Feedback Linearization of Transverse Dynamics
for Periodic Orbits in R3

with Points of Transverse Controllability Loss*

Andrzej Banaszuk! John Hauser?

Abstract. In this paper we show how one can linearize the transverse dynamics of a
nonlinear affine single-input system in R® in a neighborhood of a periodic orbit in the
case when the transverse linear controllability fails in finite number of points along the
periodic orbit. An autonomous feedback control providing stability of the periodic orbit
is designed in the transverse coordinate system.

Keywords. Nonlinear systems, feedback linearization, periodic orbits, transverse dy-
namics.

Introduction

Stable maneuvering of a nonlinear system is an important goal in many fields including the
flight of aerospace vehicles, robotic manipulation, and the manufacture of sophisticated ma-
terials. This goal can often be accomplished by providing a stable orbit (or, more generally,
a maneuver) for the system by stabilizing the dynamics transverse to that orbit.

Consider the smooth dynamical system

¢ = f(z) + g(z)u (1)

on R™ and suppose that 7 C R™ is a periodic orbit of (1) with minimal period T when
u = 0. We are interested in studying the structure of the control system in a neighborhood
of the periodic orbit 7.

In [1], the following problem was studied. Under what conditions is it possible to find
coordinates (6, p1, ..., pn—1) and control v so that, after change of coordinates and feedback

*Research supported in part by NSF under grant PYI ECS-9396296, by AFOSR under grant AFOSR
94NMO006, and by a grant from Hughes Aircraft Company.

'School of Mathematics, Georgia  Institute of Technology, Atlanta, GA 30332,
banaszuk@math.gatech.edu.

'Flectrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425,
hauser@boulder.colorado.edu.



u = k(z) + {(z)v, the dynamics of (1) in a neighborhood of the periodic orbit n have the
form

6 = 1+ £(6,0)+ 90(6,p)v
p1 = P2
: (2)
pn—2 = Pn-1
pn—l = 9,
where fi(-,-) satisfies f1(6,0) = 07 The variable § € S' = [0,7] (we identify 0 and
T) parametrizes the periodic orbit n and the coordinates (p1,...,pn—1) parametrize the

transverse dynamics.

A system (1) which admits such a feedback transformation is called (globally) trans-
versely feedback linearizable along n. System (1) is called transversely linearly controllable
at z € R™ if

dim span {f(z),g(z), adsg(z), .. .,ad’}_zg(m)} =n. (3)

We say that (1) is transversely linearly controllable on a subset of R™ if (1) is transversely
linearly controllable at every point of this subset.

The idea of transverse feedback linearization is a natural extension of feedback lineariza-
tion [5, 7, 6] to the setting where the nominal behavior is an orbit rather than an equilibrium.
Indeed, as with (standard) feedback linearization, one uses the transverse linearization to
help understand the structure of the control system as well as to design feedback controls
providing stabilization of the nominal behavior.

The following result has been shown in [1].

Theorem 0.1 Let n be a periodic orbit of the undriven system (1) with w = 0. Then,
the system (1) is transversely feedback linearizable along the periodic orbit m if and only
if it is transversely linearly controllable along 1 and there exists a smooth function o in a

neighborhood N of 1 such that
1. daa# 0 on 7.
2. a=0o0nmn.
3. Ladi‘gazo inN fori=0,...,n— 3.

As shown in [1], a suitable set of linearizing transverse coordinates are given by

P1 = a
P2 = Lja

: (4)
Pn_1 = L’;_za.

The transverse linear controllability condition implies that this change of coordinates (to-
gether with 6 parametrizing 7) is a local diffeomorphism in a neighborhood of 7.



It can be easily seen that in R the transverse linear controllability along 7 is neces-
sary and sufficient for transverse feedback linearization. Observe that for systems in R3
transverse linear controllability (and thus linearizability) condition is generic with respect
to points. One might tend to think that it is also a generic condition with respect to orbits.
This is not the case. It is true that the set of transversely controllable periodic orbits is
open. But it is not dense. To see that, consider f and g such that there is a two-dimensional
surface {2 in R® with the property that for some volume form u we have u(f,g,adsg) = 0
on Q and u(f,g,adsg) changes sign on 2. Note that transverse linear controllability fails
on 2. A small perturbation of f and g perturbs Q a little, but © does not disappear. If a
periodic orbit of f intersects Q transversely, a periodic orbit of a perturbed system (if it
persists, which it does if the Floquet multipliers have absolute values different from 1) will
also intersect the (perturbed) set . Thus, transverse linear controllability fails (at some
point on 7) even when f and g are slightly perturbed.

We are motivated by a simple (reduced) model of a cart-pendulum system [3, 4] with
state space R3. This system possesses a family of periodic orbits that transversely intersect
a surface of transverse linear controllability loss.

In this paper we study what can be done in such a situation. In particular, we pro-
vide conditions such that it is possible to find new coordinates (6, p1, p2) and control v so
that, after change of coordinates and feedback u = k(z) + I(z)v, the dynamics of (1) in a
neighborhood of the periodic orbit n have the form

6 = 1+ f(8,p)+ g90(6, p)v
p1 = a(8)p2 (5)
p2 = 7,

where fi(-,-) satisfies f1(6,0) = 0, a(0) is a smooth function periodic in  with values in the
interval [—1,1], a(6) = 0 only on Q, a(f) = 1 or a(f) = —1 except in an arbitrarily small
neighborhood of €2, where a(8) changes sign. One may consider the transverse dynamics of
(5) to be in a modified Brunovsky normal form. In the last section we construct modified
Brunovsky form for the cart-pendulum system. Using the form (5), one may easily design
controllers stabilizing the transverse dynamics of (1), so that all trajectories of the closed-
loop system with initial conditions close to n will asymptotically approach 7.

This paper is a preliminary study of a more general problem of finding suitable standard
forms for the transverse dynamics of general orbits for systems in R™ crossing surfaces of
transverse linear controllability loss. Methods presented in this paper should allow to obtain
“global” transverse coordinates along the orbit, i.e., the ones working in a neighborhood
along the whole orbit, in particular “through” singularities. One would expect that for
a periodic orbit in R™ whose transverse dynamics is feedback linearizable, except for the
points of the transverse controllability loss, it is possible to find a ”global” (i.e., working



about the whole orbit) coordinates so that the dynamics of the system has form

6 = 14 fi(8,0)+ 906, p)v

p1 = a1(0)p2

: (6)
pn—2 = a'n—2(0),0n—1

pn—l = (1,”_1(0)’0,

where the a;(8) are smooth functions periodic in § with values in the interval [-1, 1], a;(8) =
0 only on the surface of transverse linear controllability loss 2, and a;(6) = 1 or a;(8) = —1
except in an arbitrarily small neighborhood of 2. In the case when the transverse dynamics
is not exactly linearizable, the form (6) would still represent the linearized dynamics along
the orbit.

Such coordinates can be used to understand the dynamics of the control system close
to singular points, as well as to design locally stabilizing controllers for the orbit.

1 Results

Consider now the nonlinear system (1) on R3 with periodic orbit # (when u = 0) and
suppose that

(A) dimspan {f(z),9(z)} =2 on 7.

(B) dimspan {f(z),g(z),adsg(z)} = 3 on n\ Q, where Q is a two-dimensional surface Q2
in R? with the property that u(f,g,adsg) = 0 on Q, u(f,g,adsg) changes sign on ,
and 7 intersects {2 transversely at an even number of points.

(C) dimspan {f(z),g(z),ad}g(z)} = 3 for z € nN Q.

(All these conditions are satisfied by a reduced cart-pendulum model.)

It can be shown using methods in [1] that the condition (A) implies the existence of a
smooth function a in a neighborhood A of 7 that satisfies conditions (1), (2), and (3) of
Theorem 0.1. Thus, p; := a and py := Lya and any 0 parametrizing 7 are locally trans-
versely linearizing coordinates on connected neighborhoods of 7\  (where the transverse
linear controllability condition holds). On each of these neighborhoods one can represent
(1) in form (5) with a(f) = 1 (the transverse dynamics in the Brunovsky form). Even
though p1 := o and py := Lya are defined globally around 7, they don’t define a coordinate
system around 7, for dLfa = 0 on N Q. Since our goal is to find transverse coordinates
that would work globally around 7, we cannot expect to have the transverse dynamics in
the Brunovsky form globally (for then the system would be globally transversely linearly
controllable around 7). This is the reason for a(8) to be a function rather than a constant in
(5). It should be intuitively clear that one must have a(f) = 0 on , i.e., at the points that
the transverse linear controllability fails. The reason why a(@) changes sign when crossing
Q2 is that the coordinate systems (8, o, Lya) have different orientations on the opposite



sides of ) (is is easy to show that dLsa crosses the plane spanned do and df when adsg
crosses the plane spanned by f and g), so that one cannot "glue” them smoothly. Instead,
globally working transverse coordinates p; and p, can obtained by “gluing” (6, a, Lfa) one
side of Q with (6, a, —La) on the other side of Q (these have the same orientation).

Since both (6, a, Lsa) and (6, o, —Lsa) become singular coordinates on (2, one needs
to construct a coordinate system on an arbitrarily thin neighborhood of Q@ with the same
orientation as (6, a, Lfa) and (0, o, —Lsa).

One can show that it is possible to find, in a thin neighborhood of n N 2, a function 8
such that 8 = 0 on 71, LyB = 1, and, for some choice of § and «a satisfying the conditions
(1), (2), and (3), one has Lya = hf, for some smooth function h. We have the following
result.

Proposition 1.1 Assume that the conditions (A)-(C) are satisfied. Then there are smooth
functions 0, o, B, and h defined in a neighborhood of 1 such that

(a) o satisfies conditions (1), (2), and (3) of Theorem 0.1.

(b) Lyo = hf in a neighborhood of 7.

(c) B=0 onn.

(d) L¢B =1 in a neighborhood of n N .

(e) Lif =1 onn.

(f) h = h(8) in a neighborhood of n N, i.e. O parametrizes level sets of h.

Proof: By assumption (B), nNQ = {z1,...,2Zm} for some even integer m. Let ¢; C Q
be a smooth curve passing through z; and transverse to f and g and let v; be any smooth
nonvanishing vector field tangent to ¢;. The transversality requirement can be satisfied by
demanding u(f(z;),g(z;),v(z;)) > 0, where p is a volume form on a neighborhood of 7.
Consider the mappings ®; : {5, s} > z given by (¢?(-) is the flow of a vector field &)

T = ¢f§ o ¢:£(€Uz) (7)
where s and s} range over an open interval I of real numbers containing 0. Let S; be the
range of ®;. (In other words, S; is obtained by “flowing” ¢; along f.) Note that S, is a
two-dimensional surface transverse to . Using s¢ and s, as coordinates on S; we notice
that on ¢; we have v; = %. We can extend the vector field v; to a vector field on S; by
v; = %. Note that on §; we have f = %, so that [f,v;] = 0 on S;. Furthermore, one can
extend v; to a smooth vector field on a neighborhood A; of S;, for instance by “flowing”
along g.

Shrinking A if necessary, we can assume that A, i = 1,...,m, are disjoint connected
open sets, each containing z; € nNQ. Let A;, 1 = m+1,...,2m, be disjoint connected open
sets such that each A contains a connected segment of n\ Q, V;NQ =0,i=m+1,...,2m,



and NV;, 4 = 1,...,2m, cover a neighborhood of . Let v;,7 = m + 1,...,2m, be smooth
vector fields on A;, 1 = m + 1,...,2m, with the property u(f(z;),g(z;),v(z;)) > 0,7 =
m+1,...,2m. Let {¢;}2™ be a smooth partition of unity subordinate to {N} That is,
¢; > 0, the support of qbz is contained in Aj, and, for each z € UM A, E 1oi(z) =1
(see, e.g., [2]). On U¥™A; we define a vector field v = 2™ ¢,v;. Note that vis a
smooth vector field. Observe also that u(f(z),g(z),v(z)) = 2™ dip(f(2:), 9(z:), v(z;)) >
0, for at each z € U™ A, at least for one i we have ¢;(z) > 0 and the corresponding
w(f(z:), g(z:),v(z;)) > 0. Therefore, f, g, and v are independent in a neighborhood of 7]
Moreover, for i € [1,...,m], define §; := S; \UJ 1 52eNie On S;, v = v; and thus [f,v] =

Fix a point zg on 7. In a neighborhood of 77 one can reach any point = by traveling from
zo along vector fields f,v, g with times sg, 51, 82, i.e., the mapping ®¢ : s — z given by

z = ¢% 04} ol (z0) (8)

is a local diffeomorphism between the cylinder S! x R?® and a tubular neighborhood of 7.
It is easy to verify that a := s; satisfies the conditions (1), (2), and (3) of Theorem 0.1 (cf.
[1]). Moreover, since Lya = 0 on 7 and [f,v] = 0 on S;,i=1,...,m, we have Lia=0on

We claim that one can join the S; to obtain a smooth two-dimensional orientable surface
S containing 7. Note that dLfa # 0 at the points where the system is transversely linearly
controllable and in particular on N, i = m+1,...,2m (cf. [1]). Let S;, i = m+1,...,2m,
be the connected component of {z € N;|Lsa(z) = 0, dLsa(z) # 0} containing n N N;.
Define S by S := (U?™S;). Observe that S is a smooth two-dimensional surface, since on
NinNN;,1€[1,m],j € [m+1,2m],dLsa # 0 implies S; = S;. Note that Lya = 0 on S (see
Remark 1 below). Orientability of S follows from the fact that g is everywhere transverse
to S.

Let us repeat the construction of flow coordinates as in (8) with v and f replaced by
and f that are tangent to S for z € S. Denote the new flow coordinates by &g, 31, 52. (We
do not re-define a.) Let N bea neighborhood of § on which 3, 81, §» are valid coordinates.
Since ¥ and f are tangent to S, S is given in 8g, 81, 2-coordinates by §; = 0. Since Lya =0

on 8, and Lsa is a smooth function in A, one has Lya(do,31,82) = 052 781'”5;;’31’0)(1
Using the substitution ¢ = 75, we get Lra(3g, 81, 32) = 85 1 78Lfa(s°’sl’q) dr. Define
g g f » 91, .
o=T3&y
= dg, h = [} 781/”(50’31’0) dr. Note that 8 and h are smooth. Moreover, 8 = 0 on
) 0 )

o=T3&9

S, and thus on 7. Observe that on N one has g = BA , so that Ly =1 on N. Note also
that on A/ LyLfa = h + BLgh. In particular, LgLfa = h on 7.
Assumption (C) guarantees that on 7N Q we have Lyh = LyLsLsa = Lad?‘ga # 0.

Thus, in a neighborhood of 77 N Q the level sets of h(-) are transverse to 7, so that one can
parametrize them by an appropriate function 6.

O

Remark 1.1 Note that, even though Lfa = 0 on the surface S constructed in the proof
of Proposition 1.1, we could not define S by the requirement Lo = 0. The problem is that



there are two branches of the surface Lya = 0 that intersect transversely at z; € n N Q.
This is possible since dLsa(z;) = 0. The construction of S in the proof of Proposition 1.1
picks only the “good” branch of the surface Lya = 0 that contains 1 and continues through
the singularity at z;. The construction neglects the “bad” branches of the surface Lya =0
that are transverse to n at z;. The function § is defined in such way that 8 = 0 on this
“good” branch of the surface Lya = 0, while the “bad” branches of the surface Lya = 0
correspond to h = 0. O

Remark 1.2 In the proof of Proposition 1.1, we constructed o using a special vector
field v (i.e., one commuting with f near the points z; € 7 N Q) rather than an arbitrary v
transverse to f and g as in [1]. The reason for this is that, in general, it is not possible
to factor Lya as hf for arbitrary a satisfying conditions (1), (2), and (3) of Theorem 0.1.
The difficulty is that there may not be a “good” branch of the surface Lya = 0 that
contains 7 and continues around 7. For example, suppose that near a point of transverse
linear controllability loss z; € n N Q, we have f = % + (8p2 + p%)a%, g = 6%’ and 7
is (locally) given by p1 = p2 = 0. We have adsg = —0%, so Q is (locally) given by
6 = 0. Note that o := p; satisfies conditions (1), (2), and (3) of Theorem 0.1. Consider
the set Lya = fpy + p? = 0. Intersections of this set with the sets p; = ¢ for constant
¢ # 0 are two branches of the hyperbola fp; = —c?, which lie on two sides of Q (given
by 6 = 0). Therefore, there is no “good” branch of the surface Lo = 0 that contains
7 and intersects {) transversely, which would be the case when Lfa = hB. On the other
hand, o := p; — 0p? also satisfies conditions (1), (2), and (3) of Theorem 0.1. We have
Lya = 0(ps+20%p1p2 +20p3). Defining h := 0 and B := pa + 2602 p1p2 + 203, we obtain the
required factorization Lya = hfS. O

Remark 1.3 The proof of Proposition 1.1 uses a detailed procedure to construct the
suitable functions «, 8, h, and . In many cases, it is not necessary to construct these
functions in this fashion. Indeed, for the cart-pendulum system in the sequel, an obvious
was found with the property that Lsa could be factored into h and f. O

Note that on n we have LyLsa = h. In particular LyLsa = 0 if and only if A = 0 (which
happens on 7N Q).

Now we are ready to show that the three groups of local coordinate systems (6, o, Lsa),
(8, a, —Lsa), and (6, a, B) can be “glued” together using a partition of unity [2] to form
a coordinate system that works globally around 7.

Proposition 1.2 Assume that the conditions (A)-(C) are satisfied. Let 6, a, h, and (
be smooth functions defined on a neighborhood N of n satisfying conditions of (a)-(f) of
Proposition 1.1. Fiz a small positive number €. Define

Ny = {z e N|h(z) > €},
N_ = {z e N|h(z) < —¢}, (9)
No = {z €N|—-2e<h(z) < 2}



Let {¢,d_,Po} be a partition of unity subordinate to {Ny,N_,No}. Define

L =«
p2 = ¢yLra—¢_Lya+ ¢op. (10)

Then (8, p1, p2) are valid local coordinates around n. The system (1) (in (8, p) coordinates)
is given by

6 = 1+ fi(8,p)+ go(,p)u
,bl = a(e,p)pg (11)
o = ptru
where
a:= h (12)
(P — 9 )h+ o’
p:=Lfpy=Ls(¢pLfa—¢_Lsa+ ¢ofd),
and

r:= Lgpy = Ly(¢p+Lya — ¢_Lio+ ¢of).
Moreover, r # 0 onn. We havea =1 on Ny \ Ny, a = -1 on N_\ Ny, and a = h on

No \ (M} UNZ). Moreover, for e < 3, —1 < a < 1 on Ny. Also, for € sufficiently small,
one can assume that a(8,p) = a(8) in a neighborhood of 7.

Proof: Note that the open sets N, N_, and Ay cover A/. To show that (8, p1, ps) are
valid local coordinates in a neighborhood of 7 it is sufficient to verify that they have linearly
independent differentials on 7. Let v be any vector field such that L,a = 1 on 5. Then f,
g, and v are linearly independent on 7. Observe that

(d0 A dpa A dp1)(f,g,v) = det S

where

L6 Ls0 L0

S=| Lgpz Lgps Lyp>

Lipr Lgp1 Lyp:
Note that on 7 one has Lyp; = Lya = 0, Lgpy = Lga = 0, Lypy = Lya =1, L0 = 1,
and Lypy = Ly(¢p1Lyo — ¢p_Lsa + ¢off) = 0. Moreover, since on 1 LyLso = h, we have
Lgps = Ly(¢ps+La—¢_Lia+¢of) = pyh—¢_h+¢o. Thus,onn, det S = ¢ h—d_h+¢g.
Note that ¢ h > 0, —¢p_h > 0, and ¢g > 0. Moreover, for each z € 5, at least one of the
quantities ¢ h, —¢p_h, and ¢g is strictly positive. Therefore, det S > 0 on # and hence in a
neighborhood. We have proved that (8, p1, p2) are valid local coordinates in a neighborhood
of n and r := Lgpy # 0 on 7.

The system (in (6, p) coordinates) is given by

6 = 1+ fi(8,)+ 906, p)u
pr = Lsp (13)
p2 = Lgps+ Lgpou = p + ru.



Note that ((¢4 —¢-)h+¢o)Lspr = ((¢+ —p-)h+¢o)Lsa = k(¢4 — - ) Lo+ ¢of) = hp.
Thus L¢p1 = apa, where a is given by (12). The facts a = 1 on N} \Np, a = —1 on N_\ NG,
and @ = h on Np \ (M} UNL) follow immediately. A simple proof of the fact that, for € < %,
—1 < a<1on A is left to the reader. Now, on a small neighborhood of n N Q, h = h(#).
Hence, for € sufficiently small and shrinking A if necessary, we see that h is a function of §
in Ny. Also ¢y,¢_,do can then be chosen as functions of 8. It follows that a is a function
of 6 in Ny. Outside of NVj, a is constant so that we can say that a is a function of § in a
neighborhood of 7.

O
The preliminary feedback
1
u=(p+) (14)
puts the system (11) into the modified Brunovsky form
6 = 1+ f1(6,p)+go(6,p)v
p1 = apa (15)
p2 = 7,
This form represents smooth transitions from the Brunovsky form
p1 = p2
. 16
p2 = . (16)
(corresponding to (0, a, Lfa)) to twisted Brunovsky form
lbl = —p2 (17)

P2 = .

(corresponding to (0, a, —La)) of the transverse dynamics as one travels around 7.
The form (15) can be used to design a locally stabilizing feedback for 7.

Proposition 1.3 Consider the system (15) and suppose that, for all real ¢ sufficiently close
to 0, we have

a(0,c,0)£0 .

Then, the control law
v = —kiap1 — kaps (18)

where k1 and ko are positive constants locally stabilizes n (i.e., p1 =0, po =0).
Proof: Consider, as Lyapunov function,

V = (kipl +p3)/2 .
Along the closed loop system (15), (18), we have

V:—kgpggo.



By LaSalle’s principle, the trajectories converge to the largest invariant set such that V=0,
namely, po = 0, p1 = ¢, where ¢ is a constant. Furthermore, since po = 0, we have

p2 = —k1a(0,¢,0)c = 0 on the invariant set. If a # 0 for at least one § then ¢ must be 0.
O

Note that the set a(6, p1, p2) = 0 intersects n only at points of transverse linear control-
lability loss. Furthermore, since such intersections are transverse, it is clear that, for each
¢ close to 0, one can easily find 8 such that a(6, c,0) is nonzero.

Remark 1.4 Note that if our goal is local stabilization of 7, then rather than using ps
defined by (10) as one of the (8, p) coordinates, one can instead use py := 3 in a neighborhood
of . It is easily seen that the representation of the system (1) in the coordinates (6, p) :=
(6,0, B) has still form (11) with ¢ = h and r = 1. In particular, the stabilization scheme

presented above still applies. Alternatively, one can interpret the choice py := 3 as a
particular case of py defined by (10) with € > sup s |A(z)]. O
2 Example

A reduced cart-pendulum model (with the cart velocity as input rather than the acceleration—
see [3], [4]) is described by the equations

Ty = T
£, = —sin(z1) — cos(z1)u (19)
5&3 = Uu.

Note that the undriven system (u = 0) has a family of periodic orbits
Ne, = {2 € R3:z2 — 2cos(z1) 4+ ¢o = 0,23 = 0}.

We have adsg = cos(:cl)aaTl—l—:cg sin(:cl)aaT2 and for u := dz1AdzyAdzs we have u(f, g, adsg) =
—sin(z1)(z% + cos(z)), so that the system is not transversely linearly controllable on the
set

Q= {z|u(f,g,adsg)(z) = 0} = {z|z; = Oorz2 + cos(z1) = 0}.

It is easy to verify that the functions oy(z) := z; and ax(z) := z3 + z3cos(z1) are
constant along g. One can observe that the function

a := (z3+ z3cos(z1))? — 2cos(z1) + o
is zero on 7.,. We have
Lia = —2z3(z3 + cos(z1) + zaz3 cos(zy)) sin(z1).
Defining
B:=z3

10



and
h = —2(3:% + cos(:cl) + zaz3 005(331)) sin(:cl)

we see that

Lo = hp.

In a neighborhood of Q 7 intersects the level sets of —2(z32 + cos(z1) + 223 cos(z1)) sin(z1)
transversely. Therefore we may assume that 6 in this neighborhood has been chosen so that
h is a function of 4.

Let A be an open neighborhood of 7. Define N, N_, and N by (9), for some € > 0. A
smooth partition of unity subordinate to {NV,, N_, Ao} can be constructed as follows. Let

f(y) = e_y_Z, fOI'y >0 (20)
£(y) = 0, fory<0.
Let a; < ay. Define
o &as-y)
¢a1,a2 (y) T f(ag—y)-l-f?y—al)' (21)

Note that ¢q, q,(.) is a nonincreasing function, ¢q, 4,(y) = 1 for y < a1, and ¢q, 4,(y) =0
for y > a3. One can choose

¢—(h) := ¢—2e,—c(h)
¢+ (h) = ¢ae,—c(—h)
¢o(h) :=1— ¢4(h) — ¢_(h).

The change of coordinates (10) and preliminary feedback (14) puts the system in the
form (15). Taking advantage of this form, we design a stabilizing feedback

v = —kiap1 — kaps

with k1 = 9 and k; = 4. By Proposition 1.3, this feedback provides local stability of 7.
For easier implementation, we used simple piecewise linear partition of unity (continuous
but not smooth) rather than the smooth one constructed using function ¢ defined by (20).
Figure 1 shows the closed loop trajectory for the system starting from z = (0.5,0.5,1) for
the case where cg = 2 cos 2. Figure 2 shows the projection of the closed loop trajectory onto
the z; — 2z, plane. Also shown are three components of the h(z) = 0 set.

Conclusion

We have presented a normal form for a nonlinear affine single-input system in R3 in a
neighborhood of a periodic orbit in the case when the transverse linear controllability fails
in finite number of points along the periodic orbit. This normal form can be used to
understand the dynamics of the control system close to singular points, as well as to design
locally stabilizing controllers for the orbit.

11



We hope that the methods applied in the present paper can be applied for finding

suitable normal forms for the transverse dynamics of general orbits for systems in R™
crossing surfaces of transverse linear controllability loss. Methods presented in this paper
should allow to obtain “global” transverse coordinates along the orbit, i.e., the ones working
in a neighborhood along the whole orbit, in particular “through” singularities.
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Figure 2: Projection of the closed loop trajectory onto the z; — z5 plane. The sets 2 = 0
are also shown.
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