped to
ADD(si−1, si, x) on (Sk, Mk), where si is the small-
est position stamp satisfying p = |PIECE(Sk[s1, si]
, Mk)| if Ek 	= 〈〉 or si = 1 if Ek = 〈〉.

• Rule 2: a DELETE(p) on Ek is mapped to
HIDE(si) on (Sk, Mk), where si is the smallest posi-
tion stamp satisfying p = |PIECE(Sk[s1, si], Mk)|.

1 2 ... p-1 p ... n
a d ... e f ... h

s1 s2 ... si-2 si-1 si ... sm

logical view

physical view
... e ... f ...

INSERT(p, a)

Figure 4: Mapping between two levels of view

Figure 4 gives an example for Rule 1. When a user issues
an operation at offset p, Rule 1 locates the smallest posi-
tion stamp si that satisfies p = |PIECE(Sk[s1, si], Mk)|.
This constraint establishes the correspondence between the
character indexed by si in the physical view and its counter-
part indexed at p on the logical view. An exception is when
Ek = 〈〉. In this case, we require si to be the rightmost
position stamp, which is 1.

Lemma 1. Given the initial document version E0 = 〈〉 and
the initial physical document version S0 = {0, 1}, M0 =
{0 �→ φ, 1 �→ φ}, let H = o0o1...on be the logical-view edit-

ing history and H̃ = õ0õ1...õn be the physical-view editing
history, obtained by applying Rule 1 and Rule 2. We have
En = PIECE(Sn, Mn).

Proof by induction:

1. Upon initialization, E0 = 〈〉, PIECE(S0, M0) = M(0)
◦M(1) = φ ◦ φ = φ.

2. Assume the lemma holds for the k-th update ok, such
that Ek = PIECE(Sk, Mk)

3. For the k + 1-th update,

• assume ok+1 = INSERT (p, x) and its mapped form
õk+1 = ADD(si−1, si, x) by applying Rule 1. Based
on the definition of INSERT in Section 2.1, we have
Ek+1 = Ek[0, p − 1] ◦ x ◦ Ek[p, n], where n = |Ek|. On
the other hand, after applying ADD(si−1, si, x) to the
physical view (Sk, Mk), we have PIECE(Sk+1, Mk+1)
= Mk+1(s1)◦...◦Mk+1(si−1)◦Mk+1(snew)◦Mk+1(si)◦
... ◦ Mk+1(sm), where m = |Sk|. Based on the defini-
tion of ADD in Section 4.1, we know that õk+1 does
not change the mappings in Mk. Therefore, we get
PIECE(Sk+1, Mk+1) = Mk(s1) ◦ ... ◦ Mk(si−1) ◦
Mk(snew)◦Mk(si)◦...◦Mk(sm). Based on the assump-
tion of Ek = PIECE (Sk, Mk) and p = |PIECE(s1,
si)|, we know that E[1, p−1] = Mk(s1)◦ ...◦Mk(si−1)
and E[p, n] = Mk(si)◦...◦Mk(sm). Therefore, PIECE(
Sk+1, Mk+1) = E[1, p − 1] ◦ x ◦ E[p, n] = Ek+1.

• assume ok+1 = DELETE(p) and its mapped form
õk+1 = HIDE(si) by applying Rule 2. Based on
the definition of DELETE in Section 2.1, we have
Ek+1 = Ek[0, p− 1] ◦Ek[p + 1, n], where n = |Ek|. On
the other hand, after applying HIDE(si) to the phys-
ical view (Sk, Mk), we have PIECE(Sk+1, Mk+1) =
Mk+1(s1) ◦ ... ◦ Mk+1(si−1) ◦Mk+1(si) ◦ Mk+1(si+1) ◦
... ◦ Mk+1(sm), where m = |Sk|. Based on the defini-
tion of HIDE in Section 4.1, we know that õk+1 does
not change the mapping of any position stamp in Mk

except si. Therefore, we get PIECE(Sk+1, Mk+1) =
Mk(s1) ◦ ... ◦ Mk(si−1) ◦ φ ◦ Mk(si+1) ◦ ... ◦ Mk(sm) =
Mk(s1) ◦ ... ◦Mk (si−1) ◦Mk(si+1) ◦ ... ◦Mk (sm). Since
Ek = PIECE(Sk, Mk) and p = |PIECE(s1, si)|, we



know that E[1, p − 1] = Mk(s1) ◦ ... ◦ Mk(si−1) and
E[p + 1, n] = Mk(si+1) ◦ ... ◦ Mk(sm). Therefore,
PIECE(Sk+1, Mk+1) = E[1, p− 1] ◦ x ◦E[p + 1, n] =
Ek+1.

The above lemma guarantees that whenever the document
is updated by an editing history defined on its logical view,
the mapping rules will correctly map the operations to their
physical forms such that the version of the PPS produced
by the mapped history will maintain the same view as the
one from users’ perspective.

4.3 Global Uniqueness of Position Stamps
Based on the way we create a new position stamp for a
newly added character, each character has a unique position
stamp. However, this uniqueness property can be violated
if users happen to simultaneously modify the same position.

Example 2. Given a PPS with P0 = {0, 1} and M0 = {0 �→
φ, 1 �→ φ} at two sites, site1 executes ADD(0, 1, a), while
site2 executes ADD(0, 1, b) simultaneously. If we use dyadic
fraction encoding scheme by halving the interval, both ‘a’
and ‘b’ would be assigned 0.5.

The global uniqueness of position stamps can be resumed
if we make some assumption and slightly modify the encod-
ing scheme for single-threaded editing. We assume that each
site is identified by a unique identifier and that the number
of sites involved in a CES is bounded by an integer. Depend-
ing on its value, necessary decimal digits will be appended
to each position stamp. For instance, in example 2, if the
site identifier for site1 is 1 and for site2 is 2, the position
stamp for ‘a’ would be 0.51, for ‘b’ would be 0.52. Both
position stamps still fall within the range of 0 and 1. The
tie is broken by ordering the numbers based on their site
identifiers. Under normal editing scenarios, the number of
users are relatively small. If we use two decimal digits to
represent site identifier, this modified encoding scheme can
support up to a hundred users already.

We informally sketch the proof for the global uniqueness of
position stamps under this modified encoding scheme. Posi-
tion stamps generated at different sites are always differen-
tiated by their site identifier. Position stamps generated at
the same site are guaranteed by the original single-threaded
encoding scheme. This modified encoding scheme is the one
we are currently considering. There may be other options as
well. In the rest of the paper, we assume the global unique-
ness of position stamps without repeating this property.

4.4 Position Stamps Recycling
Persistent stamps are rational numbers. We could run out

of precision bits for newly inserted characters. Another con-
cern is disk space consumption because a PPS never deletes
its position stamps. We address both problems by recycling
position stamps at system quiescent time that no editing is
detected and all generated operations are executed. When
such a moment is detected, each site creates a new PPS
based on the invocation result of the PIECE operation. The
new PPS contains only visible characters and will reassign
values to its position stamps by evening the range between 0
and 1 for visible characters. Further editing operations will
be redirected to the new version. This approach is practical
because writing is a complex process involving more than
just sitting down and typing words. Empirical study [18,
30] shows that collaborative editing involves a large amount

of time for coordination and discussion, and it normally hap-
pens within a small group of people. Therefore, there is a
good chance that a quiescent moment happens before we
run out of precision bits. A quiescent moment can be de-
tected easily by maintaining a counter at each site, which
counts how many local and remote operations have been ex-
ecuted so far. The system announces the occurrence of a
quiescent moment if all counters have the same value and
no local editing is detected. The system could also force
a quiescent moment if the length of some position stamps
exceeds a threshold. At this point, each site finishes all un-
processed remote updates and puts newly generated local
updates in a temporary queue. After all the sites finishes
processing on remote updates, which can be inferred by the
local counters, each site creates a new PPS and starts pro-
cessing operations in the temporary queue. We expect this
process has a negligible impact to end users because it does
not block users from local editing, only delay their updates
to be propagated to other users. Another benefit of this
procedure is that it cleans up invisible characters from the
old PPS. Therefore, functions such as searching keyword will
not be impacted by these invisible characters when scanning
the physical document.

5. APPLICATIONS AND ADVANTAGES OF
PPS

5.1 PPS Implementation of DDP Consistency
Model

A view synchronization strategy resolves editing conflicts
when users simultaneously edit the overlapped or contigu-
ous characters. In CESs, a widely accepted design choice is
that only user-requested cancellation should be taken when
editing conflicts occur [11]. This is different from transaction
processing in database management systems in which con-
currency control algorithms (such as timestamp ordering)
automatically abort some transactions to resolve conflicts.
of such a strategy, the effect of victim transactions gets lost,
which is regarded undesirable by end users. Therefore, the
traditional view synchronization strategies in CESs [10, 17,
20, 29] adopt the following design choice:

• Keep all inserted characters if users happen to update
the same position in the document at the same time.
In Example 2, both site1 and site2 inserts a new char-
acter. Both ‘a’ and ‘b’ will be kept in this case.

• Remove a deleted character exactly once if users hap-
pen to delete the same character at the same time.

Our view synchronization strategy adopts this design choice
and chooses the physical-level approach for the reasons dis-
cussed in Section 2.1. In the physical-level approach, a user-
issued operation on the logical view will be mapped to its
physical view by Rule 1-2 in Section 4.2. After the mapped
operation is broadcast to a remote site, it updates its phys-
ical view, which is a PPS. The physical view then refreshes
its logical view by the result of PIECE operation. In Section
4.2, we already prove that Rule 1-2 and PIECE operation
correctly maintain the correspondence between these two
levels of view. In this section, we show that the final versions
of PPS at all the sites will converge to the same value if their
physical-view editing histories preserve the data-dependency



precedent order. In the rest of this section, without pointed
out otherwise, all operations are defined on physical view,
and all histories are physical-view editing histories.

A CES is defined by a triple CES =< U, D, Õ >, where

• U : a set of unique site identifiers. U = {ui, 1 ≤ i ≤
n, si ∈ N, n ∈ N}

• D: a set of PPSs. D = {psi, 1 ≤ i ≤ n, n = |U |}. psi

is the PPS at ui.

• Õ: a set of parameterized editing operations. Õ =
{õi, 1 ≤ i ≤ N}, where õi is one of the kinds

– (ADD(si, si+1, x), uk): an ADD generated by uk.

– (HIDE(si), uk): a HIDE generated by uk.

We assume that each site must finish the execution of cur-
rent operation before issuing the next one. Based on this
assumption, operations generated at the same site always
have different forms because each position stamp is unique
and they can not issue the same editing operation twice.
Furthermore, operations generated at different sites are dif-
ferentiated by their uk parameter. Therefore, each operation
õ has a globally unique form.

An execution of a CES at a particular site is modeled by
an editing history H = õ1õ2...õn, which is an intermixed
ADD and HIDE operations. We use op(H) to denote the
set of operations in H and <H to denote their ordering.
Starting with the initial version (S0, M0), we use (SH , MH)
to denote the version produced by history H .

Next we show that if every site executes the same set of op-
erations in an order that preserves their data-dependencies,
the PPS at each site will converge to the same value. We
first define data-depends relation, and then define data-
dependency preserving history.

Definition 1. Data Depends Relation →. Given two op-
erations õp and õq, we say õq depends on õp, denoted as
õp → õq , if one of the following conditions is satisfied:

1. õp = (ADD(si, si+1, x), um) and õq = (HIDE(sj),
un). Let snew be the position stamp generated for x
by õp. We have snew = sj . In other words, õq maps
the character inserted by õp to φ.

2. õp = (ADD(si, si+1, x), um) and õq = (ADD(sj , sj+1,
y), un). Let snew be the position stamp generated for
x by õp. We have either snew = sj or snew = sj+1.
In other words, õq inserts a character next to the one
inserted by õp.

3. ∃õx, õp → õx and õx → õq .

Definition 2. Data-dependency-preserving History. A his-
tory H = õ1õ2...õn is said to be data-dependency-preserving
if õi → õj then õi <H õj .

Definition 3. Data-dependency Equivalence. Let H and
H ′ be two histories. H and H ′ are called data-dependency
equivalent, denoted as H ≈d H ′, if the following holds:

1. op(H) = op(H ′), and

2. H and H ′ are data-dependency preserving.

Theorem 1. If H and H ′ are data-dependency equivalent,
then starting with the same initial empty PPS, we have
SH = SH′ and MH = MH′ .
Proof

1. Prove SH = SH′ . Based on the definition of PPS, S
is only updated by ADD operations. Since op(H) =
op(H ′) and each operation being unique, the set of
ADD operations in H is the same as the one in H ′.
Therefore, the SH and SH′ will be expanded with the
same set of position stamps. Since by definition S is
a set, the updating order does not matter. Therefore,
we have SH = SH′ .

2. Prove MH = MH′ . Assume that MH 	= MH′ . Then
∃si, MH(si) 	= MH′(si). Since each ADD operation
will add a unique position stamp, si must be added
by the same ADD operation. Let the ADD opera-
tion that adds si be õi in H and be õj in H ′. Since
MH(si) 	= MH′(si), one of them must be changed to φ
by HIDE(si). Let the HIDE operation be õu in H and
õv in H ′. Without loss of generality, let MH(si) = φ.
Then we have õi → õu and õi <H õu. Since MH′(si) 	=
φ, this could only happen if õv <H′ õj . Thus the
assumption that H ′ is data-dependency preserving is
violated.

Theorem 1 guarantees that if each site executes all up-
dates (both local and remote) in their data-dependency prece-
dent order, the final versions of PPSs at each site will con-
verge to the same value. Since the data dependency can
be precisely captured by position stamps encoded in editing
operations, the synchronization strategy can easily maintain
this precedence order.

Finally we describe our view synchronization strategy.
Each site maintains two queues: READY queue and WAIT-
ING queue. The site runs two threads, one for receiving
operation, and one for executing operation. When a new
operation arrives, the thread for receiving operation puts it
in the READY queue if it is local. If the new operation is
a remote update, the thread first checks whether the oper-
ations it depends on have been processed or not by looking
up the set of position stamps in the current version of its
PPS. If they were there, the operation will be put in the
READY queue, otherwise in the WAITING queue. Mean-
while, the thread for executing operation continuously pops
a new operation from the READY queue if it is not empty.
After the execution, it will check whether any operations de-
pending on it are in the WAITING queue. If none of them
exist, the thread will execute the next one in the READY
queue. Otherwise, the thread will move those operations
whose data-dependencies are satisfied from the WAITING
queue to the READY queue.

Since persistent stamps are totally ordered, we can use
a search tree B-tree to maintain a PPS by using its per-
sistent stamp as keys. Give a physical-view editing history
with length n, the number of position stamps in the PPS
is bounded by n. The computational complexity for PPS’s
update and look-up is therefore O(t logt n), where t is the
upper bound on the number of keys in a B-tree node . The
en-queue and de-queue operations take O(1). In our view
synchronization strategy, the thread for receiving operation
does one look-up in the PPS. The thread for executing oper-
ation does one B-tree key insertion for ADD operation or one



B-tree key look-up for HIDE operation, which is bounded by
O(t logt n). Besides, the executing thread also need to do a
traversal for the dependency check on the WAITING queue,
which takes O(m) where m is the number of operations that
are data-dependency related. Therefore, if t is big enough,
the computational complexity of our view synchronization
strategy is bounded by O(m).

5.2 PPS Implementation of Compensated Undo
Undo is an essential feature in any collaborative editors [3,
23]. In this section, we explain how to use PPSs to support
it so that a shared document can recover from accidentally
incorrect editing and possible vandalism in loosely controlled
editing environment. A single-user editing system normally
un-does operations in the reverse of their chronological or-
der. In a CES, its undo policy may choose the last operation
performed by the local user, or the last operation performed
so far, or any operation in the history [23]. Partial persistent
sequences are powerful in their support to undo any opera-
tion. First, the data structure maintains the effect of whole
editing history. It is easy to determine the undo effect of
any editing operation. Second, editing operations defined on
this data structure encode enough information to construct
its undo operation. We use the notion of compensation to
handle selective undo [32]. A compensated undo does not
physical remove the footprint of an editing operation from
the history. Instead, a new operation is created to cancel its
effect from users’ perspective.

We assume its physical-view editing history H = õ0õ1...õn.
For any editing operation õi, its compensated undo is con-
structed as follows:

• if õi is an ADD(sk, sk+1, x), its undo takes the form
HIDE (snew), where snew is the position stamp as-
signed to x. The HIDE is applied to the current ver-
sion (Sn, Mn) as a normal editing operation.

• if õi is a HIDE(sk), assume its original mapping is
M(sk) = c. Its undo takes the form ADD(s′k, s′k+1, c),
where s′k, s′k+1 ∈ Sn and sk = s′k. The ADD is applied
to the current version (Sn, Mn) as a normal editing
operation.

The above construction guarantees that if a user inserts a
character, its compensated undo will remove the character
from the logical view of the document. And if the user
deletes a character, its compensated undo will insert the
same character at its original position in the logical view.
The proof for the correctness of this approach is similar to
the one for the mapping between two levels of view of a
document in Section 4.2. We skip it in this paper. Note that
in order to compute the undo form for a HIDE operation,
the old mapping needs to be maintained. This can be easily
done if we keep the old mapping value when we save the
HIDE in the log. The advantage of compensated undo is
that undo operations are treated like any other ordinary
operations. Therefore, the view synchronization strategy
does not change.

6. RELATED WORK
View synchronization algorithms Current view syn-

chronization algorithms can be categorized into the logical-
level approach or the physical-level approach. All the OT-
based algorithms [10, 17, 20, 25, 29] belong to the logical-
level approach. As stated in Section 2.2, the logical-level

approach needs to maintain and scan historical log to de-
cide right transformation paths for remote update opera-
tions. The transformation procedure becomes expensive un-
der heavy workloads [16]. Furthermore, operations defined
on the logical view lose their correct position indexes as
the document is edited, which creates difficulties for undo
operations. The OT-algorithm [20] also introduces “tomb-
stone” as part of their data structure. But the purpose is to
resolve transforming ambiguities on operations that update
the same portion of a document. We use “tombstone” to cre-
ate unique position identifiers. The WOOT [19] algorithm
and the technique used in the editor TeNDaX [15] belong
to the physical-level approach. The WOOT algorithm de-
fines a pair 〈site identifier, local counter〉 to create a unique
identifier for each character. The site identifier is unique
to each site. The local counter is incremented each time a
new operation is executed. In TeNDax, each character is
assigned a unique integral identifier by a central server. In
both approaches, character identifiers are indexed (such as
hash-tables or B-trees) so that they can be quickly searched
to determine data dependencies between operations. The
major problem in their approaches is that the identifiers do
not carry ordering information. Therefore, characters that
are logically consecutive may not be stored physically con-
secutive on disk. To maintain the ordering information, for
each character, its before- and after- character’s identifiers
need to be explicitly maintained. When reconstructing a
document’s content, the system has to follow these before-
and after- identifiers iteratively and maps them into their
corresponding characters. Consequently, performance of se-
quential reading is likely to be severely impacted. Position
stamps avoid these problems because they are totally or-
dered and can be efficiently managed for insert, delete, and
search in a B-tree. Sequential reading can be quickly done by
traversing the leaf nodes of the B-tree. We argue that their
approaches are more appropriate to synchronize documents
at coarser-granularity such as paragraphs, as demonstrated
in their recent work [21].

Data consistency models Several consistency models
have been proposed in the literature [10, 17, 20, 29]. Those
models require convergence and define precedence of op-
erations based on the happen-before relation. Our data-
depends relation is a subset of the happen-before relation
because if oi → oj , oi must happen before oj , but not vice
versa. Therefore, The DDP consistency model is more re-
laxed than these earlier models. A different type of model
is proposed by Oster et al. [19]. Our model is equivalent to
theirs at the conceptual level except that we formalize it in
a different data structure and prove its correctness.

Version control systems Version control systems fa-
cilitate collaborative creation of documents by maintaining
complete revision history and full revision tracking capa-
bilities. Traditional version control systems [5] are mainly
used for source code tracking in which a source repository
maintains and merges newly committed changes. Recent
decentralized version control systems [9, 12] replicate doc-
uments on multiple sites to improve availability and scala-
bility. In these systems, concurrent update conflicts will be
presented to users for manual resolution. These systems do
not target real-time collaborative editing scenarios in which
local updates on shared documents need to be automati-
cally propagated to other sites by their editing tools and
automatic conflict resolution strategies are required for con-



current editing.
Persistent data structures A data structure is partially

persistent if all versions can be accessed but only the newest
version can be updated [8]. A PPS is partially persistent be-
cause it never deletes any data, and updates are only applied
to the latest version. We will be able to dynamically recon-
struct any version in its editing history if necessary times-
tamp information is associated with the position stamps in
the sequence. This capability will not be impacted by the re-
initialization procedure described in Section 4.4 as long as we
maintain the mapping between consecutive PPSs. Various
persistent data structures have been proposed in the litera-
ture, including stacks, queues, search trees, temporal XML
document processing [4, 8, 26]. We take the first initiative
to make sequences persistent. Furthermore, our approach is
declarative in that a PPS creates descriptive identifiers for
its data without relying on a particular storage structure
for maintaining position stamps. By comparison, the ear-
lier research is constructive in that they maintain adequate
meta-information and pointers to old copy of data such that
an old version can be dynamically constructed by following
the pointers based on the meta-information.

7. CONCLUSION
In real-time collaborative editing systems, the collabora-
tion between geographically distributed users needs to be
carefully coordinated to maintain data consistency due to
editing conflicts. We propose the DDP consistency model
that requires convergence of document replicas and pre-
serves the precedence order of editing operations defined
by data-dependencies. The DDP consistency model allows
users who work on different portions of a shared document
collaborate efficiently without interference and allows them
to synchronize their editing only when they update over-
lapped or contiguous characters. For applications that want
to support non-interference collaboration on different parts
of a shared document and are not sensitive to temporary vio-
lation of causality, the DDP consistency model allows higher
concurrency and can be enforced more efficiently. Our view
synchronization strategy relies on a new data structure–
PPS. This data structure is able to create global unique
position identifiers for all the characters. As a result, we
can easily capture the data-dependencies between any pair
of editing operations. The global position identifiers, called
position stamps, carry enough information to directly lo-
cate their positions in a document. Furthermore, editing
operations defined on a PPS can be undone easily due to
the fact that it keeps the execution effect of whole editing
history. Therefore, our view synchronization strategy can
be easily implemented for distributed document editing by
insert, delete and undo operations.

Currently, we are looking into the implementation of CESs
based on PPSs and many other areas of distributed docu-
ment processing such as data lineage and fine-granularity
access control [13] with the support of position stamps.
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Gunzenhäuser. An integrating,
transformation-oriented approach to concurrency
control and undo in group editors. In CSCW ’96:
Proceedings of the 1996 ACM conference on Computer
supported cooperative work, pages 288–297, New York,
NY, USA, 1996. ACM.

[26] Flavio Rizzolo and Alejandro A. Vaisman. Temporal
xml: modeling, indexing, and query processing. VLDB
J., 17(5):1179–1212, 2008.

[27] Yasushi Saito and Marc Shapiro. Optimistic
replication. ACM Comput. Surv., 37(1):42–81, 2005.

[28] Chengzheng Sun. Undo any operation at any time in
group editors. In CSCW ’00: Proceedings of the 2000
ACM conference on Computer supported cooperative
work, pages 191–200, New York, NY, USA, 2000.
ACM.

[29] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun
Yang, and David Chen. Achieving convergence,
causality preservation, and intention preservation in
real-time cooperative editing systems. ACM Trans.
Comput.-Hum. Interact., 5(1):63–108, 1998.

[30] S. G. Tammaro, J. N. Mosier, N. C. Goodwin, and
G. Spitz. Collaborative writing is hard to support: A
field study of collaborative writing. Comput.
Supported Coop. Work, 6(1):19–51, 1997.

[31] Vadim Tropashko. Nested intervals tree encoding in
sql. SIGMOD Rec., 34(2):47–52, 2005.

[32] Stphane Weiss, Pascal Urso, and Pascal Molli.
Compensation in collaborative editing. 2007.

[33] Wikipedia. 2008 summer olympics. http:
//en.wikipedia.org/wiki/2008_Summer_Olympics,
2008. [Online; accessed Nov-2008].

[34] Steven Xia, David Sun, Chengzheng Sun, David Chen,
and Haifeng Shen. Leveraging single-user applications
for multi-user collaboration: the coword approach. In

CSCW ’04: Proceedings of the 2004 ACM conference
on Computer supported cooperative work, pages
162–171, New York, NY, USA, 2004. ACM.


