ALMOST ODD RANDOM SUM-FREE SETS

NEIL J. CALKIN AND P. J. CAMERON

Abstract

We show that if S_{1} is a strongly complete sum-free set of positive integers, and if S_{0} is a finite sum-free set, then with positive probability a random sum-free set U contains S_{0} and is contained in $S_{0} \cup S_{1}$. As a corollary we show that with positive probability, 2 is the only even element of a random sum-free set.

1. introduction

In this paper we shall extend the results of Cameron [5] and Calkin [1] on the structure of a random sum-free set.

A set S of positive integers is sum-free if there do not exist $x, y, z \in S$ with $x+y=z$. We shall call a sum-free set ultimately complete if there exists n_{0} so that $\forall n>n_{0}$, $n \in S \cup(S+S)$, that is, every sufficiently large integer not in S is a sum of elements in S. We define

$$
r_{S}(n)=|\{x: x \leq n, x, n-x \in S\}|
$$

to be the number of distinct representations of n as a sum of elements of S. If

$$
\lim _{n \notin S} \frac{r_{S}(n)}{\log (n)} \rightarrow \infty
$$

then we shall call S strongly complete. We note that there are no known examples of sum-free sets for which $r_{S}(n) \rightarrow \infty$ but $r_{S}(n) / n \rightarrow 0$: modular complete sum-free sets give rise to sets for which $r_{S}(n)$ grows linearly.

Cameron [6] introduced a probability measure μ on the set \mathcal{S} of all sum-free sets as follows: there is a natural bijection from the set $2^{\mathbb{N}}$ to \mathcal{S} which induces a probability measure on \mathcal{S}. This measure corresponds to the following construction of a random sum-free set U :
Set $U=\emptyset$: consider each integer n in order: if $n \in U+U$ then increase n by one: if $n \notin U+U$ then toss a fair coin: if heads, then set $U=U \cup\{n\}$, and increase n by one; otherwise increase n by one.

Observe that if $S \subset\{1,2,3, \ldots n\}$ is a finite sum-free set, then

$$
\operatorname{Pr}_{\mu}(U \cap\{1,2,3, \ldots n\}=S)=2^{-n+t}
$$

where $t=|(S+S) \cap\{1,2,3, \ldots n\}|$, since we have to prescribe the outcome of a cointoss for exactly $n-t$ integers.

2. The Main Result

Cameron [5] showed that if S is the sum-free set corresponding to a complete modular sum-free set (modulo m) then $\operatorname{Pr}(U \subset S)>0$, and Calkin [1] showed that if S is a strongly complete sum-free set then $\operatorname{Pr}(U \subset S)>0$. Cameron [6] asked whether the probability that a random sum-free set contains 2 and no other even element is positive. In this paper we prove a much stronger result, replacing 2 by an arbitrary finite sum-free set S_{0}, and the odd numbers by an arbitrary strongly complete sum-free set S_{1}.
Theorem 1. Let S_{1} be a strongly complete sum-free set: for any finite sum-free set $S_{0}, \operatorname{Pr}\left(S_{0} \subset U \subset S_{0} \cup S_{1}\right)>0$.

In our proof we shall assume that the least element of S_{1} is at least twice as large as the largest element of S_{0} : this is not a severe restriction, since in particular it implies the theorem above.
Proof: Our proof will require a probability measure ν on the set \mathcal{F} of all sum-free sets lying between S_{0} and $S_{0} \cup S_{1}$, defined in the following manner: set $U=S_{0}$, and consider the integers $n \in S_{1}$ in order: if $n \in U+S_{0}$, move to the next $n \in S_{1}$; if $n \notin U+S_{0}$, toss a coin: if it is heads, then set $U=U \cup\{n\}$ and move to the next $n \in S_{1}$; otherwise, move to the next $n \in S_{1}$.

In other words, we randomly construct a sum-free set U constrained to lie between S_{0} and $S_{0} \cup S_{1}$: whenever we have a choice of whether to add an element to U we toss a coin to decide. Since the least element of S_{1} is greater than twice the largest element of S_{0}, and since S_{1} is sum-free, the only times we have to toss a coin correspond to values in $S_{0}+S_{1}$.

We shall denote by ν_{n} the measure obtained in this fashion after decisions have been made for all elements less than or equal to n. Then if \mathcal{F} is an event, we define $\mathcal{F}_{n}=\{F \cap\{1,2,3, \ldots, n\} \mid F \in \mathcal{F}\}$. If \mathcal{F} is the limit of \mathcal{F}_{n} as $n \rightarrow \infty$ (in the sense that $F \in \mathcal{F}$ if and only if $F \cap\{1,2,3, \ldots, n\} \in \mathcal{F}_{n}$ for all n, we have $\nu(\mathcal{F})=\lim _{n \rightarrow \infty} \nu_{n}\left(\mathcal{F}_{n}\right)$.

In particular, if \mathcal{F} is an event which depends only on elements less than or equal to n, then

$$
\nu(\mathcal{F})=\nu_{m}\left(\mathcal{F}_{m}\right) \quad \forall m \geq n
$$

since all decisions about elements less than n have been made by this stage.
Observe that ν is not just the conditional measure given $S_{0} \subset U \subset S_{0} \cup S_{1}$: in the conditional measure sets for which only a few elements of $\mathbb{N} \backslash\left(S_{0} \cup S_{1}\right)$ are not sums are weighted more heavily than those having many elements not excluded as sums, since the latter require more coin tosses: with ν this is not the case.

However, the measures μ and ν are related as follows:

Lemma 1. Let $t_{n}(U)=\left|\{1,2,3, \ldots, n\} \backslash\left(S_{0} \cup S_{1} \cup(U+U)\right)\right|$ be the number of elements of $\{1,2,3, \ldots, n\} \backslash\left(S_{0} \cup S_{1}\right)$ not represented as a sum in U, that is the number of extra coin-tosses used in the μ model over the ν model. Then

$$
\begin{gathered}
\operatorname{Pr}_{\mu}\left(S_{0} \subset U \subset S_{0} \cup S_{1}\right)=\lim _{n \rightarrow \infty} P r_{\mu_{n}}\left(S_{0} \subset U \cap\{1,2,3, \ldots, n\} \subset S_{0} \cup S_{1}\right) \\
=\lim _{n \rightarrow \infty} \sum_{F \in \mathcal{F}_{n}} P_{\nu_{n}}(U \cap\{1,2,3, \ldots, n\}=F) 2^{-t_{n}(F)} \\
=\lim _{n \rightarrow \infty} E_{\nu_{n}}\left(2^{-t_{n}(U)}\right)
\end{gathered}
$$

Proof: clear.
Hence, if we wish to show that $\operatorname{Pr}_{\mu}\left(S_{0} \subset U \subset S_{0} \cup S_{1}\right)>0$, it suffices to show that there exists a $c>0$ so that for all $n, \mathrm{E}_{\nu_{n}}\left(2^{-t_{n}(U)}\right)>c$.

We shall now show that with positive (ν) probability, $t_{n}(U)$ is bounded, independent of n; more specifically, we show that if $n \in S_{1}+S_{1}$ then $\operatorname{Pr}_{\nu_{n}}(n \notin U+U)$ is small; in fact, that

$$
\sum_{n \in S_{1}+S_{1}} \operatorname{Pr}_{\nu_{n}}(n \notin U+U)<\infty
$$

Then an effective version of Borel Cantelli will give us our result: indeed, if n_{0} is such that

$$
\sum_{n \in S_{1}+S_{1}, n>n_{0}} \operatorname{Pr}_{\nu_{n}}(n \notin U+U)<1-\epsilon,
$$

then

$$
\operatorname{Pr}_{\nu_{n}}\left(n \notin U+U \forall n \in S_{1}+S_{1}, n>n_{0}\right)>\epsilon,
$$

and hence

$$
\mathrm{E}\left(2^{-t_{n}(U)}\right)>\epsilon 2^{-n_{0}}>0
$$

and our proof will be complete.
Let the largest element of S_{0} be k, and set $t=\left\lceil r_{S}(n) /(k+1)\right\rceil-1$. Then we have

Lemma 2.

$$
P r_{\nu_{n}}(n \notin U+U) \leq\left(1-2^{-2(2 k+1)}\right)^{t}
$$

Proof: Since we have $r_{S}(n)$ pairs $x, y \in S$ with $x \leq y, x+y=n$, we can find $x_{1}, x_{2}, x_{3}, \ldots, x_{t}, y_{1}, y_{2}, y_{3}, \ldots y_{t}$ with $x_{i}+y_{i}=n$ and $x_{i+1}-x_{i}>k, y_{t}-x_{t}>k$: indeed, just pick every $(k+1)$ st pair and discard the pair closest to $n / 2$.

The key here is that if we force $x_{i}-k, x_{i}-k+1, \ldots, x_{i}-2, x_{i}-1, x_{i}+1, x_{i}+$ $2, \ldots, x_{i}+k-1, x_{i}+k$ to be omitted from U (requiring at most $2 k$ coin tosses to be specified) then the other elements of U have no impact on whether x_{i} is included in U : moreover, whether or not $x_{i} \in U$ has no impact on other elements of U.

Now let X_{i} be 1 if $x_{i} \in U$ and $x_{i}-k, x_{i}-k+1, \ldots, x_{i}-2, x_{i}-1, x_{i}+1, x_{i}+$ $2, \ldots, x_{i}+k-1, x_{i}+k \notin U$, and 0 otherwise, and define Y_{i} similarly. Then

$$
\operatorname{Pr}_{\nu_{n}}\left(X_{i}=1 \mid X_{1}, X_{2}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{t}, Y_{i}, Y_{2}, \ldots Y_{t}\right) \geq 2^{-(2 k+1)}
$$

and similarly for Y_{i}. Since $n \notin U+U$ can only happen if for each i, at least one of X_{i}, Y_{i} is equal to 0 , we have

$$
\begin{gathered}
\operatorname{Pr}_{\nu_{n}}\left(X_{1} Y_{1}=0\right) \leq\left(1-2^{-(2 k+1)}\right) \\
\operatorname{Pr}_{\nu_{n}}\left(X_{2} Y_{2}=0 \mid X_{1} Y_{1}=0\right) \leq\left(1-2^{-(2 k+1)}\right)
\end{gathered}
$$

$$
\operatorname{Pr}_{\nu_{n}}\left(X_{t} Y_{t}=0 \mid X_{1} Y_{1}=0, \ldots X_{t-1} Y_{t-1}=0\right) \leq\left(1-2^{-(2 k+1)}\right)
$$

and hence

$$
\operatorname{Pr}_{\nu_{n}}(n \notin U+U) \leq \operatorname{Pr}_{\nu_{n}}\left(X_{1} Y_{1}=0, X_{2} Y_{2}=0, \ldots, X_{t} Y_{t}=0\right) \leq\left(1-2^{-(2 k+1)}\right)^{t}
$$

completing the proof of the lemma.
Since S_{1} is strongly complete,

$$
\sum_{n \in S_{1}+S_{1}}\left(\left(1-2^{-2(2 k+1)}\right)^{1 /(k+1)}\right)^{r_{S}(n)}<\infty
$$

and the proof of the theorem is complete.
We note that everything above is for a fair coin: however, the statement remains true for a coin with probability p of heads, and $1-p$ of tails, so long as p is strictly between 0 and 1: we omit the proof, as it is essentially the same as the above.

We also note that the proof of the theorem gives us a way to estimate the probability that $S_{0} \subset U \subset S_{0} \cup S_{1}$ rather more effectively than by randomly generating sum-free sets with respect to the measure μ and counting the proportion that have the desired property, namely by generating with respect to the measure ν and estimating the expected value of the random variable $2^{-t_{n}(U)}$. Computer simulations of this type suggest that the probability that a random sum-free set contains the element 2 and no other even element is about 0.00016 .

3. Further Questions

(1) It is natural to ask now whether this theorem covers almost all sum-free sets, that is, is it true that with probability 1 , a random sum-free set is only finitely far from being contained in a strongly sum-free sum-free set?
(2) One candidate for showing that the answer to Question 1 is false is the following: for $\alpha \in(0,1) \backslash Q$, define $S_{\alpha}=\left\{n \left\lvert\,\{n \alpha\} \in\left(\frac{1}{3}, \frac{2}{3}\right)\right.\right\}$ where $\{x\}$ denotes the fractional part of x. Calkin and Erdös [2] have shown that for each irrational α, S_{α} is incomplete. What is

$$
\operatorname{Pr}_{\mu}\left(U \subset S_{\alpha} \text { for some } \alpha \in(0,1) \backslash Q\right) ?
$$

(3) An old conjecture of Dickson [7] is equivalent to the following: if S is complete then S is ultimately periodic (i.e. there is a period m and an n_{0} so that from n_{0}, S consists of exactly the same elements modulo m): this would imply that $r_{S}(n)$ has linear growth or has a bounded subsequence. There is evidence that Dickson's conjecture may be false [4, 3]: if so, do there exist sets with $r_{S}(n) \rightarrow \infty$ but $r_{S}(n) / n \rightarrow 0$?
(4) If we construct a random sum-free set using a coin with bias p, we have a new measure $\operatorname{Pr}_{\mu, p}$ on the set of all sum-free sets. Let Odd denote the set of all subsets of the odd numbers: is it true that $\operatorname{Pr}_{\mu, p}(\mathrm{Odd})$ is increasing in p ? Given a pair S_{0}, S_{1} of sum-free sets, with S_{0} finite and S_{1} strongly complete, for which value of p is $\operatorname{Pr}_{\mu, p}\left(S_{0} \subset U \subset S_{0} \cup S_{1}\right)$ maximized? It is clear that if S_{0} is non-empty then the limiting value of this probability as p tends to 0 or 1 is 0 (since if p is small, so is the probability that we include the elements of S_{0}, and as p tends to 1 , the probability that U is contained in the odd numbers tends to 1).
(5) It follows from the methods in this paper that, conditioned on the only even element being 2 , a random sum-free set almost surely has density $1 / 6$. Moreover, in the case where S_{1} comes from a modular complete sum-free set, the limiting density exists and is rational. Is it true that almost surely a random sum-free set (constructed with a fair coin) has a limiting density? If so, must the density be rational?

References

1. Neil J. Calkin. On the structure of a random sum-free set. To appear.
2. Neil J. Calkin and P. Erdös. On a class of aperiodic sum-free sets. To appear.
3. Neil J. Calkin and Steven R. Finch. Difference densities of sum-free sets. In preparation.
4. Neil J. Calkin and Steven R. Finch. Necessary and sufficient conditions for periodicity of sum-free sets. In preparation.
5. P. J. Cameron. On the structure of a random sum-free set. Probability Theory and Related Fields, 76(4):523-531, 1987.
6. P. J. Cameron. Portrait of a typical sum-free set. In C. Whitehead, editor, Surveys in Combinatorics 1987, volume 123 of London Mathematical Society Lecture Notes, pages 13-42. Cambridge University Press, 1987.
7. Richard K. Guy. Unsolved Problems in Number Theory. Springer Verlag, 1981. Problem E32.

School Of Mathematics, Georgia Institute of Technology, Atlanta, Ga 30332
E-mail address: calkin@math.gatech.edu

School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London, E1 4NS

E-mail address: P.J.Cameron@qmw.ac.uk

