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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00000549


cc
sd

-0
00

00
54

9 
(v

er
si

on
 1

) 
: 2

7 
A

ug
 2

00
3

Geophys. J. Int. (2003) 000, 000–000

Spectral element modeling of three dimensional wave

propagation in a self-gravitating Earth with an

arbitrarily stratified outer core

Emmanuel Chaljub1 and Bernard Valette2

1LGIT, CNRS, BP 53, 38041 Grenoble Cedex 9, France
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SUMMARY

This paper deals with the spectral element modeling of seismic wave propagation at the

global scale. Two aspects relevant to low-frequency studies are particularly emphasized.

First, the method is generalized beyond the Cowling approximation in order to fully ac-

count for the effects of self-gravitation. In particular, the perturbation of the gravity field

outside the Earth is handled by a projection of the spectral element solution onto the ba-

sis of spherical harmonics. Second, we propose a new formulation inside the fluid which

allows to account for an arbitrary density stratification. It is based upon a decomposition

of the displacement into two scalar potentials, and results in a fully explicit fluid-solid cou-

pling strategy. The implementation of the method is carefully detailed and its accuracy is

demonstrated through a series of benchmark tests.

Key words: Brunt-Väisälä frequency – elastodynamics – global seismology – numerical

modeling – self-gravitation – spectral element method – synthetic seismograms.
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1 INTRODUCTION

It has been recently established by several authors (Chaljub (2000), Komatitsch & Tromp

(2002a,b), Capdeville et al. (2003), Chaljub et al. (2003)) that the spectral element method

(SEM) provides an efficient solution to the issue of computing synthetic seismograms in three

dimensional (3D) models of the Earth. Whereas most of current spectral element studies aim

at pushing calculations toward high frequencies, where the methods traditionally used at the

global scale reach their limits, this paper focuses on some physical effects that are critical for

the lower part of the seismic frequency band: (i) the full treatment of self-gravitation and (ii)

the ability to take into account any density stratification in the fluid regions of the Earth.

The first novelty of this paper stands in the incorporation of self-gravitation, the effect of

which is important for seismic and gravimetric observations with periods larger than 100 s.

All the previously mentioned studies based upon the SEM accounted for the effects of gravity

within the Cowling approximation (Cowling 1941), i.e. by neglecting the perturbation of the

gravity field by seismic waves. The main reason for making this assumption lies in the intrinsic

difficulty of the problem. Considering the full effects of self-gravitation requires, indeed, to solve

Poisson’s equation for the perturbed gravitational potential which is defined over the whole

space. Unlike spherical harmonics approaches, the use of a grid-based method such as the SEM

does not provide a natural framework for the resolution of the exterior problem. Grid-based

approximations in unbounded domains proceed first by restricting the computational domain,

then by imposing an appropriate condition on the truncating boundary. Different methods

arise depending on whether the artificial boundary condition (ABC) is local or not. Methods

based upon a local ABC have the advantage of being computationally inexpensive and valid for

arbitrary geometries. An example of such methods is the infinite element method (e.g. Bettess

(1992), Gerdes & Demkowicz (1996)), in which the behaviour of the exterior solution is enforced

in the radial direction. The second class of methods, based upon a non-local ABC, are not as

general since they usually require the knowledge of an analytical, or semi-analytical, solution

to the exterior problem. As a consequence they have very attractive properties regarding their

accuracy while being restricted to simple (usually spherical) geometries. The non-local ABC can



Modeling wave propagation in a self-gravitating Earth 3

be implemented into the finite element method within the rigorous framework of a Dirichlet-

to-Neumann (DtN) operator (e.g. Givoli (1992)). This is the approach that we retain here.

The DtN operator that suits our problem relies on the spherical harmonic decomposition of

the solution of Laplace’s equation outside the Earth. Unlike the one introduced by Capdeville

et al. (2003) to couple a time-dependent spectral element calculation to a modal solution in the

frequency domain, our DtN operator is much simpler to derive because it is applied to a static

problem. The spectral element discretization of the Poisson-Laplace equation yields a symmetric

algebraic system which has to be inverted at each time step to obtain the perturbation of the

gravitational potential. In practice, this is done by iterating a conjugate gradient method, the

preconditioning of which is critical to carry out routine calculations.

The other aspect we consider in great detail is the treatment of the fluid part of the Earth’s

core. A parameter which is of particular importance with regard to core dynamics is the squared

Brunt-Väisälä frequency N2 that characterizes the local response of the fluid to perturbations

in density. To first order, the core can be considered as neutrally stratified, i.e. N2 = 0, because

a neutral buoyancy is expected in the bulk of a region subject to vigorous convection. However,

there is seismological evidence for a negative N2 at the top of the core and a positive N2 at its

bottom, with absolute values that can reach 10−7 rad2 ⋅ s−2 (Masters (1979), Valette & Lesage

(unpublished)). For the sake of generality, our description of the core’s structure will make no

assumption on the profile of the buoyancy frequency. To this end, we introduce a two-potential

formulation of the wave equation in the fluid that generalizes the neutral buoyancy formulation

of Komatitsch & Tromp (2002b) and Chaljub et al. (2003). Contrary to these studies, that

considered the velocity potential in the fluid, our decomposition is applied to the displacement

field in order to obtain natural solid-fluid boundary conditions for the perturbed gravitational

potential. An attractive consequence of this choice is to yield a fully explicit solid-fluid coupling

strategy, as opposed to the studies mentioned above. Note finally that our formulation is close

to the two-potential description proposed by Wu & Rochester (1990) in the context of core

dynamics studies, which is optimal with respect to the number of unknowns in the fluid regions.

The remainder of the paper is organized as follows. In section 2, we recall the equations of
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motion in a self-gravitating Earth in their strong and weak form, successively. We introduce

in particular the two-potential decomposition of the displacement field in the fluid regions and

we define the DtN operator that permits to handle the equations within a finite domain. In

section 3, we recall the principles of the spectral element approximation in space and we make

a detailed presentation of our explicit time marching algorithm. Finally, numerical results are

shown in section 4 for a set of spherically symmetric models that validate the implementation

of the method.

2 WAVE EQUATION IN A SELF-GRAVITATING EARTH

In this section we recall the strong and weak forms of the wave equation, which is obtained

through a first order Lagrangian perturbation around a non-rotating, hydrostatically pre-

stressed, state of equilibrium. Throughout the paper, the Earth is denoted by ⊕ and its outer

boundary by ∂⊕. The solid (resp. fluid) parts of ⊕ are referred to as ⊕S (resp. ⊕F ), and the set

of all solid-fluid interfaces is denoted ΣSF . Whenever topography or ellipticity is considered on

∂⊕, B will denote a ball of radius b that contains the aspherical Earth (i.e. , ⊕ ⊂ B) and S will

stand for its spherical boundary (S = ∂B).

2.1 Strong form

Solving the wave equation within the previous assumptions consists in finding the Lagrangian

perturbation of the displacement, u, such that:

ü + A(u) =
1

̊
f , (1)

̊A(u) = −∇ ⋅ T(u) − ∇ (̊u ⋅ g) + {∇⋅(̊u)} g + ̊∇̑ , (2)

where A is the elastic-gravitational operator, T(u) is the Lagrangian incremental stress tensor, ̊

is density, g is the acceleration due to gravity, ̑ is the Eulerian perturbation of the gravitational

potential, also known as the mass redistribution potential (MRP), and f is the forcing term. As

usual, a dot over a symbol implies time derivation and ∇τ (resp. ∇⋅ τ ) stands for the gradient

(resp. the divergence) of a given tensor field τ .
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In the (inviscid) fluid regions the stress tensor takes the form:

T(u) = ̊c2 ∇⋅u I , (3)

where c is the speed of sound and I denotes the second-order identity tensor. Neglecting any

source term in the fluid, the wave equation can then be rewritten as:

ü = −A(u) = ∇
[

c2∇⋅u + u ⋅ g − ̑
]

+ c2 ∇⋅u s , (4)

where s is defined by:

s =
∇̊

̊
−

g

c2
, (5)

and can be shown to be proportional to the gradient of specific entropy. Another parameter of

interest in the fluid is the square of the Brunt-Väisälä frequency N2, which is related to s by:

N2 = s ⋅ g =
1

̊

(

∇̊ −
̊

c2
g
)

⋅ g . (6)

The Brunt-Väisälä frequency arises naturally when analyzing the local stability of the fluid

since it provides a simple way to formulate the Schwarzschild criterion (Schwarzschild 1906).

An inspection of the expression of the energy reveals, indeed, that the local convective stability

of the fluid is determined by the sign of N2 (e.g. Friedman & Schutz (1978); Valette (1986)).

Actually, N2 controls the non-seismic part of the spectrum of the elastic-gravitational operator,

̌e(A):

̌e(A) =
[

Min(0, N2
inf

), Max(0, N2
sup

)
]

, (7)

where N2
inf

and N2
sup

stand for the extrema of N2 over ⊕F (Valette 1989). This implies that

the corresponding squared eigenfrequencies range in the latter interval. In the Earth, these

eigenfrequencies merely exceed 50 ̅Hz, a value which is well below that of the gravest seismic

oscillation 0S2.

In this paper, we only intend to compute the seismic part of the fluid outer core’s response,

which is also affected by the variations of N2. Taking into account a fluid region within the

framework of the finite element method is known to be a difficult problem, due to the possi-

ble splitting of the zero eigenfrequency induced by the numerical discretization of the elastic
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operator (Hamdi et al. 1978). A key issue to produce a numerical solution free of spurious

modes is the correct representation of the null space of the elastic-gravitational operator, N (A)

(Bermúdez & Rodŕıguez 1994). An alternative to the discretization of N (A) is to solve the

wave equation in the range of the operator, R(A). To proceed, we note from eq. (4) that an

acceptable form for any displacement field in R(A) is:

u = ∇̐ + ̇ s, (8)

where ̐ and ̇ denote two arbitrary scalar fields. Differentiating twice in time and identifying

each term with the right-hand-side of eq. (4), we obtain two scalar wave equations, one for each

potential:

¨̇ = c2∇⋅(∇̐ + ̇ s) , (9)

¨̐ = ¨̇ + ∇̐ ⋅ g + N2 ̇ − ̑ . (10)

Eventually, the MRP ̑ appearing in eqs. (2) and (10) is obtained by solving the Poisson-Laplace

equation over the entire space. This writes:

∇2̑ =























−4̉G∇⋅(̊u) in ⊕S ,

−4̉G∇⋅(̊∇̐ + ̊ ̇ s) in ⊕F ,

0 outside ⊕ ,

(11)

where G is the gravitational constant.

2.2 Boundary conditions

The complete set of boundary conditions for displacement, traction and MRP can be found in

Dahlen & Tromp (1998, p. 104). Here we recall these boundary conditions that concern the

MRP or involve a solid-fluid interface.

Let Σ be a given interface in the medium. The condition that the MRP must be continuous

across Σ reads:

[̑]Σ = 0 , (12)

where [ ]Σ stands for the jump operator across Σ, defined in accordance with the unit normal
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vector n̂: [̑]Σ = ̑+ − ̑− and n̂ points from the − to the + side. The normal derivative of ̑

can have a jump which is controlled by:

[∇̑ ⋅ n̂]Σ = −4̉G [̊u ⋅ n̂]Σ . (13)

The condition that both traction and normal displacement must be continuous across the solid-

fluid boundaries writes as a set of equalities on ΣSF :

u ⋅ n̂ = (∇̐ + ̇ s) ⋅ n̂ , (14)

T(u) ⋅ n̂ = ̊ ¨̇n̂ . (15)

Note that to obtain eq. (15) we have used eqs. (3), (8) and (9).

2.3 Weak form

The weak form of the wave equation in the solid regions is obtained after multiplying each side

of eq. (1) with an admissible displacement field w, then integrating over ⊕S. This writes:

(ü + A(u) ; ̊w)⊕S
= (f ; w)⊕S

(16)

where ( ; )⊕S
stands for the L2 scalar product on ⊕S. For example, integrating by parts the

divergence of the stress tensor in eq. (2) yields:

− (∇ ⋅ T(u) ; w)⊕S
=

∫

⊕S

T(u) ⋅ ∇w dV −

∫

ΣSF

T(u) ⋅ n̂ ⋅ w dS , (17)

where n̂ stands for the unit vector normal to ΣSF pointing away from ⊕S. Note that the

condition of free traction at the surface of the Earth ∂⊕ is naturally satisfied in eq. (17) as we

have set the corresponding integral to zero. On the contrary, the continuity of traction (15)

across the solid-fluid boundaries has to be enforced. To proceed, we simply replace the traction

vector in the surface integral of eq. (17) with its fluid counterpart:

− (∇ ⋅ T(u) ; w)⊕S
=

∫

⊕S

T(u) ⋅ ∇w dV −

∫

ΣSF

̊ ¨̇n̂ ⋅ w dS . (18)

The weak form of the wave equation in the fluid regions is obtained similarly after dotting each

side of eqs. (9) and (10) with admissible potentials ˜̇ and ˜̐, integrating (possibly by parts) over

⊕F , then forcing the continuity of the normal displacement (14) across the fluid-solid interfaces.
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One gets:

∫

⊕F

1

c2
¨̇ ˜̇ dV = −

∫

⊕F

(∇̐ + ̇ s) ⋅ ∇ ˜̇ dV +

∫

ΣSF

u ⋅ n̂ ˜̇ dS , (19)

and

∫

⊕F

1

c2
¨̐ ˜̐ dV =

∫

⊕F

1

c2

(

¨̇+ ∇̐ ⋅ g + N2 ̇ − ̑
)

˜̐ dV . (20)

In eq. (19), n̂ denotes the unit vector normal to ΣSF that points outward the fluid. Note that

the scaling factor c−2 has been artificially included in eq. (20) in order to get the same left

hand side as in eq. (19). This will make the description of the time marching algorithm easier

in section 3.

Now, in order to establish the weak form of eq. (11), it is convenient to first consider Poisson’s

equation within the finite (spherical) volume B. Multiplying with an admissible potential ˜̑

defined over B, then integrating by parts the Laplacian and the divergence we get:

∫

B

∇̑ ⋅ ∇ ˜̑ dV −

∫

S

∇̑ ⋅ n̂ ˜̑ dS = (21)

−4̉G

{
∫

⊕S

̊u ⋅ ∇ ˜̑ dV −

∫

S

̊u ⋅ n̂ ˜̑ dS +

∫

⊕F

̊ (∇̐ + ̇ s) ⋅ ∇ ˜̑ dV

}

,

with the boundary term involving the normal displacement being null, except in the absence of

topography (i.e. when S = ∂⊕). It is important to note that the jump condition (13) across the

solid-fluid interfaces is naturally taken into account in (21). This property, which stems from

the potential decomposition (8), is a key argument that guided our choice to work with the

displacement field (and not the velocity) in the fluid.

2.4 DtN operator

The harmonic behaviour of ̑ outside B has not been considered yet. In order to proceed, let ̑
int

denote the MRP interior to B. At the (spherical) surface S, consider the expansion of ̑
int

onto

the orthonormal basis of real spherical harmonics Ylm (see Dahlen & Tromp (1998), p.851):

̑
int

(b, ́, ̞) =
∞

∑

l=0

l
∑

m=−l

̑ lm

int
(b)Ylm(́, ̞) , (22)
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where (́, ̞) are the spherical coordinates and where ̑ lm

int
(b) =

∫

S
̑

int
Ylm dS. It is straightfor-

ward to extend ̑
int

continuously to a potential ̑
ext

that satisfies Laplace’s equation outside B

and vanishes at infinity:

̑
ext

(r, ́, ̞) =
∞

∑

l=0

l
∑

m=−l

̑ lm

int
(b)

(

b

r

)l+1

Ylm(́, ̞) , r ≥ b . (23)

The normal derivative of ̑
ext

on S is readily obtained by differentiating the previous expression

with respect to r :

∇̑
ext
⋅ n̂ (b, ́, ̞) = −

1

b

∞
∑

l=0

(l + 1)
l

∑

m=−l

̑ lm

int
(b)Ylm(́, ̞) . (24)

Eq. (24) which relates the normal derivative of the potential to the potential itself is called a

Dirichlet-to-Neumann (DtN) operator on the spherical boundary S. Its action, which is non-

local, is rather simple to express in the spherical harmonics basis: it consists in multiplying each

coefficient with −l−1
b

. Recall that the condition that the normal derivative of a given field is

proportional to the field at the surface is referred to as a Robin boundary condition. Applying

the DtN operator is therefore equivalent to imposing a Robin boundary condition on every

component of the spherical harmonics expansion of the original potential, and this yields a

well-posed problem.

Taking into account the jump condition (13) across S, we can write the final weak form of

the Poisson-Laplace equation as:

−

∫

B

∇̑ ⋅ ∇ ˜̑ dV +

∫

S

∇̑
ext
⋅ n̂ ˜̑ dS = (25)

4̉G

{
∫

⊕S

̊u ⋅ ∇ ˜̑ dV +

∫

⊕F

̊ (∇̐ + ̇ s) ⋅ ∇ ˜̑ dV

}

,

with:
∫

S

∇̑
ext
⋅ n̂ ˜̑ dS = −

1

b

∞
∑

l=0

(l + 1)
l

∑

m=−l

̑ lm

int
(b) ˜̑ lm(b) . (26)

In practice, the infinite sum present in eq. (26) will be limited to angular orders l < lmax .

Note that the effect of the truncation is to apply a Neumann boundary condition to the high

wavenumber content of the MRP, which according to eq. (23) is asymptotically consistent with

the behaviour of the MRP outside B.
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3 NUMERICAL APPROXIMATION

This section deals with the numerical approximation of the wave equation in a self-gravitating

Earth, which we achieve in two steps. First, the SEM is applied to the weak form of the equations

in the space domain. Then a finite difference scheme is used to advance the system in time.

For the sake of conciseness, details of the method are avoided as much as possible unless this

prevents the paper from being self-contained. The reader is referred to (Komatitsch & Vilotte

1998) and to (Komatitsch & Tromp 1999) for a general description of the SEM applied to the

elastic wave equation, and to (Komatitsch & Tromp 2002a; 2002b) and (Chaljub et al. 2003) for

its extension to global seismology, including its parallel implementation on modern computers

with distributed memory.

3.1 Spatial discretization

3.1.1 Hexahedral Mesh

The first discretization step consists in decomposing the spherical Earth into a collection of

non-overlapping hexahedral elements. This process is detailed in (Chaljub et al. 2003), where

non-conforming interfaces are introduced to avoid an artificial refinement of the grid with depth.

Such a strategy allows the refinement (or coarsening) of the mesh to be spatially localized, the

complexity being related to the continuity requirements between elements that do not match

across the interfaces. For the sake of simplicity, this paper is restricted to the case of a spherical,

geometrically conforming mesh such as the one represented in fig. 6. Note that taking into

account the elliptical figure of the Earth or accounting for surface topography would require in

the self-gravitating case to extend the mesh outward the artificial boundary S.

3.1.2 Spectral element method

Based upon the 3D tiling of the sphere, the MRP (̑) as well as the displacement in the solid

(u) and the potentials in the fluid (̐ and ̇) are approximated using continuous tensorized
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polynomials. Note that the continuity of the normal displacement within the fluid regions is

naturally satisfied in the weak forms (19) and (20).

The basis of polynomials used on each spectral element are defined as the shape functions

of the collocation points. One of the particularity of the SEM is that the collocation points

are the so-called Gauss-Lobatto-Legendre points, i.e. the exact same points that are used to

evaluate the integrals present in the weak form of the equations. One consequence of this choice

is that the matrix representation of the L2 scalar product is diagonal, a property that allows to

design explicit time schemes (see e.g. Komatitsch & Vilotte (1998) and Komatitsch & Tromp

(1999)).

3.2 Time evolution

The different steps of the spatial discretization yield a system of ordinary differential equations

in time, which writes:

MS d̈(t) + KS d(t) + Gψ(t)+ CSF ξ̈(t) = F(t) (27)

MF ξ̈(t) + KF (ξ,χ) (t) + CFS d(t) = 0 (28)

MF χ̈(t) + BF

(

ξ̈, ξ,χ,ψ
)

(t) = 0 (29)

Pψ(t) = D (d, ξ,χ) (t) (30)

In the previous equations, d stands for the displacement vector in the solid regions, F is the

approximation of the source term and ψ, χ, ξ respectively denote the nodal values of the MRP

and of the displacement potentials in the fluid. MS is the mass matrix in the solid regions,

i.e. the matrix representation of the L2 scalar product weighted by density. Similarly, MF is

the matrix representation of the scalar product in the fluid regions weighted by the quantity

c−2. As outlined before, both matrices are diagonal. KS and KF are the stiffness matrices which

arise from the approximation of the volume integrals in eqs. (18) and (19). The discretization

of the surface integrals in the latter equations yields the solid-fluid coupling matrices CSF and

CFS. BF arises from the discretization of the right hand side of eq. (20) and only involves a

pointwise operation on ξ̈, ξ, ∇χ and ψ. Finally, G, D and P are the matrix representations of
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the gradient, divergence and Poisson-Laplace operator, respectively. Note that D contains the

factor 4̉G̊ and that P is symmetric according to eqs. (25) and (26).

To advance the equations forward in time we use the explicit, second-order accurate, New-

mark scheme (e.g. Hugues 1987). Let for example Xn denote the snapshot at time tn of one of

the unknown vectors d, χ or ξ involved in eqs. (27–29). The values of X and its time derivative

at the next time step are extrapolated as follows:

Xn+1 = Xn + ∆t Ẋn +
∆t2

2
Ẍn (31)

Ẋn+1 = Ẋn +
∆t

2

(

Ẍn + Ẍn+1

)

(32)

As it is readily seen from the previous equations, the algorithm is fully explicit in terms of X

and consists in a simple centered finite difference scheme in Ẋ. The process of updating the

time derivatives of X is achieved in two steps: first Ẍn+1 is computed from the discrete version

of the wave equation (27–29) by inverting a diagonal mass matrix (MS or MF ), then Ẋn+1 can

be updated using (32). Note that the wave equation has to be solved in the fluid regions first,

since the coupling operator CSF in eq. (27) acts on ξ̈n+1 which is not known at time tn.

Let us stress that the coupling between the fluid and the solid regions does not require

iterations of eqs. (31,32) as this would be the case if a velocity potential formulation was used

(e.g. Komatitsch et al. 2000; Chaljub et al. 2003). This attractive property stems from the

potential decomposition (8) applied to the displacement which is the explicit variable in the

Newmark scheme.

The previous remark remains valid when the full effects of self-gravitation are taken into

account. The computation of the MRP from the displacement field is indeed explicit in the sense

that it does not involve any time derivative Ẋ or Ẍ. Needless to say, this task is expensive as it

requires to formally invert the symmetric, ill-conditioned matrix P (e.g. Deville et al. 2002). In

practice, we solve eq. (29) for the MRP with a conjugate gradient (CG) method which iterations

are stopped when the residual is decreased by a factor ǫ to be chosen. The issue of building an

efficient preconditioner for the Poisson-Laplace solver is not addressed in this paper, but it is

certainly critical in order to avoid a performance bottleneck.
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4 NUMERICAL RESULTS

In this section, we demonstrate the validity of our approach through a couple of examples for

which a reference, semi-analytical, solution can be derived. First, the two potentials formulation

is tested within the Cowling approximation, i.e. without computing the MRP, for models having

a constant Brunt-Väisälä frequency. Then, the effects of mass redistribution are included in a

simplified version of the PREM model (Dziewonski & Anderson 1981).

4.1 Validation of the two-potentials formulation

In order to define some benchmarks to test our formulation, we consider the radial Earth

model of fig. 1. The model is adapted from PREM, with a smaller number of regions (6 instead

of 13). In particular, the details of the crustal structure as well as the presence of a global

ocean are ignored to ease the computation. This reference model is further constrained to fit

a given profile of the squared Brunt-Väisälä frequency in the fluid outer core. To proceed, we

simply vary the P -velocity in eq. (6), keeping the density, its gradient and the gravitational

acceleration unchanged. Note that a realistic way would be to adjust density rather than P -

velocity (see e.g. Wu & Rochester (1993)) because the latter is much better constrained in the

Earth. However, acting on the P -velocity profile is straightforward and still fully acceptable for

numerical validation purposes.

Fig. 2 shows three models that were built following the above procedure. The ‘N’ label refers

to a neutrally stratified outer core (i.e. with N2 = 0), whereas the models labelled ‘S’ and ‘U’

correspond to a stable and unstable stratification, respectively. For the sake of simplicity, we

chose the value of the squared Brunt-Väisälä frequency to be constant throughout models ’S’

and ’U’, respectively equal to N2 = 10−7 rad2 ⋅ s−2 and N2 = −5 10−8 rad2 ⋅ s−2. These values

correspond to the extrema that are expected from the inversion of seismic free oscillations of

the Earth (Masters (1979), Valette & Lesage, unpublished). Note that the values of N2 within

PREM are about one order of magnitude smaller, as illustrated by the similarity of the PREM

P -velocities to those of a neutrally stratified profile.

All three models are excited by a shallow explosive point source which time dependence
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is a Ricker wavelet (i.e. the second derivative of a Gaussian bell) with dominant frequency

f0 = 1 mHz. The source is located at one grid-point from the Equator, at latitude ́s ≃ −1.128◦

and depth ds ≃ 61 km, and the receivers sit along the Equator. Fig. 3 shows the longitudinal

displacement recorded at an epicentral distance of 90◦ in the three models. The traces were

computed within the Cowling approximation using a summation of the eigenmodes of each

model. The waveform differences illustrate the sensitivity of the seismic waves to the stratifica-

tion of the fluid core and suggest that models ‘U’ and ‘S’ constitute a demanding benchmark

for the two potentials formulation. In figs. 4 and 5, the spectral element results obtained in

those two models are compared to the modal solutions for a couple of epicentral distances. The

two solutions are in very close agreement with the largest relative differences being as small as

one per mil over the time interval considered.

The spectral element grid used to carry out the calculations is shown in fig. 6. It consists of

640 elements in which the polynomial degree varies from 3 to 10 in the radial direction and is

kept constant, equal to 8, in the tangential direction. The total number of gridpoints is 334,368

corresponding to a number of points per wavelength much greater than 5, which is the empirical

ratio to get an accurate solution (e.g. Komatitsch & Vilotte (1998)). This explains the perfect

match between the spectral element calculations and the reference solutions.

4.2 Validation of the whole formulation

As a last example, we consider the computation of the elastic-gravitational response of the Earth

model of fig. 1. This test presents all the difficulties mentioned in this paper: the stratification of

the fluid core is arbitrary and the physical description includes the full effects of self-gravitation.

The parameters of the simulations are slightly different than above, since the source domi-

nant frequency is set to a graver value f0 = 0.5 mHz, and the source latitude is now ́s ≃ −2.64◦.

The spectral element grid is consequently adapted, and roughly coarsened by a factor of two

in each direction compared to the one of fig. 6.

In order to check that the test is demanding enough with regard to the implementation of

self-gravitation, we compare in fig. 7 the surface longitudinal displacement recorded with or
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without including the perturbation of the gravitational potential. Both traces were computed

by normal modes summation and recorded at an epicentral distance of 90◦ for about 10 hours.

The differences in phase and amplitude illustrate that the Cowling approximation is not valid

in the frequency range of the experiment.

Finally, the results obtained with the SEM are compared to the reference solution in fig. 8.

Two cases are considered that correspond to a different accuracy of the spectral element solution

regarding the CG resolution of the discrete Poisson-Laplace equation (29). In the first case the

CG iterations are stopped when the residual is decreased by three orders of magnitude, which

means that ǫ = 10−3. The resulting spectral element solution is clearly not accurate enough

and contains a secular term that seems to break the conservation of energy at the discrete

level. To correct this behaviour, we consider a second test where the stopping criterion is fixed

to ǫ = 10−5. In that case, the calculation is stable upon the time interval considered and the

accuracy of the spectral element solution is found to be acceptable, its relative difference with

the reference solution being less than a few per mil.

In each of the previous cases, the angular order truncation in eq. (26) was set to lmax = 20,

based on the a priori knowledge of the dispersion relation in PREM. The effect of underesti-

mating the truncation order is to add oscillations to the spectral element solution (not shown

in this paper). It is interesting to note that the two possible sources of numerical errors (ǫ too

big or lmax too small) lead to a different signature. This provides two different diagnostics that

permit to build a spectral element solution with arbitrary accuracy.

5 CONCLUSIONS

We have shown how the SEM should be adapted to account for two effects relevant to global

seismology: the full treatment of self-gravitation and the ability to consider any density strat-

ification in the fluid outer core. The accuracy of the method has been illustrated through a

series of numerical tests conducted in spherically symmetric models. With the incorporation of

the two aforementioned effects, we believe the SEM will provide new estimates of the elastic-

gravitational response of 3D models of the Earth.
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Figure 1. Variation with depth of density (dashed curve), P -velocity (solid curve) and S-velocity

(dot-dashed curve) within the Earth-like model used in this paper. The model is adapted from PREM

(Dziewonski & Anderson 1981) with the complexity of the lithospheric structure being removed to

simplify computation.
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Figure 2. Different profiles of P -velocity used to test the two-potentials formulation in the fluid

outer core. The dashed curve represents the variation of the sound speed within the model detailed

in fig. 1. Each solid curve corresponds to a modification of that profile such that the square of the

Brunt-Väisälä frequency is constant throughout the fluid. The label ‘N’ corresponds to a neutrally

stratified outer core, whereas ‘S’ (resp. ‘U’) stands for a stable (resp. unstable) stratification for which

N2 = 10−7 rad2 ⋅ s−2 (resp. N2 = −5 10−8 rad2 ⋅ s−2).
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Figure 3. Time window of the longitudinal surface displacement recorded at 90◦ in the models

labelled ‘N’, ‘S’ and ‘U’ in fig. 2. The large waveform differences stem from the sensitivity of the

seismic modes to the variation of the P -velocity within the three models.
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Figure 4. Radial (left panel) and longitudinal (right panel) components of the surface displacement

recorded at 45◦ (top) and 90◦ (bottom) in the model labelled ‘S’ in fig. 2. In each plot, the spectral

element solution (dashed line) is compared to the normal modes reference (solid thin line) and the

residual (solid bold line) is amplified by a factor of 10.
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Figure 5. Radial (left panel) and longitudinal (right panel) components of the surface displacement

recorded at 45◦ (top) and 90◦ (bottom) in the model labelled ‘U’ in fig. 2. In each plot, the spectral

element solution (dashed line) is compared to the normal modes reference (solid thin line) and the

residual (solid bold line) is amplified by a factor of 10.
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Figure 6. Spectral element mesh used to compute the results shown in figs. 4 and 5. Two blocks

of the 3D mesh have been removed to allow a view inside the volume. The mesh is composed of 640

spectral elements with varying polynomial order, for a total number of gridpoints equal to 334,368.

The process of building the mesh is detailed in (Chaljub et al. 2003). This image was generated using

the visualization software pV3 (http://raphael.mit.edu/pv3/pv3.html).
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Figure 7. Longitudinal component of the surface displacement recorded at 90◦ in the Earth model

of fig. 1. The trace computed with the full treatment of self-gravitation (solid thin line) is compared

to the one computed within the Cowling approximation (dashed bold line). The waveform differ-

ences illustrate that the effect of the MRP cannot be neglected at the frequencies considered in this

experiment.
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Figure 8. Longitudinal surface displacements recorded at 90◦ in the Earth model of fig. 1. The left

(resp. right) plot corresponds to a low (resp. high) accuracy test in which the CG iterations used to

compute the MRP are stopped when the residual is decreased by 3 (resp. 5) orders of magnitude.

In each plot, the spectral element solution (dashed line) is compared to the normal modes reference

(solid thin line) and the residual (solid bold line) is amplified by a factor of 10.


