
III. IMPLEMENTATION OF THE GTNEUT 2D NEUTRALS TRANSPORT

CODE FOR ROUTINE DIII-D ANALYSIS (Z. W. Friis and W. M. Stacey,

Georgia Tech; T. D. Rognlien, Lawrence Livermore National Laboratory; R. J.

Groebner, General Atomics)

Abstract

 The Georgia Tech Neutral Transport (GTNEUT) code
1,2

 is being implemented to

provide a tool for routine analysis of the effects of neutral atoms on edge phenomena in

DIII-D. GTNEUT can use an arbitrarily complex two-dimensional grid to represent the

plasma edge geometry
1
. The grid generation capability built into the UEDGE code

3
,

which utilizes equilibrium fitting data taken from experiment, is being adapted to produce

geometric grids for the complex 2D geometries in the DIII-D plasma edge. The process

for using experimental measurements supplemented by plasma edge calculations to

provide the required background plasma parameters for the GTNEUT calculation will be

systematized once the geometric grid generation is complete.

A. Introduction

In the past, most plasma physicists concentrated their research efforts on the

exploration of core plasma, with little attention given to the edge region including the

SOL, divertor and pedestal regions. This is now changing because many experiments

have indicated that phenomena taking place in the plasma edge are very important for the

overall performance characteristics of the confined plasma. Additionally, it has been

shown that some of these edge phenomena are greatly influenced by neutral particles. It

is for this reason we seek to better understand how neutral particles affect phenomena in

the plasma edge.

In order to analyze the affects of neutral atoms on edge phenomena, an accurate

but computationally efficient calculation of neutral particle transport in edge plasma is

needed. For this purpose, the two-dimensional Georgia Tech Neutral Transport

(GTNEUT) code
1
 will be used. GTNEUT is a two-dimensional neutral particle transport

code based on the Transmission and Escape Probabilities (TEP) method
2
, which has been

extensively benchmarked against both experiment and Monte Carlo calculations
4-7

.

GTNEUT is computationally efficient compared with some of the standard Monte Carlo

codes used today.

B. GTNEUT Geometric Input

While the GTNEUT code has many advantages over some of the Monte Carlo

based codes, it does have one very big drawback. GTNEUT utilizes a coordinate-free

geometry input file called “toneut”. “Coordinate-free” means that the two dimensional

mesh needed to represent a cross section of a Tokamak plasma only requires geometrical

data from each cell such as lengths and angles, as well as relative positions of the sides of

neighboring cells. The GTNEUT calculation consists of the calculation of the

transmission of uncollided fluxes from an incident interface across a region through an

exiting interface and the calculation of fluxes of collided particles exiting a region across

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4731998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

a bounding interface as illustrated in the figure below. The interface balances on these

various fluxes must be simultaneously solved to determine the fluxes, from which the

densities within the region can be computed.

Figure 1: Schematic diagram showing region i and its adjacent regions and the partial

currents at the interfaces.
1

Actual (R,Z) coordinates are not needed and cannot be utilized by GTNEUT itself.

Therefore, it can become quite tedious and error prone to manually input such

information.

The GTNEUT package does include an automatic grid generator; however, this

generator can only create very simple rectangular geometries which are often only used

for test cases. For much more complicated geometries, such as a tokamak plasma edge,

GTNEUT becomes dependent on the GRID generating capabilities of other codes. In

fact, simply obtaining the GTNEUT geometric information for a tokamak plasma

becomes a three step process. The first step is obtaining information about the plasma

geometry from diagnostics, the second step is generating a mesh from the plasma

geometry, and the third step is converting the mesh into a format that GTNEUT can

utilize.

C. EFIT

Utilization of the DIII-D EFIT (Equilibrium Fitting) code is the first step in our

process. The EFIT code was developed to translate measurements from plasma

diagnostics into useful information like plasma geometry by solving the Grad-Shafranov

equation. Such measurements are provided from diagnostics such as external magnetic

probes, external poloidal flux loops, and the Motional Stark Effect (MSE)
8
. Running the

EFIT code is a fairly simple procedure. One simply specifies the experiment number, the

initial time slice to be studied, and the number of times to be studied as well as the time

interval between each step. Additionally, one must specify which of the different SNAP

versions are used.

 3

Table 1:List of different SNAP versions, and their uses
9
.

SNAP Version Use

def defaulted SNAP file, no edge gradients. For L-mode discharges, break-

down error field analysis. Polynomial representation. No edge current.

j finite edge gradients included in the current representation.

jt Edge gradients constrained to vanish weakly. For H-mode discharges.

Polynomial representation. Edge current is constrained to vanish

weakly.

scrape force-free scrape-off layer and vessel currents included in the fitting.

mses For L- and H- mode discharges with MSE. Spline representation.

Finite edge current allowed.

mse2_j1 MSE plus constrainted edge J.

mses_er MSE with ER correction for shots later than 91000.

The code takes seconds to run and stores information about the plasma geometry in

a number of files called “EQDSK” files. There are several types of EQDSK files, but the

ones utilized most often are the AEQDSK and GEQDSK files. The AEQDSK file

contains mostly scalar values as well as the global plasma parameters. The GEQDSK file

holds most of the information about the flux surfaces and the R and Z positions
10

. Below

is the output from a code designed to view the EQDSK files.

Figure 2: EFIT Data from shot 119437

 4

There are several methods used run the EFIT code and some methods use different

locations from where experimental data was obtained. Some methods use the diagnostic

data on the MDSplus servers while others uses the data that has been reduced by

experimentalist. For example, the diagram below shows two different EFITs for the same

shot at the same time. The only difference is how the EFIT was generated. The EFIT

equilibrium can be improved by adding extra measurements to the analysis. As the

equilibrium is refined by the addition of data, the location of strike points and other

divertor geometry may change in small but important ways, from the point of view of

edge analysis. It is not clear if there is a “best” strategy for generating equilibria for edge

analysis. Ascertaining which EFIT is correct requires collaboration with experimentalist.

Figure 3 : Overlap of different EFITs for Shot 119437.

D. UEDGE Mesh Generation

Once we have generated the EFIT, the second step in the process is generating the

mesh. Manually doing this can take several months. For example, the mesh depicted

below was created by hand using a CAD program to calculate the lengths and angles of

each cell.

 5

Figure 4: Manually Generated Mesh

While the manual method of grid generation may actually have some advantages

such as being able to specify geometries at certain locations in more detail, the process is

inherently cumbersome, prone to error, and very tedious. Instead of manually generating

the mesh, we have opted to use the UEDGE code’s mesh generating capabilities. UEDGE

is a very powerful two-dimensional (2D) fluid transport code for collisional edge

plasmas. UEDGE can perform a large number of calculations and even be coupled to

several Monte Carlo based neutrals codes
3
. However, for now, we are primarily

interested in UEDGE’s grid generating capabilities.

UEDGE generates meshes using the EQDSK files specified in a previous section.

Also, an input file is required to specify how coarse the mesh will be. Of most use to us

are the inputs below.

Table 2: Inputs to specify UEDGE grid
3
.

Input Name Purpose

nxleg(1,1) Number of Poloidal mesh pts from inner plate to x-point

nxcore(1,1) Number of Poloidal . mesh pts from x-point to top on inside

nxcore(1,2) Number of Poloidal mesh pts from top to x-point on outside

nxleg(1,2) Number of Poloidal mesh pts from x-point to outer plate

nysol(1) Number of Radial mesh pts in SOL

nycore(1) Number of Radial mesh pts in core

 6

By default, the mesh generator produces orthogonal meshes; however, it can be very

useful to generate non-orthogonal meshes. This is especially true if one wants to fit the

mesh to the divertor. By altering an input option called “ismmon” and specifying the

divertor plate locations in the UEDGE input file, the grid generator will extend the mesh

to the divertor producing a nice fit. An example of this can be seen below
3
.

Figure 5: Comparison of Orthogonal and Non-Orthogonal Meshes

Additionally, a full UEDGE run is not required in order to generate the meshes.

Typing the following at the UEDGE command prompt will generate a mesh file called

gridue
3
.

call flxrun

 call grdrun

The mesh produced by the UEDGE grid generator can be very useful for GTNEUT

calculations; however, as seen in the examples above, the grid does not extend to the

walls of the confinement vessel. In between the SOL and Wall (which we call the Gap

region), it is necessary to extend the UEDGE grid to the wall for the GTNEUT grid.

 7

E. Adaptation of UEDGE Mesh for GTNEUT Input

For simplicity, the most efficient way to do this is simply extending the last layer

of cells in the SOL perpendicularly to the wall. Below is an example of what we have

done.

Figure 6: Comparison of UEDGE grid extended to wall.

By, examining what we have done here, we can also see how the UEDGE input

file works. Notice there are six SOL regions on the right hand figure (SOL regions are the

regions that lie outside of the seperatrix. This was accomplished by setting nysol(1) equal

to 6. The left hand figure only has five, plus the Gap region. We have simply redefined

the last region of cells. Most of the cells in our grid have four sides. The two main

exceptions are the private flux region show in lime green on the left side. It is defined as

a function of the UEDGE input file and gridue file. Also, the cells shown in magenta at

the very top of the vessel may have more than 4 sides. Lastly, the outermost corners of

the divertor regions may contain only 3 sides depending on their location with respect to

the wall. As of now, this is not a purely automatic grid generating system. One must first

plot the grid to make sure errors have not arisen before proceeding.

F. Summary and Conclusions and Present Work

The present version of the UEDGE to GTNEUT grid adaptor is much more

efficient and accurate than the manual method. It has been successfully used on

discharges 119437 and 119436. It still needs to be tested on other discharges using

different EFIT versions. Also, the present version of the adaptor only works for single

 8

lower null discharges. Modifications to work on a single upper null or double null

discharge should not be too difficult.

Presently, routines are being added to the adaptor to actually write the GTNEUT

input file. This currently exists for the plasma regions between the core and the gap

regions. However, proper tracking of the cells is of the utmost importance. We are

breaking the grid down into regions as illustrated by various colors in the diagram on the

left in Fig. 5 to facilitate this tracking more easily. Additionally, the cells are being

numbered in a way that will make assigning temperatures and densities from diagnostics

much easier.

References

1. J. Mandrekas, Comp. Physics Commun., 161, 36 (2004).

2. W. M. Stacey and J. Mandrekas, Nucl. Fusion, 34, 1385 (1994).

3. T. D. Rognlien, et al., User Manual of UEDGE Edge-Plasma Transport Code,

LLNL report (2007)

4. W. M. Stacey, J. Mandrekas and R. Rubilar, Fusion Sci. Technol., 40, 66 (2001).

5. R. Rubiliar, W. M. Stacey, J. Mandrekas, Nucl. Fusion, 41, 1003 (2001).

6. J. Mandrekas, R. J. Colchin, W. M. Stacey, et al., Nucl. Fusion, 43, 314 (2003).

7. D-K. Zhang, J. Mandrekas and W. M. Stacey, Phys. Plasmas, 13, 062509 (2006).

8. http://fusion.gat.com/theory/Efitdef

9. http://fusion.gat.com/theory/Efitsnap

10. http://fusion.gat.com/theory/Efitoutputs

