ALMOST ODD RANDOM SUM-FREE SETS

NEIL J. CALKIN AND P. J. CAMERON

ABSTRACT. We show that if S; is a strongly complete sum-free set of positive
integers, and if Sg is a finite sum-free set, then with positive probability a random
sum-free set U contains Sg and is contained in So U S1. As a corollary we show that
with positive probability, 2 is the only even element of a random sum-free set.

1. INTRODUCTION

In this paper we shall extend the results of Cameron [5] and Calkin [1] on the
structure of a random sum-free set.

A set S of positive integers is sum-free if there do not exist z,y, z € S with z4y = z.
We shall call a sum-free set ultimately complete if there exists ng so that Vn > ng,
n € SU(S+S), that is, every sufficiently large integer not in S is a sum of elements
in S. We define

rs(n)=H{z:z <n,z,n—z € S}

to be the number of distinct representations of n as a sum of elements of S. If

rs(n)
im
ngS log(n)

then we shall call § strongly complete. We note that there are no known examples
of sum-free sets for which rg(n) — oo but rs(n)/n — 0: modular complete sum-free
sets give rise to sets for which rg(n) grows linearly.

Cameron [6] introduced a probability measure p on the set S of all sum-free sets as

follows: there is a natural bijection from the set 90V 4o S which induces a probability
measure on S. This measure corresponds to the following construction of a random
sum-free set U:
Set U = : consider each integer n in order: if n € U + U then increase n by one: if
n & U + U then toss a fair coin: if heads, then set U = U U {n}, and increase n by
one; otherwise increase n by one.

Observe that if S C {1,2,3,...n} is a finite sum-free set, then

Pr,(UN{1,2,3,...n} = §)=2"""
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where t = |(S + S)N {1,2,3,...n}|, since we have to prescribe the outcome of a
cointoss for exactly n — ¢ integers.

2. THE MAIN RESULT

Cameron [5] showed that if S is the sum-free set corresponding to a complete
modular sum-free set (modulo m) then Pr(U C S) > 0, and Calkin [1] showed that
if S is a strongly complete sum-free set then Pr(U C S) > 0. Cameron [6] asked
whether the probability that a random sum-free set contains 2 and no other even
element i1s positive. In this paper we prove a much stronger result, replacing 2 by
an arbitrary finite sum-free set Sp, and the odd numbers by an arbitrary strongly
complete sum-free set S;.

Theorem 1. Let S be a strongly complete sum-free set: for any finite sum-free set

So, PT(50CUCSOU51)>O.

In our proof we shall assume that the least element of S; is at least twice as large

as the largest element of So: this is not a severe restriction, since in particular it
implies the theorem above.
Proof: Our proof will require a probability measure v on the set F of all sum-free
sets lying between So and So U Si, defined in the following manner: set U = Sy, and
consider the integers n € S; in order: if n € U + Sp, move to the next n € Sy; if
n & U+ Sy, toss a coin: if it is heads, then set U = U U {n} and move to the next
n € Si; otherwise, move to the next n € S;.

In other words, we randomly construct a sum-free set U constrained to lie between
Sy and SpU S;: whenever we have a choice of whether to add an element to U we toss
a coin to decide. Since the least element of S; is greater than twice the largest element
of Sp, and since 57 is sum-free, the only times we have to toss a coin correspond to
values in Sy + 5.

We shall denote by v, the measure obtained in this fashion after decisions have
been made for all elements less than or equal to n. Then if F is an event, we
define F,, = {F N {1,2,3,...,n}F € F}. If F is the limit of F, as n — oo (in
the sense that F € F if and only if F N {1,2,3,...,n} € F, for all n, we have
V(F) = limp oo Un(Fn).

In particular, if F is an event which depends only on elements less than or equal
to n, then

V(F)=vm(Fm) VYm>n
since all decisions about elements less than n have been made by this stage.

Observe that v is not just the conditional measure given So C U C S, U S;: in the
conditional measure sets for which only a few elements of IV \ (5o U S1) are not sums
are weighted more heavily than those having many elements not excluded as sums,
since the latter require more coin tosses: with v this is not the case.

However, the measures p and v are related as follows:
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Lemma 1. Let ¢t,(U) = [{1,2,3,...,n} \ (So U S1 U (U + U))| be the number of
elements of {1,2,3,...,n} \ (S0 U S1) not represented as a sum in U, that is the
number of extra coin-tosses used in the p model over the v model. Then

PT”(SO C UC SoUSl) :nll_)r{.lop’f‘”n(So C Uﬂ{1,2,3,,n} C SoUSl)

= lim Y Pr,(UNn{1,2,3,...,n} = F)27)

n— 00

FeFp
= lim E, (27"©).

n— 00

Proof: clear.

Hence, if we wish to show that Pr,(So C U C SoUS;1) > 0, it suffices to show that
there exists a ¢ > 0 so that for all n, E,, (27()) > .

We shall now show that with positive (v) probability, t,(U) is bounded, indepen-
dent of n; more specifically, we show that if n € S; + 57 then Pr, (n ¢ U+ U) is
small; in fact, that

Z Pr,,(n ¢ U +U) < .

neS1+51
Then an effective version of Borel Cantelli will give us our result: indeed, if ng 1s such
that

Z Pr,,(n ¢ U+U)<1—F¢,

n€sS1+51,n>no
then
PI‘l,n(’)’L € U+ UVnc€ Sl + Sl,n > ’)’Lo) > €,

and hence
E(27"U)) > e27™ > 0,

and our proof will be complete.

Let the largest element of Sy be &, and set ¢t = [rg(n)/(k + 1)] — 1. Then we have

Lemma 2.
Pr(n ¢ U+U) < (1 —272@0)

Proof: Since we have rg(n) pairs z,y € S with 2 < y, 2 +y = n, we can find
T1, Lo, L3y, L, Y1,Y2,Y3,---Ye with z; + y; = n and =y — 2y > k, ye — 2 > k:
indeed, just pick every (k + 1)st pair and discard the pair closest to n/2.

The key here is that if we force z; — k,z; —k+1,...,2; — 2,2, — 1, z; + 1,2z, +
2,...,z; + k— 1,2, 4+ k to be omitted from U (requiring at most 2k coin tosses to be
specified) then the other elements of U have no impact on whether z; is included in
U: moreover, whether or not z; € U has no impact on other elements of U.

Now let X; be 1 if z; € U and z; — k,z;, — k+1,...,2; —2,2; — 1, z; + 1,2; +
2,...,z;+k—1,z,+ k¢ U, and 0 otherwise, and define Y; similarly. Then

Pr, (X; = 1|X1, Xa, .., Xic1, Xig1, ., Xe, Y3, Ya, ... V) > 27 (2641
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and similarly for Y;. Since n € U + U can only happen if for each ¢, at least one of
X,,Y; 1s equal to 0, we have

Pr, (X1Y1=0) < (1 -— 2—(2k+1))
Pr,, (XoY> =0|X;Y; =0) < (1 — 2—(2k+1))

Pr, (X;Y; = 0|X,Y; =0,... X, 1Y, 1 = 0) < (1 — 27 (3k+1)
and hence
Pr,.(n ¢ U +U) <Pr, (X;¥; =0,X,Y, =0,...,X,Y; =0) < (1 — 27+t

completing the proof of the lemma.
Since 57 is strongly complete,

Z ((1 — 2_2(2k+1))1/(k+1))7”s(n) w

neS1+51

and the proof of the theorem is complete.

We note that everything above is for a fair coin: however, the statement remains
true for a coin with probability p of heads, and 1 — p of tails, so long as p is strictly
between 0 and 1: we omit the proof, as it is essentially the same as the above.

We also note that the proof of the theorem gives us a way to estimate the probability
that So C U C SoU S; rather more effectively than by randomly generating sum-free
sets with respect to the measure y and counting the proportion that have the desired
property, namely by generating with respect to the measure v and estimating the
expected value of the random variable 27*(V). Computer simulations of this type
suggest that the probability that a random sum-free set contains the element 2 and
no other even element is about 0.00016.

3. FURTHER QQUESTIONS

(1) It is natural to ask now whether this theorem covers almost all sum-free sets,
that is, is it true that with probability 1, a random sum-free set is only finitely
far from being contained in a strongly sum-free sum-free set?

(2) One candidate for showing that the answer to Question 1 is false is the follow-

ing: for o € (0,1) \ @, define S, = {n|{na} € (3, %)} where {z} denotes the
fractional part of z. Calkin and Erdés [2] have shown that for each irrational

a, S, 1s incomplete. What is

Pr,(U C S, for some a € (0,1)\ @)?
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(3) An old conjecture of Dickson [7] is equivalent to the following: if S is complete
then S is ultimately periodic (i.e. there is a period m and an ng so that from
ng, S consists of exactly the same elements modulo m): this would imply that
rs(n) has linear growth or has a bounded subsequence. There is evidence
that Dickson’s conjecture may be false [4, 3]: if so, do there exist sets with
rs(n) — oo but rg(n)/n — 07

(4) If we construct a random sum-free set using a coin with bias p, we have a
new measure Pr,, , on the set of all sum-free sets. Let Odd denote the set of
all subsets of the odd numbers: is it true that Pr,,(Odd) is increasing in p?
Given a pair Sp, 51 of sum-free sets, with Sy finite and 5; strongly complete,
for which value of p is Pr,, ,(So C U C Sp U S1) maximized? It is clear that if
So 1s non-empty then the limiting value of this probability as p tends to 0 or 1
is 0 (since if p is small, so is the probability that we include the elements of So,
and as p tends to 1, the probability that U is contained in the odd numbers
tends to 1).

(5) It follows from the methods in this paper that, conditioned on the only even
element being 2, a random sum-free set almost surely has density 1/6. More-
over, in the case where S; comes from a modular complete sum-free set, the
limiting density exists and is rational. Is it true that almost surely a random
sum-free set (constructed with a fair coin) has a limiting density? If so, must
the density be rational?
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