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Abstract
Background: Organisms are capable of developing different phenotypes by altering the genes they
express. This phenotypic plasticity provides a means for species to respond effectively to
environmental conditions. One of the most dramatic examples of phenotypic plasticity occurs in
the highly social hymenopteran insects (ants, social bees, and social wasps), where distinct castes
and sexes all arise from the same genes. To elucidate how variation in patterns of gene expression
affects phenotypic variation, we conducted a study to simultaneously address the influence of
developmental stage, sex, and caste on patterns of gene expression in Vespula wasps. Furthermore,
we compared the patterns found in this species to those found in other taxa in order to investigate
how variation in gene expression leads to phenotypic evolution.

Results: We constructed 11 different cDNA libraries derived from various developmental stages
and castes of Vespula squamosa. Comparisons of overall expression patterns indicated that gene-
expression differences distinguishing developmental stages were greater than expression
differences differentiating sex or caste. Furthermore, we determined that certain sets of genes
showed similar patterns of expression in the same phenotypic forms of different species.
Specifically, larvae upregulated genes related to metabolism and genes possessing structural activity.
Surprisingly, our data indicated that at least a few specific gene functions and at least one specific
gene family are important components of caste differentiation across social insect taxa.

Conclusion: Despite research on various aspects of development originating from model systems,
growth in understanding how development is related to phenotypic diversity relies on a growing
literature of contrasting studies in non-model systems. In this study, we found that comparisons of
patterns of gene expression with model systems highlighted areas of conserved and convergent
developmental evolution across diverse taxa. Indeed, conserved biological functions across species
implicated key functions related to how phenotypes are built. Finally, overall differences between
social insect taxa suggest that the independent evolution of caste arose via distinct developmental
trajectories.
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Background
A fundamental goal of the burgeoning field of evolution-
ary developmental biology is to understand how differ-
ences in gene expression contribute to phenotypic
diversity. Phenotypic plasticity, the ability of a single gen-
otype to produce alternate forms of morphology, physiol-
ogy or behavior in response to environmental conditions
[1-3], provides a unique opportunity to investigate envi-
ronmental influence on gene expression. Phenotypic plas-
ticity is taxonomically widespread and usually results in
continuous phenotypic variation [2,4]. However, some
organisms exhibit phenotypic plasticity such that two or
more discrete alternative phenotypes (without intermedi-
ate forms) are produced. This type of variation is called a
polyphenism [5]. Because the phenotypic differences that
exist among morphs can arise from an identical genome,
polyphenisms provide an ideal means to explore how dif-
ferential gene expression drives phenotypic diversity [6].

Highly social hymenopteran insects (ants, social bees, and
social wasps) present one of the most striking examples of
polyphenism. Hymenopteran queens, workers, and males
all possess the same genes (although females are diploid
and males are haploid), unlike many other animals,
where sex chromosomes play a role in sex determination.
Therefore, the phenotypic differences among hymenop-
teran social insect castes, as well as sexes, are derived from
variation in gene expression.

In this study, we investigated the molecular underpin-
nings involved in the development of the social wasp
Vespula squamosa. Vespula wasps are a particularly good
taxon in which to study phenotypic evolution, for several
reasons. First, Vespula wasps display distinct female castes;
queens differ from workers in size, color, behavior, body
proportions, and physiology [7,8] (Figure 1). Second,
Vespula wasps display remarkable similarities to Apis bees,
although the two taxa are only distantly related [9]. More-
over, the complex caste and social systems found in the
two taxa arose via independent evolutionary events. This
point is of fundamental importance, because comparative
analysis of development in Vespula and Apis will reveal if
analogous environmentally induced phenotypes are gen-
erated through similar patterns of gene expression.
Finally, Vespula queens and workers are reared in distinct
cells; this key feature allows the developmental fate of lar-
vae to be known very early in ontogeny [7].

This study addressed the following three important ques-
tions related to the evolution and development of queens,
workers and males in Vespula wasps:

(i) How do patterns of gene expression differ among
developmentally distinct phenotypes?

(ii) Are sex-specific developmental patterns similar across
insect species?

(iii) Do caste-specific developmental patterns display con-
vergent evolution?

Results and discussion
Expression patterns and developmental stage
The most striking result from our data is that developmen-
tal stage (i.e., larva, pupa, and adult) plays a much larger
role in establishing patterns of gene expression than either
caste or sex (Figure 2). In fact, developmental time is the
critical factor in grouping the libraries by overall expres-
sion pattern. Thus, individuals of the same developmental
age express many genes in common regardless of their
caste or sex.

Which genes contribute to the differences among V. squa-
mosa libraries and thus provided insight into the molecu-
lar processes associated with development in this taxon? A
general χ2 test (significance threshold at p < 0.01; [10])
identified 52 genes that were differentially expressed
among libraries (Table 1). For example, hexamerin-like
storage proteins (VSQ019, VSQ232, VSQ233, VSQ292;

V. squamosa developmental pathways and stagesFigure 1
V. squamosa developmental pathways and stages. Haploid 
eggs develop into males. Diploid eggs give rise to workers 
and queens.
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Table 1), which have been implicated in the development
of other insect species (see below), also showed a distinc-
tive pattern of upregulation during the late larval stages of
V. squamosa. Additionally, the expressed sequence tags
(ESTs) VSQ318 and VSQ031 are both members of the
odorant-binding protein family (Table 1), which exhibit
distinctive patterns of expression, falling along develop-
mental lines. Interestingly, differentially expressed odor-
ant-binding proteins have been implicated as key
regulators of social behavior in other social insects [11].

Two other genes show patterns of expression similar to
those observed in other species. First, VSQ445, which is
homologous to the German cockroach major allergen Bla
g 1, is upregulated in adult females, as is the case in cock-
roaches [12]. Second, VSQ709, which is upregulated in
queen eggs, most closely matches the Pisum sativum puta-
tive senescence-associated protein. Surprisingly, Sharf et
al [13] found that the same gene homolog was upregu-
lated in immature reproductives of the termite Reticuli-
termes flavipes. They suggest that this gene may play a role
in ribosomal filtering [14], owing to the similarity of R.
flavipes (and VSQ709) transcript to 28s rRNA-like
sequences.

Finally, several genes of unknown function or those with
low or no known homology also showed characteristic
expression patterns at particular developmental stages.
For example, both VSQ056 and VSQ058 were upregulated
during the early and late larval developmental stages,
whereas VSQ943 exhibits a striking pattern of upregula-
tion during the female pupal stages (Table 1). The role of
these genes is currently unknown, but their expression
patterns indicate that further research into their functions
is warranted.

The general expression patterns found in V. squamosa sup-
port previous studies that have investigated gene-expres-
sion patterns among developmental stages. For example,
Mathavan et al [15] found clearly demarcated transcript
clusters in five different developmental stages during
embryogenesis of the zebrafish. Wagner et al [16] also
found an orderly progression in transcription through
time during embryogenesis of the mouse. Working in a
taxon more closely related to wasps, Arbeitman et al [17]
discovered that the major breaks in gene-expression clus-
tering of Drosophila melanogaster occurred between life
stages. Similar to our results, Arbeitman et al found that
expression patterns for both male and female adults
grouped closely together despite the apparent morpholog-
ical, physiological and behavioral differences that exist
between sexes. In contrast to our results, they found that
larval expression was more similar to that of adults,
whereas expression of embryos was more similar to that
of pupae. The V. squamosa data suggest a more temporal
pattern, with EST frequencies more similar between adults
and pupae than between adults and larvae.

To investigate patterns of gene expression in V. squamosa
further, we used information from the gene ontology
(GO) classifications [18]. Use of GO classifications ena-
bled us to determine whether there were conserved bio-
logical functions across species that demonstrated how
phenotypes were built. In general, gene function may be
remarkably conserved, with broad temporal patterns in
gene class utilization showing similar patterns through
mouse embryogenesis and development of D. mela-
nogaster [19]. To determine the extent to which conserved
biological functions persist across species, we searched for
GO similarities to other insects.

Goodisman et al [20] compared gene function similarities
between Camponotus festinatus ants and D. melanogaster,
and found that some patterns persisted between these spe-
cies. In particular, the larvae of both species upregulated
genes that were involved in protein production and pos-
sessed structural activity relative to those in adults. For
both of these GO functions, the patterns hold true in V.
squamosa when ESTs that show significant similarity to D.
melanogaster genes are considered. The mean ± SE number

Relationships among V. squamosa life stages based upon EST frequenciesFigure 2
Relationships among V. squamosa life stages based upon EST 
frequencies. Colored dots indicate where libraries derived 
from developmentally similar stages cluster. Q, queen; W, 
worker; M, male; E, egg; LE, early larval instars; LL, late larval 
instars; P, pupa; A, adult.
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WP QP MP WA QA MA p

0 0 0 1 0 0 0.00239

0 0 0 0 1 0 0.00755

0 0 0 0 0 0 <0.0001

0 0 0 0 0 1 <0.0001

0 0 0 0 0 0 0.00794

2 0 0 6 3 0 0.00226

0 0 0 5 0 0 <0.0001

0 0 0 0 0 0 0.00123

0 1 0 3 1 0 <0.0001

0 0 0 0 0 0 <0.0001

0 0 0 0 0 0 <0.0001

0 0 1 0 0 2 <0.0001

0 1 1 0 0 0 0.00935

0 0 0 0 0 0 0.00662

0 0 0 0 0 0 0.00364

0 0 0 0 0 0 <0.0001

0 0 0 0 0 0 <0.0001

0 0 0 1 0 0 0.00296

0 0 0 0 0 0 0.00337

0 0 0 0 0 0 <0.0001

0 0 0 0 0 0 0.00337

0 0 0 0 0 0 0.00337

0 0 0 0 0 0 0.00337
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Table 1: Expression levels for 52 genes present at significantly different frequencies (p < 0.01) across cDNA libraries. Identity of putat
value of each match are presented. Raw number of sequences found in each library and the p value indicating significant differentiatio

Gene ID GenBank ID Homolog e-value QE WLE QLE WLL QLL

VSQ001 EG326522 Ctenocephalides felis serpin 1e-021 0 0 0 3 0

VSQ005 EG326963 Dermatobia hominis NADH dehydrogenase subunit 1 2e-034 0 0 0 3 3

VSQ018 EG326808 Blattella germanica similar to major allergen Bla g 1.02 5e-035 0 3 2 7 22

VSQ019 EG326728 Apis mellifera similar to arylphorin-like hexamerin 1e-18 1 0 0 11 31

VSQ020 EG326434 Apis mellifera similar to glutamate receptor IB 6e-039 0 0 0 2 0

VSQ031 EG326500 Polistes dominulus odorant-binding protein OBP-1 precursor 8e-029 0 0 0 1 0

VSQ040 EG325267 Tetraodon nigroviridis unnamed protein product 3e-08 0 0 0 0 0

VSQ048 EG326323 Human herpesvirus 6 U88 1e-28 0 1 5 0 2

VSQ050 EG326528 Drosophila melanogaster TPA: HDC07203 8e-12 1 9 8 0 2

VSQ051 EG325164 No homology 0 5 15 0 2

VSQ056 EG326606 No homology 2 1 4 0 22

VSQ058 EG326432 No homology 0 16 4 3 7

VSQ074 EG327162 Apis mellifera similar to ribosomal protein L35A 3e-55 0 0 4 0 0

VSQ089 EG326517 No homology 0 3 1 0 1

VSQ096 EG325485 Drosophila melanogaster RNA polymerase II accessory factor rpb4 5e-47 0 0 3 0 0

VSQ122 EG326342 Apis mellifera similar to ENSANGP00000015316 2e-29 0 2 16 0 3

VSQ156 EG326487 Anopheles gambiae ENSANGP00000014145 5e-13 0 4 1 0 0

VSQ169 EG326695 Drosophila pseudoobscura GA11614-PA 7e-70 0 0 1 1 5

VSQ173 EG326465 Apis mellifera similar to glucose dehydrogenase 7e-67 0 2 0 0 0

VSQ176 EG326537 Apis mellifera similar to ribosomal protein S5 1e-90 0 3 0 0 0

VSQ185 EG326415 Ixodes scapularis beta-adaptin 1e-41 0 2 0 0 0

VSQ211 EG326474 No homology 0 2 0 0 0

VSQ212 EG326484 Anopheles gambiae ENSANGP00000023258 6e-07 0 2 0 0 0

VSQ232 EG326810 Apis mellifera hexamerin 70b 6e-094 0 0 0 3 2

VSQ233 EG326613 Camponotus festinates hexamerin 2 4e-054 0 0 0 0 3

VSQ249 EG326612 No homology 0 0 0 2 4

VSQ254 EG325941 Apis mellifera short-chain dehydrogenase/reductase 3e-41 0 0 0 0 2

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326522
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326963
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326808
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326728
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326434
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326500
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325267
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326323
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326528
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325164
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326606
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326432
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG327162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326517
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325485
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326342
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326487
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326695
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326465
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326537
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326415
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326474
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326484
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326810
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326613
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326612
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325941
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0 0 0 0 0 1 0.00163

0 0 0 0 0 0 0.00794

0 0 0 0 0 0 0.00794

7 4 6 1 1 2 0.00158

0 0 0 4 0 0 0.00648

0 3 0 0 0 0 0.00326

0 0 0 0 0 0 0.00794

0 0 0 0 0 6 <0.0001

0 0 0 0 0 3 0.00014

0 0 0 0 0 9 <0.0001

0 0 0 0 3 1 0.00376

0 0 0 5 1 1 0.00311

4 4 0 0 1 0 <0.0001

0 0 0 5 1 0 0.00059

0 0 0 4 0 0 0.00101

0 0 1 4 0 0 0.00847

0 0 0 0 0 0 0

0 0 0 0 0 0 0.00066

0 0 3 0 0 0 0.00677

6 0 2 0 0 0 0

17 29 0 0 0 0 0

2 4 0 0 0 0 0.00016

1 3 0 0 0 0 0.00346
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VSQ280 EG326741 Apis mellifera similar to apontic CG5393-PB, isoform B 6e-21 0 0 0 0 1

VSQ292 EG326813 Apis mellifera hexamerin 70b 9e-32 0 0 0 3 1

VSQ296 EG326805 Vespula vulgaris cytochrome b 1e-067 0 0 0 3 0

VSQ303 EG326821 Lysiphlebus testaceipes ribosomal protein L3 variant 1 3e-68 0 0 0 2 0

VSQ307 EG326924 Apis mellifera similar to eukaryotic initiation factor 4A 6e-74 0 0 0 2 0

VSQ318 EG326264 Drosophila yakuba odorant-binding protein 56e 8e-15 2 0 0 1 0

VSQ338 EG325431 Apis mellifera similar to bellwether CG3612-PA isoform 1 e-105 0 0 0 1 0

VSQ349 EG325944 Tenebrio molitor 86 kDa early-staged encapsulation inducing 
protein

5e-14 0 0 0 1 0

VSQ352 EG326946 No homology 0 0 0 2 0

VSQ363 EG326968 No homology 0 0 0 0 0

VSQ378 EG326993 No homology 0 0 0 0 0

VSQ389 EG327083 No homology 0 0 0 0 0

VSQ437 EG327159 Vespa crabro chemosensory protein 4e-61 0 0 0 0 0

VSQ445 EG325384 Periplaneta americana Cr-PII allergen 8e-16 0 0 0 0 0

VSQ463 EG326174 No homology 0 0 0 0 0

VSQ501 EG325247 Apis mellifera similar to CG14934-PA 2e-77 0 0 0 0 0

VSQ565 EG325238 No homology 0 0 0 0 0

VSQ581 EG325293 Apis mellifera similar to kazal-type proteinase inhibitor 9e-026 0 0 0 0 0

VSQ682 EG325660 Lysiphlebus testaceipes ribosomal protein L3 variant 1 2e-76 7 0 0 0 0

VSQ709 EG325659 Pisum sativum putative senescence-associated protein 4e-15 3 0 0 0 0

VSQ803 EG325675 Anopheles gambiae ENSANGP00000011747 9e-33 0 0 0 0 0

VSQ850 EG326242 No homology 0 0 0 0 0

VSQ943 EG326146 Human coxsackievirus polyprotein 4e-05 0 0 0 0 0

VSQ954 EG326048 No homology 0 0 0 0 0

VSQ955 EG325987 Apis mellifera hypothetical protein XP_397583 3e-12 0 0 0 0 0

EST, expressed sequence tag.
Q, queen; W, worker; M, male; E, egg; LE, early larval instars; LL, late larval instars; P, pupa; A, adult.

Table 1: Expression levels for 52 genes present at significantly different frequencies (p < 0.01) across cDNA libraries. Identity of putat
value of each match are presented. Raw number of sequences found in each library and the p value indicating significant differentiatio

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326741
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326813
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326805
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326821
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326924
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326264
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325431
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325944
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326946
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326968
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326993
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG327083
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG327159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325384
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326174
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325247
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325238
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325293
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325660
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325659
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325675
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326242
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326146
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG326048
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EG325987
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of transcripts associated with protein metabolism is 51.5
± 15.5 in larvae and 25.3 ± 4.8 in adults, and the mean ±
SE number of transcripts possessing structural activity is
16.5 ± 4.5 in larvae and 5.3 ± 0.7 in adults (Figure 3). As
with other studies, our results suggest that genes expressed
throughout immature stages of holometabolous insects
are associated with growth.

Expression patterns and sex differences
Sex influences patterns of gene expression in V. squamosa.
Within both branches of the neighbor-joining tree that
contain both sexes (pupal and adult), the male patterns of
gene expression are more different and hence diverge
before the two female castes (Figure 2). Thus, despite the
dramatic phenotypic differences between queens and
workers, they are still more similar to each other in terms
of gene expression than either is to males. This result is
consistent with studies in Caenorhabditis elegans, Anopheles
gambiae, and D. melanogaster, which have demonstrated
that the sexes differ substantially in the genes they express
[21-23].

Our analysis of sequenced ESTs uncovered another inter-
esting pattern regarding sex in V. squamosa. We found that
the proportion of ESTs matching known sequences in
GenBank varied significantly among libraries (G10 =

102.60; p < 0.0001). Specifically, the differences in the
proportion of genes displaying homology in the adult
male and adult female libraries is striking (Figure 4), with
adult females exhibiting significantly higher (G1 = 25.51,
p < 0.001) numbers of homologs (adult workers 69%,
adult queens 53%) compared with adult males (26%).
One possible explanation for these differences is that
genes expressed in adult males evolve particularly rapidly
relative to those expressed in females and at other devel-
opmental stages. This result is consistent with studies in
other taxa that have shown that male-specific genes evolve
rapidly [24-26]. Indeed, Singh and Kulathinal [27]
deduced from comparative analyses of genome evolution
that much de novo gene evolution occurs among male-
biased genes. Our data indicate that similar processes may
operate in social insects. Whether such putatively rapidly
evolving genes are exclusively or primarily expressed in
sex-specific tissues, as has been found to be the case in
other taxa [24], represents an area of future research.
Regardless, our suggestion that genes expressed in males
may evolve differently from those expressed in females is

Distribution of GenBank Blast matches (expectation (e) val-ues < 10-5) within each V. squamosa cDNA libraryFigure 4
Distribution of GenBank Blast matches (expectation (e) val-
ues < 10-5) within each V. squamosa cDNA library. Q, queen; 
W, worker; M, male; E, egg; LE, early larval instars; LL, late 
larval instars; P, pupa; A, adult.

Proportion of transcripts from 11 cDNA libraries falling into different categories for (A) biological processes and (B) molecular function gene ontologyFigure 3
Proportion of transcripts from 11 cDNA libraries falling into 
different categories for (A) biological processes and (B) 
molecular function gene ontology. Q, queen; W, worker; M, 
male; E, egg; LE, early larval instars; LL, late larval instars; P, 
pupa; A, adult.
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notable because it points to the importance of males in
the evolution of social-insect populations, a subject that
until recently has been largely ignored [28].

Expression patterns and development of caste
The defining feature of social insects is the division of
individuals into reproductive and sterile castes [29].
Therefore, considerable research has focused on identify-
ing genes that are differentially expressed between castes.
For example, the molecular basis of caste differences has
been investigated in bees [30-35], ants [36,37], wasps
[38], and termites [13,39-41]. Overall, these studies repre-
sent at least five independent evolutionary events leading
to sociality (summarized by Sumner et al [38]).

How does caste development in V. squamosa compare
with these other taxa? Four major trends arise from our
analyses. First, as might be expected, EST chord distances
among castes at earlier life stages are more similar (WLE-
QLE = 1.08) than at later life stages (WA-QA distance =
1.23), with intermediate stages at intermediate distances
(see Table 1 for library definitions). This result indicates
that as castes diverge phenotypically, physiologically, and
behaviorally, patterns of gene expression also become
increasingly divergent.

Second, our data contrast with a pattern of development
identified in honeybees. Evans and Wheeler [31] sug-
gested that patterns of expression of worker-destined lar-
vae and younger bipotent larvae were more similar than
between queen-destined larvae and bipotent larvae in A.
mellifera. However, in V. squamosa, we found the opposite
pattern when either early worker larvae (chord distances:
WLE-WLL = 1.28, WLE-QLL = 1.21) or early queen larvae
(chord distances: QLE-WLL = 1.29, QLE-QLL = 1.16) were
used in the comparison. Thus, the trends in our data indi-
cate that young larvae are more similar to queen-destined
larvae than to worker-destined larvae in V. squamosa.
Additionally, the observed differences in chord distances
between worker or queen early larvae and worker or
queen late larvae suggest that even though young larvae
(i.e., WLE and QLE) are potentially bipotent, they may
express different genes.

Third, despite the differences in overall patterns of caste
differentiation mentioned above, some patterns of gene
function are conserved. Specifically, early queen larvae of
V. squamosa express more genes related to metabolism (G1
= 4.70, p < 0.05) than do similarly aged worker larvae (Fig-
ure 3). A similar pattern has been found in both the wasp
P. canadensis [38] and the bee A. mellifera [31]. It is unclear
why genes associated with metabolism show increased
expression only in certain stages of queen development. It
is possible that overexpression of metabolic genes early in
ontogeny is sufficient to spur rapid growth in Apis queens,

which develop faster than Apis workers. Similarly, Vespula
queens are fed more than Vespula workers in the early lar-
val instars [42], which may be a consequence of higher
metabolic rates at these early stages and may ultimately
lead to the large size differences observed between the
castes. Regardless, queen production seems to be associ-
ated with increased energy production in hymenopteran
social insects. This implies that gene function related to
caste development may be conserved.

Fourth, the hexamerin gene family, which plays a signifi-
cant role in caste differentiation in A. mellifera [30], B. ter-
restris [33] and R. flavipes [13,40,41], also shows
significant differential expression in V. squamosa
(VSQ019, VSQ232, VSQ233, VSQ292; Table 1). The aryl-
phorin-like hexamerin most highly expressed in V. squa-
mosa (VSQ019) is a methionine-rich member of the
hexamerin family that participates in the storage of amino
acids accumulated during larval development [43]. More-
over, as is the case in other social insect taxa, the different
hexamerin ESTs in V. squamosa exhibit different expres-
sion patterns between queen and worker castes. VSQ019
and VSQ233 are upregulated in queen-destined larvae of
V. squamosa, whereas VSQ232 and VSQ292 (both hexam-
erin 70b-like ESTs) are more highly expressed in the late
larvae of workers relative to queens. The similarity of this
gene-expression pattern among these species suggests that
some specific pathways are conserved during social-insect
evolution.

Conclusion
We conducted the first study to simultaneously address
the influence of developmental stage, sex, and caste on
patterns of gene expression. We found that patterns of
expression are more similar across castes for a specific
developmental stage than within castes at different stages.
Similar to other insect taxa, larvae of our study taxon V.
squamosa upregulate genes related to metabolism and pos-
sessing structural activity. Furthermore, our data provide a
provocative example of divergent selection pressures for
genes expressed differentially between the sexes. We also
discovered that V. squamosa and A. mellifera castes, which
arose via independent evolutionary events, may develop
through different trajectories. Nevertheless, at least a few
specific gene functions and at least one specific gene fam-
ily appear to be conserved components of caste differenti-
ation. Overall, our results illustrate how the study of
phenotypic diversity arising from patterns of gene expres-
sion can illuminate evolutionary effects of development
in animal taxa.

Methods
cDNA library construction, processing and assembling
We constructed 11 directional cDNA libraries from several
developmental stages of the wasp V. squamosa. The 11
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libraries contained copies of transcripts obtained from: (i)
eggs collected from queen cells; pooled female larvae
from the first three early larval instars sampled from (ii)
queen cells and (iii) worker cells; pooled female larvae of
the fourth and fifth late larval instars sampled from (iv)
queen cells and (v) worker cells; (vi) queen pupae; (vii)
worker pupae; (viii) male pupae; (ix) queen adults; (x)
worker adults; and (xi) male adults. The cDNA libraries
were synthesized using a commercial construction kit
(pBluescript® II XR cDNA Library Construction Kit; Strata-
gene, La Jolla, CA, USA). In total, 4224 independent
clones were isolated from these libraries, and 3388 single-
pass sequences were obtained using the SK primer. After
cloned sequences were filtered for vector contamination
and quality, we obtained 2144 expressed sequence tags
(ESTs; GenBank accession numbers: EG325041–
EG327184).

EST processing and assembling
These ESTs were grouped into clusters using the BLASTN
algorithm [44]. When sequences from all 11 libraries were
analyzed in parallel, 760 sequences were unique, and the
remaining sequences formed 294 clusters of two or more
sequences, giving a total of 1054 unigenes (Table 2).
Within each library, the mean ± SE number of ESTs was
194 ± 9.2 (range 147–233), and the frequency of private
ESTs was 0.38 ± 0.049 (Table 2) (range 16.8–66.3). Fur-
thermore, the gene diversity [45] for each library, which
represents the probability of drawing two distinct
sequences from a library by chance, ranged from 0.970 to
0.994, indicating that the libraries contained many
unique sequences (Table 2). BLASTX similarity searches
[44] indicated that 52% of all the ESTs showed similarity
to known sequences (e<10-5; Figure 4), a frequency not
substantially different from previous studies in other
Hymenoptera [20,46].

Digital gene-expression analysis
We clustered the 11 libraries using the neighbor-joining
method based on chord distances derived from library
EST frequencies in order to gain an understanding of how
patterns of gene expression were associated with develop-
ment [47]. Furthermore, we explored variation in the
genes expressed among libraries using digital methods
[48]. This approach uses large-scale non-normalized ran-
dom 3' -end cDNA library sequencing [49], but is extensi-
ble to any methodical sequencing strategy. The level of
expression within each tissue is estimated from the
number of cognate ESTs found in each library, under the
assumption that it is proportional to the transcript fre-
quencies [50,51]. These tests were conducted with the
software program IDEG6 [52]. Overall, these methods
may not provide accurate estimates of the absolute fre-
quencies of particular genes, if certain gene sequences are
subject to cloning biases. In addition, these techniques are
unlikely to detect genes expressed at low levels, such as
those with regulatory functions. Nevertheless, this
approach can be reliably used to detect genes differen-
tially expressed among libraries.
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Table 2: Numbers and clustering of ESTs among different V. squamosa libraries. n corresponds to the total number of ESTs sequenced 
per library. Contigs are ESTs represented multiple times while Singletons are ESTs present only once per library. Unigenes equal the 
total number of different ESTs in a library. Private EST's are sequences that occur only in that specific library. Gene diversity is the 
probability of drawing two distinct sequences from a library by chance.

Library QE WLE QLE WLL QLL WP QP MP WA QA MA Total

n 196 147 208 145 231 172 177 233 222 196 206 2133

Contigs 15 26 37 24 35 19 25 26 34 27 18 294

Singletons 151 68 94 94 61 108 83 170 158 116 112 760

Unigenes 166 94 131 118 96 127 108 196 192 143 130 1054

Private ESTs 114 37 50 53 33 65 46 135 120 82 88 823

Gene diversity 0.998 0.982 0.986 0.991 0.957 0.987 0.970 0.998 0.997 0.986 0.994

EST, expressed sequence tag.
Q, queen; W, worker; M, male; E, egg; LE, early larval instars; LL, late larval instars; P, pupa; A, adult
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