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Abstract. We study the least squares approximate feedback linearization problem:
given a single input nonlinear system, find a linearizable nonlinear system that is close
to the given system in a least squares (L) sense. A linearly controllable single input
affine nonlinear system is feedback linearizable if and only if its characteristic distri-
bution is involutive (hence integrable) or, equivalently, any characteristic one-form (a
one-form that annihilates the characteristic distribution) is integrable. We study the
problem of finding (least squares approximate) integrating factors that make a fixed
characteristic one-form close to being exact in an Ly sense. One can decompose a given
one-form into exact and inexact parts using the Hodge decomposition. We derive an
upper bound on the size of the inexact part of a scaled characteristic one-form and
show that a least squares integrating factor provides the minimum value for this up-
per bound. We also consider higher order approximate integrating factors that scale a
nonintegrable one-form in a way that the scaled form is closer to being integrable in L,
together with some derivatives and derive similar bounds for the inexact part. One can
use least squares approximate integrating factors in approximate feedback linearization
of nonlinearizable single input affine systems. Moreover, least squares approximate in-
tegrating factors allow a unified approach to both least squares approximate and exact
feedback linearization.

Keywords. Nonlinear systems, feedback linearization, differential forms, calculus of
variations, Sobolev spaces, elliptic PDE’s.

Introduction

Feedback linearization of nonlinear control systems has proven to be a useful tool for the
design of controllers guaranteeing good performance and stability over a large region of
operation. When the system is close to being feedback linearizable, one may still be able
to guarantee satisfactory performance and stability. For this, one needs to develop some
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measures of distance between nonlinearizable systems and linearizable ones. So far most
of the work on approximate feedback linearization has focused on applying a change of
coordinates and a preliminary feedback so that the resulting system looks like linearizable
part plus nonlinear terms of highest possible order around an equilibrium point [19, 17] or
an equilibrium manifold [13, 22, 23]. By neglecting these nonlinear terms one obtains a
linearizable system approximating the original system. If one applies to the original system
a controller designed for the approximating linearizable system, performance and stability
are guaranteed in a neighborhood of the equilibrium or equlibrium manifold. However, in
many applications one requires a large region of operation for the nonlinearizable system.
In such a case, demanding the nonlinear terms to be neglected to be of highest possible
order may, in fact, be quite undesirable. One might prefer that the nonlinear terms to be
neglected be small in some average or uniform sense over the region of operation. In the
present paper we derive an approach that allows one to obtain upper bounds on the norm of
these nonlinear terms in Sobolev spaces and thus, via Sobolev embeddings, in all L, spaces.
Consider a single-input affine nonlinear system

¢ = f(z) + g(z)u (1)

where f, g are smooth vector fields defined on the closure of an open, bounded, and con-
tractible region M of R™ containing the origin and having a smooth boundary M. The
classical problem of feedback linearization (cf. [15, 16]) can be stated as follows: find in
a neighborhood of the origin a smooth change of coordinates z = ®(z) (a local diffeomor-
phism) and a smooth feedback law u = k(z) 4+ {(z)Unew such that the closed loop system in
the new coordinates with new control is linear:

Z=Az+ Bupeyw, (2)

and controllable.
In the paper we will assume that the system (1) has the linear controllability property

dim span {g,adyyg, .. .,ad’}_lg}(m) =n, z € M. (3)
We define the characteristic distribution for (1)

D := span {g, adyg, ...,ad’}_zg} (4)

(it is a smooth (n — 1)-dimensional distribution since (1) is linearly controllable). We call
any nowhere vanishing one-form annihilating D a characteristic one-form for (1). Frobe-
nius’ theorem implies that the system (1) is exactly feedback linearizable if and only if
we can find among all characteristic one-forms one which is exact, i.e., it is the ezterior
derivative da of some zero-form a. Let wy be a characteristic one-form for (1). All the
other characteristic one-forms are multiples of wg by a smooth nowhere vanishing function
(zero-form) . Without loss of generality we can assume that 8 is everywhere positive.
The system (1) is exactly feedback-linearizable if and only if there is a nowhere vanishing £



such that Bwp is exact. Such §, if it exists, is called an (exact) integrating factor for wg. A
form wg that admits an integrating factor (i.e., whose multiple by some nonzero function is
exact) is called integrable. The Poincare Lemma says that, on a contractible region, a form
Bwq is exact if and only if it is closed, i.e.,

dﬂwo =0. (5)

Thus, to find an integrating factor for an integrable wy, one needs to find a nontrivial
solution B to first order PDE (5).

The conditions for integrability of a one-form are nontrivial for n > 2 so that, in general,
no exact integrating factor 8 will exist. One implication of this is that a generic nonlinear
system (1) will not be feedback linearizable. To construct an approzimate integrating fac-
tor that is optimal in some precise sense we need a Riemannian metric—a nondegenerate
pointwise inner product on the tangent space to M. A Riemannian metric induces an inner
product and norm on k-forms. In the present paper we use a special Riemannian metric
constructed as follows. The linear controllability property allows one to locally define a
special set of coordinates called s-coordinates (cf. [18, 16, 21]). In a neighborhood of the
origin one can “reach” any point z by “traveling” along vector fields {ad’;_lg, ...,adsg, g}
with “times” s1, $2,..., 5. We define a metric on vector fields and forms on M by taking
%, .. .,% to be a positively oriented orthonormal basis for the tangent space to M at
every point. This metric will be referred to as the s-metric. In this paper we will use
a specific characteristic form wg fixed by the requirements |wg| = 1 and wo(ad’}_lg) > 0,
where | - | is the (pointwise) norm defined by the s-metric.

A global L, norm ||€|| of a form £ on M is obtained by integrating the pointwise one:

léll ==/ lerut, (®)

where p :=dsy A ...A ds, is the standard volume element corresponding to the s-metric.

Let 6 be the codifferential—the formal adjoint to the exterior derivative d with respect
to the chosen metric. In this paper we consider finding 8 so that dfwg and 6Bwg are the
smallest possible in a least squares sense. The motivation for making both dBwg and é6Bwq
small is as follows.

In the exactly linearizable case we may find § > 0 such that dfwg = 0. However, if
one exact integrating factor for wy exists, then there are infinitely many. Namely, if 8 is an
integrating factor for wg, i.e., fwg = da for some o, then for any nowhere vanishing function
h(-), h(a)B is also an integrating factor for wy, for h(a)Bwo(z) = d foa(z) h(y)dy. If we do not
impose an assumption on the smoothness of A(+), the integrating factors h(a)g include some
discontinuous ones (for integrable but discontinuous h(-)). We see that the discontinuity
may occur in the direction transversal to the integral manifolds of wg. The reason is that
the exterior derivative in dBwg controls only behavior of 8 along the integral manifolds of
wg. Now requiring also 68wy = 0 has a smoothing effect on (3, for the codifferential é in
6Bwg controls the behavior of 4 in the direction transversal to the integral manifolds of wy.
Thus, if we can assure both dBwg = 0 and §Bwy = 0 for some # > 0, we will have a smooth



integrating factor 8 for wyg. We will also show that the integrating factor satisfying both
dfwy = 0 and 68wy = 0 is unique up to multiplication by a nonzero constant. It is not clear
at the moment that, for integrable wg, such an integrating factor ezists. We will show that
it does, if the corresponding Riemannian metric is an s-metric.

In the case of nonlinearizable (1) we will look for § minimizing the following functional.
For the fized (by the requirements |wg| = 1 and wo(ad’}_lg) > 0) characteristic form wg, we

define |dBws|]? + [168wol
L wo wo
hO=" e 2

Note that minimizing the functional I(8) forces both dBwo and §Bwq to be small. Making
dBwg small makes Bwg close to being closed and hence exact (cf. [7]). Control over the
norm of §Bwy assures smoothness of 3. We will show that there is a smooth positive
minimizer fg for I;(8), to be called the least squares approzimate integrating factor for wog,
uniquely defined up to multiplication by a constant. One can obtain uniqueness by a proper
normalization, for instance, ||8o]|? = 1.

The Hodge decomposition of a characteristic one-form fwg has form

Pwo = da + ¢, (8)

where da is a least squares approximation of Bwp by an exact form and € (called the antiezact
part of Buwg) is a one-form whose (global) norm is a measure of how far Bwp is from being
exact in a least squares sense (cf. [1, 20]). We also show how to use the Hodge decomposition
to obtain approximations of nonlinearizable systems (1) by linearizable ones (cf. [4, 7]).

We will show that, for the approximation of Swg by an exact form in the Sobolev space
H' (the space of forms with coefficients in L, together with all first order partial derivatives),
it makes good sense to choose 8 = B¢ where By is an approximate integrating factor for
wo (of order 1). More precisely, we show that the H' norm of the error one-form € in the
Hodge decomposition of fwg can be bounded by

lells < Cy/ 1 (B). (9)

when f is normalized so that ||| = 1. Choosing 8 to be the (normalized) least squares
approximate integrating factor provides the smallest value of this upper bound.

We will also consider higher order approzimate integrating factors for wg. To be precise,
any minimizer of the functional

2 2 - 2 = 2
Aol + 1580l + -+ | ~dbd ol + || 538 o]
()= [Ban]? 1o

is a least squares approzimate integrating factor of order m for wg. Similar to the order
1 case, we show that using an approximate integrating factor of order 2m provides for a
guaranteed level of approximation of Swg by an exact form in the Sobolev space H?™. To be



precise, we show that the H2™ norm of the error one-form ¢ in the the Hodge decomposition
of Bwg can be bounded by
MI
||€||2m S C\/ I2m(/3)7 (11)
on any interior region M’ of M.

Finally, we show how one can use higher order approximate integrating factors in the
approzimate feedback linearization of the nonlinear system (1). Namely, it was shown in
[7] that if o (obtained via the Hodge decomposition (8) of fwg) and its first n — 1 Lie
derivatives along f have linearly independent differentials one can use them to define a
change of coordinates taking (1) to a normal form

z2=Az+ Bru+ Bp+ Eu (12)

where F depends linearly on e and its derivatives up to order n — 1. By neglecting F one
obtains a linearizable system

2= Az+ Bru+ Bp (13)

approximating (12) with “error” Eu. The results of this paper allow one to obtain upper
bounds on the H* norms of E of the form

I < Cy/Tom, (B), (14)

on any interior region M’ of M, where m; depends on n and k. Moreover, Sobolev embed-
ding theorems allow one to obtain upper bounds on the C* norms (uniform norm together
with k derivatives) of E of the form

1 E|[#% < Cy/Tom, (B), (15)

on any interior region M’ of M, where my depends on n and k. Therefore, the use of least
squares integrating factors provide a means for finding sensible approximations of nonlinear
single-input systems by linearizable ones. Moreover, the minimum values of the functionals
Ii() provide measures of linearizability of nonlinear single-input systems in various function
spaces.

The paper is organized as follows. In Section 1 we introduce notation and present some
auxiliary results. In Section 2 we recall the construction of s-coordinates for a single-input
affine nonlinear system. The construction is illustrated by a system in R3. In Section 3 we
show that the minimum value of functionals I,(-) is zero if and only if the corresponding
system is exactly linearizable. We also show that in this case all minimizers of I,,(:) are
constant functions. In Section 4 we show that the minimum value of I;(f) is attained for a
smooth and positive function £. All minimizers of I;(8) are unique up to a multiplication
by nonzero constants. We also show that the minimizers of I;(8) satisfy an elliptic PDE
of second order with mixed boundary conditions. We provide an example of construction
of a minimizer of I;(83) for a system in R3. We also propose an approximation scheme for
the minimizers of I;(#). In Section 5 show that minimum value of functionals I, (8), for



m > 1, is obtained for a function § which is smooth in the interior of M. Contrary to
the case m = 1, positivity, uniqueness, and smoothness up to the boundary of M is not
clear. However, in Section 6 we show that positivity and uniqueness up to a multiplication
by nonzero constants of minimizers of I,,(8), for m > 1, for systems sufficiently close to
being linearizable. In Section 7 we provide an easy to calculate lower bound on the value
of functionals I,,(8). In Section 8 we use the Hodge decomposition to decompose a scaled
characteristic form into exact and antiexact parts. We provide upper bounds on H™ norms
of the antiexact part of Swg in terms of the value of functionals I,,(8). In Section 9 we
present a decomposition of a single-input affine nonlinear system into a linearizable part
and an error term. The error term represents an obstruction to linearizability. We provide
upper bounds on the H* and C* norms of the error term via the values of the functionals
I(8).

To make the paper more accessible for readers not familiar with the theory of differential
forms, calculus of variations, and elliptic PDE’s, we include proofs of some standard results
from these theories.

1 Notation and Auxiliary Results

By Q?(M) we denote the space of smooth p-forms on M. By Q(M) we will mean the
algebra of exterior differential forms on M.

In the sequel we assume that M is equipped with a Riemannian metric, i.e., a positive
definite (pointwise) inner product (-, -) on the tangent space to M. Except for the Section 6,
the metric considered in this paper is standard in the so-called s-coordinates s; (see Section 2
of the present paper and [21]) which are global on M (i.e., M can be covered by one patch
in s-coordinates). Such a metric arises by assigning %, .. .,% to be a positively oriented
orthonormal basis for the tangent space to M at every point. The inner product on vectors
induces an inner product on p-forms [1, 9] that we will denote by the same symbol. The
corresponding pointwise norm will be denoted by |-|. We obtain a global inner product
((-,-)) of p-forms on M by integrating the pointwise one over M:

(0= [ (&0m,

where p := ds; A ... A dsy, is the volume element corresponding to the s-metric and some
fixed orientation of M. We define a (global) Ly norm of forms on M by integrating the
pointwise one:

léll = ([ €23, for ¢ € M) (16)

We will also need the Sobolev space H™(M) of k-forms £ which is a Hilbert space
equipped with the inner product

(60= 6N+ [ X% trantron, (17

I |a|<m



where £ = Y ;&rdsy, ( = Y ;(rdsr, & = a1, -+, o; is a multiindex, |a] = j, and

0'¢;

Epga i = —— .
08, *+*08q;

The corresponding norm will be denoted by || - ||m. Note that a p-form £ = > ;&rdsy is in
H™(M) if and only if all of its coefficients (in s-coordinates) {; are in H™(M). Moreover,
1€]l7 = X1 lI€2|7-
The (Hodge) * operator (see, e.g., [9, 1]) is defined as the unique operator x : QP(M) —
0" P(M) such that EAxn = nAx€ = (€, n)u, where p is the volume element corresponding to
the Riemannian metric and some fixed orientation of M. The * operator is an isomorphism
between QP(M) and Q" P(M). For example, let M be 3-dimensional with coordinates
1 o] o] o] syt .
81, 82,53 and the metric chosen so that the vector fields Ber? Bay? Doz form a positively ori-
ented orthonormal basis. Then the dual one-forms dsq, dss, ds3, are also orthonormal and
we may choose p := ds; A dsy A ds3. We have

x1 = dsy Adsy A dsgz,
*xds, = dsy N ds3,
*xdsy = ds3z N\ dsq,
*d sy = ds1 N\ dsg,
xds1 A dsg = dss,

*xdsy N ds3 = dsq,

xds3 N\ dsq = dssy,

xds; ANdsy ANdsg = 1.

Let £ € QP(M). We define the codifferential of £ as
§¢ := (—1)MP D+ o dx g,

Note that the codifferential depends on the choice of Riemannian metric. The codifferential
is a formal adjoint to the exterior derivative due to the following result (cf. [1]).

Proposition 1.1 Let £ € WP(M) and ¢ € QPTH(M). Then
g cu= [ €s0u+ [ enxc. (18)
M M oM
Proof: Since, for any v € QP(M), % xy = (—1)P(""P)y (see [1]), we have

dEAK)=dE N *C+ (—1)PENdx(=dE N x(C—EN*6C

so that
dE N ¢ = € N %8¢ + d(£ A #C)

Integrate this expression over M and apply Stokes Theorem. O



Note that on manifolds without boundary the above result states that ((d¢,()) =
((£,6¢)) where ((-,-)) is the global inner product of p-forms on M obtained by integrating
the pointwise one over M.

We will also need the differential operators

d; == ---déd 6; :=---6dé,

so that dy = d, 61 = 6, do = éd, 65 = db, etc. With this notation we can define for any
positive integer m the quadratic form

m

Qum(£,0) =D (({di€, diC)) + ((6:¢,6:C))) (19)

=1

By DQ,. we denote the domain of Qu(-,-), i.e., the set of one-forms £ in Ly such that é,
and d;£ are in L, for i < m.

In the sequel we will deal with a fixed one-form wg that satisfies |wg| = 1 and ad’;_lg > 0.
For any zero forms f, n we define ¢(8,7) := Qm(Bwo,nwo). The domain of gn(-,-) is
denoted Dy, .

Suppose that wg is the unique characteristic form for the system (1) with |wg| = 1 and
wo(ad’}_lg) > 0. Using notation introduced above we may rewrite the functional I, defined
by (10) as
In(B) = Qm(ﬂwo,fwo) _ Qm(ﬂ:ﬂz) ‘

[|Bwoll [|Bwoll

The Laplacian of a k-form £ is defined as

(20)

AE = (6d + d6)E .

Any form ¢ such that dé = 0 and 6§ = 0 (which implies A{ = 0) on M will be called
harmonic.
We will also need the following simple result.

Lemma 1.1 Let a,b be any real numbers and € > 0. Then

a?  eb?
bl < — 4+ —
al ol < =+

If the closure of M’ is included in M we write M’ CC M. In the sequel we will need
the following result.

Theorem 1.1 Let M C R™ be an open and bounded region with a smooth boundary OM
and m be a positive integer. Let M' CC M. Then, for any one-form £ one has

€]l < Cr(y/Q2m(€,€) + €], (21)

where C1 depends on M', M, and m.



Proof: From a standard interior regularity result (see, e.g., [11, Thm 16.1]) it follows that
for any function <y one has

Yllam < exlA™y ]+ [171). (22)

Note that this result extends to one-forms. For this, express £ in s-coordinates as & —

S &ids;. Then A™¢ =3 A™¢;ds; and thus [|[A™¢||2 = 3 [|[A™;]|2. Obviously then

€13 < ca(lA™E] + [1€]). (23)

Since dd = 0 and 66 = 0 we have A™¢ = (6d + d6)™€ = daym€ + 62m&. Therefore ||[A™E]| <
ldomé|| + ||62mél] < v/2Q2m (€, €). This and (23) yield the result. O

We will also use the spaces C* of k-times continuously differentiable vector fields equipped

with the norm
v k,00 := Z Z SUD |Viga].
i |al<k TEM

The set of smooth functions with compact support on M will be denoted by C§(M).

2 s-Coordinates

The linear controllability property allows one to locally define a special set of coordinates
called s-coordinates (cf. [21]). In a neighborhood of the origin one can “reach” any point
by “traveling” along vector fields {ad’}_lg, ...,adsg, g} with “times” s1, sg,..., sy, 1€,
’n. 1
2= g8 080 ogn’ (0)
with ¢%(-) being the flow of a vector field h. We define the s-metric to be the Riemannian
metric in which the vector fields {8871, %, ey %} are orthonormal.

Note that the construction of the s-metric makes sense only on the subset of M on
which the s-coordinates are valid. If necessary, we restrict to a subset of M which is an
open and bounded subset of R™ containing the origin and having a smooth boundary on
which the s-coordinates are valid.

The following example illustrates the construction of s-coordinates for a system in R3.

Example 2.0 Consider the system

1 = zo+ hi(zs3) + ha(z1,22)
5&2 = I3 —|— h3($3) —|— h4($1, CEg) (24)

5&3:’11,,

where h;(-) are smooth functions with A;(0) = g—:;(O) =0 and %(ml,O) = g:‘* (z1,0) = 0.

We have
8

g = 8z3

(I,dfg = h’(ﬂ}g) (1—|—h’(3}3))882
(1 + Rh(ms))(1 + 2202y | (g5 2alorima)y o
(4 ) A 1y By 2

le Bzg'

(25)

ad?g



Note that ad?cg(:cl,0,0) 2 and ad?cg(:cl,:cg,O) = — 2. We see that the s-coordinates

= Oz Oz
S1 = I
S9 = —I2 (26)
83 = I3.
are valid on all of R3. O

Remark 2.1 It is possible to consider a more general construction of s-coordinates than the
one using the flow of {ad’}_lg, ...,adsg,g}. Actually, all results of this paper, except those
of Section 6, remain true, if to construct the s-coordinates one uses the flow of any set of
vector fields {g1, g2, g3, - - -, gn} With the property that g; is transversal to the characteristic
distribution D in a neighborhood of 0 and {gs,93,...,9x} is any basis for D. In [8] we
construct another set of s-coordinates (in this more general sense) for the system (24). [

3 Least Squares Exact Integrating Factors

Clearly, the value of the functional I;(8) given by (7) is always nonnegative. We will show
that it attains zero if and only if the system (1) is exactly feedback linearizable. Thus
the minimum value of the functional provides a measure of linearizability of (1) in a least
squares sense.

Theorem 3.1 Let M C R™ be an open, bounded, and contractible region with a smooth
boundary OM. Then the system (1) is ezactly feedback linearizable if and only if there ezists
a smooth positive zero-form (3 such that I () = 0. Moreover, in this case any minimizer
has the form B = ¢ = const for some ¢ # 0.

Proof: (=) Note that in the case of exactly feedback linearizable system (1) the vector

fields {ad’}_zg, ...,adsg,g} span the tangent spaces to the n — 1 dimensional manifolds

s1 = const. Thus, we have span {BBTZ’ 8873, .. .,%} = D. Therefore, in s-coordinates any
n

characteristic form wg has the form

_ 1
wo = wydsy,
where w} is a smooth nonvanishing function of s1,...,s,. Moreover, the normalization
wo| = 1 and wo(ad} *g) > 0 implies wg = 1.Thus

dBwo = dB Adsy =) ?dsi A dsq,
=2 2
_ 0B
5,3(4}0 = 0—31

10



Note that in the s-metric (or, more precisely in the metric on forms induced by s-metric on
vector fields) ds; A ds; are orthonormal. Therefore

|dBwo|® + |6Bwol® = |dB|*. (27)

Choosing o = ¢, where ¢ is a nonzero constant, we obtain I;(89) = 0. Changing sign of c,
if necessary, we may assume that Gg is strictly positive.

(<) Ii(B) = 0 implies in particular dBwo = 0 on M. Thus Bwyg is exact in a neighbor-
hood of the origin. O

One can also show that

Theorem 3.2 The system (1) is exactly feedback linearizable if and only if there exists a
smooth positive zero-form 8 such that In,(8) = 0. Moreover, in this case any minimizer has
the form B = ¢ = const for some ¢ # 0.

Proof: It is similar to that of Theorem 3.1. O

Corollary 3.1 Let M C R™ be an open, bounnded, and contractible region with a smooth
boundary OM. A linearly controllable system (1) is exactly feedback linearizable if and only
if there exists a characteristic form w for (1) which is harmonic in the s-metric.

A nice feature of an s-metric is that in the case of linearizable systems the value of
s1 parametrizes the integral manifolds of D. The calculation of terms dfwg and §Bwg in
the proof of Theorem 3.1 shows precisely that the exterior derivative in dBwg controls the
behavior of 8 along the integral manifolds of wg, while the codifferential § in §Bwg controls
the behavior of 8 in the direction transversal to the integral manifolds of wyg.

A natural question arises of what happens if we skip the assumption that the Riemannian
metric is an s-metric. As we shall see in the next section, the minimum of the integral is
still obtained for some smooth and positive 8. However, we can no longer guarantee that
the minimum value of the functional will be zero for a linearizable system. (Actually, for
a generic choice of metric this will not be the case.) Hence, we cannot claim that the
minimum value of the functional is a measure of linearizability if we do not define it with
an s-metric.

4 Least Squares Approximate Integrating Factors of Order
One

It can be shown that the minimum of I;(8) exists for any positive definite Riemannian
metric. To simplify calculations we will use the standard metric associated with some
coordinate system z;. In applications we would seek for the minimum of the functional in
some s-metric, since only for those metrics we know that we obtain an exact integrating
factor for a characteristic form wp if one exists (i.e. when the corresponding system (1) is
exactly linearizable).

11



Theorem 4.1 Let M C R™ be an open, bounded, and contractible region with a smooth
boundary OM with the standard metric associated with some coordinate system z;. Then,
among all zero-forms 3 in H'(M) there ezists a smooth positive zero-form (3 that minimizes
the functional I;(8) defined by (7), determined uniquely up to a multiplication by a positive
constant. Define

Ao:= inf I . 28
0= it 1(8) (28)

Any minimizing zero-form B is a solution to the boundary value problem
{(wo, A(Bwo)) — Ao =0, on M, (29)
with the boundary conditions
wo A *d(Bwg) — 6(Bwo) A *wo = 0, on OM. (30)
Moreover, any 8 # 0 in H' (M) satisfying (29) and (80) ts a minimizer of I1(0).

Proof: Step 1. Boundedness. Note that I;(3) > 0,Y8 € H'(M), so that Ag > 0. Let
B; € H'(M) be any minimizing sequence, i.e. lim I;(8;) = Xo. Without loss of generality
we can assume that the minimizing sequence is normalized in Ly(M), so that

|Biwol| = [|8:]| = 1. (31)
Note also that we can assume that for some real Cy we have
|| dBiwo||? + [|6Biwol|* < Co. (32)

Let [(B) := |dBwo|? + |6Buwo|?. Note that I[(8) is a quadratic form in 8 and its first partial
derivatives. We will show that there are positive constants C,Cs such that

1(8) > C1|dB|* — Co%Vz € M. (33)

For this, by direct calculation we verify that

1(8) = |4B° + (VB + Y. ei(@)Bor (54)

where ¢;(z) are smooth functions (depending on wg and the partial derivatives of its com-
ponents). Thus,

n 0
1(B) > 148 +1(1)6" ~ €4 Y 16192, (35)
=1 2
where C4 > |¢;(z)| ViVe € M Now, using Lemma 1.1 we have
op > e 0p 2\
<2 4=

12



so that Ve > 0 we have

Cae nCy

UB) = (1= =-)ldBI” + (1(1) — 5 )B” (37)
Put o c
01 =1- T, 02 = ? - l(l) (38)

Note that the constants are positive for € small enough. (Actually, we only need positivity
of C1.) The normalization (31) and the inequalities (32) and (33) imply that

1dBil| < Cs (39)

for some real C3, so that the mimimizing sequence ; is bounded in H!(M). In particular,
we proved that

Dg, = HY(M). (40)

Step 2. Compactness. By Rellich-Kondrasov Theorem (a ball in H!(AM) is precompact
in Ly(M)), B; has a subsequence, to be also denoted by SB;, converging to some 8y € H(M)
weakly in H'(M) and strongly in Ly(M). Note that since ||3;|| = 1 we also have ||Go|| = 1.
Since the norm || - || is lower semicontinuous with respect to the weak convergence,

I,(Bo) < liminf I1(8;) = Ao,

so that By is a minimizer.

Step 3. Regularity. Since we know that a minimizer 8y € H'(M) exists, we can write
the corresponding Euler-Lagrange equations in a weak form. We know that I1(8o) = Ao so
that the associated functional

T(8) 1= 0(8,8) = DolB* = [ (1dBunl? +16Bunl? — 2o8%)p (41)

has value zero for 8 = 5 and J(Bo + tn) > 0 for any fixed n € H*(M) and any real ¢ (cf.
[12, Section 8.12]). Thus, for fixed n € H!(M) the first variation % must vanish at
t = 0. A straightforward calculation gives the following Euler-Lagrange equation in a weak

form. 87
O 10| (s i) — Dol ) = O, (42)
£=0
for all n € HY(M). The estimate (33) shows that the form gi(-,-) — Ao{(-, ")) defined is
coercive in H'(M) and hence a standard elliptic regularity argument (cf. [10]) shows that
Bo € C®(M). Therefore, integration by parts is legal. We use Proposition 1.1 to obtain
the strong version of the Euler-Lagrange PDE (29) with the boundary conditions (30).
Step 4. Positivity. One can check that if fy is a minimizer of I1(-) , so is |Go|. From
Step 3 we see that 8o € H'(M) is a minimizer of I;(-) if and only if it is an eigenfunction
(the ground state) of the strongly elliptic operator L8 := (wo, A(Bwp)) corresponding to

the minimal eigenvalue Ag of L. Therefore, if Gy is a minimizer of I;(-), then |Bo| is an
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eigenfunction of L. The Harnack inequality (cf. [12, Thm 8.21]) shows that |3o| > 0 so that
Bo must have been either strictly positive or negative. One can assume that Gy is strictly
positive.

Step 5. Uniqueness. If there were two linearly independent minimizers of I1(3), they
would be both eigenfunctions of L corresponding to the eigenvalue Ag. But then one could
choose them to be orthogonal. Yet, Step 4 shows that each of them is either strictly positive
or negative, so that they cannot be orthogonal. Thus, the eigenspace of L corresponding to
the minimal eigenvalue Ag is one-dimensional, so that the minimizer is determined uniquely
up to a multiplication by a nonzero constant. (cf. [12, Thm 8.38]) O

Remark 4.1 It can be shown that in the case when wg is not normalized, a zero-form g
minimizing I;(8) is a solution to the boundary value problem

(w0, A(Bwo)) — Aoflwo|® = 0 (43)
with the boundary conditions (30). O

Below we show an example of construction of a least squares approximate integrating
factor for a system in R3.

Example 4.0 Consider the system

1 = z —I—log(cos(a,:cg)%)
Ty = I3 (44)
5&3 = U,

where a > 0. Let M be any open, bounded, and contractible region on which |z3| < 7.

Note that this system is a particular case of (24), so that the s-coordinates are s; := 1,
89 := —Iq, and s3 := z3. We have
_ el _ a
I ~ o= o] o] — o o] o]
adsg = tan(amg)ﬂ — 5 = tan(ase,)ﬁ + 305 (45)
ad2qg = 2 -
fg Oz, Oy °

The normalized characteristic one-form is
wo := cos(asz)ds; — sin(as3)dss.

One can show that § minimizing I1(3) depends only on s3. After straightforward calcula-
tions we obtain

dpwol* = 7+ a?p?

168wol2 = 0. (46)
Therefore, , 2 s
n(e) - LR (47)

Note that for every 8 € H'(M) we have I;(3) > a®. Moreover, for any nonzero constant

¢, for B = ¢, we have I1 () = a?. Thus 8 = c¢ are the minimizers of I;(3). We also see that

a? is a measure of linearizability of the system (44). O
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One can rarely expect to be able to find least squares integrating factors directly by
investigating the functional I;(8) or solving the corresponding eigenvalue problem. An
important feature of our variational problem is that one can approzimate least squares
integrating factors by a sequence of minimizers f,, of the corresponding functionals I7*(3)

where IT*(8) is simply I;(8) with 8 is restricted to a fixed m-dimensional subspace E,, of
HY(M).

Theorem 4.2 Let M C R™ be an open and bounded region with a smooth boundary OM.
Let {e;} be a basis for the space H'(M), which is orthonormal in Ly(M). Let By, be the
unique positive minimizer of I(B) for f € E,, := span {e1,...,em} with ||Bmwo|| = 1.
Then the sequence {Bm} converges strongly in Ly(M) to the unique positive minimizer By

of I1(B) with ||Bwo|| = 1.

Proof: Let b; be the coefficients of 8y with respect to {e;}. Then the sequence of partial
SUmS Yy = .7, bje; converges to (o strongly in H'(M). Thus I1(ym) converges to I3 (o).
Obviously, I1(Bm) < I1(7m). Asin Step 1 of the proof of Theorem 4.1 one shows that ||dG,]
are bounded. It follows from the uniqueness of positive normalized minimizer 8y of I1(5)
that B3,, converges strongly in La(M) to Bo. O

Note that minimizing the functional I1(f3) over a finite dimensional space E,, is a stan-
dard quadratic minimization problem. The solution for the coefficients of &, in basis
{e1,...,em} is an eigenvector of a nonnegative definite m X m matrix {q¢:(e;,e;)} corre-
sponding to its smallest eigenvalue. By solving the problem for each m we obtain a sequence
of approximate minimizers that converges in Ly(M) to the unique positive minimizer fg of

1,(B) with ||Bwo|| = 1.

5 Higher Order Approximate Integrating Factors

In this section we show that the minimum of I,,,(3) is attained. We begin with the following
important result.

Proposition 5.1 For any m > 1, one has D¢, C H'(M) and

1811 < C(am(B,8) + |181I*), VB € Dgm. (48)
Proof: In Step 1 of the proof of Theorem 4.1 we showed that Dg; = H'(M). It is obvious
that Dg,, C Dgy. O

Theorem 5.1 Let M C R™ be an open, bounded, and contractible region with a smooth
boundary OM and m be a positive integer. Then, among all zero-forms 8 in Dq,,, there
ezists a smooth zero-form [3 that minimizes the functional I,(B) defined by (20).
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Proof: Let A :=inf I,(8). Note that ,,(8) > 0,V8 € D¢, so that A > 0. Let §; € Dy,
be any minimizing sequence, i.e., lim I,,(8;) = A\. Without loss of generality we can assume
that the minimizing sequence is normalized in Ly(M) by (31). Thus ¢ (6;,8:) = Im(8:)
and for some real Cy we have

4m(Bs, Bs) < Co. (49)

Therefore, by Proposition 5.1, we have

1Billx < Cn, (50)

for some C;. Thus, by Rellich-Kondrasov Theorem (cf. [20]), there is 89 € D¢, such that
there is a subsequence of §; (to be also denoted by f;) which converges to 8y strongly in
Ly and all the terms d;B,wo and 6;8,wo converge weakly in Ly to d;Bowo and 6;8owg. To
explain the latter, we notice that d;8;,wy and §;8,wo converge weakly in L, to something and
in the distributional sense to d;Bowo and 6;8owo, respectively, so that the limits coincide.
Moreover, since the norm is lower semicontinuous with respect to weak convergence, we
obtain ¢m(Bo,B0) = Im(Bo) = A.
Note that for every n € Dg,, one has

gm (Bo, 1) = A{{Bo,m))) = 0. (51)

Since the smooth functions with compact support on M are in Dg,,, it follows from Propo-
sition 1.1 that 8o satisfies the following Euler-Lagrange equation in a weak form

[ A+ A 4 A7 — Xy, o)) = 0, (52)

for all n € C§°(M). Standard interior elliptic regularity arguments (see, e.g., [11, Part
1, 15-16]) show that 8 is smooth in M. O

Note that Theorem 5.1 is a much weaker result than Theorem 4.1. First of all, contrary
to the case m = 1, we have not proved positivity and uniqueness (up to multiplication by
a constant) of minimizers of I, for m > 1 in a general situation. Since we do not have
positivity of minimizers § of I,,, for m > 1, we cannot claim that Swq is a characteristic one-
form for (1) on M. However, by a perturbation argument, we will show in the next section
that we have positivity and uniqueness of higher order approximate integrating factors
for system sufficiently close to being linearizable. In general, positivity of approximate
integrating factors seems to be very difficult to prove, for there is no general theory that
would guarantee positivity of the ground state of higher order elliptic operators.

Another weakness of Theorem 5.1 is that it only guarantees smoothness of minimizers
of I, for m > 1 in the interior of M and we do not have smoothness on the boundary. The
reason is that, except when m = 1, the form g,(-,-) is not coercive in H™(M) and thus
gm (0, ) does not control the behavior of § on the boundary of M. This, in turn, does not
allow one to claim that the minimizers satisfy certain boundary conditions in the classical
sense. One can treat boundary conditions by abstract trace techniques (see [3]), but it does
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not improve the regularity of the minimizer on the boundary. It seems to be possible to
obtain smoothness up to the boundary and classical boundary conditions for the minimizer
(as in the case m = 1), by modifying the functional I, so that it involves some more higher
order partial derivatives.

One can derive an approximation scheme for the minimizer of I,,, for m > 1 similar to
that given by Theorem 4.2.

6 Higher Order Approximate Integrating Factors for Sys-
tems Close to Being Linearizable

In this section we show that the higher order approximate integrating factors do not vanish
in M if the system is sufficiently close to being linearizable. Since we are going to work
with several systems defined by several pairs f, g, each defining its own s/9-coordinates, and
thus a metric and a functional, to compare them we need to introduce some common fixed
z-coordinates and Sobolev spaces. Denote by ||-||%, || -[|7, [| - [|§ o Tespectively the Ly, H™,

and C* norms in some fixed z-coordinates. We will denote the corresponding spaces by L%,
H=™ and C%*, respectively. For every pair f,g the corresponding L, norms, Laplacians,

functionals, and quadratic forms defined using s¥9-coordinates will be denoted by || - ||¥9,
Agg, I59(0), and ¢f9(-,), respectively. We will assume that all the s¥9-coordinates are

global on M and all Jacobian determinants of changes of coordinates from z to s/9 and
from s©9 to zf9 are uniformly bounded away from zero. We also assume that all s/9-
coordinates have common origin. (These assumptions are not essential, they are made
mainly for simplicity of presentation.)

In the sequel we will need the following basic result.

Proposition 6.1 For any k the mapping (f,g) — s99(-) assigning s-coordinates to f, g is
a continuous mapping from C®*tn=1 x g=ktn=1 45 O=k,

The main result of this section is as follows.

Theorem 6.1 Let fy, g define a linearizable system on M. Then for a sufficiently large
integer k and a sufficiently small real number p if || f — follf . + 19 — 90llF oo < p then the
zero-forms 3 minimizing the functional I59(8) do not vanish in M and are unique up to
multiplication by a nonzero constant.

Proof: Let k, k' be positive integers to be determined later. It follows from straightforward
calculations that, after change of coordinates from s to z, the operator Lsg := Afq +
A?c,g + -+ AT, — Afg is a strongly elliptic differential operator of order 2m in coordinates

z, whose coeflicients are smooth functions and change continuously in C=* if f.g change
continuously in C%F x C%*, for sufficiently large k.

To prove the theorem it is enough to show that, for any M’ CC M and any sequence
of normalized minimizers §; of the functionals If9:(-) corresponding to f;, g; converging in
C®* to fo,go, one has liminf e |B;| > 0. Suppose to the contrary that there is M’ and
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a sequence f;, g;,3; violating this statement. Observe that Ly, 4, have ellipticity constant
in z-coordinates uniform in 7 and common bounds on C** norms of coefficients. Recall
that §; are smooth on M and satisfy Ly, 5.6, = 0 on M. Moreover, we can also assume
181179 = ||Biwy,; ;1|9 = 1 (note that we have a standing assumption |wy, 4, |%% = 1),
and hence ¢f9:(8;, B;) = I5:9(83;). One can easily show that for sufficiently large i one has

a1 < |Gl < ea (83)

for some positive ¢;,cy. Note that for fixed 71,72, ¢f9(m1,m2) change continuously if f;, g;
change continuously in C®* x C®* for sufficiently large k. Therefore, since 8 = ¢ # 0 (see
Theorem 3.2) is a minimizer of the functional I09(-) and ¢fi'9:(8;, 8;) < ¢fi9i(c,c), we

have qﬁ’gi(ﬂi,ﬂi) — 0. Thus, one can prove that

1 < es, (54)

for some positive c¢3. Choose a subsequence of §;, also denoted by (;, that converges
strongly in L§. Expressing all terms d;8,w; and §;8,w; as explicit differential operators
in z-coordinates and arguing as in the proof of Theorem 5.1 it can be shown (passing to
a subsequence, if necessary) that d;f8,w; and é;8,w; converge weakly in L§ to d;Bowo and
6;Bowo, for some By € Dgfo-9o. Thus gfo-9 (Bo,B0) = 0. Therefore, By is a constant that
we can assume to be positive. Since the operators Ly, 4, have ellipticity constant in z-
coordinates uniform in i and common bounds on C%* norms of coefficients, by standard
interior regularity results (see, e.g., [11, Part 1, 15-16]), we get ||ﬂz||f,;,ﬂ/t, < Cppr, where m’
can be arbitrarily large by choice of k’. From Sobolev embeddings ([2]) it follows that £;
are uniformly continuous on M/, uniform in 7. Hence, 3; converge uniformly to Bo, which
is a nonzero constant. We have reached a contradiction.

Assume now that the k£ and p are such that the corresponding minimizers of I,,(8)
are positive. To prove uniqueness, observe that one can easily show (using (51)) that the
space of minimizers of I,,(8) is linear. Thus, if the space of minimizers of I,,,(3) were of
dimension two or more, there would be two linearly independent minimizers (; and (G5 of
Im(B). Moreover, one could choose them to be orthogonal in Ly(M). But then at least
one of them would have to change sign, contradicting the positivity. Thus, the space of
minimizers of I,,(8) has dimension one. O

Note that the optimal value of integer £ can be explicitly computed.

7 A Lower Bound

In this section we establish a lower bound for the value of the functionals I,(8). For this
we need a decomposition of the exterior derivative of a characteristic form wq (cf. 7, 6]).

Proposition 7.1 Let wy be a given one-form on M. Then there is a one-form v and a
two-form T such that
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1. dwo=vAwg+7
2. |7| = |dwo — v A wo| ts pointwise minimal possible
3. for any one-form ( the two-forms ( Awgy and T are pointwise orthogonal.

The two-form T s determined uniquely, while the one-form v is determined uniquely up to
an addition of a multiple of the one-form wg by any zero-form. The forms v and T can be
explicitly expressed as

_ n *(wo/\*dwo)
v o= (—1ymtERE
- *(u.)o /\*(dwo /\u.|)0)0)| (55)

wo 2 )

where * 1s the Hodge star operator.

Proof: To prove that v and 7 given by (55) satisfy dwgp = ¥ A wg + 7 is a tedious, but
straightforward calculation. To prove the third statement, let { be any one-form on M.
Note that

(CAwo, T =CAwg A*T = Awg A

Thus, ( Awg and 7 are pointwise orthogonal. It was proved in [7] that the second statement
follows from the third one. O

An alternative expression for v and 7 in terms of interior products instead of x-operator
can be found in [7, 6]. It can be shown that 7 = 0 if and only if wg is integrable and 7 = 0
and v = 0 if and only if wy is closed. With those forms we can express dfwg as

dfwo = (df + By) A wo + . (56)
Now, we can obtain the following lower bound for I,,,(3)
Proposition 7.2 Let m > 1. For every 8 € Dq,, we have
Im(B) > (inf |7])?, (57)
where the infimum is taken over M.

Proof: Since |wg| = 1 and the two-forms (df + 87) Awg and 7 are pointwise orthogonal for
every (3, we have

S ldBwol? +18Bwol [, 1dBwol?u [, 1(dB+Bv)AwotBTPu

> — =
In(B) =2 I (B) Sy 1Bwol2p = [ |Bwol2u S 1Bwol?u
L @B+Bv)AwoPu [, 18Tk > S 18I0 > (inf |7])2
B Soq 1Bwo S 1BwolPu = [, 1BRlwoPu = '
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Note that the lower bound for I,,(8) derived above is positive if and only if 7 is ev-
erywhere nonzero. (It can be shown that the latter is the case whenever dwg A wg # 0
on M.) It follows from Frobenius’ Theorem that an exact integrating factor for wg # 0
exists if and only if 7 = 0 on M. Thus, |7| provides a pointwise measure of integrability of
wp. From this point of view we may say that Proposition 7.2 gives a positive lower bound
for the average measure of integrability in terms of a pointwise one. This lower bound is
easy to find, for it requires only pointwise calculations. If one uses an arbitrary (i.e., not
normalized) characteristic form wg, one should replace (inf |7])? with nflr(2)| 5 (57). It

. sup |wo (z)] 1
can be shown that the ratio % is independent of the choice of wy.

8 Hodge Decomposition

In this section we show how to approximate a characteristic one-form Bwg by an exact form
doin a least-squares sense. The most important result is the Hodge Decomposition Theorem
(see, e.g., [1, 20] and the application in [4]) which provides a least squares approximation
of a one-form by an exact form.

Theorem 8.1 Let wy be a fized smooth one-form on M. For any (B there is a unique (up
to a constant) smooth zero-form a on M and a smooth one-form € such that

Bwo = do + ¢, (58)

and such that ||¢|| is minimized over all possible smooth zero-forms a. The one-form e
satisfies

be=0

in M and is tangent to the boundary OM of M, i.e., e(v) = 0, where v is the unit outward
normal vector field to OM. The smooth function o is given uniquely up to an addition of a
constant by the solution of Poisson’s equation

Aa = §Buwo (59)
with Neumann boundary conditions
da(v) = Bwo(v). (60)

The one-forms da and € appearing in the Hodge decomposition (58) of fwg will be
called, respectively, the ezact part and antiezact part of Bwq.

In the sequel we assume that wg is a characteristic one-form for (1) such that |wg| =1
and wo(ad’}_lg) > 0, B is a smooth nonvanishing function normalized in L, so that ||5|| = 1,
and € is the antiexact part of Swy.

We can obtain the following upper bound on the H! norm of .
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Theorem 8.2 There is a positive constant C (depending only on M) such that

lells < Cy/ I (B). (61)
Proof: 1t follows from Theorem 7.7.9 of [20]. O

We see that a “small” value of I;(§) guarantees a “small” value of ||¢||;. In particular,
Ii(#) = 0 implies ||e[|; = 0. Since the bound (61) in monotone in I;(83), we obtain the
smallest value of this upper bound by choosing 8 to be a least squares integrating factor.

We can obtain a similar upper bound on the H?™(M’) norm of ¢, where M’ CC M.

Theorem 8.3 Let M' CC M. There is a positive constant C (depending only on M', M,

and m) such that
lellz < Cy/T2m(B). (62)

Proof: Tt follows from Theorem 1.1 that ||e]|} < C1(v/Q2m(c, €) + ||¢]|]). Observe that

2m =

de = dfwg and fe = 0 imply that Qam(€,€) < Qam(Bwo, Pwo). On the other hand we have

llell < |l€|l1, and it follows from Theorem 8.2 that ||e||s < Cav/I1(8) = Cay/Q1(Bwo, Bwo).
Thus |le]|1 < Cav/Q2am(Bwo, Bwo). This proves the result. (|

We see that a “small” value of I, () guarantees a “small” value of ||¢||2m. In particular,
Iym(B) = 0 implies ||€]|2m = 0. Again, since the bound (62) in monotone in I,,(5), we obtain
the smallest value of this upper bound by choosing § to be a higher order least squares
integrating factor.

9 Application of Approximate Integrating Factors to Ap-
proximate Feedback Linearization

In this section we show how higher order approximate integrating factors can be applied to
obtain feedback linearizable systems approximating a given nonlinearizable system. Namely,
in the previous section we have shown that construction of least-squares integrating factors
provides good least-squares approximation of characteristic one-forms by exact forms. In
this section we show that this, in turn, leads to good better approximation of nonlinearizable
systems (1) by linearizable systems. To see that, recall that it was shown in [7] that if «
and its first n — 1 Lie derivatives along f have linearly independent differentials one can use
them to define a change of coordinates taking (1) to a normal form

2= Az+ Bru+ Bp+ Eu (63)

21



where A, B are in Brunovsky form and r,p, and E := [ey, ea,- - -, e,]T are given by
€1 = _6(9)7
€ = _(Lfﬁ)(g)a
64
e = (L) o
p = (L} 1w)(f) (L5 e(f),

r = (=1)"" w(ad”l)

Note that by linear controllability assumption r # 0 on M. Observe also that E vanishes
whenever € does. Neglecting E one obtains a linearizable system

z2=Az+ Bru+ Bp (65)

approximating (63) with “error” Eu. The results of this paper allow one to obtain upper
bounds on the H* and C* norms of E providing a measure of how well (65) approximates
(63) on the given region.

Note that the expression for F involves derivatives of € up to order n — 1. Therefore, it
is possible to find an upper bound on the H* norm of E depending on the H*t"! norm
of e. Namely, we have the following simple result.

Proposition 9.1 Let M' C M. There is a positive constant C (depending only on M', k
f, and g) such that

1B < Cllellitn1- (66)

Using Sobolev embeddings it is also possible to obtain bounds on the C* norm of E
depending on the H™1 norm of € where m > k + n/2. The next result follows from the
Sobolev embedding H™ < C* for m > k + n/2 (see, e.g., [2]).

Proposition 9.2 Let M' C M andm > k+n/2. There is a positive constant C (depending
only on M, f, and g) such that

1B e < Clellminr- (67)

Theorem 8.3, combined with Propositions 9.1 and 9.2, allows one to obtain upper bounds
on the H™ and C* norms of E on M’ CC M depending on the value of the functional
Inm(B). Namely, we have the following simple corollary.

Corollary 9.1 Let M' CC M. Assume that wg is a characteristic form for (1) such
that |wo| = 1 in the s-metric. Let B be any smooth nonzero function normalized in Ly so
that ||B|| = 1 and let a be obtained from the Hodge decomposition (58) of Bwg. Then, if
a,La,-- -,L’;_la are valid coordinates in M', one can put (1) in form (63). Let k be any
positive integer and let my be any integer such that k +n — 1 < 2my. Then, there is a
positive constant Cy (depending only on M', M, f, g, and k) such that

IE|[Z" < C1y/Tom, (B)- (68)
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Also, let my be any integer such that k +3n/2 —1 < 2m,. Then there is a positive constant
C, (depending only on M', M, f, g, and k) such that

IEie < Cay/Tom, (B). (69)

The above results allow one to calculate a minimum order of approximate integrating
factor that guarantees the required bound on nonlinear perturbation term E in (63). The
table below gives, for several values of the dimension n of M, a minimum value of 2m,
and 2my so that Ipy, (8) and Izm,(8) provide upper bounds on, respectively, || E||™" and
||E||0A,’to; (i.e. on Ly and C° norms of E) in (68) and (69).

Minimum order of approximate integrating factor
dimension of M 34|56 7|89 10
2m; that provides a bound on ||E||™M in (68) |24 ]4|6| 6 | 8 | 8 [10
2m;, that provides a bound on ||E||0A,’to; in(69) | 4|6 |8|8]|10 |12 |14 |14

Conclusion

In this paper we have developed a unified approach to the exact and least squares ap-
proximate feedback linearization problems. This approach uses the Hodge decomposition
to obtain the closest (in a least squares sense) exact form to a given scaled characteristic
one-form. We have studied the problem of finding approximate integrating factors that
scale a nonintegrable one-form in a way that the scaled form is close to being integrable in
L, together with some derivatives. Our solution(s), the (order one and higher order) least
squares approximate integrating factor, possesses a number of useful properties. In partic-
ular, a least squares integrating factor will be an exact integrating factor if the one-form is
integrable and will provide a guaranteed level of approximation when the one-form is not
integrable. Our work suggests that practical approximation schemes can be developed and
applied to the approximate feedback linearization of engineering systems.

Acknowledgement. We acknowledge the use of the Mathematica package “Differential
Forms” created by Frank Zizza of Willamette University.
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