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émanant des établissements d’enseignement et de
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Abstract

This paper develops a simple business-cycle model in which financial shocks have large

macroeconomic effects when private agents are gradually learning the uncertain environment.

When agents update their beliefs about the parameters that govern the unobserved process

driving financial shocks to the leverage ratio, the responses of output, investment, and other

aggregates under adaptive learning are significantly larger than under rational expectations.

In our benchmark case calibrated using US data on leverage, debt-to-GDP and land value-to-

GDP ratios for 1996Q1-2008Q4, learning amplifies leverage shocks by a factor of about three,

relative to rational expectations. When fed with actual leverage innovations observed over

that period, the learning model predicts that the persistence of leverage shocks is increasingly

overestimated after 2002 and that a sizeable recession occurs in 2008-10, while its rational

expectations counterpart predicts a counter-factual expansion. In addition, we show that

procyclical leverage reinforces the amplification due to learning and, accordingly, that macro-

prudential policies that enforce countercyclical leverage dampen the effects of leverage shocks.
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1 Introduction

Whether or not banks and other financial institutions, policy-makers, households and

firms relied on a decent approximation of the “true” probability distribution prior to the

2007-08 financial collapse is a key question to address if one is to understand the Great Re-

cession. On the theoretical side, answering such a question requires relaxing the assumption

that the data-generating process is known when agents make decisions in an economy that is

subject to random disturbances (see Woodford [47] for a recent survey). New tractable ap-

proaches to tackle parameter uncertainty have recently been proposed. Hebert, Fuster and

Laibson [17] show that asset price booms and busts are more satisfactorily explained when

forecasters are assumed to use simple models that typically underestimate mean-reversion

and overestimate the persistence of the impact of shocks. Ilut and Schneider [27] show

that shocks driving the unknown mean level of productivity contribute significantly, under

ambiguity aversion, to business cycles. In both contributions, the key assumption is that

there is uncertainty about the “true” parameters (e.g. the mean and the autocorrelation)

governing the random shocks that affect the economy.

Our distinctive contribution to this strand of literature is the introduction of statistical

learning in a setting where consumption, investment and labor supply decisions depend on

aggregate credit availability, which itself varies over time in a stochastic fashion. We focus

on how decision-makers set and revise their beliefs about the parameters of the stochastic

process governing financial shocks as new observed data arrive, following Marcet and Sar-

gent [38] and Evans and Honkapohja [15] (see also the related discussion in Evans [14]).

Although our analysis is similar in spirit to Hebert, Fuster and Laibson [17], Ilut and

Schneider [27], since agents do not know these parameters, the key dimension we add is

that agents learn their economic environment by estimating the unknown parameters driv-

ing aggregate credit conditions and by updating each period such estimates. In turn, those

beliefs about the shock process are used to make forecasts that affect decisions and hence

determine economic outcomes.

In a simple business-cycle model with collateral constraints and stochastic leverage, we

show that dynamics under learning can differ significantly from the dynamics under rational

expectations. More precisely, we compare two settings: (i) the model with full information

(rational expectations), in which agents know the parameters governing the VAR(1) pro-

cess governing the behavior of the economy; (ii) the model of incomplete information with

learning, in which agents do not know the “true” parameters of the VAR(1) model and up-

date their estimates as new data arrive. We find that the amplification of financial shocks

is particularly large when agents overestimate either the persistence of financial shocks or

the long-run level of credit conditions. When we simulate the stylized model using actual

financial innovations we find that our learning model delivers a sizeable recession in 2008-

2010, in contrast to the full information rational expectations that predicts a counterfactual

expansion when subjected to the same financial shocks. The key random variable in our
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analysis is the leverage ratio defined by how much households can borrow out of the land

market value. We show that when agents update their beliefs about the parameters that

govern both the dynamics of endogenous variables as well as the unobserved process driving

shocks to the leverage ratio, the responses of output and other aggregates under adaptive

learning are significantly larger than under rational expectations.

Our results can be anticipated by looking at the panels in Figure 1. Panel a) of Figure 1

plots the US quarterly households’ leverage data (provided by Boz and Mendoza [6]) over

the period 1996Q1-2010Q1 that covers the latest boom-bust behavior in the housing mar-

ket1. Panel b) of Figure 1 reports the autocorrelation coefficient of the exogenous leverage

component that is estimated under learning. The autocorrelation coefficient graphed in

panel b) is obtained through constant-gain recursive estimation in real time, as new data is

collected. Panel b) shows that when confronted with the data in panel a), learning agents

think of the AR(1) leverage process as moving towards unit root at the end of the period.

Essentially, the level of leverage trends up and accelerates in 2007, when the land price

stops expanding and starts falling while borrowing is sticky - panel a) - and this translates

into an increasing estimate of autocorrelation by learning agents, which ends up being very

close to one in the last two quarters of 2008. As a result, both the observed level of leverage

and its estimated persistence peak at the same time, in 2008Q4. On the other hand, the

rational expectations estimate, obtained by ordinary least squares over the whole sample

period, is lower than its learning counterpart over the period shown in panel b) and it

is around 0.976. The learning model generates the estimate shown in panel b) when fed

with the actual leverage innovations and predicts that the impact of the negative shock

to leverage observed in 2008Q4 is about three times bigger than under full information.

When believed under learning to be close to permanent, shocks to credit conditions have

a larger effect on the economy, compared to rational expectations. As a consequence, the

learning model generates, under a negative leverage shock, a contraction that is similar in

magnitude to the Great Recession.

We focus on financial shocks that drive up and down the leverage ratio, which according

to the data in panel a) of Figure 1 are very persistent. We first perform two theoretical

experiments. The first one assumes that agents know the economy’s steady state and, in

particular, the mean level of leverage but not its autocorrelation, which is allowed to be

time-varying. We calibrate the model using data on leverage, debt-to-GDP and land value-

to-GDP ratios for the period 1996Q1-2008Q4 and we subject the economy to the large

negative shock to leverage that was observed in 2008Q4 (see panel a) in Figure 1) under

the assumption that learning agents overestimate the autocorrelation of the leverage shock,

which is believed to be close to unity according to panel b) in Figure 1. We compare the re-

sponses of the linearized economy under adaptive learning and under rational expectations.

1We take out of the raw data the endogenous component of leverage that has been (moderately) elastic to

land prices prior to 2008 (Mian and Sufi [39]) and we estimate an AR(1) process on the residual (exogenous)

component, see details in Section 4.
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Figure 1: in Panel a) US Household Leverage Ratio 1996Q1-2010Q1 (Source: Boz and Mendoza

[6]); in Panel b) Model Estimate of Leverage Autocorrelation 1996Q1-2010Q1
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Our typical sample of results shows that learning amplifies leverage shocks by a factor of

about 2.5 (see Figure 2). More precisely, our model predicts that after a negative leverage

shock of about −5% observed in 2008Q4, the output falls by about 3.2%. In addition, ag-

gregate consumption and the capital stock fall by about 3.6% and 5%, respectively. Under

rational expectations, however, output drops only by about 1.3% while the responses of

consumption and investment are divided by more than two at impact. Consumption and

investment go down by a significantly larger margin under learning because de-leveraging

is more severe: land price and debt are much more depressed after the negative leverage

shock hits when its persistence is overestimated by agents who are constantly learning their

environment and, because of recent past data, temporarily pessimistic.

We next show that the magnitude of the consequent recession may in part be attributed

to the high level of leverage (and the correspondingly high level of the debt-to-GDP ratio)

observed in 2008Q4. When the same negative leverage shock occurs in the model cali-

brated using 1996Q1 data, when leverage was much lower, the impact on output’s response

is reduced by about two thirds (see Figure 3). In this sense, our model points at the obvi-

ous fact that financial shocks to leverage originate larger aggregate volatility in economies

that are more levered. In addition, we ask whether procyclical leverage may act as an

aggravating factor and our answer is positive. The assumption that households’ leverage

responds to land price is motivated by the recent evidence provided by Mian and Sufi

[39]. The counter-factual experiment with countercyclical leverage shows dampened effects

of leverage shocks, with responses of aggregate variables under learning that are close to

their rational expectations counterpart (see Figure 3). One possible interpretation of this

finding is that macro-prudential policies enforcing countercyclical leverage have potential

stabilizing effects on the economy in the face of financial shocks, at small cost provided

that non-distortionary policies are implemented (e.g. through regulation).

Our second theoretical experiment is carried out under the assumption that learning

agents do not know the steady state of the economy and, in particular, that they do not

know the long-run level of leverage. This is our preferred model in the sense that it is ar-

guably a more realistic description of the difficulties that forecasting agents/econometricians

face when trying to figure out the parameters governing the data generating process. In

such a setting, we again feed the model with the negative leverage shock of about −5%

observed in 2008Q4 and we show that the responses of the economy are further amplified

under learning when agents’ belief about the mean level of leverage is overestimated (see

Figure 4). Summing up the results from our two model experiments, our main conclusion

is that in a world where agents overestimate the persistence of financial shocks and/or the

mean level of leverage, learning amplifies the disturbances to borrowing capacity.

We next derive our set of quantitative results about the model-generated recession for

2008-10. In line with the literature (see Kiyotaki, Michaelides, Nikolov [31], Liu, Wang,

Zha [36], Justiniano, Primiceri, Tombalotti [29], Kaas, Pintus, Ray [30], among others),

we show that replicating the observed boom-bust pattern of land prices over the 2000s
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requires another source of shocks in addition to leverage shocks. We introduce a land price

shock that we calibrate to ensure that the behavior of the endogenous land price matches

its observed counterpart.2 We also feed the model with the actual innovations to leverage

and show that the model predicts a sizeable fall in output, of similar magnitude to that

observed during the Great Recession. More precisely, we do that in a setting where agents

do not know the steady state and the autocorrelation matrix in the VAR representation of

the economy, that they have to estimate using constant-gain learning. When we let agents

revise their estimates in reaction to the actual leverage innovations observed up to 2008,

the learning model predicts a boom that is followed by a sizeable recession in 2008-10 (see

Figure 8). In sharp contrast, in the 2000s the rational expectations model predicts a long

recession that is followed by an expansion, which are both at odds with the data.

Related Literature: Our paper connects to several strands of the literature. The

macroeconomic importance of financial shocks has recently been emphasized by Jermann

and Quadrini [28], among others, and our paper contributes to this literature about credit

shocks by showing how learning under parameter uncertainty matters. Closest to ours

are the papers by Adam, Kuang and Marcet [1], who focus on exogenous interest rate

changes, and by Boz and Mendoza [6], who show how changes in the leverage ratio have

large macroeconomic effects under Bayesian learning and Markov regime switching.3 As in

Boz and Mendoza [6], we focus on leverage shocks but our setting is different. First, our

model with adaptive learning is easily amenable to simulations and we solve for equilib-

ria through usual linearization techniques. Because we assume that agents are adaptively

learning through VAR estimation, it is possible to enrich the model by adding capital accu-

mulation and endogenous production. Most importantly, our model predicts large output

drops when the economy is hit by negative leverage shocks. In sharp contrast, absent TFP

shocks, output remains constant after a financial regime switch in Boz and Mendoza [6]. In

addition, we show that our results are robust to the introduction of heterogeneous agents

and endogenous interest rate. Since in such setting the interest rate is endogenously pro-

cyclical, it could completely defeat the effect of an increase in credit supply even under

learning. Our robustness analysis makes clear that this is not the case and that amplifi-

cation due to learning does not rely upon the small-open economy assumption, an issue

that is addressed neither in Adam, Kuang and Marcet [1] nor in Boz and Mendoza [6].4 To

sum up, this paper follows the literature by emphasizing how financial shocks affect asset

2Alternative settings have been proposed to explain boom-bust patterns in housing price. For example,

Garriga, Manuelli, Peralta-Alva [19] assume segmented financial markets, He, Wright, Zhu [24] focus on

search environments, while Cao and L’Huillier [9] introduce noisy news about future productivity.
3In independent research, Kuang [35] introduces learning in the original model of Kiyotaki and Moore

[32] with risk neutrality and linear technologies. In contrast, utility and production functions are assumed

to be concave in this paper. See also Gelain and Lansing [22] for a related analysis in a Lucas-type asset

pricing model.
4Another notable difference with Adam, Kuang and Marcet [1] is that our setting does not rule out mean

reversion in agents’ beliefs.
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prices, but it also differs by measuring to what extent financial shocks help explain the fall

in output and investment observed over the Great Recession period.

Our paper also relates to some of the insights in Howitt [25], Hebert, Fuster and Laibson

[17, 18]. Contrary to Hebert, Fuster and Laibson [17, 18] who assume that agents use a

misspecified model, in our case the overestimated persistence of shocks arises endogenously

under adaptive learning when agents face the sequence of financial innovations that was ob-

served in the run-up to the crisis.5 In addition, our paper stresses that endogenous changes

in the beliefs about the long-run level of leverage may also matter for explaining why shocks

get amplified under adaptive learning. This is also where our paper departs from Ilut and

Schneider [27], who do not consider learning in their setting with exogenously driven am-

biguity about TFP shocks. Although, in theory, endogenous persistence could arise under

iid shocks when agents learn the steady-state leverage level, this effect turns out not to

be quantitatively important in our setting. In contrast, persistent slumps are shown by

Kozlowski, Veldkamp and Venkateswaran [34] to arise under reasonable calibrations when

learning is about the tails of the real shocks distribution. Close to our macro perspective

is Pancrazi and Petrunti (2015), who use survery evidence to show that financial experts

overestimated long-run prices and did not forecast a mean reversion in long-run housing

price dynamics, implying the overestimation of the persistence of housing prices. In a simi-

lar vein, Piazzesi and Schneider (2009) identify momentum traders, using Michigan Survey

of Consumers data, and show that their size (and optimism) increased during the housing

price boom.

In the literature, the idea that procyclical leverage has adverse consequences on the

macroeconomy is forthfully developed in Geanakoplos [20] (see also Cao [8], and Geerolf

[21] for a tractable model of endogenous leverage distribution). Although our formulation

of elastic leverage is derived in an admittedly simple setup, it allows us to examine its effect

in a full-fledged macroeconomic setting. Lastly, the notion that learning is important in

business-cycle models when some change in the shock process occurs has been discussed by,

e.g., Bullard and Duffy [7] and Williams [46]. More recently, Eusepi and Preston [13] have

shown that learning matters in a standard RBC model when the economy is hit by shocks

to productivity growth. Our paper adds to this literature by focusing on financial shocks

under collateral constraints.

The paper is organized as follows. Section 2 presents the model and derives its rational

expectations equilibria. Section 3 relaxes the assumption that agents form rational expec-

tations in the short run and it shows how financial shocks are amplified under learning when

agents update their estimates about the parameters of the stochastic process driving finan-

cial shocks. Section 4 shows that the model with learning predicts a sizeable recession in

2008-10 while its rational expectations counterpart does not. Section 5 gathers concluding

remarks and all proofs are exposed in the appendices.

5Along this dimension, we address some concerns raised by Evans [14]. Beshears, Choi, Fuster, Laibson

and Madrian [4] report results from experiments where subjects underestimate mean reversion.
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2 The Leveraged Economy with Financial Shocks

2.1 Model

The model is essentially an extension of Kocherlakota’s [33] to partial capital depreci-

ation, endogenous labor and, most importantly, adaptive learning. This is arguably the

simplest setting within which one can study how learning affects the business cycle in a

leveraged economy. A representative agent solves:

maxE0

∞∑
t=0

βt

[
Ct − ψ

N1+χ
t
1+χ

]1−σ
− 1

1− σ
(1)

where Ct ≥ 0 is consumption, Nt ≥ 0 is hours worked, σ ≥ 0 denotes relative risk aversion,

ψ ≥ 0 is a scaling parameter, χ ≥ 0 is the inverse of the Frisch labor supply elasticity,

subject to both the budget constraint:

Ct +Kt+1 − (1− δ)Kt + TtQt(Lt+1 − Lt) + (1 +R)Bt = Bt+1 +AKα
t L

γ
tN

1−α−γ
t (2)

and the collateral constraint:

Θ̃tEt[Qt+1]Lt+1 ≥ (1 +R)Bt+1 (3)

where Kt+1, Lt+1 and Bt+1 are the capital stock, the land stock and the amount of new

borrowing, respectively, all chosen in period t, Qt is the land price, R is the exogenous

interest rate, and A is the total factor productivity (TFP thereafter). In the model, leverage

Θ̃t is subject to random shocks whereas both the interest rate and TFP are constant over

time.6 As we focus on financial shocks, we ignore TFP disturbances. We also introduce

a land price shock T , essentially because the model with only leverage disturbances can

hardly replicate the land price behavior that has been observed in the 2000s. In line with

the literature (see e.g. Kiyotaki, Michaelides, Nikolov [31], Liu, Wang, Zha [36], Justiniano,

Primiceri, Tombalotti [29], Kaas, Pintus, Ray [30], among others), we find that the model

with both shocks does a better job along this dimension. Although the formulation we

use is rather agnostic, it is easy to show that it is essentially equivalent to land preference

shocks or other “political” (e.g. tax) shocks that push the demand for land and the land

price up or down. We assume that the land price shock process is Tt = T ρτt−1Ψt and, absent

shocks, that it does not cause any distortions in the steady state. We present first the

results obtained under the collateral constraint (3), which follows Kiyotaki and Moore [32].

However, quantitatively similar results hold under the margin requirement timing stressed

in Aiyagari and Gertler [3] (see Section 3.2 for robustness analysis).

Denoting Λt and Φt the Lagrange multipliers of constraints (2) and (3), respectively, the

6In Section 3.2, we show that our main results are robust to the introduction of heterogeneous agents

and endogenous interest rate.
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borrower’s first-order conditions with respect to consumption, labor, land stock, capital

stock, and loan are given by: [
Ct − ψ

N1+χ
t

1 + χ

]−σ
= Λt (4)

ψNχ+α+γ
t = (1− α− γ)AKα

t L
γ
t (5)

TtQtΛt = βEt[Tt+1Qt+1Λt+1] + βγEt[Λt+1Yt+1/Lt+1] + ΦtΘ̃tEt[Qt+1] (6)

Λt = βEt[Λt+1(αYt+1/Kt+1 + 1− δ)] (7)

Λt = β(1 +R)Et[Λt+1] + (1 +R)Φt (8)

Consistent with the “shadow price learning” approach proposed by Evans and Mc Gough

[16], we keep track of the Lagrange multipliers in our Euler-equation learning procedure.

Although the analysis of nonlinear decision rules for control variables is beyond the scope of

this paper, we conjecture that Euler-equation learning is in our setting similar to shadow-

price learning when applied to the linearized model, similarly to Section 6 of Evans and

McGough [16] in which is studied a simpler Ramsey economy.

We also incorporate into the model the feature that leverage responds to changes in the

land price, which accords with the US micro data evidence documented by Mian and Sufi

[39]. More precisely, we posit that:

Θ̃t ≡ Θt

{
Et[Qt+1]

Q

}ε
(9)

where Q is the steady-state value of land price and the log of Θt follows an AR(1) process,

that is, Θt = Θ
1−ρθΘρθ

t−1Ξt. One can think of (9) as a decomposition of the leverage into

an exogenous component Θt and a component {Et[Qt+1]/Q}ε that is endogenous and re-

sponds to land price.7 While our qualitative results do not depend on this assumption, we

set the parameter ε to a positive value in our benchmark calibration to be consistent with

the evidence reported in Mian and Sufi [39] and, then, to examine the predictions of our

model under the counterfactual assumption that leverage is countercyclical.

In what follows, we assume that Θt and Tt are subject to the innovations Ξt and Ψt. We

compare two cases regarding what agents know about the data generating process of the

economy:

(i) rational expectations (with full information): agents know with certainty all the struc-

tural parameters of the model including “true” values of ρτ , ρθ and Θ,

(ii) learning (with incomplete information): the exact structure of the economy and, im-

portantly, ρτ , ρθ and Θ are unknown and agents have to learn and estimate unknown

parameters based on available data. We consider two experiments which are reported in

Sections 3.1 and 3.3. In Section 3.1, we first assume that the steady state is known but

7In Appendix A.1, we show how (9) can be derived in a simple setting with ex-post moral hazard and

costly monitoring.
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that learning agents do not know and have to estimate, among other parameters, the per-

sistence parameter ρθ. We then discuss the robustness of the main result in Section 3.2.

Next, in Section 3.3, we assume that agents are uncertain about the steady state, including

level of leverage Θ, as well. Before turning to that, we present the benchmark case of full

information rational expectations equilibria.

2.2 Rational Expectations Equilibria

A rational expectations competitive equilibrium is a sequence of positive prices {Qt}∞t=0

and positive allocations {Ct,Kt+1, Lt+1, Bt+1}∞t=0 such that, given the exogenous sequence

{Θt, Tt}∞t=0 of the leverage and price shocks, and the exogenous interest rate R ≥ 0:

(i) {Ct, Nt,Kt+1, Lt+1, Bt+1}∞t=0 satisfies the first-order conditions (4)-(8), the transver-

sality conditions, limt→∞ β
tΛtLt+1 = limt→∞ β

tΛtKt+1 = 0, and the complementarity

slackness condition Φt

[
Θ̃tEt[Qt+1]Lt+1 − (1 +R)Bt+1

]
= 0 for all t ≥ 0, where Θ̃t ≡

Θt{Et[Qt+1]/Q}ε, given the initial endowments L0 ≥ 0, B0 ≥ 0,K0 ≥ 0;

(ii) The good and land markets clear for all t, that is, Ct+Kt+1−(1−δ)Kt+(1+R)Bt =

Bt+1 +AtK
α
t N

1−α−γ
t and Lt = 1, respectively.

The above definition assumes that the interest rate is exogenous. Therefore, a natural

interpretation of the model is that it represents a small, open economy. However, in Section

3.2 we show that our main results are robust to the introduction of heterogeneous agents

and endogenous interest rate in a closed-economy variant of Iacoviello’s [26] model. The

details of such an extension are presented in Appendix A.3. As our focus is on how bor-

rowers adaptively learn how the economy settles after financial shocks, we abstract both

from TFP shocks and from further details regarding the lender’s side, and we focus on

the small-open-economy setting as in Adam, Kuang and Marcet [1], Boz and Mendoza [6].

However, our contribution with respect to the latter is to show that amplification due to

learning does not critically depend on the interest rate being exogenous.

There is a unique (deterministic) stationary equilibrium such that the credit constraint

(3) binds, provided that the interest factor 1 + R ≡ 1/µ is such that µ ∈ (β, 1), that

is, if lenders are more patient than borrowers. This follows from the steady-state ver-

sion of (8), Φ = Λ(µ − β) > 0. The steady state is characterized by the following

ratios, that fully determine the linearized dynamics around the steady state. From (6)

and (7), it follows that the land price-to-GDP and capital-to-GDP ratios are given by

Q/Y = γβ/[1− β −Θ(µ− β)] and K/Y = αβ/[1− β(1− δ)], respectively. In addition, (3)

yields the debt-to-GDP ratio B/Y = µΘQ/Y and (2) yields the consumption-to-GDP ratio

C/Y = 1−δK/Y − (1/µ−1)(B/Y ). Finally, (5) gives that ψNχ+α+γ = (1−α−γ)AKα so

that if one defines X ≡ C−ψN1+χ/(1+χ), it follows that X/Y = C/Y −(1−α−γ)/(1+χ).

Appendix A.2 provides a log-linearized version in levels of the set of equations (2)-(8)

defining, together with (9) and the laws of motion Θt = Θ
1−ρθΘρθ

t−1Ξt and Tt = T ρτt−1Ψt,
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intertemporal equilibria. The linearized expectational system can be written as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (10)

where X ′t ≡ (ct, qt, λt, φt, bt, kt, θt, τt); ξt, ψt are exogenous shocks, and all variables in low-

ercase letters denote variables in log (e.g. kt ≡ log(Kt)). The derivation and the expressions

of the 8-by-8 matrices A, B, C, D, F, N as functions of parameters are given in Appendix

A.2.

The linearized rational expectations equilibrium can be obtained as the unique E-stable

Minimal-State-Variable solution (MSV thereafter) such that

Et−1[Xt] = Hre + MreXt−1 (11)

where Mre and Hre solve

M = [I8 −CM]−1[A + BM], (12)

H = [I8 −CMre]
−1

[BH + CH + N] (13)

and I8 is the 8-by-8 identity matrix.

It is important to underline that all parameters, including both the autocorrelation of the

leverage shock process, that is, ρθ, and the leverage level, that is Θ, are known under

rational expectations. In contrast, the next sections relax such an assumption and assume

instead that agents have to form estimates about ρθ and Θ using the available data.

3 Adaptive Learning and Financial Shocks

Following Marcet and Sargent [38] and Evans and Honkapohja [15], we now relax the

assumption that agents form rational expectations in the short-run. We first assume that

the steady state of the economy is known, which implies that the steady state level of

leverage is a common knowledge. However, the parameters governing the dynamics of the

economy are not known. In particular, ρθ is not known with certainty by agents. We can

still use the linearized dynamic system in log levels, which is now:

Xt = AXt−1 + BE∗t−1[Xt] + CE∗t [Xt+1] + N + Dξt + Fψt (14)

where the operator E∗t indicates expectations that are taken using all information available

at t but that are possibly nonrational. More precisely, agents behave as econometricians

by embracing the following perceived law of motion (PLM thereafter):

Xt = MXt−1 + H + Gξt + Jψt (15)

which agents use for forecasting. In particular, (15) yields Et[Xt+1] = Mt−1Xt + Ht−1 and

Et−1[Xt] = Mt−2Xt−1 + Ht−2. The actual law of motion (ALM thereafter) results from

combining (14) and (15) which gives:

[I8 −CMt−1]Xt = [A + BMt−2]Xt−1 + [BHt−2 + CHt−1 + N] + Dξt + Fψt (16)
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When M and H coincide with Mre and Hre (as derived in Section 2.2) then agents

hold rational expectations. However, beliefs captured in M and H may differ from rational

expectations. Following Evans and Honkapohja [15], we assume they are updated in real

time using recursive learning algorithms which means that the belief matrices M and H

are time-varying. The coefficients are updated according to

Ωt = Ωt−1 + νt(Xt −Ωt−1Zt−1)Z
′
t−1R

−1
t (17)

Rt = Rt−1 + νt(Zt−1Z
′
t−1 −Rt−1) (18)

where Z ′t = [1, X ′t] and Ω = [H M]. R is the estimate of the variance-covariance matrix

and νt is the gain sequence (which equals 1/t under ordinary least squares and ν under con-

stant gain, respectively OLS and CG thereafter). One difference with rational expectations

that is key to our results is that agents’ estimates may differ from true parameter values,

that is (Mt,Ht) 6= (Mre,Hre). This implies, for example, that agents may overestimate

the autocorrelation parameter ρθ (or overestimate the steady state level of leverage Θ̄ as

later explained, in Section 3.3).

More generally, our aim is to compare:

(i) dynamic equilibria under (full information) rational expectations: the sequence of en-

dogenous variables X ′t ≡ (ct, qt, λt, φt, bt, kt, θt, τt) satisfy (15), given exogenous innovations

ξt, ψt, with (M,H) = (Mre,Hre) and (G,J) = ([I8 −CMre]−1 D, [I8 −CMre]−1 F),

(ii) dynamic equilibria under learning: the sequence of endogenous variables Xt satisfy

(16), given ξt, ψt, where Ωt = [Ht Mt] follow the updating rules (17)-(18), given initial

conditions (H0,M0,R0), as described in more details in Appendix A.4.

The mapping from the PLM (15) into the ALM (16) is given by:

TM(M,H) = [I8 −CM]−1 [A + BM] (19)

TH(M,H) = [I8 −CM]−1 [BH + CH + N] (20)

We verify numerically that under parameterizations that we consider, the MSV solution

is locally E-stable, that is, all eigenvalues of both DTM(Mre,Hre) and DTH(Mre,Hre)

lie within the interior of the unit circle.8 Because E-stability conditions hold in all simu-

lations that we report, we conjecture that the results of Evans and Honkapohja [15] about

convergence in distribution to the rational-expectations equilibrium for small enough gain

values apply as well in our setting.9

8The Jacobian expression is derived in Appendix A.4.2.
9Since our purpose is not to establish convergence results, we abstract from the analytical conditions

stated in Evans and Honkapohja [15, p.165], which turn out to be quite demanding. In practice, we

numerically compute the E-stable solutions by iterating the T-map (19)-(20), as described in Evans and

Honkapohja [15, p.232].
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3.1 Learning the Persistence of Leverage Shocks

In this section, we show that learning amplifies leverage shocks when agents’ beliefs about

the model parameters are allowed to differ from rational expectations. In particular, we

assume that learning agents incorrectly believe that ρθ is closer to one than the “true”

value. This is meant to capture the trend in leverage that is observed in the run-up to the

2008Q4 crisis. On the other hand, we make our theoretical experiment more transparent

by first subjecting the model to a single source of shock and we shut down the land price

shock, that is, Tt = 1 for all t.

The quarterly data on households’s debt, land holdings, land price and leverage we use

are borrowed from Boz and Mendoza [6]. The model is calibrated to deliver average values

for leverage, debt-to-GDP and land value-to-GDP ratios observed over the housing market

“bubble” period 1996Q1-2008Q4, that is Θ ≈ 0.88, B/Y ≈ 0.52 and QL/Y ≈ 0.59, see

Table 1 for all parameter values. To calibrate those ratios, we fix the quarterly interest

rate to 1% (that is, µ = 0.99) and set β = 0.96µ, as in Iacoviello [26]. From Gertler et

al. [23], we get the labor elasticity parameter χ = 1/3 and the capital share α = 0.33.

From the data 1996Q1-2008Q4, we compute the leverage mean level Θ ≈ 0.88 and we pick

the land share γ = 0.0093 to target the land price-to-GDP ratio QL/Y ≈ 0.59 and the

debt-to-GDP is B/Y ≈ 0.52 as in the data. Although leverage stationarity may appear as

questionable for the 2006-09 period, it is arguably not for longer periods in the data and

also in theory. The work disutility scaling factor is simply taken to be ψ = 1− α− γ. On

the other hand, we set σ = (C/Y − (1− α− γ)/(1 + χ))/(C/Y ) to ensure unitary relative

risk aversion. In addition, we take the value ε = 0.5 from the estimates of Mian and Sufi

[39, Table 2, column 6], who regress leverage growth on house price growth.10 Finally, the

standard deviation of the innovations to leverage, that is, σξ, comes from the OLS estimate

over the whole sample period of the AR(1) leverage process for the log of Θ. In all the

simulations reported below, we have checked numerically that the borrowing constraint is

always binding.

Table 1. Parameter Values (1996Q1-2008Q4)

µ β δ α γ Θ χ ε ν σξ

0.99 0.96µ 0.025 0.33 0.0093 0.88 1/3 0.5 0.004 0.034

In our first experiment we assume that in the period preceding the financial collapse

of 2008Q4, the agents in our model economy have learned that ρθ was close to one, re-

flecting the leverage trend that starts in the early 1990s. This means that agents’ beliefs

encapsulated in matrix M of the PLM (15) reflect that ρθ is closer to one than under RE.

Then in 2008Q4 a large negative shock to leverage of about −5% happens (see Figure 1).

The (pseudo-)impulse response functions in Figure 2 report the reaction of the economy’s

10The value chosen for ε implies, for instance, that a 10% increase in land price triggers a 5% increase in

leverage, which under our calibration would raise leverage from 0.88 to about 0.92.
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aggregates under the assumptions that agents wrongly believe that ρθ ≈ 0.9904 whereas

the true value is 0.9756. Such a calibration is strictly disciplined by data in the sense that

the above values come from the CG and OLS estimates obtained from the data, as shown

in panel b) of Figure 1 (see also Figure 7 in Section 4). More precisely, panel b) in Figure

1 shows that ρθ ≈ 0.9904 in 2008Q3, which is the value that learning agents use to forecast

2008Q4. To initialize the model, we simulate a million times the RE model calibrated

according to Table 1, using Mre, Hre, and we estimate the variance-covariance matrix R

that is used as initial condition to generate the impulse responses under learning.11 The

blue dotted line in Figure 2 represents the RE equilibrium with ρθ = 0.9756. The solid

red curve in Figure 2 occurs when agents gradually learn using (17)-(18) under the initial

belief that ρθ = 0.9904, with the true value being 0.9756. Our chosen value of ν = 0.004 for

the constant-gain learning parameter implies that learning agents regress past data using a

forgetting half-length of about 45 years, that is, data older than 45 years are weighted less

than 50%. Such a low value falls within the range estimated by Slobodyan and Wouters

[45, Table 3] in a medium-scale DSGE model with VAR beliefs.12 While Figure 2 relies

on ν = 0.004, similar impulse-response patterns would occur with values that belong to

(0.001, 0.04) (which would imply similar effects at impact but slower or faster recovery).

However, to guarantee local E-stability in the quantitative exercise reported in Section 4,

ν cannot be much larger than 0.004. Another advantage of using such a low value for the

constant-gain parameter is that we do not need to resort to any projection facility.

Figure 2 shows that the negative leverage shock is significantly amplified under learning.

In all figures, the numbers reported on the y-axis are deviations from steady-state values

expressed in percentage terms. For example, Figure 2 reports that the output fall in period

two is about −3.2% under learning and about −1.3% under rational expectations. In par-

ticular, the impact on output and capital is roughly 2.5 times larger and the consumption

drop is multiplied by about four compared to the rational expectations outcome. This

follows from the fact that deleveraging is much more severe under learning: the fall in land

price is about four times larger and the debt decrease is multiplied by around 2.5 compared

to RE.13

In summary, because agents incorrectly believe that the negative leverage shock will be

more persistent, they expect a much tighter future borrowing constraint leading to a much

larger fall in land price than under rational expectations. When confronted with negative

credit conditions, agents are pessimistic due to incorrect beliefs and this pessimism de-

11The learning model is stable enough that in this exercise we do not need to make use of any projection

facility.
12Larger estimates for the gain parameter have been reported in Branch and Evans [5], Chakraborty and

Evans [11], Malmendier and Nagel [37], Milani [40, 41]. Although there seems to be no empirical estimate

of the gain parameter corresponding to actual forecasts of housing or land prices, the dataset exploited in

Pancrazi and Pietrunti [42] could in principle be used to that purpose.
13In Figure 2, debt falls by much more than output. This implies that the debt-to-GDP ratio - a common

definition of aggregate leverage - falls by a large amount as well.
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presses consumption, investment and output much more than under rational expectations.

It is worth emphasizing that our assumption that agents overestimate the persistence

of leverage agrees with forecasting evidence. Piazzesi and Schneider [43], using data from

the Michigan Survey of Consumers, provide evidence that a “momentum” cluster exists,

which groups households who were optimistic in the sense that they expected both credit

conditions to improve and housing prices to increase as late as in the second part of the

boom phase, in 2004-05. Using a different dataset provided by a professional forecasting

firm, Pancrazi and Pietrunti [42] similarly document how forecasts made by financial ex-

perts in the 2000s follow a pattern that typically lacks mean-reversion dynamics, at least

at a 80-quarter horizon.

3.2 Mechanism and Robustness Under Alternative Assumptions

To shed some light on the mechanism at work, we now conduct a counterfactual analysis

in three steps. More specifically, we report output’s response (i) under lower leverage,

(ii) if variations in land price do not affect the borrowing constraint, (iii) if leverage is

countercyclical. To measure how the leverage level matters for the response to a financial

shock, we set Θ ≈ 0.73, which is value of leverage observed in the first quarter of 1996 (the

other values are as in Table 1), which leads to B/Y ≈ 0.34 and QL/Y ≈ 0.48. According

to most measures, this corresponds to the starting point of the housing price “bubble”.

The lower level of leverage implies that both the debt-to-GDP and the land value-to-GDP

are correspondingly lower than their averages over the 1996Q1-2008Q4 period. Panel a) in

Figure 3 replicates the same experiment as above, when a −5% shock to leverage hits the

economy and ρθ is believed to equal 0.9904 while its true value is 0.9756. Direct comparison

of Figures 2 and 3 - panel a) - reveals that higher leverage increases the effect of the shock

on aggregates under learning both in absolute and in relative terms. In this sense, the

larger the level of leverage the deeper the recession that follows after a negative financial

shock.14

It is important to stress that the economy’s responses to a leverage shock are larger

under learning because the land price forecast interacts with the borrowing constraint. To

illustrate this fact, we also report the responses of output when the land price is assumed

to be fixed in the borrowing constraint, that is, when (3) is replaced by:

ΘtQLt+1 ≥ (1 +R)Bt+1 (21)

while the land price is allowed to respond according to the Euler condition (6). Panel b)

in Figure 3 reports the response of output, which is about the same under learning and

under rational expectations, in contrast to Figure 2. This unambiguously shows that it is

the interaction of land price with the borrowing constraint that generates our results under

14Output’s response and capital’s response are proportional so we report only the former and not the

latter.
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Figure 2: Responses to a −5% Leverage Shock under Learning (Solid Red) and RE

(Dotted Blue); % Deviations From Steady-State; Parameter Values in Table 1.
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Figure 2 continued.
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learning. That is to say, if a declining leverage would not translate into less collateral and

less borrowing, our learning economy would behave like a RE economy. To the extent that

borrowing constraints reflect the market value of collateralizable assets, such as land or real

estate, the latter configuration may appear unrealistic. It turns out, however, that a simple

macroprudential policy can come very close to eliminating the effect of land price swings

on the borrowing constraint and, hence, the amplification of leverage shocks due to learn-

ing. To show this, we now ask the counter-factual question: what would be the reaction

of the economy to the same shock, under the same parameter values but with the leverage

being now mildly countercyclical?15 More precisely, we assume that ε = −0.5 while the

other parameters are kept unchanged and set as in Table 1. The economy’s responses are

reported in panel c) of Figure 3. The comparison of Figures 2 and 3 - panel c) - shows

15This feature could possibly be enforced by appropriate regulation of credit markets. Alternatively,

Appendix A.1 shows how it arises if government sets procyclical taxes on the recovery value of collateral.
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Figure 3: Reduced Output Response to a −5% Leverage Shock

(% Deviations From Steady-State; Learning: Solid Red; RE: Dotted Blue)
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that countercyclical leverage dampens by a significant margin the responses to financial

shocks and it brings learning dynamics closer to its rational expectations counterpart. As

a consequence, a much smaller recession follows a negative leverage shock: though agents

anticipate a too large deleveraging effect because they overestimate the persistence of the

adverse leverage shock, the land price fall now triggers an increase in countercyclical lever-

age, which dampens the impact of the negative shock. In other words, the negative shock

to the exogenous component of leverage is now dampened by an increase of the endogenous

part, which is itself triggered by a fall in land price. As a consequence, borrowing falls only

moderately and the resulting recession is much smaller and similar under learning and under

RE. Our experiment thus suggests that simple rules that enforce countercyclical leverage

are potentially powerful. In addition, comparing panels b) and c) of Figure 3 reveals that

the dampening effect of countercyclical leverage essentially works as if land price variations

were close to being neutralized in the borrowing constraint.

To assess the robustness of the findings reported in Section 3.1, we now relax several

assumptions one by one.16 First, we adopt the timing assumption that is implied by the

margin requirement interpretation of the borrowing constraint (Aiyagari and Gertler [3]).

That is, borrowing is limited to the current market value of collateral as opposed to tomor-

row’s market value. In other words, we replace both (3) by Θ̃tQtLt+1 ≥ (1 + R)Bt+1 and

(9) by Θ̃t ≡ Θt{Qt/Q}ε. Next, we relax the small-open economy assumption and intro-

duce heterogeneous agents and endogenous interest rate. Finally, we examine the impact

of assuming inelastic leverage on our results.

In Table 2, we report output amplification that obtains at impact under learning, as a

fraction of that under rational expectations. For example, the impact of a −5% leverage

shock on output’s deviation (from its steady-state value, in percentage terms) is about

−3.2% under learning and −1.3% under RE (see Figure 2) when parameters are set ac-

cording to Table 1. Therefore, the first column of Table 2 reports that the ratio is about

2.51 ≈ 3.2/1.3.

Table 2. Output Amplification Factor Under Learning And Misperception

Benchmark Margin Heterogeneous ε = 0 ε = −0.5 Fixed Land Price

2.51 2.55 2.31 1.28 1.08 0.99

The second column in Table 2 reports the ratio in the margin requirement model. The

third column in Table 2 reports relative output amplification in a closed-economy version

of the model with heterogeneous agents and endogenous interest rate (see Appendix A.3 for

modeling details). Finally, the fourth column reports amplification when the procyclicality

of leverage is shut down, that is, when ε = 0. Finally, the fifth and last columns reports

output amplification levels that correspond to panels c) and b) of Figure 3 discussed above.

16Our results are unaltered when relative risk aversion moves away from 1 within reasonable bounds so

we abtract from discussing that point.
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Direct inspection of Table 2 shows that our main findings are robust both to changes in

the timing assumption and to endogenizing the interest rate. Output amplification is quan-

titatively similar across different models and this turns out to be the case for the other

variables (not reported) as well.

To further stress that initial beliefs about the persistence of the leverage process are

important for our results, we now report the amplification that comes from the self-

referentiality of learning alone, without the assumption that agents over-estimate persis-

tence. To compare the volatility under learning relative to rational-expectations we proceed

as follows. The learning model is initialized with the beliefs centered at the RE equilib-

rium, simulated for 400 periods to allow estimates to converge to its long-run distribution

and, finally, run next for 60 quarters to assess the volatility of endogenous variables under

learning. Table 3 reports those volatilities. More precisely, the numbers in Table 3 show

the ratio of variances of deviations from the steady state under learning relative to full

information case for alternative values of the CG gain. Table 3 makes clear that the ampli-

fication reported in Table 2 is the result of the assumption that ρθ is overestimated under

learning. When learning agents are assumed to know the true value of leverage persistence,

amplification is modest, especially if the gain parameter is not large. We also use those

stochastic simulations to assess the frequency of values for ρθ that are larger than or equal

to 0.9904, which is our calibrated value. This rare event has a non-negligible frequency of

around 0.85 percent in the benchmark scenario such that ν = 0.004. This means that such

high values for persistence would be observed on average every 30 years.

Table 3. Amplification Factor Under Learning Alone

Variable Benchmark: ν = 0.004 ν = 0.01 ν = 0.04

Output 1.037 1.07 1.15

Capital 1.037 1.07 1.15

Consumption 1.051 1.10 1.19

Land price 1.054 1.09 1.23

Debt 1.029 1.06 1.16

3.3 Learning the Mean Level of Leverage

The purpose of this section is to report the outcome of our second experiment. We now

subject the economy to the same shock that was considered in Section 3.1 but we assume

that agents overestimate both the leverage shocks’ persistence and the mean leverage level.

That is, agents believe that ρθ = 0.9904 while the true value is 0.9756. We also set the RE

value Θ = 0.88 just as in Table 1 and we assume learning agents believe that Θ = 0.92, which

is the average of leverage in the data over 2001Q1-2008Q4, the period over which most of the

land price “bubble” materialized. Starting with such wrong beliefs about both parameters

governing the AR(1) process for leverage, ρθ and Θ, agents then update using the algorithm
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Figure 4: Larger Output Response to a −5% Leverage Shock When Agents Learn About

Both Persistence and Level of Leverage: Belief set to Θ = 0.92

(% Deviations From Steady-State; Learning: Solid Red; RE: Dotted Blue)

10 20 30 40 50 60
Time

-5

-4

-3

-2

-1

%

Output

described in Section 3. The responses of output to a −5% shock to leverage is reported

in Figure 4, which features substantially larger deviations under CG learning compared to

the RE benchmark. The fall in output under CG learning is more than 4.4 times larger

than that under RE, compared to 2.5 times in Figure 2.17 Overestimating the mean level

of leverage on top of its persistence adds a extra kick to the amplification mechanism that

arises under learning. Although, in principle, errors about the long-run leverage level could

result in endogenous persistence under iid shocks, this effect turns out to be unimportant

in our quantitative analysis developed in Section 4. In contrast, Kozlowski, Veldkamp

and Venkateswaran [34] develop an interesting setting where endogenous persistence arises

under reasonable calibrations. Taken together, our two experiments suggest that learning

amplifies negative shocks to leverage such as the one observed in 2008Q4. A natural question

that we now ask is whether or not the learning model accords better with the actual

path followed by the US output over the Great Recession than its rational expectations

counterpart.

4 Does Learning Help Account For The Great Recession?

The purpose of this section is to argue that learning is a plausible mechanism that

helps explaining the magnitude of the Great Recession. More precisely, we show that the

learning model predicts both a boom in the early 2000s and a sizeable recession beginning

17Alternatively, setting ε = 0 implies that the relative output amplification is about 1.61 under learning,

compared to about 1.28 according to Table 2 when learning agents know the long-run leverage level.
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Figure 5: Effects of Land Price Shocks on Land Price
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2007Q3, while the model with rational expectations generates a fall in output up to 2007Q3

followed by an expansion which are both at odds with the data. All parameter values are set

according to Table 1 and we reverse-engineer the land price i.i.d. shocks that are required

to replicate the observed path for land price, as shown in Figure 5.18

To derive leverage shocks, we use the data provided by Boz and Mendoza [6] for the period

1975Q1-2010Q1 to decompose the exogenous and endogenous components of leverage using

definition (9). That is, we obtain the exogenous component Θt by removing the part of

the leverage that is explained by land price. We then estimate AR(1) processes on the log

of Θt both under CG and under OLS and we compute the residuals from such estimated

processes that we use to feed our model with.19 The resulting innovations, reported in

Figure 6, do not significantly differ, which indicates that our results derived below do not

rely on disturbances being different under learning and under rational expectations.

Figure 6 makes clear why the model is unable to explain the Great Recession when fed

with only the actual leverage innovations: the fall in land price that starts in early 2007

generates positive shocks in 2007 and 2008 that produce a large expansion that is hardly

reversed when the negative shock happens in 2008Q4. Consistent with the literature, we

find that the model requires another source of disturbance to accord with the data and this

is why we use i.i.d. land price shocks to replicate the observed land price behavior as shown

in Figure 7.

Figure 7 reports the OLS and CG estimates of ρθ. The OLS estimate is obtained from a

univariate regression using the data over sample period 1975Q1-2010Q1. This is consistent

18Although we set ρτ to zero so as to isolate the effect of learning a positive ρθ, similar results obtain

when the land price shock process has some autocorrelation. More precisely, unreported simulations show

that assuming large persistence in the process driving land price shocks helps the RE model to predict a

boom prior to 2007 but still does not produce a realistically large recession in 2008-09 under RE.
19We have also checked that ARMA processes do not better describe our ε-adjusted data on leverage.
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Figure 6: Estimated Leverage Innovations Over Time

(Constant-Gain Learning: Solid Red; RE: Dotted Blue)
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Figure 7: Estimates of Leverage Persistence ρθ Over Time

(Constant-Gain Learning: Solid Red; RE: Dotted Blue)
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with the notion that RE agents know the process governing leverage. The CG estimate

is obtained from the VAR estimation when learning agents use the full model to forecast

and update their beliefs in real time. Figure 7 partly replicates panel b) of Figure 1, to

which we also add the OLS estimate which is ρθ ≈ 0.9756. Although Figure 7 may seem

to imply that learning does not converge to rational expectations, it does so in the whole

sample period and also in theory, as the CG estimates converge in distribution to the RE

estimates. Figure 7 shows that learning agents overestimate the autocorrelation parameter
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consistently after 2002 and, more importantly, that their estimate drifts toward unit root.20

In particular, the model predicts that the VAR estimate of ρθ is around 0.9904 in 2008Q3

(which is the value agents are assumed to use in Section 3.1 to forecast about 2008Q4)

and 0.9914 in 2008Q4 before falling down. This means that when the negative leverage

shock of 2008Q4 occurs, learning agents think of leverage as essentially having unit root

and they expect any innovations at that time to be close to permanent. As a consequence,

deleveraging is much more severe than what would happen under RE and the resulting

outcome is reported in Figure 8.

Figure 8 shows that the model predicts a sizeable recession during the Great Recession

period, with a fall in output about 4.7% between 2007Q3 and 2010Q1 and a significant boom

prior to that. The learning model explains almost all the actual output drop reported by

the NBER to be about 5%, and it does much better than the RE model. The latter predicts

a continuous fall in output from 2000 to 2007 followed by a significant expansion over the

2007-2010 period, both features being at odds with the data. The major reason behind

such a stark contrast is that the RE model does not allow for belief revision, while the

latter feature precisely explains why learning agents were overestimating the impact of the

negative leverage shock in 2008Q4 and why this leads to a sizeable output fall at that time

in the model. Given that the model is overly too simple to fully account for the data,

our main claim here is that the learning model explains a sizeable fraction of the Great

Recession, while the RE model does not.21 To fully account for the fall in observed output

during the Great Recession, the model would need labor productivity to fall by about half

a percentage point, which is in the ballpark of estimated values.

In view of our theoretical results on countercyclical leverage reported in Section 3.2, it is

natural to ask whether the fact that leverage is procyclical aggravates the recession, which

is what intuition suggests. As a counter-factual, Figure 9 reports the output response

that occurs under mildly countercyclical leverage, with ε = −0.5 (implying that a 10%

fall in land price increases leverage by 5%). Comparing Figures 8 and 9 suggests that a

simple macroprudential policy may substantially attenuate the impact of leverage shocks

on aggregates under learning. In Figure 9, output would have decreased in 2010Q1 by only

half a percent relative to its level in 2007Q4, a very moderate fall compared to what really

happened.

5 Conclusion

A large part of business-cycle theory relies on the assumption that agents know all pa-

rameters governing the stochastic process underlying the disturbances that hit the economy.

This paper has shown how relaxing such an assumption in a simple model predicts that the

20Before 2002 agents would underestimate the persistence of the leverage shocks.
21Under the assumption that ε = 0, the fall in output is still about −2.3%.
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Figure 8: Model-Generated Great Recession

(Constant-Gain Learning: Solid Red; RE: Dotted Blue)
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Figure 9: Counter-factual Model-Generated Recession when ε = −0.5

(Constant-Gain Learning: Solid Red; RE: Dotted Blue)
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economy’s aggregates respond very differently to financial shocks when agents are gradu-

ally learning their environment, compared to rational expectations. More specifically, our

theoretical experiments with a calibrated model suggest that reasonable parameter config-

urations can lead to much larger amplification of the impact of shocks to leverage. This is

for instance the case when learning agents overestimate either the autocorrelation parame-

ter governing the persistence of leverage shocks or the long-run level of leverage. We have

provided evidence that both cases are not inconsistent with the US data prior to the Great

Recession, when borrowers probably believed that credit collateralized by real estate assets

was being permanently extended by the financial sector. In addition, the more empirically

oriented counterparts of our two theoretical experiments are informative about which as-

sumption better stands against the data. Our preferred model with agents updating their

estimates of the long-run level of leverage and of leverage persistence as new data arrive

is not unsuccessful in that respect. In particular, it predicts a sizeable fall in output from

peak to trough, as reported by the NBER, whereas the rational expectations model predicts

a continued, counter-factual expansion in 2008 and 2009. Our analysis could of course be

extended to incorporate other margins (e.g. capacity utilization, labor productivity) and

would be useful to measure the contribution of learning in middle-scale models like that

proposed by Christiano, Eichenbaum, Trabandt [12]. In addition, whether the boom-bust

and cyclical patterns in Garriga, Manuelli, Peralta-Alva [19] and He, Wright, Zhu [24] are

stable under learning remains an open question that should be addressed.

We believe that the main results of this paper may also be relevant for studying other

settings. For example, they are suggestive about how one could try to measure to what

extent unemployment variations are driven by beliefs formed by firms about either the per-

sistence of demand shocks or the steady-state level of demand, or both. Monetary policy
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perhaps provides still another example in which the beliefs formed by the private sector

about the persistence or about the long-run stance of monetary policy matter, in particular

when the economy hits the zero lower bound, as they could change the effects of policy on

the economy. These are but a few examples for which extensions of the setting used in this

paper could lead to fruitful research. In the same vein, another potential avenue for future

research would be to model how perceptions about the process driving uncertainty shocks

affect how those shocks propagate in the real economy. This requires solving higher-order

approximations of nonlinear models and we believe this calls for further inquiries.

A Appendix

A.1 Elastic Leverage: Simple Micro-Foundations

This section derives some simple micro-foundations for the assumption of elastic leverage

captured in (9). The case when leverage is procyclical (that is, ε > 0) obtains in a setting

with ex-post moral hazard and costly monitoring similar to Aghion et al. [2, p.1391]. Sup-

pose that the borrower has wealth QL and has access to investment opportunities, which

can be financed by credit in the amount B. If the borrower repays next period, his income

is I − (1 + R)B, where I is whatever income was generated by investing. If the borrower

defaults next period, his income is now I − pQL, assuming that he loses his collateral with

some probability p, which represents for example the frequency of foreclosures. Strategic

default is avoided provided that I − (1 +R)B ≥ I − pQL, that is, if pQL ≥ (1 +R)B. The

lender incurs a cost C(p)L when collecting collateral, with C ′(p) > 0 and C ′′(p) > 0, and

he chooses the optimal monitoring policy by solving:

max
p
pQL− C(p)L (22)

which gives Q = C ′(p). The higher the land price, the larger the incentives to increase effort

to collect collateral. Assuming now that the cost function is C(p) = φp1+1/ε/(1+1/ε), with

ε > 0, gives that p = (Q/φ)ε. Setting the scaling parameter φ = Q∗Θ−1/ε, where Q∗ is

steady-state land value and Θ is leverage, gives (9). Therefore, ex-post moral hazard leads

to procyclical leverage.

In contrast, countercyclical leverage obtains if government implements procyclical taxes

as follows. Suppose now that the lender gets (1− τ)pQL−C(p)L when monitoring, where

1 ≥ τ ≥ 0 is the tax rate. Under the assumption that the cost function is isoelastic, the

optimal p is now p = ((1− τ)Q/φ)ε. If the government sets time-varying taxes such that

1− τ = (Q/φ)−η/ε−1, for some η ≥ 0, then it follows that p = (Q/φ)−η and that leverage is

countercyclical. Note that this happens provided that the tax rate goes up when the land

price goes up.
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A.2 Log-Linearized Model in Levels

We now derive the log-linearized version of the set of equations (2)-(8) defining, together

with the laws of motion of leverage Θt = Θ
1−ρθΘρθ

t−1Ξt and of land price shock Tt = T ρτt−1Ψt,

intertemporal equilibria near steady state. In all equations below, lowercase letters denote

logs and x̃t denotes the log of Xt/X, where X is the steady-state value of Xt. For example,

k̃t ≡ kt − k, with kt = log(Kt) and k = log(K), so that lowercase variables without time

subscript are steady-state levels in log. Eliminating from the other equations Φt by using

(8) and Nt by using (5), one gets the following linearized equations corresponding to (2)-(8)

and the exogenous states’ transition equations, respectively:

K
Y k̃t −

B
Y b̃t = −C

Y c̃t−1 −
(1+R)B

Y b̃t−1 +
(
α+ α 1−α−γ

χ+α+γ + (1− δ)KY
)
k̃t−1 (23)

b̃t = (1 + ε)Et−1[q̃t] + θ̃t−1 (24)

C/Y

X/Y
c̃t +

1

σ
λ̃t =

1− α− γ
X/Y

ñt (25)

q̃t + τ̃t + λ̃t(1− µΘ) = βEt[τ̃t+1] + Et[q̃t+1]
(
β + Θ(1 + ε)(µ− β)

)
+ Et[λ̃t+1]

(
β(1−Θ) + γβ YQ

)
+ αγβ YQ(1 + 1−α−γ

χ+α+γ )Et[k̃t+1] + θ̃tΘ(µ− β)

(26)

λ̃t = Et[λ̃t+1]
(
β(1− δ) + αβ YK

)
+ αβ YK (α− 1 + α 1−α−γ

χ+α+γ )Et[k̃t+1] (27)

(µ− β)φ̃t = µλ̃t − βEt[λ̃t+1] (28)

θ̃t = ρθθ̃t−1 + ξt (29)

τ̃t = ρτ τ̃t−1 + ψt (30)

where τ̃t = log(Tt) = τt as the steady state value of Tt is set to one by assumption.

Define P ′t ≡ (bt, kt, θt, τt) and S′t = (ct, qt, λt, φt) the vectors of predetermined and jump

variables in log, respectively. Then equations (23)-(29) can be decomposed into two sub-

systems, each pertaining to Pt and St. The first block composed of (23), (24), (29) and

(30) can be written:

M0Pt = M1St−1 +M2Et−1[St] +M3Pt−1 +N0 + V1ξt + V2ψt (31)

where:

M0 =


1 0 0 0

−B
Y

K
Y 0 0

0 0 1 0

0 0 0 1

, M1 =


0 0 0 0

−C
Y 0 0 0

0 0 0 0

0 0 0 0

, M2 =


0 1 + ε 0 0

0 0 0 0

0 0 0 0

0 0 0 0

,

M3 =


0 0 1 0

−(1 +R)BY α+ α 1−α−γ
χ+α+γ + (1− δ)KY 0 0

0 0 ρθ 0

0 0 0 ρτ

,



29

N0 =


b− (1 + ε)q − θ

K
Y k + RB

Y b+ C
Y c− (α+ α 1−α−γ

χ+α+γ + (1−δ)K
Y )k

(1− ρθ)θ
0


and V ′1 = (0, 0, 1, 0), V ′2 = (0, 0, 0, 1). Note that (23) and (24) are the linearized, lagged

versions of (2) and (3).

The second block (25)-(28) can be written:

M4St = M5Et[St+1] +M6Pt +M7Et[Pt+1] +N1 (32)

where:

M4 =


0 1 1− µΘ 0

0 0 1 0
C/Y
X/Y 0 1/σ 0

0 0 −µ µ− β

, M5 =


0 β + Θ(1 + ε)(µ− β) β(1−Θ) + γβ YQ 0

0 0 β(1− δ) + αβ YK 0

0 0 0 0

0 0 −β 0

,

M6 =


0 0 Θ(µ− β) −1

0 0 0 0

0 α(1−α−γ)
(χ+α+γ)X/Y 0 0

0 0 0 0

, M7 =


0 αγβ YQ(1 + α 1−α−γ

χ+α+γ ) 0 β

0 αβ YK (α− 1 + α 1−α−γ
χ+α+γ ) 0 0

0 0 0 0

0 0 0 0

,

N1 =


q(1− β −Θ(1 + ε)(µ− β)) + λ(1−Θµ− β(1−Θ)− βγ YQ)− αγβ YQ(1 + α 1−α−γ

χ+α+γ )k −Θ(µ− β)θ

λ(1− β(1− δ)− αβ YK )− αβ YK (α− 1 + α 1−α−γ
χ+α+γ )k

C/Y
X/Y c+ λ

σ −
α(1−α−γ)

(χ+α+γ)X/Y k

(µ− β)(φ− λ)

.

Finally, substituting the expression of Pt from (31) in (32) and piling up the resulting

two blocks of equations allows one to rewrite the system as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (33)

where X ′t = vec(S′t, P
′
t) and:

A =

(
M−14 M6M

−1
0 M1 M−14 M6M

−1
0 M3

M−10 M1 M−10 M3

)
, B =

(
M−14 M6M

−1
0 M2 O4

M−10 M2 O4

)
,

C =

(
M−14 M5 M−14 M7

O4 O4

)
, D =

(
M−14 M6M

−1
0 V1

M−10 V1

)
, F =

(
M−14 M6M

−1
0 V2

M−10 V2

)
,

N =

(
M−14 N1 +M−14 M6M

−1
0 N0

M−10 N0

)
where O4 is a 4-by-4 zeroes matrix.

A.3 Extension: Closed-Economy Model with Endogenous Interest Rate

The purpose of this appendix is to show that, similar to the open-economy model de-

veloped in Section 2, learning generates amplification in a closed-economy version with



30

domestic borrowers and lenders and endogenous interest rate.

Let us now assume that lenders are domestic agents (instead of foreign countries as in

Section 2), whose unique role is to provide loans to borrowers. Following Iacoviello [26],

lenders derive utility from consumption and land holdings, and they get interest income

from last period’s loan payments. As discussed in Pintus and Wen [44], lenders may be

interpreted as financial intermediaries. The representative lender solves:

maxE0

∞∑
t=0

µt
{

(C lt)
1−σc − 1

1− σc
+ ψ

(Llt)
1−σl − 1

1− σl

}
(34)

with σc, σl, ψ all strictly greater than zero and µ ∈ (0, 1), subject to the budget constraint:

C lt +Qt(L
l
t+1 − Llt) +Bt+1 = (1 +Rt)Bt (35)

where C lt and Llt denotes the lender’s consumption and land holdings, respectively, Qt is

the land price, Bt+1 is the new loan. The interest rate Rt is now endogenous and it is

determined by the equality between the demand and supply of loans.

The first-order conditions obtained from (34)-(35) with respect to consumption, land,

and lending are, respectively:

(C lt)
−σc

= χt (36)

χtQt = µEt[χt+1Qt+1] + µψ(Llt+1)
−σl

(37)

χt = µEt[χt+1(1 +Rt+1)] (38)

where χt is the Lagrange multiplier of constraint (35) in period t.

Assuming that lenders’ utility is linear in consumption (that is, σc = 0), one gets from

(36) that in any rational expectations equilibrium χt = 1 for all t ≥ 0 so that, in view

of (38), the interest factor is constant and given by 1 + R = 1/µ. As in the small-open

economy model developed in Section 2, the interest rate is constant and the land price

moves over time.

The borrower side of the model is still described by (1), (2) and (3), as in Section 2, with

the addition that the total amount of land is now divided between lenders and borrowers

according to:

Lt + Llt = L̄.

where L̄ is the fixed supply of land. How exactly is land divided depends on both the

sequence of land price and the lender’s preferences, as reflected in the first-order condition

(37). In addition, the representative borrower’s first-order conditions are given by (4)-(8).

As in Section 2, if µ ∈ (β, 1), then the borrower’s credit constraint (3) is binding. Therefore,

the main difference is that the closed-economy model allows some reallocation of land from

lenders to borrowers when a shock hits the economy. This is why collateral constraints gen-

erate boom-bust patterns even when both the land price and the interest rate are constant

over time (see Pintus and Wen [44] for a complete analysis). Under our calibration (see
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Figure 10: Ouput Response to a −5% Leverage Shock in Model with Endogenous Interest

Rate (Learning: Solid Red; RE: Dotted Blue)
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Table 1), however, the effect of land reallocation is quantitatively unimportant because the

land share γ is reasonably small. To ease comparison with Figure 2, Figure 10 reports the

response of output in the model when the endogenous interest rate is constant (that is,

when σc = 0). Output amplification is more than twice larger under learning, compared

to rational expectations. When the lender’s utility for consumption no longer exhibits risk

neutrality, output amplification remains much larger under learning provided that σc is not

too large. For example, if we assume that the lender is less risk averse than the borrower

and that σc = 0.5, output amplification is almost twice as big under learning. Such ro-

bustness reflects the result that in this class of models, the borrowing interest rate is not

much volatile if the lender’s utility function is between linear and logarithmic. It follows

that amplification due to learning arises as long as lenders are not too risk averse.

A.4 Learning Procedure of VAR Model

A.4.1 VAR Estimation

Denoting X ′t = vec(S′t, P
′
t) the system can be written as before:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (39)

where A, B, C, D, F and N are given in Appendix A.2. The rational expectations solution

has a VAR form:

Xt = MXt−1 + H + Gξt + Jψt. (40)

Given this form of equilibrium, the law of motion of endogenous variables can be represented
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using Et−1Xt = MXt−1 + H and EtXt+1 = MXt + H as:

Xt = AXt−1 + B [MXt−1 + H] + C [MXt + H] + N + Dξt + Fψt, (41)

or

Xt = [I−CM]−1 [A + BM]Xt−1 + [I−CM]−1 [BH + CH + N]

+ [I−CM]−1 [Dξt + Fψt] ,

Matrices M, H, G, and J are given by:

M = [I−CM]−1 [A + BM] (42)

H = [I−CM]−1 [BH + CH + N] (43)

G = [I−CM]−1 D (44)

J = [I−CM]−1 F (45)

To estimate the VAR we represent the model as

Xt = ΩZt−1 + Σt, (46)

where Z ′t−1 = [1′, X ′t−1] and Ω = [H M].

The estimator for Ω equals

Ω̂ = XZ ′(ZZ ′)−1, (47)

and its time T estimates, Ω̂T , can be computed from

Ω̂T =

(
1

T

T∑
t=2

XtZ
′
t−1

)(
1

T

T∑
t=2

Zt−1Z
′
t−1

)−1
. (48)

The recursive OLS updating takes form of

Ω̂T+1 = Ω̂T + ν
(
XT+1 − Ω̂TZT

)
Z ′TR−1T+1 (49)

and

RT+1 = RT + ν
(
ZTZ

′
T −RT

)
(50)

given constant gain ν > 0. Equations (49) and (50) show how the estimates of matrix Ω are

updated as new data become available. In the above expression, XT+1−Ω̂TZT corresponds

to a forecast error made using last period estimates.

A.4.2 Learning

Assume agents re-estimate the consistency with the RE model each period and use their

estimates to make forecasts. These forecasts affect the behavior of the economy through

equation (39).
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Agents’ perceived low of motion is

Xt = MXt−1 + H + Σt = ΩZt−1 + Σt. (51)

The forecasts agents make use the estimates of this PLM over available data. Since Xt

depends on agents’ forecasts (so it is not available at time t regression) at time t agents

have run the regression:

EtXt+1 = Mt−1Xt + Ht−1 = Ωt−1Zt (52)

Et−1Xt = Mt−2Xt−1 + Ht−2 = Ωt−2Zt−1 (53)

where now we allow agents to depart from running simply OLS regression (least-squares

learning) and use constant gain,

Rt = Rt−1 + νt
(
Zt−1Z

′
t−1 −Rt−1

)
Ωt = Ωt−1 + νt (Xt −Ωt−1Zt−1)Z

′
t−1R

−1
t .

Substituting in agents’ expectations, we can write the actual law of motion as

Xt = AXt−1 + B [Mt−2Xt−1 + Ht−2] + C [Mt−1Xt + Ht−1] + N + Dξt + Fψt (54)

or

Xt = [I−CMt−1]
−1 [A + BMt−2] + [I−CMt−1]

−1 [CHt−1 + BHt−2 + N]

+ [I−CMt−1]
−1 [Dξt + Fψt]

(55)

There is a mapping {M,H} = T (M,H) from PLM to ALM,

TM(M,H) = [I−CM]−1 [A + BM] (56)

TH(M,H) = [I−CM]−1 [BH + CH + N] . (57)

Rational expectations equilibrium is a fixed-point of this mapping:

Mre =
[
I−CMre]−1 [A + BMre] . (58)

Conditional on Mre we can solve for Hre:

Hre =
[
I−

[
I−CMre]−1 (B + C)

]−1 [
I−CMre]−1 N. (59)

Adapting Proposition 10.3 from Evans and Honkapohja [15], we check that all eigenvalues

of DTM(M,H) and DTH(M,H) have real parts less than 1 when evaluated at the fixed-

point solutions of the T -map (19), that is, M = Mre and H = Hre. Using the rules for

vectorization, we get:

DTM(Mre,Hre) = ([I8 −CMre]
−1

[A + BMre])
′
⊗ [I8 −CMre]

−1
C

+ I8 ⊗ [I8 −CMre]
−1

B

DTH(Mre,Hre) = [I8 −CMre]
−1

[B + C].
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