DEPENDENT SETS OF CONSTANT WEIGHT BINARY VECTORS

NEIL J. CALKIN

ABSTRACT. We determine lower bounds for the number of random binary vectors,
chosen uniformly from vectors of weight &, needed to obtain a dependent set.

1. INTRODUCTION

In this paper we determine lower bounds for the number of random binary vectors
of weight k& needed to obtain a dependent set of vectors with probability 1.

We denote by S, the set of binary vectors having k£ 1’s. If we choose a random
sequence U, Uy, - - - , Uy, uniformly from S, r, how large must m be for these vectors
to be dependent (over GF(2)) with probability 17

In the case £ = 1 this is exactly the birthday problem: given a set of n elements,
how long must a sequence chosen (with replacement) be before an element occurs at
least twice with probability close to 1. It is a standard combinatorics exercise to show

that so long as m/\/zn) — 00, a sequence of length m will almost surely contain a
repetition as n — oo.

In the case & = 2, we can view the vectors of weight two as being edges in a
graph on {1,2,...,n}: here a dependent set of vectors corresponds exactly to a set
of edges which contain a cycle. There are two distinct modes of behaviour here: first,
if the edges are chosen without replacement, and if the number of edges is ¢n then
the probability that there is a cycle is strictly less than 1 as n — oo if ¢ < 1/2
and tends to 1 if ¢ > 1/2[4]. If the edges are chosen with replacement, then if we
choose cn edges, there is a positive probability that we get a repeated edge. Hence
the probability increases up to ¢ = 1/2, at which point we almost surely get a cycle.

In what follows, we will assume that k is a fixed integer greater than or equal to 3.

Denote by p,x(m) the probability that u,,u,,...,u,, are linearly dependent. We
will prove the following:

Theorem 1. For each k there 1s a constant By so that if B < By then

Lim pnx(Bn) = 0.
—k

Furthermore, By, ~ 1 — loegﬁ as k — oo.
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We obtain this theorem as a corollary of the following: let r be the rank of the set
{u1,Us, .., Uy}, and let s = m — r (equivalently, the dimension of the kernel of the
matrix having columns u;, Uy, . . ., Uy, )-

Theorem 2. o) If 8 < B and m = m(n) < Bn then E(2°) > 1 asn — oo0. b) If
B > Br and m = m(n) > Bn then E(2°) — 00 as n — oo.

Similar results have been obtained for different models by Balakin, Kolchin and
Khokhlov [1, 5]: their methods are completely different.
Our approach is the following: we consider a Markov chain derived from a suitable

random walk on the hypercube 2"; using this we will determine an exact expression

for E(2°). We then estimate E(2°) to determine fy.

2. A RANDOM WALK ON THE HYPERCUBE, AND AN ASSOCIATED MARKOV CHAIN
be

We define a random walk on the hypercube 2™ as follows: let uy,uy, ..., Uy, - - -

vectors chosen uniformly at random from S, ;. Define
zo=0, and z;=z,;+uy

(so the steps in the walk correspond to flipping k random bits).

We associate with this random walk the following Markov chain: we define y; to
be the weight of z;. Then yo,¥1, - -.,Ym, is @ Markov chain with states {0,1,...,n}.
The transition matrix A for this chain, with A = {a,,}, where a,, is the probability
of moving from state ¢ to state p is given by

(spea) (£25%)
k—ptq k+p—q
_ 2 2
Qpg = -

&)

where the binomial coefficients are interpreted to be 0 if £ + p + ¢ is odd.

Theorem 3. The eigenvalues A; and corresponding eigenvectors e; for A, =10,1,...,n,
are given by

(1) Ai = é(l)t(z)(%:)

and the jth component of e; 1s given by

elil = g;(—l)t (t) (?: t)
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Proof: We first show that e, is an eigenvector for A with eigenvalue A;: indeed
the jth coefficient of Ag, 1s

Observe now that

since each is the coeflicient of z7 in

(1—2)i(l +a)" = (1 _

Hence it is sufficient to show that

5 () () =) (1) -2 () G20) 5 ()G )

We show this by multiplying both sides by z’y* and summing over 7 and k. Writing
7 =1—2r + k, the left hand side becomes

l,;,m (7{) (7;9_—7:> (1) (n l_ t)(—l)"+t2tml+k—zryk

OO e

C) (n . t) (=124 (L + 2y)" (2 +y)"

2
C2tey) Y

T +a)(1+9) Q

= (1 —z)(14+z)" (1 —y)"(1 +y)" "

— ey
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Similarly the right hand side becomes

Z GGG

=S (1) () e g

=(1—2)(L+z)" (1 —y) (L +y)"~
as required. Hence g, is an eigenvector with eigenvalue A; for each .

Moreover, we see that the ¢,’s are linearly independent (as vectors over @): indeed:
we have:

Lemma 1. Let U be the matriz whose columns are eq,€;,...,¢,. Then U? = 2"I,

and if A is the diagonal matriz of eigenvalues, then A =1/2"UAU.

Proof: The 1jth entry of U? is

3~ el = (1) (D))o

Multiplying by z* and summing over 7 we obtain

e ()06
(i) (7; _ Z) (14 2) 1ot

I t>(1 +2)"H(1 — x)

l,s,t

5

serljor (53

1+z
= 2"yl
from which we see that U2 = 2"]. Hence the eigenvectors are linearly independent
as claimed.
Observation: the eigenvectors do not depend upon k: hence the matrices A and A’
corresponding to distinct values of £ commute. This corresponds roughly to the idea

that when walking around the hypercube it doesn’t matter if you take a step of size
[ then a step of size k, or a step of size k then a step of size .
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We can now compute the probability that u,,u,,...,u, sum to 0: indeed, this is
exactly the 00th coefficient in A%, which is equal to

(since A =1/2"UAU).
Hence if uy, u,, .

., U,, are vectors with k& 1’s chosen independently at random, then
the expected number of subsequences u,

ap> Uays - - - » Ug, Which sum to 0 is exactly
s Toimy\ 1 n "1 (n m
E(2°) Z<t>22_")‘f<z‘>:22_"<i>(l+)"')'
t=0 2=0 2=0

3. ASYMPTOTICS OF A;

In order to estimate the size of E(2°), we require asymptotics for the value of A;.

Lemma 2. a) [A\;| <1 for all0 <:<n.
b) If’L > % then X\; = (—1)’6)\”_1'.

c) Let 0 < c < 3. If 1 = cn then

-k 4:]6 k=2 - . 4
= (-2 1 (-2 () o (2
n n n n n c3n?

Proof: Parts a) and b) are immediate from the definition of A;. To prove part c),

since k is fixed, we have
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k k k k ) - k—2
R RO
n n n 7 n n

k N2 - k-2 4
EICONCOIIE

n—i\ n n c?n?

20\*2 /4 i k*
NI
n n n c3n?
as claimed.

Observe that since we are assuming that £ > 3 throughout, when 1 is close to %,

BT () o)
<

nf

-, we have

= () -1 () o ()

Then, provided that § < 1 — %, we see that if 2 —1 = "2—9, then \;n —» 0 as n — .
In the estimation of E(2°) we will use this to show that the middle part of the sum
1s asymptotic to 1.

say o —1 =

4. ASYMPTOTICS OF E(2°)
Define

fle,B) = —log2 — alog(a) — (1 — a)log(l — a) 4 Blog(1l + (1 — 2a)*)
and let (o, Ok) be the root of

fle,8) =0
0f(erf) _,
Oa N

We shall show:

i

B > Br and m > Bn then EiZ_”(?)(l + X)™ > 0 asn — oo.

Lemma 3. If B < Br and m < Bn then > ;27" (”)(1 +X)" > 1 asn — oo, and if
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Proof: we proceed as follows: since our goal is to show that the behaviour of E(2?)
changes when m goes from below Bin to above Bin, and since our value [y is less
than 1, we may assume that 7 <1 — ¢ for some ¢ > 0. We shall show:

a) the extreme tails of the sum for E(2°) are small

b) the middle range of the sum contributes 1 to the sum

c) and d) the rest of the sum is small if ™ < 8 < B and large if = > 8 > (4.
)

a) there is an € > 0 so that

en

ZZ‘”(?) (I1+X)" —>0asn— oo

=0

Indeed,

Soo(Jonr<Ee()

n
< neZm_"< )
en

and provided e is sufficiently small, this tends to 0 (indeed, if —§log2—eloge+e€ < 0
then the sum tends to 0).
Similarly,

Z 2”() (1+X)" > 0asn— oo.
i=(l-€e)n

Hence, if E(2°) — oo for some m < (1 — é§)n, we must have the major contribution
from

“f"zn() (14 2™,

1—€n

b) We now show that the middle range of the sum contributes 1 to E(2°). Indeed, in
the range % — n" <4< n 4 ndl7

o= (ro5)) o2

%+n4/7 n %+n4/7 "
Z 277 (LX)~ Z 27" ] - 1asn — oo.
i:;—”—n4/7 ? 1:%—114/7 ?

we have

c) We now show that we can widen the interval about the middle:

Z“f) 2- "< )(1+)\)

i=2(1—¢)
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Since A,_; = (—1)*};, it suffices to show that
2—" (”) 14+ x)"™ =1
7

A1,<Ek_(’“) . 2+O<k4>'

n n2

J M

In this range,

Hence i

(I+X)"< e”eke(Z)ek_2
and since k > 3, the ne* term in the exponent is dominated by the —ne? term from
the binomial coefficient, provided that € is sufficiently small.
d) We now consider the remainder of the sum (or rather, the part in (0, %): if & is
even, the remaining part follows by symmetry, and if £ is odd, then (14 X;)™ < 1 for
t > n/2, and the remaining part tends to 0).

Define
fle,B) = —log2 — aloga — (1 — a)log(l — a) + Blog(1 + (1 — 2a)*).
Then if f(l ™) < < 0 the corresponding term of the sum is expontentially small,

and if f(%,™) > v > 0 the corresponding term of the sum is exponentially large.
Thus, if f( ™) <y <0forall ain (¢1— ¢€), we have

2(1 €)
Z 2n<> (1+X)™ < nemmte™ _, 0,

and if f(a,™) > v > 0 for some a in (¢,1 — ¢€), then
2(1 €)

1=en

Now let Bk be so that if 8 < Bk then f(e,8) < 0 for all @ in (¢,1 —€), and if 8 > B
then there is an alpha in (¢,1 — €) so that f(e,8) > 0. Thus we wish to find ay, Bk
so that

0
f(ow, Br) = 0 and 6—af(0475) = 0.
As k goes to 0o, the value of G is asymptotic to
—k 1 2k
_f (k2 — 2k +
log2 2log?2
This completes the proof of the lemma. Now, since E(2°) = > ;27" (7:)(1 + A;)™ this

completes the proof of theorem 2, and Theorem 1 follows by the simple observation
that since s is integer valued, the probability that 2° > 1 is less than E(2°) — 1.

— 1)6_2k + O(k4)e_3k.

log 2
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