
DEPENDENT SETS OF CONSTANT WEIGHT BINARY VECTORSNEIL J. CALKINAbstract. We determine lower bounds for the number of random binary vectors,chosen uniformly from vectors of weight k, needed to obtain a dependent set.1. IntroductionIn this paper we determine lower bounds for the number of random binary vectorsof weight k needed to obtain a dependent set of vectors with probability 1.We denote by Sn;k the set of binary vectors having k 1's. If we choose a randomsequence u1; u2; : : : ; um uniformly from Sn;k, how large must m be for these vectorsto be dependent (over GF(2)) with probability 1?In the case k = 1 this is exactly the birthday problem: given a set of n elements,how long must a sequence chosen (with replacement) be before an element occurs atleast twice with probability close to 1. It is a standard combinatorics exercise to showthat so long as m=q(n) ! 1, a sequence of length m will almost surely contain arepetition as n!1.In the case k = 2, we can view the vectors of weight two as being edges in agraph on f1; 2; : : : ; ng: here a dependent set of vectors corresponds exactly to a setof edges which contain a cycle. There are two distinct modes of behaviour here: �rst,if the edges are chosen without replacement, and if the number of edges is cn thenthe probability that there is a cycle is strictly less than 1 as n ! 1 if c < 1=2and tends to 1 if c � 1=2[4]. If the edges are chosen with replacement, then if wechoose cn edges, there is a positive probability that we get a repeated edge. Hencethe probability increases up to c = 1=2, at which point we almost surely get a cycle.In what follows, we will assume that k is a �xed integer greater than or equal to 3.Denote by pn;k(m) the probability that u1; u2; : : : ; um are linearly dependent. Wewill prove the following:Theorem 1. For each k there is a constant �k so that if � < �k thenlimn!1 pn;k(�n) = 0:Furthermore, �k � 1 � e�klog(2) as k !1. 1



2 NEIL J. CALKINWe obtain this theorem as a corollary of the following: let r be the rank of the setfu1; u2; : : : ; umg, and let s = m� r (equivalently, the dimension of the kernel of thematrix having columns u1; u2; : : : ; um).Theorem 2. a) If � < �k and m = m(n) < �n then E(2s) ! 1 as n ! 1. b) If� > �k and m = m(n) > �n then E(2s)!1 as n!1.Similar results have been obtained for di�erent models by Balakin, Kolchin andKhokhlov [1, 5]: their methods are completely di�erent.Our approach is the following: we consider a Markov chain derived from a suitablerandom walk on the hypercube 2n; using this we will determine an exact expressionfor E(2s). We then estimate E(2s) to determine �k.2. A random walk on the hypercube, and an associated Markov chainWe de�ne a random walk on the hypercube 2n as follows: let u1; u2; : : : ; um; : : : bevectors chosen uniformly at random from Sn;k. De�nex0 = 0; and xi = xi�1 + ui(so the steps in the walk correspond to ipping k random bits).We associate with this random walk the following Markov chain: we de�ne yi tobe the weight of x1. Then y0; y1; : : : ; ym; is a Markov chain with states f0; 1; : : : ; ng.The transition matrix A for this chain, with A = fapqg, where apq is the probabilityof moving from state q to state p is given byapq = � qk�p+q2 �� n�qk+p�q2 ��nk�where the binomial coe�cients are interpreted to be 0 if k + p + q is odd.Theorem 3. The eigenvalues �i and corresponding eigenvectors ei for A, i = 0; 1; : : : ; n,are given by �i = kXt=0(�1)t�it��n�ik�t��nk�(1)and the jth component of ei is given byei[j] = jXt=0(�1)t it! n� ij � t!:



DEPENDENT SETS OF CONSTANT WEIGHT BINARY VECTORS 3Proof: We �rst show that ei is an eigenvector for A with eigenvalue �i: indeedthe jth coe�cient of Aei isnXl=0 � lk�j+l2 �� n�lk+j�l2 ��nk� jXt=0(�1)t ik! n� il � t!and the jth coe�cient of �iei iskXs=0(�1)s�is��n�ik�s��nk� jXt=0(�1)t it! n� ij � t!Observe now that jXt=0(�1)t it! n� ij � t! = jXt=0(�1)i+t2t it! n� tj !;since each is the coe�cient of xj in(1 � x)i(1 + x)n�i = �1 � 21 + x�i (1 + x)n:Hence it is su�cient to show thatnXl=0  lk�j+l2 ! n� lk+j�l2 ! jXt=0(�1)t+i2t it! n� tl ! = kXs=0(�1)s is! n� ik � s! kXt=0(�1)t it! n� ij � t!:We show this by multiplying both sides by xjyk and summing over j and k. Writingj = l � 2r + k, the left hand side becomesXl;k;r;t lr! n�mk � r ! it! n� tl !(�1)i+t2txl+k�2ryk=Xl;r;t lr! it! n � tl !(�1)i+t2txl�r(1 + xy)n�myr=Xl;t  it! n � tm !(�1)i+t2t(1 + xy)n�m(x+ y)m=Xt (�1)i+t it!2t(1 + xy)t(1 + x)n�t(1 + y)n�t= (1 + x)n(1 + y)n  2(1 + xy)(1 + x)(1 + y) � 1!i= (1 � x)i(1 + x)n�i(1 � y)i(1 + y)n�i:



4 NEIL J. CALKINSimilarly the right hand side becomesXj;k;s;t is! n� ik � s! it! n� ij � t!(�1)s+txjyk=Xs;t  is! it!(�1)s+txtys(1 + x)n�i�t(1 + y)n�i�s= (1� x)i(1 + x)n�i(1� y)i(1 + y)n�ias required. Hence ei is an eigenvector with eigenvalue �i for each i.Moreover, we see that the ei's are linearly independent (as vectors over Q): indeed:we have:Lemma 1. Let U be the matrix whose columns are e0; e1; : : : ; en. Then U2 = 2nI,and if � is the diagonal matrix of eigenvalues, then A = 1=2nU�U .Proof: The ijth entry of U2 isnXl=0 el[i]ej[l] =Xl;s;t(�1)s ls! n� li� s!(�1)t jt! n� jl� t!:Multiplying by xi and summing over i we obtainXi;l;s;t(�1)s+t ls! n � li� s! jt! n� jl � t!xi=Xl;s;t(�1)s+t ls! jt! n� jl � t!(1 + x)n�lxs=Xl;t (�1)t jt! n� jl � t!(1 + x)n�l(1� x)l=Xt (�1)t jt!(1 + x)j2n�j �1 � x1 + x�t= 2nxjfrom which we see that U2 = 2nI. Hence the eigenvectors are linearly independentas claimed.Observation: the eigenvectors do not depend upon k: hence the matrices A and A0corresponding to distinct values of k commute. This corresponds roughly to the ideathat when walking around the hypercube it doesn't matter if you take a step of sizel then a step of size k, or a step of size k then a step of size l.



DEPENDENT SETS OF CONSTANT WEIGHT BINARY VECTORS 5We can now compute the probability that u1; u2; : : : ; ut sum to 0: indeed, this isexactly the 00th coe�cient in At, which is equal tonXi=0 12n�ti ni!(since A = 1=2nU�U).Hence if u1; u2; : : : ; um are vectors with k 1's chosen independently at random, thenthe expected number of subsequences ua1; ua2; : : : ; uat which sum to 0 is exactlyE(2s) = mXt=0 mt ! nXi=0 12n�ti ni! = nXi=0 12n ni! (1 + �i)m :3. Asymptotics of �iIn order to estimate the size of E(2s), we require asymptotics for the value of �i.Lemma 2. a) j�ij < 1 for all 0 � i � n.b) If i > n2 then �i = (�1)k�n�i.c) Let 0 < c < 12. If i = cn then�i = �1� 2in �k � 4�k2�n �1� 2in �k�2 in �1 � in�+O  k4c2n2!Proof: Parts a) and b) are immediate from the de�nition of �i. To prove part c),since k is �xed, we have  nk! = nkk! 0@1� �k2�n +O  k4n2!1A ik! = itt! 0@1� �t2�i +O  t4i2!1A nk! = (n� i)k�t(k � t)! 0@1� �k�t2 �n� i +O  (k � t)4(n� i)2!1A :Hence�it��n�ik�t��nk� = � in�t �1 � in�k�t  kt!0@1 + �k2�n � �t2�i � �k�t2 �n � i +O k4c2n2!1Aand �i = kXt=0(�1)k � in�t �1 � in�k�t  kt!0@1 + �k2�n � �t2�i � �k�t2 �n� i +O  k4c2n2!1A



6 NEIL J. CALKIN= �1 � 2in �k + �k2�n �1� 2in �k � �k2�i � in�2 �1� 2in �k�2� �k2�n� i �n � in �2 �1 � 2in �k�2 +O k4c2n2!= �1 � 2in �k + �k2�n �1 � 2in �k�2  �1 � 2in �2 � in � n � in !+O  k4c2n2!= �1� 2in �k � 4�k2�n �1� 2in �k�2  �4in + 4i2n!+O k4c2n2!= �1� 2in �k � 4�k2�n �1� 2in �k�2 � in��1 � in�+O  k4c2n2!as claimed.Observe that since we are assuming that k � 3 throughout, when i is close to n2 ,say n2 � i = n�2 , we have�i = � 1n1���k � 4�k2�n � 1n1���k�2 +O  k4n2!Then, provided that � < 1 � 1k , we see that if n2 � i = n�2 , then �in ! 0 as n !1.In the estimation of E(2s) we will use this to show that the middle part of the sumis asymptotic to 1. 4. Asymptotics of E(2s)De�nef(�; �) = � log 2� � log(�)� (1� �) log(1� �) + � log(1 + (1� 2�)k)and let (�k; �k) be the root of f(�; �) = 0@f(�; �)@� = 0We shall show:Lemma 3. If � < �k and m < �n then Pi 2�n�ni�(1 + �i)m ! 1 as n !1, and if� > �k and m > �n then Pi 2�n�ni�(1 + �i)m !1 as n!1.



DEPENDENT SETS OF CONSTANT WEIGHT BINARY VECTORS 7Proof: we proceed as follows: since our goal is to show that the behaviour of E(2s)changes when m goes from below �kn to above �kn, and since our value �k is lessthan 1, we may assume that mn < 1� � for some � > 0. We shall show:a) the extreme tails of the sum for E(2s) are smallb) the middle range of the sum contributes 1 to the sumc) and d) the rest of the sum is small if mn < � < �k and large if mn > � > �k.a) there is an � > 0 so that�nXi=0 2�n ni! (1 + �i)m ! 0 as n!1Indeed, �nXi=0 2�n ni! (1 + �i)m < �nXi=0 2m�n ni!< n�2m�n n�n!and provided � is su�ciently small, this tends to 0 (indeed, if �� log 2�� log �+� < 0then the sum tends to 0).Similarly, nXi=(1��)n 2�n ni! (1 + �i)m ! 0 as n!1:Hence, if E(2s) ! 1 for some m < (1 � �)n, we must have the major contributionfrom (1��)nXi=�n 2�n ni! (1 + �i)m :b) We now show that the middle range of the sum contributes 1 to E(2s). Indeed, inthe range n2 � n4=7 < i < n2 + n4=7(1 + �i)m =  1 +O  k4n2!!m = 1 +O  k4n !we have n2+n4=7Xi=n2�n4=7 2�n ni! (1 + �i)m � n2+n4=7X1=n2�n4=7 2�n ni!! 1 as n!1:c) We now show that we can widen the interval about the middle:n2 (1+�)Xi=n2 (1��) 2�n ni! (1 + �i)m ! 1:



8 NEIL J. CALKINSince �n�i = (�1)k�i, it su�ces to show thatn2Xi=n2 (1��) 2�n ni! (1 + �i)m ! 1:In this range, �i < �k � �k2�n �k�2 +O  k4n2! :Hence (1 + �i)m < en�ke(k2)�k�2and since k � 3, the n�k term in the exponent is dominated by the �n�2 term fromthe binomial coe�cient, provided that � is su�ciently small.d) We now consider the remainder of the sum (or rather, the part in (0; n2 ): if k iseven, the remaining part follows by symmetry, and if k is odd, then (1+�i)m < 1 fori > n=2, and the remaining part tends to 0).De�nef(�; �) = � log 2� � log� � (1 � �) log(1 � �) + � log(1 + (1� 2�)k):Then if f( in ; mn ) <  < 0 the corresponding term of the sum is expontentially small,and if f( in ; mn ) >  > 0 the corresponding term of the sum is exponentially large.Thus, if f(�; mn ) <  < 0 for all � in (�; 1� �), we haven2 (1��)Xi=�n 2�n ni! (1 + �i)m < nen+o(n) ! 0;and if f(�; mn ) >  > 0 for some � in (�; 1� �), thenn2 (1��)Xi=�n 2�n ni! (1 + �i)m >  n�n!(1 + ��n)m2�n > en+o(n) !1:Now let �k be so that if � < �k then f(�; �) < 0 for all � in (�; 1� �), and if � > �kthen there is an alpha in (�; 1� �) so that f(�; �) > 0. Thus we wish to �nd �k; �kso that f(�k; �k) = 0 and @@�f(�; �) = 0:As k goes to 1, the value of �k is asymptotic to1 � e�klog 2 � 12 log 2(k2 � 2k + 2klog 2 � 1)e�2k +O(k4)e�3k:This completes the proof of the lemma. Now, since E(2s) = Pi 2�n�ni�(1 + �i)m thiscompletes the proof of theorem 2, and Theorem 1 follows by the simple observationthat since s is integer valued, the probability that 2s > 1 is less than E(2s)� 1.
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