A CURIOUS BINOMIAL IDENTITY

NEIL J. CALKIN

In this note we shall prove the following curious identity of sums of powers of the partial
sum of binomial coefficients.

1. AN IDENTITY
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Indeed;
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Putting these together, we indeed find that
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as required. [J



A CURIOUS BINOMIAL IDENTITY 3

2. AN APPLICATION

In this section we shall discuss an application of this to order statistics. Observe that the
expected value of the maximum of three independent Bernoulli random variables B(n, %) is

(- () e

n 3 2n
— e 2—271. ]
5 T (n)

Hence, by the central limit theorem, the expected value m3 of the maximum of three inde-
pendent normal N(0,1) random variables is
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subracting off the mean, dividing by the standard deviation and applying Stirling’s formula
for the asymptotics of n!
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