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u = k(x) + l(x)v, the dynamics of (1) in a neighborhood of the periodic orbit � have theform _� = 1 + f1(�; �) + g0(�; �)v_�1 = �2..._�n�2 = �n�1_�n�1 = v; (2)where f1(�; �) satis�es f1(�; 0) = 0? The variable � 2 S1 = [0; T ] (we identify 0 andT ) parametrizes the periodic orbit � and the coordinates (�1; : : : ; �n�1) parametrize thetransverse dynamics.A system (1) which admits such a feedback transformation is called (globally) trans-versely feedback linearizable along �. System (1) is called transversely linearly controllableat x 2 Rn if dim span ff(x); g(x); adfg(x); : : : ; adn�2f g(x)g = n: (3)We say that (1) is transversely linearly controllable on a subset of Rn if (1) is transverselylinearly controllable at every point of this subset.The idea of transverse feedback linearization is a natural extension of feedback lineariza-tion [5, 7, 6] to the setting where the nominal behavior is an orbit rather than an equilibrium.Indeed, as with (standard) feedback linearization, one uses the transverse linearization tohelp understand the structure of the control system as well as to design feedback controlsproviding stabilization of the nominal behavior.The following result has been shown in [1].Theorem 0.1 Let � be a periodic orbit of the undriven system (1) with u � 0. Then,the system (1) is transversely feedback linearizable along the periodic orbit � if and onlyif it is transversely linearly controllable along � and there exists a smooth function � in aneighborhood N of � such that1. d� 6= 0 on �.2. � = 0 on �.3. Ladifg� = 0 in N for i = 0; : : : ; n� 3.As shown in [1], a suitable set of linearizing transverse coordinates are given by�1 := ��2 := Lf�...�n�1 := Ln�2f �: (4)The transverse linear controllability condition implies that this change of coordinates (to-gether with � parametrizing �) is a local di�eomorphism in a neighborhood of �.2



It can be easily seen that in R3 the transverse linear controllability along � is neces-sary and su�cient for transverse feedback linearization. Observe that for systems in R3transverse linear controllability (and thus linearizability) condition is generic with respectto points. One might tend to think that it is also a generic condition with respect to orbits.This is not the case. It is true that the set of transversely controllable periodic orbits isopen. But it is not dense. To see that, consider f and g such that there is a two-dimensionalsurface 
 in R3 with the property that for some volume form � we have �(f; g; adfg) = 0on 
 and �(f; g; adfg) changes sign on 
. Note that transverse linear controllability failson 
. A small perturbation of f and g perturbs 
 a little, but 
 does not disappear. If aperiodic orbit of f intersects 
 transversely, a periodic orbit of a perturbed system (if itpersists, which it does if the Floquet multipliers have absolute values di�erent from 1) willalso intersect the (perturbed) set 
. Thus, transverse linear controllability fails (at somepoint on �) even when f and g are slightly perturbed.We are motivated by a simple (reduced) model of a cart-pendulum system [3, 4] withstate space R3. This system possesses a family of periodic orbits that transversely intersecta surface of transverse linear controllability loss.In this paper we study what can be done in such a situation. In particular, we pro-vide conditions such that it is possible to �nd new coordinates (�; �1; �2) and control v sothat, after change of coordinates and feedback u = k(x) + l(x)v, the dynamics of (1) in aneighborhood of the periodic orbit � have the form_� = 1 + f1(�; �) + g0(�; �)v_�1 = a(�)�2_�2 = v; (5)where f1(�; �) satis�es f1(�; 0) = 0, a(�) is a smooth function periodic in � with values in theinterval [�1; 1], a(�) = 0 only on 
, a(�) = 1 or a(�) = �1 except in an arbitrarily smallneighborhood of 
, where a(�) changes sign. One may consider the transverse dynamics of(5) to be in a modi�ed Brunovsky normal form. In the last section we construct modi�edBrunovsky form for the cart-pendulum system. Using the form (5), one may easily designcontrollers stabilizing the transverse dynamics of (1), so that all trajectories of the closed-loop system with initial conditions close to � will asymptotically approach �.This paper is a preliminary study of a more general problem of �nding suitable standardforms for the transverse dynamics of general orbits for systems in Rn crossing surfaces oftransverse linear controllability loss. Methods presented in this paper should allow to obtain\global" transverse coordinates along the orbit, i.e., the ones working in a neighborhoodalong the whole orbit, in particular \through" singularities. One would expect that fora periodic orbit in Rn whose transverse dynamics is feedback linearizable, except for thepoints of the transverse controllability loss, it is possible to �nd a "global" (i.e., working3



about the whole orbit) coordinates so that the dynamics of the system has form_� = 1 + f1(�; �) + g0(�; �)v_�1 = a1(�)�2..._�n�2 = an�2(�)�n�1_�n�1 = an�1(�)v; (6)where the ai(�) are smooth functions periodic in � with values in the interval [�1; 1], ai(�) =0 only on the surface of transverse linear controllability loss 
, and ai(�) = 1 or ai(�) = �1except in an arbitrarily small neighborhood of 
. In the case when the transverse dynamicsis not exactly linearizable, the form (6) would still represent the linearized dynamics alongthe orbit.Such coordinates can be used to understand the dynamics of the control system closeto singular points, as well as to design locally stabilizing controllers for the orbit.1 ResultsConsider now the nonlinear system (1) on R3 with periodic orbit � (when u � 0) andsuppose that(A) dim span ff(x); g(x)g= 2 on �.(B) dim span ff(x); g(x); adfg(x)g = 3 on � n 
, where 
 is a two-dimensional surface 
in R3 with the property that �(f; g; adfg) = 0 on 
, �(f; g; adfg) changes sign on 
,and � intersects 
 transversely at an even number of points.(C) dim span ff(x); g(x); ad2fg(x)g = 3 for x 2 � \ 
.(All these conditions are satis�ed by a reduced cart-pendulum model.)It can be shown using methods in [1] that the condition (A) implies the existence of asmooth function � in a neighborhood N of � that satis�es conditions (1), (2), and (3) ofTheorem 0.1. Thus, �1 := � and �2 := Lf� and any � parametrizing � are locally trans-versely linearizing coordinates on connected neighborhoods of � n 
 (where the transverselinear controllability condition holds). On each of these neighborhoods one can represent(1) in form (5) with a(�) = 1 (the transverse dynamics in the Brunovsky form). Eventhough �1 := � and �2 := Lf� are de�ned globally around �, they don't de�ne a coordinatesystem around �, for dLf� = 0 on � \ 
. Since our goal is to �nd transverse coordinatesthat would work globally around �, we cannot expect to have the transverse dynamics inthe Brunovsky form globally (for then the system would be globally transversely linearlycontrollable around �). This is the reason for a(�) to be a function rather than a constant in(5). It should be intuitively clear that one must have a(�) = 0 on 
, i.e., at the points thatthe transverse linear controllability fails. The reason why a(�) changes sign when crossing
 is that the coordinate systems (�, �, Lf�) have di�erent orientations on the opposite4



sides of 
 (is is easy to show that dLf� crosses the plane spanned d� and d� when adfgcrosses the plane spanned by f and g), so that one cannot "glue" them smoothly. Instead,globally working transverse coordinates �1 and �2 can obtained by \gluing" (�, �, Lf�) oneside of 
 with (�, �, �Lf�) on the other side of 
 (these have the same orientation).Since both (�, �, Lf�) and (�, �, �Lf�) become singular coordinates on 
, one needsto construct a coordinate system on an arbitrarily thin neighborhood of 
 with the sameorientation as (�, �, Lf�) and (�, �, �Lf�).One can show that it is possible to �nd, in a thin neighborhood of � \ 
, a function �such that � = 0 on �, Lg� = 1, and, for some choice of � and � satisfying the conditions(1), (2), and (3), one has Lf� = h�, for some smooth function h. We have the followingresult.Proposition 1.1 Assume that the conditions (A)-(C) are satis�ed. Then there are smoothfunctions �, �, �, and h de�ned in a neighborhood of � such that(a) � satis�es conditions (1), (2), and (3) of Theorem 0.1.(b) Lf� = h� in a neighborhood of �.(c) � = 0 on �.(d) Lg� = 1 in a neighborhood of � \ 
.(e) Lf� = 1 on �.(f) h = h(�) in a neighborhood of � \ 
, i.e. � parametrizes level sets of h.Proof: By assumption (B), � \ 
 = fx1; : : : ; xmg for some even integer m. Let ci � 
be a smooth curve passing through xi and transverse to f and g and let vi be any smoothnonvanishing vector �eld tangent to ci. The transversality requirement can be satis�ed bydemanding �(f(xi); g(xi); v(xi)) > 0, where � is a volume form on a neighborhood of �.Consider the mappings �i : fsi1; si2g 7! x given by (�hs (�) is the ow of a vector �eld h)x = �fsi2 � �visi1(xi) (7)where si1 and si2 range over an open interval I of real numbers containing 0. Let Si be therange of �i. (In other words, Si is obtained by \owing" ci along f .) Note that Si is atwo-dimensional surface transverse to 
. Using si1 and si2 as coordinates on Si we noticethat on ci we have vi = @@si1 . We can extend the vector �eld vi to a vector �eld on Si byvi := @@si1 . Note that on Si we have f = @@si2 , so that [f; vi] = 0 on Si. Furthermore, one canextend vi to a smooth vector �eld on a neighborhood Ni of Si, for instance by \owing"along g.Shrinking Ni if necessary, we can assume that Ni; i = 1; : : : ; m; are disjoint connectedopen sets, each containing xi 2 �\
. Let Ni; i = m+1; : : : ; 2m; be disjoint connected opensets such that each Ni contains a connected segment of � n
,Ni\
 = ;; i = m+1; : : : ; 2m,5



and Ni; i = 1; : : : ; 2m; cover a neighborhood of �. Let vi; i = m + 1; : : : ; 2m; be smoothvector �elds on Ni; i = m + 1; : : : ; 2m; with the property �(f(xi); g(xi); v(xi)) > 0; i =m + 1; : : : ; 2m. Let f�ig2mi=1 be a smooth partition of unity subordinate to fNig. That is,�i � 0, the support of �i is contained in Ni, and, for each x 2 [2mi=1Ni, P2mi=1 �i(x) = 1(see, e.g., [2]). On [2mi=1Ni we de�ne a vector �eld v := P2mi=1 �ivi. Note that v is asmooth vector �eld. Observe also that �(f(x); g(x); v(x)) =P2mi=1 �i�(f(xi); g(xi); v(xi)) >0, for at each x 2 [2mi=1Ni at least for one i we have �i(x) > 0 and the corresponding�(f(xi); g(xi); v(xi)) > 0. Therefore, f , g, and v are independent in a neighborhood of �.Moreover, for i 2 [1; : : : ; m], de�ne Ŝi := Si n [2mj=1; j 6=iNi. On Ŝi, v = vi and thus [f; v] = 0.Fix a point x0 on �. In a neighborhood of � one can reach any point x by traveling fromx0 along vector �elds f; v; g with times s0; s1; s2, i.e., the mapping �0 : s 7! x given byx = �gs2 � �vs1 � �fs0(x0) (8)is a local di�eomorphism between the cylinder S1 �R3 and a tubular neighborhood of �.It is easy to verify that � := s1 satis�es the conditions (1), (2), and (3) of Theorem 0.1 (cf.[1]). Moreover, since Lf� = 0 on � and [f; v] = 0 on Ŝi; i = 1; : : : ; m; we have Lf� = 0 onŜi. We claim that one can join the Ŝi to obtain a smooth two-dimensional orientable surfaceS containing �. Note that dLf� 6= 0 at the points where the system is transversely linearlycontrollable and in particular on Ni; i =m+1; : : : ; 2m (cf. [1]). Let Si; i = m+1; : : : ; 2m,be the connected component of fx 2 NijLf�(x) = 0; dLf�(x) 6= 0g containing � \ Ni.De�ne S by S := ([2mi=1Si). Observe that S is a smooth two-dimensional surface, since onNi\Nj ; i 2 [1; m]; j 2 [m+1; 2m], dLf� 6= 0 implies Si = Sj . Note that Lf� = 0 on S (seeRemark 1 below). Orientability of S follows from the fact that g is everywhere transverseto S.Let us repeat the construction of ow coordinates as in (8) with v and f replaced by v̂and f̂ that are tangent to S for x 2 S. Denote the new ow coordinates by ŝ0; ŝ1; ŝ2. (Wedo not re-de�ne �.) Let N̂ be a neighborhood of S on which ŝ0; ŝ1; ŝ2 are valid coordinates.Since v̂ and f̂ are tangent to S, S is given in ŝ0; ŝ1; ŝ2-coordinates by ŝ2 = 0. Since Lf� = 0on S, and Lf� is a smooth function in N̂ , one has Lf�(ŝ0; ŝ1; ŝ2) = R ŝ20 @Lf�(ŝ0;ŝ1;�)@� d�.Using the substitution � = � ŝ2 we get Lf�(ŝ0; ŝ1; ŝ2) = ŝ2 R 10 @Lf�(ŝ0;ŝ1;�)@� ����=� ŝ2 d� . De�ne� := ŝ2, h := R 10 @Lf�(ŝ0;ŝ1;�)@� ����=� ŝ2 d� . Note that � and h are smooth. Moreover, � = 0 onS, and thus on �. Observe that on N̂ one has g = @@ŝ2 , so that Lg� = 1 on N̂ . Note alsothat on N̂ LgLf� = h + �Lgh. In particular, LgLf� = h on �.Assumption (C) guarantees that on � \ 
 we have Lfh = LfLgLf� = Lad2fg� 6= 0.Thus, in a neighborhood of � \ 
 the level sets of h(�) are transverse to �, so that one canparametrize them by an appropriate function �. 2Remark 1.1 Note that, even though Lf� = 0 on the surface S constructed in the proofof Proposition 1.1, we could not de�ne S by the requirement Lf� = 0. The problem is that6



there are two branches of the surface Lf� = 0 that intersect transversely at xi 2 � \ 
.This is possible since dLf�(xi) = 0. The construction of S in the proof of Proposition 1.1picks only the \good" branch of the surface Lf� = 0 that contains � and continues throughthe singularity at xi. The construction neglects the \bad" branches of the surface Lf� = 0that are transverse to � at xi. The function � is de�ned in such way that � = 0 on this\good" branch of the surface Lf� = 0, while the \bad" branches of the surface Lf� = 0correspond to h = 0. 2Remark 1.2 In the proof of Proposition 1.1, we constructed � using a special vector�eld v (i.e., one commuting with f near the points xi 2 � \ 
) rather than an arbitrary vtransverse to f and g as in [1]. The reason for this is that, in general, it is not possibleto factor Lf� as h� for arbitrary � satisfying conditions (1), (2), and (3) of Theorem 0.1.The di�culty is that there may not be a \good" branch of the surface Lf� = 0 thatcontains � and continues around �. For example, suppose that near a point of transverselinear controllability loss xi 2 � \ 
, we have f = @@� + (��2 + �21) @@�1 , g = @@�2 , and �is (locally) given by �1 = �2 = 0. We have adfg = �� @@�1 , so 
 is (locally) given by� = 0. Note that � := �1 satis�es conditions (1), (2), and (3) of Theorem 0.1. Considerthe set Lf� = ��2 + �21 = 0. Intersections of this set with the sets �1 = c for constantc 6= 0 are two branches of the hyperbola ��2 = �c2, which lie on two sides of 
 (givenby � = 0). Therefore, there is no \good" branch of the surface Lf� = 0 that contains� and intersects 
 transversely, which would be the case when Lf� = h�. On the otherhand, � := �1 � ��21 also satis�es conditions (1), (2), and (3) of Theorem 0.1. We haveLf� = �(�2+2�2�1�2+2��31). De�ning h := � and � := �2+2�2�1�2+2��31, we obtain therequired factorization Lf� = h�. 2Remark 1.3 The proof of Proposition 1.1 uses a detailed procedure to construct thesuitable functions �, �, h, and �. In many cases, it is not necessary to construct thesefunctions in this fashion. Indeed, for the cart-pendulum system in the sequel, an obvious �was found with the property that Lf� could be factored into h and �. 2Note that on � we have LgLf� = h. In particular LgLf� = 0 if and only if h = 0 (whichhappens on � \ 
).Now we are ready to show that the three groups of local coordinate systems (�, �, Lf�),(�, �, �Lf�), and (�, �, �) can be \glued" together using a partition of unity [2] to forma coordinate system that works globally around �.Proposition 1.2 Assume that the conditions (A)-(C) are satis�ed. Let �, �, h, and �be smooth functions de�ned on a neighborhood N of � satisfying conditions of (a)-(f) ofProposition 1.1. Fix a small positive number �. De�neN+ := fx 2 N jh(x) > �g;N� := fx 2 N jh(x) < ��g;N0 := fx 2 N j � 2� < h(x) < 2�g: (9)7



Let f�+; ��; �0g be a partition of unity subordinate to fN+;N�;N0g. De�ne�1 := ��2 := �+Lf�� ��Lf�+ �0�: (10)Then (�; �1; �2) are valid local coordinates around �. The system (1) (in (�; �) coordinates)is given by _� = 1+ f1(�; �) + g0(�; �)u_�1 = a(�; �)�2_�2 = p+ ru (11)where a := h(�+ � ��)h+ �0 ; (12)p := Lf�2 = Lf (�+Lf�� ��Lf�+ �0�);and r := Lg�2 = Lg(�+Lf�� ��Lf�+ �0�):Moreover, r 6= 0 on �. We have a = 1 on N+ n N0, a = �1 on N� n N0, and a = h onN0 n (N+ [ N�). Moreover, for � < 12 , �1 < a < 1 on N0. Also, for � su�ciently small,one can assume that a(�; �) = a(�) in a neighborhood of �.Proof: Note that the open sets N+, N�, and N0 cover N . To show that (�; �1; �2) arevalid local coordinates in a neighborhood of � it is su�cient to verify that they have linearlyindependent di�erentials on �. Let v be any vector �eld such that Lv� = 1 on �. Then f ,g, and v are linearly independent on �. Observe that(d� ^ d�2 ^ d�1)(f; g; v) = detSwhere S = 264 Lf� Lg� Lv�Lf�2 Lg�2 Lv�2Lf�1 Lg�1 Lv�1 375 :Note that on � one has Lf�1 = Lf� = 0, Lg�1 = Lg� = 0, Lv�1 = Lv� = 1, Lf� = 1,and Lf�2 = Lf(�+Lf� � ��Lf� + �0�) = 0. Moreover, since on � LgLf� = h, we haveLg�2 = Lg(�+Lf����Lf�+�0�) = �+h���h+�0. Thus, on �, detS = �+h���h+�0.Note that �+h � 0, ���h � 0, and �0 � 0. Moreover, for each x 2 �, at least one of thequantities �+h, ���h, and �0 is strictly positive. Therefore, detS > 0 on � and hence in aneighborhood. We have proved that (�; �1; �2) are valid local coordinates in a neighborhoodof � and r := Lg�2 6= 0 on �.The system (in (�; �) coordinates) is given by_� = 1 + f1(�; �) + g0(�; �)u_�1 = Lf�1_�2 = Lf�2 + Lg�2u = p+ ru: (13)8



Note that ((�+���)h+�0)Lf�1 = ((�+���)h+�0)Lf� = h((�+���)Lf�+�0�) = h�2.Thus Lf�1 = a�2, where a is given by (12). The facts a = 1 on N+ nN0, a = �1 on N� nN0,and a = h on N0 n (N+[N�) follow immediately. A simple proof of the fact that, for � < 12 ,�1 < a < 1 on N0 is left to the reader. Now, on a small neighborhood of � \ 
, h = h(�).Hence, for � su�ciently small and shrinking N if necessary, we see that h is a function of �in N0. Also �+; ��; �0 can then be chosen as functions of �. It follows that a is a functionof � in N0. Outside of N0, a is constant so that we can say that a is a function of � in aneighborhood of �. 2The preliminary feedback u = 1r (�p+ v) (14)puts the system (11) into the modi�ed Brunovsky form_� = 1 + f1(�; �) + g0(�; �)v_�1 = a�2_�2 = v; (15)This form represents smooth transitions from the Brunovsky form_�1 = �2_�2 = v: (16)(corresponding to (�, �, Lf�)) to twisted Brunovsky form_�1 = ��2_�2 = v: (17)(corresponding to (�, �, �Lf�)) of the transverse dynamics as one travels around �.The form (15) can be used to design a locally stabilizing feedback for �.Proposition 1.3 Consider the system (15) and suppose that, for all real c su�ciently closeto 0, we have a(�; c; 0) 6� 0 :Then, the control law v = �k1a�1 � k2�2 (18)where k1 and k2 are positive constants locally stabilizes � (i.e., �1 = 0, �2 = 0).Proof: Consider, as Lyapunov function,V = (k1�21 + �22)=2 :Along the closed loop system (15), (18), we have_V = �k2�22 � 0 :9



By LaSalle's principle, the trajectories converge to the largest invariant set such that _V = 0,namely, �2 = 0, �1 = c, where c is a constant. Furthermore, since _�2 = 0, we have_�2 = �k1a(�; c; 0)c = 0 on the invariant set. If a 6= 0 for at least one � then c must be 0.2 Note that the set a(�; �1; �2) = 0 intersects � only at points of transverse linear control-lability loss. Furthermore, since such intersections are transverse, it is clear that, for eachc close to 0, one can easily �nd � such that a(�; c; 0) is nonzero.Remark 1.4 Note that if our goal is local stabilization of �, then rather than using �2de�ned by (10) as one of the (�; �) coordinates, one can instead use �2 := � in a neighborhoodof �. It is easily seen that the representation of the system (1) in the coordinates (�; �) :=(�; �; �) has still form (11) with a = h and r = 1. In particular, the stabilization schemepresented above still applies. Alternatively, one can interpret the choice �2 := � as aparticular case of �2 de�ned by (10) with � > supx2N jh(x)j. 22 ExampleA reduced cart-pendulum model (with the cart velocity as input rather than the acceleration|see [3], [4]) is described by the equations_x1 = x2_x2 = � sin(x1)� cos(x1)u_x3 = u: (19)Note that the undriven system (u � 0) has a family of periodic orbits�c0 = fx 2 R3 : x22 � 2 cos(x1) + c0 = 0; x3 = 0g:We have adfg = cos(x1) @@x1+x2 sin(x1) @@x2 and for � := dx1^dx2^dx3 we have �(f; g; adfg) =� sin(x1)(x22 + cos(x1)), so that the system is not transversely linearly controllable on theset 
 := fxj�(f; g; adfg)(x) = 0g = fxjx1 = 0 orx22 + cos(x1) = 0g:It is easy to verify that the functions �1(x) := x1 and �2(x) := x2 + x3 cos(x1) areconstant along g. One can observe that the function� := (x2 + x3 cos(x1))2 � 2 cos(x1) + c0is zero on �c0 . We haveLf� = �2x3(x22 + cos(x1) + x2x3 cos(x1)) sin(x1):De�ning � := x310



and h := �2(x22 + cos(x1) + x2x3 cos(x1)) sin(x1)we see that Lf� = h�:In a neighborhood of 
 � intersects the level sets of �2(x22+cos(x1) + x2x3 cos(x1)) sin(x1)transversely. Therefore we may assume that � in this neighborhood has been chosen so thath is a function of �.Let N be an open neighborhood of �. De�ne N+, N�, and N0 by (9), for some � > 0. Asmooth partition of unity subordinate to fN+;N�;N0g can be constructed as follows. Let�(y) := e� 1y2 ; for y > 0�(y) := 0; for y � 0: (20)Let a1 < a2. De�ne �a1;a2(y) := �(a2�y)�(a2�y)+�(y�a1) : (21)Note that �a1;a2(:) is a nonincreasing function, �a1;a2(y) = 1 for y � a1, and �a1;a2(y) = 0for y � a2. One can choose ��(h) := ��2�;��(h)�+(h) := ��2�;��(�h)�0(h) := 1� �+(h)� ��(h):The change of coordinates (10) and preliminary feedback (14) puts the system in theform (15). Taking advantage of this form, we design a stabilizing feedbackv = �k1a�1 � k2�2with k1 = 9 and k2 = 4. By Proposition 1.3, this feedback provides local stability of �.For easier implementation, we used simple piecewise linear partition of unity (continuousbut not smooth) rather than the smooth one constructed using function � de�ned by (20).Figure 1 shows the closed loop trajectory for the system starting from x = (0:5; 0:5; 1) forthe case where c0 = 2 cos 2. Figure 2 shows the projection of the closed loop trajectory ontothe x1 � x2 plane. Also shown are three components of the h(x) = 0 set.ConclusionWe have presented a normal form for a nonlinear a�ne single-input system in R3 in aneighborhood of a periodic orbit in the case when the transverse linear controllability failsin �nite number of points along the periodic orbit. This normal form can be used tounderstand the dynamics of the control system close to singular points, as well as to designlocally stabilizing controllers for the orbit. 11



We hope that the methods applied in the present paper can be applied for �ndingsuitable normal forms for the transverse dynamics of general orbits for systems in Rncrossing surfaces of transverse linear controllability loss. Methods presented in this papershould allow to obtain \global" transverse coordinates along the orbit, i.e., the ones workingin a neighborhood along the whole orbit, in particular \through" singularities.References[1] Andrzej Banaszuk and John Hauser. Feedback linearization of transverse dynamics forperiodic orbits. Systems and Control Letters, 1994. Submitted. Also in Proceedings ofthe 32nd CDC.[2] William M. Boothby. An Introduction to Di�erentiable Manifolds and RiemannianGeometry. Academic Press, San Diego, 1986.[3] Chung Choo Chung and John Hauser. Nonlinear control of a swinging pendulum. Au-tomatica, 1994. To appear. Also in Proceedings of the 31st CDC.[4] John Hauser and Chung Choo Chung. Converse Lyapunov functions for exponentiallystable periodic orbits. Systems and Control Letters, 23:27{34, 1994.[5] L. R. Hunt, Renjeng Su, and George Meyer. Global transformations of nonlinear systems.IEEE Transactions on Automatic Control, AC{28:24{31, 1983.[6] Alberto Isidori. Nonlinear Control Systems: An Introduction. Communications andControl Engineering Series. Springer-Verlag, Berlin, 2nd edition, 1989.[7] Bronislaw Jakubczyk and Witold Respondek. On linearization of control systems.Bulletin de L'Academie Polonaise des Sciences, S�erie des sciences math�ematiques,XXVIII:517{522, 1980.
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Figure 1: Closed loop trajectory from (0:5; 0:5; 1) with c0 = 2 cos 2.
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Figure 2: Projection of the closed loop trajectory onto the x1 � x2 plane. The sets h = 0are also shown. 13


