Feedback Linearization of Transverse Dynamics
for Periodic Orbits*

accepted for Systems and Control Letters

Andrzej Banaszuk! John Hauser?

January 12, 1995

Abstract. In this paper we give necessary and sufficient conditions for feedback lin-
earization of the transverse dynamics (TFL) of a nonlinear affine single-input system
in a neighborhood of a periodic orbit. The TFL procedure provides a means of finding
coordinates that are tuned to the structure of the control system with respect to the
periodic orbit. An autonomous feedback control providing exponential stability of the
periodic orbit is easily designed in the transverse coordinate system.
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Introduction

Stable maneuvering of a nonlinear system is an important goal in many fields including
the flight of aerospace vehicles, robotic manipulation, and the manufacture of sophisticated
materials. This goal can often be accomplished by providing a stable orbit (or, more gen-
erally, a maneuver) for the system by stabilizing the dynamics transverse to that orbit. In
this paper, we explore the structure of the transverse dynamics for the special case when
the maneuver is a periodic orbit.

Consider the smooth dynamical system

¢ = f(z) + g(z)u (1)

on R™ and suppose that 7 C R™ is a periodic orbit of (1) with minimal period T when
u = 0.
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We are studying when it is possible to find new coordinates (6, p1, . . ., pn—1) and control
v so that, after change of coordinates and feedback v = k(z) + I(z)v, the dynamics of (1)
in a neighborhood of the periodic orbit  have the form

6 = 1+ £(6,0)+ 90(6,p)v
p1 = P2
: (2)
pn—2 = Pn-1
pn—l = 7,
where fi(-,-) satisfies f1(6,0) = 0. The variable § € S* = [0,7] (we identify 0 and T)
parametrizes the periodic orbit 7 and the coordinates (p1,...,pn—1) parametrize the trans-

verse dynamics.

A system (1) which admits such a feedback transformation will be called (globally)
transversely feedback linearizable along 1. In this paper we give necessary and sufficient
conditions for transverse feedback linearizability for affine single-input nonlinear systems.

We will also consider systems (1) which, even though not globally transversely feedback
linearizable, they are locally transversely feedback linearizable in the sense that one can cover
a neighborhood of n with a finite number of open neighborhoods such that the dynamics of
(1) in every neighborhood has form (2).

Feedback linearization of transverse dynamics can be applied to design controllers stabi-
lizing the transverse dynamics of (1), so that all trajectories of the closed-loop system with
initial conditions close to i will asymptotically approach 7.

The idea of transverse linearization is not restricted to periodic orbits. Indeed, one
can attempt to linearize the transverse dynamics for any orbit passing through any point
zo € R™ such that f(zo) # 0.

Note that the paper [?] deals with a problem similar to the one considered in the
present paper. The results in [?] would apply to the present situation if we required
11(6,) = 90(6,) = 0 in. (2).

The paper is organized as follows. In Section 1 we introduce and study a new notion
of controllability, called transverse linear controllability, that assures that the linearized
transverse dynamics is controllable along the periodic orbit. We give a coordinate-free
description of transverse linear controllability and study its relationships with the usual
linear controllability. In Section 2 we give necessary and sufficient conditions for global
and local transverse linearization of system (1). In Section 3 we provide an example of
construction of a transformation linearizing the transverse dynamics for a system in R3.

1 On Transverse Linear Controllability

We say that (8,p) = (6,p1,...,0n-1) is a set of transverse coordinates around 7 if the
mapping = — (6, p) is a diffeomorphism on a neighborhood of nand p = 0,8 = 1 on 7. The
requirement that # = 1 on 7 is an arbitrary, but convenient, way to fix the parametrization
of 7.



Note that, for any transverse coordinates (6, p), the system (1) has the form (cf. [?, 7, ?])

é = 1—|—f1(0,,0)‘|‘go(0,,0)u (3)
p = A(0)p+b(0)u+ f2(0,0) + 91(0, p)u

where a subscript j indicates that the function (or vector field) is order j in the transverse
coordinate p, so that, e.g., fa(-,) satisfies f2(8,0) = 0 and D, f»(8,0) = 0.
The n — 1 dimensional (periodic) time-varying linear system derived from (3) given by

d
B = A(8)p + b(8)u (4)
dé

is called the transverse linearization of the system (1) along n (with respect to (6, p) coor-

dinates).

The notions of transverse coordinates and transverse linearization are not restricted to
periodic orbits. Indeed, one can find local transverse coordinates about the orbit passing
through any point o € R™ such that f(z¢) # 0.

We say that (1) is linearly controllable at z € R™ if

dim span {g(z),adsg(z),.. .,ad’}_lg(m)} =n. (5)

It is well known that, if zop € R™ is an equilibrium point of the the undriven system
(f(zo) = 0), then (5) is satisfied iff the linearization of (1) about zq is controllable, i.e.,

rank [b, Ab, .., A"—lb] —n

where A = D f(zo) and b = g(zo). We say that the system (1) is linearly controllable on a
subset of R™ if it is linearly controllable at every point of this subset.

Note that the transverse dynamics of the system (2) is linearly controllable. This mo-
tivates the following (coordinate independent) definition. We call (1) transversely linearly
controllable at = € R™ if

dim span {f(z),g(z), adsg(z), .. .,ad’;_zg(m)} =n. (6)

We say that (1) is transversely linearly controllable on a subset of R™ if (1) is transversely
linearly controllable at every point of this subset. The following result shows that (6) is a
test of (instantaneous) linear controllability.

Proposition 1.1 The system (1) is transversely linearly controllable at € 1 if and only
if the transverse linearization () is instantaneously controllable at 6 where z is mapped to
(8,0) under the coordinate change.

Proof: Since the condition (6) is coordinate independent, we may establish the equivalence
by calculating the required distribution in (6, p) coordinates. Direct calculation shows that

1 * *
f|p:o = ( 0 ) ) g|p:0 = ( b(6) ) ) a,dfg|p:0 = ( b'(8) — A(6)b(6) ) , etc.



where * indicates a don’t care value and b’ = 2. We see that (6) is satisfied if and only if

rank [b, Ab, .., A"—zb] 0)=n-1

where A denotes the operator h(8) — h'(8) — A(6)h(6) for h : R — R™ L. This is precisely
the condition for instantaneous linear controllability of a time-varying linear system (cf. [?]).

O

The notion of transverse linear controllability is coordinate and feedback invariant. One
can easily check that the transverse linear controllability along the periodic orbit % is nec-
essary for transverse feedback linearization along 7.

Dynamically, if the system is transversely linearly controllable, then we can find controls
that easily steer the transverse directions while we flow downstream along with the orbit.
Note that it may still be possible to steer the system through higher order brackets even
when the system is not transversely linearly controllable. Indeed, it has been shown in [?]
that, if there is a point on the orbit such that either (5) or (6) (or a (6)-like condition with
ad’}g, k=0,1,...included) is satisfied, then there is a neighborhood of the orbit such that
the system may be steered between any two points in that neighborhood by an appropriate
control.

The following result shows that linear controllability and transverse linear controllability
are not completely independent.

Proposition 1.2 Suppose that (1) is linearly controllable at o € R™. Then for every
open neighborhood S of zo, there is a point ©1 € S such that (1) is transversely linearly
controllable at z1.

Proof: Note that there is an open neighborhood O of zg such that (5) is satisfied at every
z € O. Suppose that there is an open neighborhood S C O of zg such that (6) fails at every
z € 5. Then, there are smooth functions a; such that

a,of—l—a,lg—l—a,ga,dfg—l—...—I—(zn_lad’}_zg: 0 (7)

for all z € § and, for each z € 5, at least one a; is nonzero. Taking the Lie bracket of f
with both sides of (7) we see that

(Lyao)f + (Lya1)g + (Lysaz + a1)adsg + (8)
et (Lfa'n—l + a'n—2)a'd?_2g + a'n—la'd;_lg =0

for all z € §. Now, by linear controllability, ad’}_lg is independent of a,djcg forj=0,...,n—
2, and therefore of f. Thus, (8) implies that a,_; and, hence, Lfa,_; are identically zero
on S. Similarly, by taking further brackets of f with (8), we may conclude that a; = 0 on
S fori=0,...,n — 2. This contradicts the hyphothesis that (6) fails at every z € §. U



Since the points of transverse linear controllability form an open set, the above result
implies that the points of transverse linear controllability are dense in the set of points of
linear controllability.

Note that at a point zg a system can be both linearly controllable but not transversely
linearly controllable (e.g., a linearly controllable system at an equilibrium point of f) or
transversely linearly controllable but not controllable (e.g., 6, =1 p=u.)

2 Transverse Feedback Linearization
The main result of this paper is as follows.

Theorem 2.1 Let n be a periodic orbit of the undriven system, (1) with w = 0. Then,
the system (1) is transversely feedback linearizable along the periodic orbit m if and only
if it is transversely linearly controllable along 1 and there exists a smooth function o in a

neighborhood N of 1 such that
1. daa# 0 on 7.
2. a=0o0nmn.
3. Ladi,ga: 0inN fori=0,---,n— 3.
Proof: (=) Transverse linear controllability along 7 is obvious. We will show that the

conditions 1, 2, and 3 are satisfied for a := p;. The conditions 1, 2 are obviously satisfied.
To verify that 3 holds, it is sufficient to note that in (8, p) coordinates we have

9(07:0) = 90(07:0)% + Bpf_l
a'dfg(eno) = 41 07:0)% - Bpf_g
adig(0,p) = 92(0,0)% + 5,2 9)
ad’;_?’g(@,p) = gn—3(07p)% + (_1)71_3%7

where ¢;(6,p),2=1,...,n— 3 are smooth functions depending on go(9, p), f1(9, p) and their
partial derivatives.

(<) Let v be a smooth vector field satisfying L,a = 1 in a neighborhood of 7. By the
assumption of transverse linear controllability, the vector fields f,g,adsg,.. .,ad’;_?’g are

linearly independent in a neighborhood of 7. Since « is constant along g, adyg, .. .,ad’;_?’g
and Lya =0, L,a = 1 on 7, we conclude that f,v,g,adyg, .. .,ad’;_?’g are linearly indepen-
dent in a neighborhood of 7. Fix a point zg on 7. In a neighborhood of 7 one can reach any
point z by traveling along vector fields f,v,g,adyg,.. .,ad’;_?’g with times sg, 81,...,8n_1,
i.e., the mapping s — z given by (¢?(-) is the flow of a vector field h)

ad'n.—3

o= 9 ogetlo.ogy’ To¢? ol (o) (10)

Sn—1



is a local diffeomorphism between the cylinder S! x R*~! and a tubular neighborhood of 7
(cf. [?]). Now the value of o at z is exactly s;(z). This is clear for the points z that can be
reached from 7 by flowing along v (i.e., s = -+ = 8,1 = 0). Furthermore, the condition 3
implies that the value of o is unchanged for nonzero s, ..., s, 1. Essentially, we use sq, 51
to reach the appropriate leaf of the foliation determined by the value of a. Put

0 = Sg

pP1 =

p2 = Ly (11)
Pn_1 = L’;_za.

To verify that (8,p1,...,pn—1) are valid coordinates it suffices to show that they have
linearly independent differentials on 7. Observe that

(dO AN dpn—1 N ...Ndp1)(f,g,adysg, .. .,ad’}_s,v) =det S

where
L+0 Ly0 Ladfgé? e L,0
Lil} 2a Lyl %a Laggl} e - LI} %a
S = : S
L?ca LyLsa LadfgLfa oo LyLja
Lia Lja Ladfga e L,a

Now, Ladi,ga = 0 for 2 < n — 2 around 7 implies that Ladng’J%a =0forj+k<n-2
f
around 7. Also, Ladng’Jia # 0 for 5+ k = n — 2 in a neighborhood of 7. Otherwise, since
f
(1) is transversely linearly controllable and da # 0, Lo would be nonzero around 7 which
contradicts the fact that Lya(z) = 0 for z € 1. Collecting these facts, we see that, on 7,

the matrix S is upper triangular with nonzero diagonal elements so that (6, p) are valid
coordinates. In (6, p) coordinates, the system (1) takes the form

é = 1‘|‘f0(0,,0)‘|‘g~0(0,,0)u
p1 = P2

: (12)
pn—2 = Pn-1

Pn-1 = p(07 P) + T(07 p)u’7

where p(6, p) := L’J}_la, r(8,p) := LgL’}_za. Since 7(8, p) # 0 in a neighborhood of 7, the
preliminary feedback v = r(6, p)~1(—p(6, p) + v) puts the system into the desired form (2).
O

Now we provide a sufficient condition for existence of function a satisfying the conditions
1, 2, and 3, and hence for the transverse feedback linearization.



Theorem 2.2 Let n be a periodic orbit of the undriven system, (1) with w = 0. Then, the
system (1) is transversely feedback linearizable along the periodic orbit n if it is transversely
linearly controllable along 11 and the distribution

D := span {g,adyg, .. .,ad’}_?’g}.
1s tnvolutive.

Proof: Let v be any smooth vector fields such that f,v,g,adyg,.. .,ad’;_?’g are linearly
independent in a neighborhood of 7. (It follows from the transverse linear controllability

that such v exists, for instance, one can choose v := ad’}_zg.) Now, as in the proof of

part (<) of Theorem 2.1, we construct sg, $1,...,8n—1 by traveling along the vector fields
v,q,adsg,...,ad” 3g. Tt is easy to verify that o := s; satisfies the conditions 1 and 2.
, U, 9, 79, ) f g y y

The condition 3 follows from involutivity of D. O

Remark 2.1 In practice, the construction of the function a (for involutive D) by the flow
of a vector field v may be difficult. Instead, one can proceed as follows. If the system
(1) is transversely linearly controllable, then dimD = n — 2. When D is an involutive
distribution, there are two independent functions aj, as that are constant along D. One
may try to construct directly a function o = a(ai, ) that has value zero on 7. Such a
function is guaranteed to exist. Then p; := & and its Lie derivatives along f can be used
as transverse coordinates. Any convenient method for parametrizing a family of transverse
sections (e.g., orthogonal plane) can be used to provide the 8 coordinate. An example of
this technique is given in the next section. O

To see that the condition of involutivity of D is not necessary for transverse feedback
linearizability, consider the following example.

Example 2.1 Consider the system

6 = 1+p}

pl = p2 (13)
p2 = p3

,63 = Uu.

This system is already in the desired form (2), so that it is clearly transversely feedback
linearizable. We have

3] 3] 3]
sSpan {g7a' fg} sSpan {ap37 p380 0,02},
and
[9,adsg] = 2i
9, fq| = 807
so that D is not involutive. O



A necessary condition for transverse feedback linearizability of (1) can be formulated in
terms of the distribution

D; := Involutive closure of D (i.e.,D;1 =D +[D,D] +---).
Namely, we have the following result.

Proposition 2.1 Let n be a periodic orbit of the undriven system, (1) with u = 0. Then,
the system (1) is transversely feedback linearizable along the periodic orbit m only if the
distribution D1 15 at most n — 1-dimensional.

Proof: Expressing ad’}g,i =0,---,n— 3, in (6, p)-coordinates (cf. (9)), we see that D,

and hence D, is spanned by a combination of vector fields %, B'ii, i1=2,...,n—1. But
: g 8 o]
dlmspan{@,%,---,apn—_l =n-1. O

It happens that if (1) is transversely linearly controllable and dimD; = n — 1in a
neighborhood of 7 then (1) is locally transversely feedback linearizable in the sense that one
can cover a neighborhood of 7 by a finite number m of (overlapping) coordinate charts
(67,07, 5 =1,...,m, in which the dynamics have form (2). We have the following result.

Theorem 2.3 Let n be a periodic orbit of the undriven system, (1) with w = 0. Then,
the system (1) is locally transversely feedback linearizable along the periodic orbit n if it is
transversely linearly controllable along n, dim Dy = n—1 in a neighborhood of n, and f € Dy
on 7.

Proof: Suppose that 7 is parametrized by 8 € S = [0, 7], with 0 and T being identified,
and Ly = 1 on 1. Let v be any smooth vector field such that f,v,g,adfg,...,ad’;_?’g
are linearly independent in a neighborhood of 7. (It follows from the transverse linear
controllability that such v exists, for instance, one can choose v := ad’;_2g.) Note that v is
transversal to D; in a neighborhood of 7. As in the proof of part (<) of Theorem 2.1, we
construct sg, s1,. .., $,_1-coordinates in a neighborhood N of 7 by traveling along vector
fields f,v,g,adyg, .. .,ad’}_?’g from a distinguished point zg € 1 corresponding to § = 0. Let
M :={z € Nl|sz(z) = s3(z) = ...8n-1(z) = 0} (i.e., M is the set of points in N that can
be reached from 7 along v.) Note that M is a two-dimensional smooth submanifold of A/
containing 7. Moreover, T, M is transversal to Di(z) in M, so that dim T, M NDy(z) =1
in M. For z € M we define 6(z) := so(z). We are going to construct a smooth vector field
f on M such that f(z) € TpbMNDy(z) forz € M, f = f on 7, and L0 =1on M. First of
all, since TM ND; is a one-dimensional smooth distribution in M, there is a smooth vector
field f in M that spans T, M N D4 (locally it is obvious, global construction on M can be
obtained using partitions of unity). Note that LJgH # 0 on 7 so that we can assume that

the same holds in M (making M smaller, if necessary). Let f= ﬁf It is easy to verify
f ~
that this vector field has the desired property LJgH =1 on M and thus, in particular, f = f

on 7. We can assume (making M smaller, if necessary) that f,v,g,a,dfg, .. .,ad’}_?’g are



linearly independent for ¢ € M. In particular, f, g,adsg, .. d”_3g span D, for z € M.
Let y € n be arbltrary Ina nelghborhood of y one can reach any pomt z by traveling along
vector fields v f,g,a,dfg, .. a,d” g with times p¥,pY,...,p¥_,, i.e., the mapping p¥ — z

given by (¢%(-) is the flow of a vector field k)

mn—3 ~
_ g adfg ad g f v
z = ¢P1—1 oY, ¢ y o ¢p714 o ¢pg(y) (14)
is a local diffeomorphism between a cube in R™ and an open neighborhood Oy of y. Note
that a finite number, say m, of such open neighborhoods O,,, ¢ =1,...m covers 7. In each
Oy, we define o* := pi. It can be easily check that o; satisfies the conditions (1)-(3) of

Theorem 2.1 in Oy,. As in the proof of Theorem 2.1, one can show that

0’1 = pY

i

py = Ly (15)
Pl = L’}_zai.

are valid coordinates in O, and the dynamics of (1) in those coordinates (after a preliminary

feedback) has form (2). O

Remark 2.2 Let us assume that the hypothesis of Theorem 2.3 is satisfied. Then it can be
shown that one needs at most two open sets O,, to cover 7, i.e., one can cover 1 with exactly
two coordinate charts in which the transverse dynamics (after a preliminary feedback) is
linear. This is due to the fact that sufficiently close to 7 one can travel in M along f
for a long time, making a full circle without leaving M (i.e., the Poincare return map is
well-defined sufficiently close to the orbit). Actually, for arbitrary y1,y2 € 1, y1 # ¥a, one
can construct two overlapping open neighborhoods O,,,7 = 1,2 covering 7, as in the proof
of Theorem 2.3. The reason why one cannot, in general, construct one such neighborhood
covering the whole 7 (as it was possible in the proof of Theorem 2.2) is that the orbits of
f on M do not have to close up. Still, it may happen that the orbits f on M do close
up ( i.e., the flow of f on M consists of periodic orbits foliating M ). In this case one can

construct the linearizing transverse coordinates that work globally around 7%, as in the case
of Theorem 2.2. O

Remark 2.3 If the hypothesis of Theorem 2.3 is satisfied, local construction of o by
flowing along v may not be practical. Instead, one can try to solve (locally) the set of
PDE’s Lp,a = 0, where h;,2 = 1,---,n — 1 span D;. An example is provided in the next
section. O

Note that every globally transversely linearizable system is, in particular, locally trans-
versely linearizable. Therefore, we can formulate the following corollary from Theorems 2.1
and 2.3, and Proposition 2.1.



Theorem 2.4 Let n be a periodic orbit of the undriven system, (1) with u = 0. Assume
that dim D, is constant in a neighborhood of n. Then, the system (1) is locally transversely
feedback linearizable along the periodic orbit n if and only if it is transversely linearly con-
trollable along m, and either dimD; = n — 2 in a neighborhood of n (i.e., D1 = D), or
dim D; = n — 1 in a neighborhood of n, and f € Dy on 7.

Observe that for systems in R3 transverse feedback linearizability condition is generic
with respect to points. One might tend to think that it is also a generic condition with
respect to orbits. This is not the case. It is true that the set of transversely linearizable
periodic orbits is open. But it is not dense. To see that, consider f and g such that there
is a two-dimensional surface Q in R2 with the property that det[f,g,adsg] = 0 on € and
det[f,g,adsg] changes sign on ). Note that transverse linear controllability fails on Q. A
small perturbation of f and g perturbs € a little, but Q does not disappear. If a periodic
orbit of f intersects Q transversely, a periodic orbit of a perturbed system (if it persists,
which it does if the Floquet multipliers have absolute values different from 1) will also
intersect the (perturbed) set Q. Thus, transverse feedback linearizability fails even when f
and g are slightly perturbed.

3 Examples

Example 3.1
T1 = Ty+T1T3+ T1u
5&2 = —I + IolI3 + ToU (16)
5&3 = Uu.

Note that the undriven system (u = 0) has a family of periodic orbits
nr = {z € R®: 23 4 25 = R? z3 = 0}.

We have adsg = —mlﬁ — m2% and det(f, g, adsg] = 22 + 2, so that the system is trans-
versely linearly controllable along any periodic orbit ng if R > 0. (Note also that since
a,dfcg = 0 the system is not linearly controllable.) The system is trivially (globally) trans-
versely feedback linearizable as D = span {g} is a one-dimensional (and hence involutive)
distribution. It is easy to verify that the functions a;(z) := z1e7®® and ax(z) := ze™ "3
are constant along g. One can observe that the function

2

1
a = logmu%fm—mg = Zlog(z? + z3) —log R — z3

is zero on ng. We have Lya = z3, p(z) := L}a = 0 and r(z) := LyLsa = 1. Defining

6 = —tan_l(i—f)
p1 = 3log(z?+ z})—log R — z3 (17)
P2 = I3

10



(an appropriate definition of tan™! is used to define 6 for all (z1,z2) # (0,0)) the system
(in (8, p) coordinates) is given by

6 =1
pr = p2 (18)
p2 = u

Note that no preliminary feedback is needed to put the system into the form (2). O

The system expressed in (6, p) coordinates can, for example, be used in the design of
a stabilizing feedback. Provided the coordinate change maps onto S' x R™71, ie., p is
unrestricted, the domain of attraction of ng will coincide with the region (in R3) on which
the change of coordinates is one-to-one.

(Figure 1.)

Figure 1 shows the closed loop trajectory for an initial condition close to the origin for

the feedback v = —p1 — \/gpg.

Example 3.2 Consider the system defined on S* x R3 (which can be thought of as being
embedded in R*)

6 = 1 + :c:z,,

;1 = zo+7(0)z172 (19)
5&2 = I3

5&3 = U,

where § € S = [0,T], with 0 and T being identified, y(6) is a smooth periodic function.
The undriven system has a periodic orbit z; = 23 = z3 = 0,6 € §' = [0,T]. (z1,Z2,23) €
R? represent the transverse dynamics. One can verify that D; = span {BBTZ’%’% +
v(8)z, 8871}. One can check that the system is transversely linearly controllable, f € Dy
for z € 1, and dimD; = 3 on S! x R3, so that the hypothesis of Theorem 2.3 is satisfied,
and thus the system is locally transversely linearizable. To find a (locally) linearizing

function a one can solve the set of PDE’s g% =0, ;ﬁ =0, g—‘;‘ + 7(0)3}1% = 0. A general

solution of this set of PDE’s is of the form o = F(z1e™ f”’(e)de) (an additional requirement
F(0) = 0 guarantees that o vanishes on 7). In general, this solution is only local, for the

function e~ J 0% does not have to be periodic in 8. For instance, for v() = 1, we have
a = F(:cle_e), which is not periodic in 6, so that the system is only locally transversely
linearizable. However, if fOT 7(0)d8 = 0, then o is periodic in 4, and construction is global
around 7. For instance, for T = 7, 7(8) = cos(d), we have a = F(z1e5™), which is
periodic in 6, and hence the system is globally transversely linearizable.

To illustrate the proof of Theorem 2.3, observe that one can choose v = %. As M one

can choose the cylinder S! x R. Then f = % + 7(0)3}1%. Note that the orbits of f close

up (i.e., the flow of fis periodic) if and only if fOT v(8)dé = 0.
O

11



Conclusion

We have presented necessary and sufficient conditions for global and local transverse feed-
back linearizability of an affine single-input nonlinear system about a periodic orbit. These
conditions are similar in nature to the well known conditions for feedback linearization. The
application of these results was shown using a system defined on R3.

Transverse feedback linearization can be used as one step in the design of a controller
for stabilizing the periodic orbit. More importantly, the transverse feedback linearization
procedure provides a technique for finding coordinates that are tuned to the control structure
of the system with respect to the periodic orbit. Indeed, these techniques are applicable to
a much larger class of orbits (e.g., maneuvers). For this reason, we expect these results to
be valuable in the analysis and design of more general maneuvering control systems.
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10

Figure 1: Closed loop trajectory.

13



