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ABSTRACT 
Curvature flows have been extensively considered from a de- 
terministic point of view. They have been shown to he useful 
for a number of applications including crystal growth, flame 
propagation, and computer vision. In some previous work 
[I], we have described a random particle system, evolving 
on the discretized unit circle, whose profile converges toward 
the Gauss-Minkowsky transformation of solutions of curve 
shortening flows initiated by convex curves. The present 
note shows that this theory may be implemented as a new 
way of evolving curves and as a possible alternative to level 
set methods. 

1. INTRODUCTION 

In some previous work Ben-Arous, Tannenbaum, and Zeitouni 
[I], described a stochastic interpretation of curve shorten- 
ing flows. This brought together the theories of curve evo- 
lution and hydrodynamical limits, and as such impacted on 
the growing use ofjoint methods from probability and pde's 
in image processing and computer vision. In this present 
note we will indicate how this tbeoly may be implemented 
to forge a novel stochastic curve evolution algorithm. 

Following [I], we will now set the background for our 
results, to which we refer the reader for all the technical de- 
tails. Let C(p, t) : S' x [O,T) H RZ he a family of emhed- 
ded curves where t parameterizes the family and p param- 
eterizes each curve. We consider stochastic interpretations 
of certain curvature drivenflows, i.e., starting from an ini- 
tial embedded curve CO@) we consider the solution (when it 
exists) of an equation of the form 

where ~ ( p ,  t) denotes the curyature and N denotes the in- 
ner unit normal of the curve C(., t) at p. Of particular in- 
terest is the case in which P(z) = &zU. Note that the case 
P(a) = x corresponds to the Euclidean curve shortening 
flow [31 while P(z) = z1/3 corresponds to the affine curve 
shortening, which is of strong relevance in computer vision 
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and image processing [5]. Since in both cases we get gradi- 
ent flows and resulting heat equations, a stochastic interpre- 
tation seems quite natural. 

We will be dealing with convex curves here and so we 
employ the standard parameterization via the Gauss map, 
that is fixing p = 8, the angle between the exterior normal 
to the curve and a fixed axis. It is well known that the Gauss 
map can he used to map smooth convex curves C (.) into pos- 
itive functions m(.) on S' such that Jsl eZ""7n(6')d6' = 0, 
and that this map can be extended to the Guuss-MinkowsXy 
bijection between convex curves with C(0) = 0 and posi- 
tive measures on S' with zero barycenter; see [2, Section 
81 for details. We denote by M $  the latter set of mea- 
sures. Under this parameterization, a convex curve C(0) can 
be reconstructed from a fi  E M $  by the formula C(6') = 
Jl eZ""p(d8) , using linear interpolation over jumps of the 
function C(6'). Further, whenever fi  possesses a strictly pos- 
itive density m(B)d6' then the curvature of the curve at 6 is 
&(e) = l/m(e). 

Another useful property in working with measures fi  E 
MO is that the evolution of the density m(.) takes a partic- 
ularly simple form: 

V ( z )  := 3 ( 1 / z ) .  (2) 

Our interest is in constructing stochastic approximations 
to the solutions of the equations (2). Approximations cor- 
responding to polygonal curves have been discussed in the 
literature under the name "crystalline motion"; see [7] for a 
description of recent results and references. The approach 
in [I]  is different and can he thought of as a stochastic crys- 
talline algorithm: we constmct a stochastic particle system 
whose profile defines an atomic measure on S', such that the 
corresponding curve is a convex polygon. Applying standard 
tools from hydrodynamic limits, it is proven in [l] that the 
(random) evolution of this polygonal curve converges, in the 
limit of a large number of particles, to curve evolution under 
the curve shortening flow. 

2. APPROXIMATIONS TO CURVATURE FLOWS 

We present in this section a general result concerning the 
existence and uniqueness of a certain class of quasilinear 
parabolic equations, and show how such equations are ap- 
proximations of the curve-shortening equations described 
above.The proofs may he found in [I]. 

Let 0, V : R+ I" R satisfy the following: 
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Assumption C 

(C-1) @ E C3(R+), v E C'(R+) 

(CA) For every L > 0 there exist constants c ~ , d r .  > 0 
such that 

(C-3) V(.) is boundedandV(0) 2 0 .  

Define ;he operator L : C'"(R+ x S') H C(R+ x 5'') as 

1 
Lp(t,x) = -a,P(t,z)+Za,,@(P)(t,2)+V(p(t,x)). (3) 

Proposition 1 Suppose @> V satisfy Assumption C, and let 
m(.) be Cz+p (SI) for some 1 2 p > 0, be a strictlypositive 
Junction. Then there exists a unique solution p E Cz+o(S') 
to the equation 

Lp(t, x) = 0 ,  p(0, z) = m(z) . (4) 

Furthec p(t,  x) is strictlypositive. 

Note that the curve shortening flow (2) is not covered by 
Proposition I, for the functions V ( x )  = @(z) = -x+ 
do not satisfy Assumption C (and indeed, the curve shorten- 
ing flow does possess a fmite blow-up time, contrary to the 
conclusion of Proposition 1). We thus wish to approximate 
this flow, e.g. by using functions of the form @,Jz) = 
( l / r )  - (1/(x + e'/*)") and V,,e(x) = -z/(z + 
(see Section 3.3). We thus establish next a convergence re- 
sult for solutions of quasilinear parabolic equations that ap- 
proximate curve-shortening equations. In what fotlows, set 

Theorem 1 Suppose Junctions @ E C2(R$), V E C1(R!) 
and m E C*+@(S') aregivensuch that m(.) is strictlyposi- 
five and (4) holds on [0, T )  with p strictlypositive. Let @ e  ~ V, 
saris& Assumption C and assume that @:, +!, V,  converge 
uniformlyon compactsubsets oJ(0, w)  to@', @ ' I ,  V .  Let Le 
denote the operator L with the Junctions @<, V,  substituted 
for the Junctions @, V .  andlet p.(t,x) satis& Lfpp,(t,x) = 
0, p,(O, z) = m(x) .  Then. for any 6 > 0, 

RO, = (0, w). 

P & X )  - limsup sup -- 
a-0 (t,r)E[O,T--d]xS' dt, 

~- P ( t > X )  - limsup sup 
r-0 (t,r)EIO,T-Q]xS1 f e ( t , x )  

For the proof, we refer to [ I ] .  Note that in Theorem I ,  we 
did not assume that @> V satisfy Assumption C. On the other 
hand, the existence and uniqueness of p'(t, z) is assured hy 
Proposition I .  

3. PARTICLE SYSTEMS AND APPROXIMATE 
FLOWS 

We construct in this section the paiicle systems alluded to 
above, prove their hydrodynamical limits, and relate them to 
approximate curvature flows. Again all the proofs may be 
found in [I].. 

3.1. Birth and Death Zero Range Particle Systems 

Let TN = Z / N Z  denote the discrete toms. Let g : W 3 

R+ (the jump rate, with g(0) = 0), b : W + R+ (the 
birth rate), d : N -t R+ (the death rate, with d(0) = 0) 
be given, and define the Markov generator on the particle 
configuration EN = WTN by 

( t N f ) ( q )  = N2(LOf)(o) + ( t l f ) ( V )  I f E C b ( E N )  I 

where 

We denote by p t , ~  the law of the process at time t ,  with 
initial law p o , ~ ,  under this Markovian semigroup. In order 
to state the main limit result of [l], we need to introduce the 
appropriate equilibrium measure. Define Z : R+ + R+ U 

{+m}byZ(p)  := Ck&whereg(k ) !  = g(l)" .g(k)  
and g(O)! = 1. Set D, = {p E R+ : Z(p) < cu}, and 
p* = sup{p : p E 'D,}. For any p E 'D,, we defme the 
probability measure Fv on N by, 

and set R(p) := p s , p  E 'D, (see [4, pg. 28-31] for 
background). 

The following lemma is true under certain boundedness 
assumptions on g(,); see [I] (Assumption A) for the exact 
statement. 

Lemma 1 (a) p' > 0,  R(p) f ,+pv. co, andfor each 
p < p' there exists a e( p) > 0 such that &, possesses 
exponential moments with parameter B(p). 

@) Set @(a) = R-'(a) andp, = pot,,. Then, a(.) is 
a smooth firnction with strictly increasing derivative, 
@'(O) E (O)w), and 

E P F . ( X )  = a> EPa(9(X)) = @(a) 
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(c) Set w, = PE' and let w , , ~  denote the restriction of U, 
to TN. Then W,>N is reversible, and hence invariant, 
for the Markov generator Lf. 

In the sequel, for any function h defined on N, we set 
@a) := Ep, (h (X) ) .  In particular, by Lemma 1,4(a) = 
@(a). We need below the followingassumptionon the initial 
law of our Markov evolution: 

Assumption B There exists a 6 > 0 and an m E Cz+6(S') 
strictly positive such that 

Set 

Let p(t ,s)  : [O,T] x S' H R+ denote a C'S'+~ strictly 
positive solution of the PDE 

V ( a )  = V + ( a ) - K ( a )  :=&a)-&).  

I 
.) = +Q(f)(t ,  Z ) + V ( f ) ( t >  .) 1 P(0, .) = m(z) 

( 5 )  
We are now ready to state the hydrodynamic limit result for 
the laws p t , ~ :  

Theorem 2 Let AssumptionsA of [ I ]  andAssumption B hold. 
Then. for any function G E C(S'). any 6 > 0, and any 
t E (0, TI, the following limit goes to zero: 

3.2. Stochastic curve shortening convergence 

Fixing next LY > 0, consider the functions @,(z) = -Ka, 
V,(z) = -z-*, and define the operator L ,  as in (3). Fix an 
m satisfying Assumption B, and let pa denote the solution 
of (4) with operator La, with blow-up time Tu, and associ- 
ated curve C,(t,Q). Let Sa,<, ba,e,d,,e satisfy Assumption 
A of [I], set @,,e and Vu,< as in Section 3.1. The following 
assumption is needed in order to relate the particle system 
with the curve shortening flow: 

Assumption D (S1)  a,,<, Vu,* satisfv Assumption C. 

(D-2) a:,,, converge unqormly on compactsub- 

The main result of [ I]  is the following: 

Theorem 3 LetC& : R+ x S' Y R+ denote the curve cor- 
responding to the particle sysfem defined above. Fix 6> 6' > 
0. Then the following limit converges to zero: 

sets of (0, w) to @;, @:, Vu. 

Iffurther C,(t, e) +*-T, 0, C,( t ,  Q) := Ofor t > To, and 
there exists a 20 = zo(a) such that @&(z) 2 0, V,,,(z) < 
0 for all 0 < t < z g .  then T, - 6 in (7) can be replaced by 
any deterministic constant T > 0. 

3.3. Approximate Euclidean curvature flows 

In this section we give the stochastic approximation of the 
Euclidean curvature flow. For the general curve shortening 
case, see [I]. We now present candidates for the functions 
b, d, g defining the particle systems of Section 3. I .  They re- 
late to an approximate version of the Euclidean curvature 
flow [I]: 

4. ALGORITHM AND SIMULATlONS 

4.1. Algorithms 

We assume that we have a system in state q E NTN at time 
to. We are given 4 rates depending on 4 possible events that 
can occur at a site i i: b;=birth, d;=death, g;+=jump to right, 
g;-=jump to left. We let E; := {b ; ,d ; ,  N2gi+, N*g,-} be 
the set of possible transition rates for system in state TJ at site 
i. We choose a possible event e; E E,, and its rate is given 
by X(TJ;, ei) := e;(Ve). Then the total rate at the given site i 
is found by summing rates of all possible events: 

Wwi) := ,%,e;) 
# < € E <  

Then there are two simple ways of getting the Poisson 
system for simulating the Markov process described above. 

Algorithm 1: Per Site Transition 

1. Get values for T, - exponential(U(g, i)). (By this of 
course we mean that the T,'s are exponential random 
variables with parameter U(?, i).) 

i' is the site where the transition occurs at time to f T .  

3. To fmd the event in E,, we then take e, E E; with 
probability 

,+I, 4 
U(v,ei)' 

the (conditional) transition probability. 

(c:,(t,e) - C,(t, e)( > 6' Algorithm 2: Per Event Transition 

(7) I. Get T(e;)  - exponential(X(q? e,)) for all i, e, 
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2. Set T := mini,,,{T(ei))} 

3. Then the next event time is to  + T and the next event 
is arg min{T(ei)}. 

Curve Reconstruction We begin by explicitly construct- 
ing random polygons from particle configurations. Each par- 
ticle configuration q(.) defines a positive measure on S' by 
p,, = CkETN q ( k ) 6 , , , / ~ .  Unfortunately, this measure does 
not possess necessarily a zero barycenter, and thus does not 
correspond apriori to a closed convex curve. To remedy this, 
situation, set 

b, = b f  + ibf ,  = eZnk/lNq(k), 
k E T N  

and define 

f iv  P? + I ~ ~ I ~ * / z + ( ~ / * ~ s i g n ( * ~ ~  + Ibl ' 6  -(*/a)sign(b:) 

Then p,, E M:, and it defines a curve by a linear interpola- 
tion between the jump points of the fbction 

C,(B) = f eZn"p,,(dQ). 

4.2. Simulations 

Simulation 1: linear heat equation Given an initial system 
configuration, when each particle jumps to one of its neigh- 
bor sites at a rate ; g ( k ) ,  linearly proportional to number of 
particles k, e.g. g ( k )  = k, k 2 0, the generator corresponds 
to the heat equation. We simulated the system (in which par- 
ticles evolve according to independent continuous time ran- 
dom walks), with an initial configuration 70, where all hut 
a few sites have zero particles, and the remaining have, say 
50 particles. For display purposes, here we depict the curves 
reconstructed from 7 at several iterations in Fig. 1. 

.... 

(71 [pq ... . . . 

. . . . . ., . . 

Fig. 1. System configuration q is evolved with a jump rate 
g(k) = k ,  and the corresponding curves are shown left-right 
top-bottom. 

Simulation 2: geometric heat equation Given an initial 
system configuration with N = 500 sites, e = 0.1, the gen- 
erator described in Section 3.1, and the approximate rates 
described in Section 3.3, we simulated the stochastic curye 
shortening system with an initial configuration 70 that sat- 
isfies Assumption B. As expected, the overall number of 
particles in the system decreases with time to 0, as seen in 
Fig. 2. This corresponds graphically to the shrinkage of the 
initial curve to a point. For display purposes, here we depict 
the curves reconstmctedfromq at several iterations in Fig. 3. 

Fig. 2. Overall Number of Particles in the system versus time 
of evolution 

Fig. 3. System configuration q is evolved and the corre- 
sponding curves are shown left-right top-bottom. 

5. REFERENCES 

[I ]  G. Ben Arous, A. Tannenbaum, and 0. Zeitouni, 
Stochastic approximations to curve shortening flows 
via particle systems, Technical Report, February 
2002. Submitted for publication to Joumal of Dif 
ferenfial Equafions. A version has appeared in Pro- 
ceedings of MTNS 2002. Preprint may be found at 
http://www.ee.technion.ac.il/ zeitouni/ps/hydro6.ps. 

[2] H. Buseman, Convex sufaces, Interscience Publ. 
(1958). 

[3] M. Gage and R. S .  Hamilton, The heat equation shrink- 
ing convex planar curves, J.  Dig Geom. 23 (l986), pp. 
69-96. 

[4] C. Kipnis and C. Landim, Scaling limits ofinteracting 

[5] G. Sapiro and A. Tannenbaum, On affine planar curve 
evolution,L Funcfl. Anal. 119 (1994), pp. 79-120. 

[6] H. Taniyama and H. Matano, Formation of singularities 

particle systems, Springer (1999). 

in general CUNC shortening equations,preprint. 

[7] T. K. Ushijima and S .  Yazaki, Convergence of a crys- 
talline algorithm for the motion of a closed convex 
curve by a power of curvature V = K", SIAM. .I Nu- 
mer: Anal. 37 (2000), pp. 500-522. 

11 - 654 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30, 2009 at 13:40 from IEEE Xplore.  Restrictions apply. 

http://www.ee.technion.ac.il

