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Abstract

The predictions of the PYTHIA6.205 and PHOJET1.12 MC event gen-

erators for diffractive processes and minimum bias events are presented for
the LHC energy. The comparison with the experimental data from the

ISR, the SPS and the Tevatron is made.



1. Introduction

In the proton-proton interactions it is customary to distinguish between elastic and
inelastic processes. Again, it is conventional to divide inelastic processes into diffractive
and non-diffractive ones. Non-diffractive events are usually called minimum bias events .
Diffractive processes include single and double diffractive dissociation and central diffrac-
tion. at the LHC energy it is expected a pure double pomeron exchange in the central
diffractive production [1]. Thus, we can write the total proton-proton cross-section as the
following series

σtot = σelas + σinelas = σelas + σmb + σdif = σelas + σmb + σsd + σdd + σcd (1)

A good description of the soft hadronic interactions at the LHC energy is a necessary tool
to calculate the feasibility of any experiment that must be able to separate the interesting
processes from the large quantities of events produced in proton-proton interactions at
high energy. The pileup of many soft interactions in the trigger gate adds a non negligible
noise on top of the interesting events making more complex their analysis.

At present, different phenomenological models are used to describe the non-diffractive
and diffractive processes and some of them are implemented in the Monte Carlo simulation
packages (generators), like PYTHIA, PHOJET, HERWIG, ISAJET [2, 3, 4, 5]. The
comparison of the different generators for minimum bias events at the LHC energy have
been made in many studies (see, for example, [6]-[8]).

This report presents a study of the minimum bias and diffractive events predicted
by the two Monte Carlo simulation packages PYTHIA and PHOJET compared to the
available data. In what follows, PYTHIA and PHOJET should respectively be understood
as PYTHIA6.205 [4] and PHOJET1.12 [5].

2. MC event generators

The PYTHIA model is described at length in [4]. Below, we point out the basic
principles of the model related to the simulation of the low-pt processes. Low-pt processes
play a dominant role in the inelastic scattering. PYTHIA uses a perturbative QCD for
both low-pt and high-pt regions. The dominant 2 → 2 QCD cross-sections are divergent
for pt → 0 and drop rapidly at large pt. Probably the lowest order perturbative cross-
section will be regularized at small pt by colour coherence effects. In PYTHIA this low-pt

divergence is solved by two ways. In the first one, the so-called ”simple” scenario, a cut-off
parameter ptmin is used, i.e. dσ/dpt = 0 for pt < ptmin. In the second, the ”complex”
scenario, all divergent terms are corrected by a factor p4

t/(p2
t +p2

t0) and p2
t in αS is replaced

by (p2
t + p2

t0). This removes the perturbative QCD divergences at low-pt. The first is
equivalent to the existence of a maximum impact parameter, bmax, above which there are
no interactions. The second assumes that there is some matter distribution in the hadron
interactions at various impact parameters. Different sets of parton distribution functions
(p.d.f.) may be chosen for the proton interactions. The current version of PYTHIA uses
the default p.d.f., CTEQ5L.
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PHOJET is based on the Dual Parton Model1 (see review in [16]) using another mech-
anism in the low-pt region than perturbative QCD. PHOJET can be considered as a
two-component model with a smooth transition between the soft and the hard regions
at some ptmin. PHOJET can simulate 8 basic scattering processes separately or simul-
taneously. They include all processes mentioned in equation (1) as well as quasi-elastic
scattering and hard direct interactions. Unlike PYTHIA, the central diffraction with dou-
ble pomeron exchange is included in the PHOJET tools. PHOJET, has been tuned to
the minimum bias data from CDF at 1800 GeV.

HERWIG [2] is based on the UA5 results and ISAJET [3] on the Abramovskii-
Kanchelli-Gribov model. These simulation packages represent more simple models than
PYTHIA and PHOJET whithout the smooth transition between the soft and hard physics.
In [6] it is shown that HERWIG and ISAJET have a large divergence with the CDF data
for its inclusive pt spectrum as well as for its pseudorapidity distributions of charged
particles.

3. Cross-sections

In PYTHIA, the total cross-section is calculated through the Regge theory according
to the following sums of powers [17]:

σpp
tot = 21.70s0.0808 + 56.08s−0.4525

σpp̄
tot = 21.70s0.0808 + 98.39s−0.4525.

The first term in these expressions corresponds to the Pomeron exchange and the second
one to the Reggeons (ρ, ω, f, a) exchanges. Because the Pomeron has the quantum num-
bers of the vacuum, its couplings to the proton and anti-proton are equal, so the coefficient
21.70 is the same for σpp

tot and σpp̄
tot. At high energy the Reggeon term becomes negligible,

σpp̄
tot � σpp

tot, so we can use for the generator comparison the experimental data from pp
as well as pp̄. In PHOJET, the cross-section is calculated according to the two compo-
nent Dual Parton Model using the optical theorem [18]. The PYTHIA and PHOJET
predictions for pp total cross-section are shown in fig.1. Their simulated cross-sections
are compared with the existing pp and pp̄ experimental data [19]. Both generators have a
good agreement in the region below 700-800 GeV. Fig.4 shows that for higher energies the
predictions are different, coming up to 18 % divergence at ∼10 TeV. For the LHC energy
(
√

s = 14 TeV) PYTHIA and PHOJET predict σpp
tot = 101.5 mb and 119 mb, respectively

(see table 1). Fig. 1 shows that PHOJET is in agreement with the CDF data and in
disagreement with the E710 and E811 data at the Tevatron energy.

The elastic cross-sections calculated by both generators are shown in fig. 2 and com-
pared with the experimental data. As previously, the predictions start to diverge at en-
ergies higher than 700 GeV (the divergence is ∼55 % at the LHC energy). The PYTHIA

1The Dual Parton Model is a phenomenological realization of the large Nc, Nf expansion of QCD [9]
in connection with the general ideas of duality [10] and the Gribov’s reggeon field theory [11].
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and PHOJET predictions for the elastic cross-section at the LHC energy are respectively
22.2 mb and 34.4 mb (see table 1). The difference between the total and the elastic
cross-sections giving the inelastic cross-section is shown in fig. 3 for both generators
and compared with the experimental data. For the inelastic cross-section, the divergence
between the two predictions is not large (6.6 % at the LHC energy).

In fig. 5 the PYTHIA and PHOJET calculations are compared with the available
experimental data for single (a) and double (b) diffractions. In PYTHIA, single and double
diffractive cross-sections are calculated using the triple-pomeron approximation [20, 21] in
the so-called Born graph approach. But the experimentally observable diffractive cross-
sections are considerably smaller than the Born graph calculations.

Although data on single diffractive cross-sections have large uncertainties, the rise of
the cross-section from the ISR energies to the energies of the Spp̄S and the Tevatron, see
fig. 5a, cannot be explained at the Born level. In the PHOJET model, a special eikonal
unitarization procedure is used to suppress the strong rise of the triple pomeron exchange.
This is the reason of the large divergence between the PYTHIA and PHOJET predictions
for the single and double diffractive cross-sections. This divergence becomes larger at
higher energies and reaches 22 % for single diffraction and 58.5 % for double diffraction
at the LHC energy (see table 1).

Process PYTHIA σpp, mb PHOJET σpp, mb Difference, %
Elastic 22.2 34.4 54.9
Inelastic 79.3 84.5 6.6
Minimum bias 55.2 68.0 23.1
Single diffraction 14.3 11.0 22.0
Double diffraction 9.8 4.06 58.5
Central diffraction — 1.42 —
Total cross-section 101.5 119 17.2

Table 1: Differences between the PYTHIA and PHOJET pp cross-sections at√
s = 14 TeV.

Central diffractive events are simulated in PHOJET only. In this diffraction process,
the double pomeron exchange dominates at high energy. The PHOJET prediction for
the central diffractive cross-section is shown on fig. 5c. In both generators, the minimum
bias cross-section is calculated according to series (1) by subtracting the diffractive cross-
section from the inelastic one: the result is shown on fig. 5d. The minimum bias cross-
sections obtained at the LHC energy are 55.2 mb with PYTHIA and 68 mb with PHOJET.
Figure 4 summarizes the difference between the PYTHIA and PHOJET cross-sections at
the LHC energy for all processes listed in the series (1).
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Figure 1: Predictions for the pp total cross-sections from PYTHIA (solid line) and PHO-
JET (dotted line). The experimental data for total cross-sections are shown for pp col-
lisions (black circles) and for pp̄ collisions (white circles) (data files by courtesy of the
COMPAS Group, IHEP, Protvino, Russia).

Figure 2: The same plot as in fig.1 for the elastic cross-sections.
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Figure 3: The same plot as in fig.1 for the inelastic cross-sections.

Figure 4: Difference between PYTHIA and PHOJET.
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Figure 5: PYTHIA (solid line) and PHOJET (dotted line) cross-sections for a) single
diffraction, b) double diffraction, c) central diffraction and d) non-diffractive production
(minimum bias). The experimental data for single diffractive cross-sections [22]-[27] and
double diffractive cross-sections [26] are shown on figures a) and b) respectively.
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4. Minimum bias

The generation of non-diffractive processes in PYTHIA can be done in different ways,
varying the solution of the divergence problem (see chapter 2), the value of the cut-off
parameter, the type of the parton distribution function and so on. The different scenarios
of interaction can be chosen with the value given to the keys MSTP and PARP. We studied
the most commonly used scenarios (see table 2) for the non-diffractive simulations and
compared them to the available data from UA5 [12] and CDF [13].

Scenario Parameters Explanation p.d.f.

1, PYTHIA MSTP(82)=1 ”simple” scenario with ptmin cut-off CTEQ5L

2, PYTHIA MSTP(82)=4

”complex” scenario (model for multi-parton
interactions: varying impact parameter and a
hadronic matter overlap consistent with a double
gaussian matter distribution given by PARP(83)
and PARP(84) (resp. default = 0.5 and 0.2) and
with a continuous turn-off of the cross-section at
pt0=PARP(82) (see scenarios 3 and 4)

CTEQ5L

3, PYTHIA MSTP(82)=4 ”complex” scenario
MSTP( 2)=2 2nd order running to αS

MSTP(33)=3 K factor (a K-factor is introduced by a shift in
the αS(Q2) argument, αS = αS(PARP(33)Q2)
in accordance with [14])

CTEQ5L

PARP(82)=1.9 pt0 calculation (regularization scale of the
transverse momentum spectrum for multiple in-
teractions tail)

4, PYTHIA MSTP(82)=4 ”complex” scenario
MSTP( 2)=2 2nd order running to αS CTEQ5L
MSTP(33)=3 K factor (see scenario 3)
PARP(82)=2.3 pt0 calculation (recommended by [15])

PHOJET IPRON(1)=1 minimum bias GRV94L

Table 2: Parameters for the different scenarios of low-pt events generation.

The result of this comparison is shown in fig. 6. The charged particles density dNch/dη
has been calculated as a function of the pseudorapidity η for the scenarios listed in table 2
for non-single diffractive events (NSD) at

√
s =200 and 900 GeV compared to the UA5

data and at
√

s = 1800 GeV compared to the CDF data. Moreover, the same distributions
have been calculated for inelastic events (NSD+SD) at

√
s =200 and 900 GeV compared

to the UA5 data2.

2There is no data for inelastic processes from CDF.
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Figure 6: Charged particles density
dNch/dη as a function of η for the non
single-diffractive events (NSD) at 200,
900 and 1800 GeV and for the inelastic
events (NSD+SD) at 200 and 900 GeV
compared with the available experimen-
tal data.
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With the scenario 3 PYTHIA gives the best discription of the experimental data for
the inelastic events at 200 and 900 GeV and for NSD events at 200 and 1800 GeV. For
this reason we will use this scenario for further calculations. PHOJET, with its default
parameters, describes fairly well the inelastic as well as the NSD data at all studied
energies. Thus, PYTHIA (scenario 3) and PHOJET (default set of parameters) are in a
reasonable agreement with the experimental data and among themselves.

However, there is a difference between these two MC generators at higher energy and
this becomes more and more evident with the rise of the energy. The left part of fig.7
shows the central rapidity density of the charged particles dNch/dη(η = 0) plotted as a
function of the c.m. energy. The PYTHIA and PHOJET predictions are compared to
the NSD data from UA5 and CDF. The dotted line shows the fit to the experimental
data [13]:

dNch/dη(η = 0) = 0.023ln2(s) − 0.25ln(s) + 2.5.

At the LHC energy this fit to the experimental data gives dNch/dη(η = 0) = 6.2, when
PYTHIA and PHOJET respectively predict 7.1 and 4.8 charged particles at η = 0 for the
NSD events. Thus allowing to consider PYTHIA and PHOJET as high and low extreme
limits for the charged particles multiplicity at energies higher than 1 TeV.

The right part of fig. 7 shows the estimations of PYTHIA and PHOJET for the

Figure 7: On the left: central rapidity charged particles density dNch/dη(η = 0) plotted
as a function of the c.m. energy. The PYTHIA and PHOJET predictions are compared
to the NSD data from the UA5 and CDF experiments. On the right: PYTHIA and PHO-
JET predictions for the density dNch/dη of charged particles produced in non-diffractive
processes at the LHC energy.
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density of charged particles dNch/dη produced in non-diffractive processes at the LHC
energy. The charged particles densities, predicted by PYTHIA and PHOJET in the
central pseudorapidity region are respectively 8.5 and 5.3. Table 3 shows the predictions of
PYTHIA and PHOJET for the average particle multiplicity for a proton-proton minimum
bias event at the LHC energy.

Minimum bias,
√

s = 14 TeV

Particles PYTHIA PHOJET
p 4.56 3.15
p̄ 3.38 1.97
n 7.24 4.66

π+π− 88.5 57.3
γ 103.6 4.9

K+K− 10.08 7.13
KL 4.89 3.54

µ+µ− 0.023 0.018
e+e− 1.19 0.075

Neutrinos 0.018 0.017
Ncharged 107.8 70.61
Ntotal 223.6 121.5

Table 3: Average particle multiplicity for a proton-proton minimum bias event obtained
by PYTHIA and PHOJET at the LHC energy.

5. Diffractive processes

5.1 Single diffraction

In order to compare the PYTHIA and PHOJET predictions for single diffractive pro-
duction we used the pp̄ experimental data of the UA4 Collaboration [28]. UA4 measured
the pseudorapidity distributions of charged hadron production for different masses of
the diffractive system. We have compared these data with PYTHIA and PHOJET (see
fig. 8). We have also compared the mean charged particle multiplicity in the diffractive
hadronic system measured for several masses by UA4 with the predictions of PYTHIA
and PHOJET (see fig. 9). It is evident from fig. 8 and 9 that PHOJET, taking in
account the contributions from the hard diffractions (minijets) and the multiple soft in-
teractions, has a better description of the data than PYTHIA, taking in account the Born
term contributions only.

Moreover, we have calculated with PYTHIA and PHOJET some typical distributions
characterizing the single diffractive production: the pseudorapidity and the pt distribu-
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Figure 8: Pseudorapidity distributions of the charged hadrons in SD compared to the
UA4 data for different masses of the diffractive system.
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Figure 9: Average charged particle multiplicity produced in SD as a function of the
invariant mass of the diffractive system compared to the UA4 data.
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Figure 10: PYTHIA and PHOJET predictions for SD at the LHC energy: (a) charged
particles pseudorapidity distribution; (b) charged particles pt distribution; (c) mass of the
diffractive system; (d) average charged particle multiplicity as a function of the diffractive
system mass; (e) ξ and (f) t distributions of the scattered proton (see text).
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tions of the charged particles in the diffractive system, the distribution of the diffractive
mass, the dependence of the average charged particle number in the diffractive system on
the mass of the diffractive system, at last, the ξ = δp/p (the relative momentum loss)
and the t (the transverse momentum squared) distribution of the scattered proton (see
fig. 10).

In PYTHIA as well as in PHOJET the differential cross-sections, d2σ/dtdM2, are
exponential in t and ∼ 1/M2:

d2σ

dtdM2
∼ 1

M2
e−bt, (2)

where M is the mass of the diffractive system and t is the transverse momentum squared
of the scattered proton. t, ξ and φ, the azimuthal angle, define the kinematics of the
scattered proton. In a single diffractive scattering pp → pX:

M2 = sξ. (3)

PYTHIA and PHOJET have a small difference in the t distribution (fig. 10f). The slope
parameter b is equal to 8.39 in PYTHIA and to 6.75 in PHOJET.

As above mentioned, there are large divergences between PYTHIA and PHOJET
in the predictions of the charged particle multiplicity in the diffractive system, this is
shown in fig. 10 (a), (b) and (d). Table 4 and fig. 10 (a) show that PHOJET predicts a
multiplicity 1.6 times larger than PYTHIA.

Single Diffraction,
√

s = 14 TeV

Particles PYTHIA PHOJET
p 2.05 2.32
p̄ 0.48 0.71
n 1.34 1.71

π+π− 13.01 22.35
γ 15.30 1.85

K+K− 1.34 2.75
KL 0.65 1.33

µ+µ− 0.0006 0.007
e+e− 0.18 0.03

Neutrinos 0.0004 0.006
Ncharged 17.06 28.47
Ntotal 34.35 48.14

Table 4: Average particle multiplicity in the diffractive system produced in SD obtained
by PYTHIA and PHOJET at the LHC energy.
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5.2 Double diffraction

Some distributions characterizing a double diffractive production have been obtained
by PYTHIA and PHOJET (see fig. 11). These are the pseudorapidity and the pt distri-
butions of charged particles in the diffractive system, the distribution of the diffractive
mass, the dependence of the mean charged particles number in the diffractive system on
the mass of the diffractive system.

As in the case of single diffraction a large divergence in the charged particles multi-
plicity between PYTHIA and PHOJET is observed (see table 5), the predictions of the
charged particles multiplicity differ by a factor 1.7.

Double Diffraction,
√

s = 14 TeV

Particles PYTHIA PHOJET
p 1.70 2.07
p̄ 0.55 0.86
n 1.90 2.32

π+π− 16.55 29.15
γ 19.54 2.38

K+K− 1.63 3.47
KL 0.78 1.69

µ+µ− 0.001 0.008
e+e− 0.24 0.033

Neutrinos 0.0006 0.006
Ncharged 20.67 35.96
Ntotal 42.88 61.62

Table 5: Average particle multiplicity in the diffractive system produced in DD obtained
by PYTHIA and PHOJET at the LHC energy.

5.3 Central diffraction

Finally, we present some characteristic distributions for the central diffractive produc-
tion at the LHC energy (see fig. 12). They have been generated by PHOJET with its
default parameters as PYTHIA has no possibility to simulate central diffractive produc-
tion.

The differential cross-section is described by equation (2), but the relation (3) should
be changed to

M2 = sξ1ξ2, (4)

where ξ1 and ξ2 correspond to the 2 scattered protons in the central diffraction pp → pXp.
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Figure 11: PYTHIA and PHOJET predictions for DD at the LHC energy: (a) charged
particles pseudorapidity distribution; (b) charged particles pt distribution; (c) mass of the
diffractive system; (d) average charged particle multiplicity as a function of the diffractive
system mass.
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Figure 12: PHOJET predictions for CD at the LHC energy: (a) charged particles pseu-
dorapidity distribution; (b) charged particles pt distribution; (c) mass of the diffractive
system; (d) average charged particle multiplicity as a function of the diffractive system
mass; (e) ξ and (f) t distributions of the scattered protons.
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The distributions of the central diffractive mass, ξ and t of the scattered protons are
respectively shown in fig. 12 (c), (e) and (f). The slope parameter b of the t-dependence
is 5.73.

The density of the charged particles as a function of the pseudorapidity is shown in
fig. 12a in which the left and right peaks in the region |η| > 9 are due to the scattered
protons. The charged particles from the central diffractive system are distributed in the
region |η| < 9. Around ∼30 % of the charged particles from the central diffractive system
fall into the TOTEM [29] acceptance (3 < |η| < 7). Around 60% of the charged particles
lie in the acceptance of the CMS tracker covering the η region from -3 to 3.

Central Diffraction,
√

s = 14 TeV

Particles PHOJET
p 2.36
p̄ 0.36
n 0.72

π+π− 12.31
γ 1.02

K+K− 1.53
KL 0.75

µ+µ− 0.003
e+e− 0.01

Neutrinos 0.003
Ncharged 16.73
Ntotal 27.29

Table 6: Average particle multiplicity in the diffractive system produced in CD obtained
by PHOJET at the LHC energy.

As it was mentioned in the introduction, it is expected a pure double pomeron exchange
in the central pp collisions and no contamination of any reggeon exchanges at the LHC
energy. It makes this reaction to be a pure source of gluon rich states and glueballs. It is
necessary to note that, in addition to glueballs, the study of the double pomeron exchange
at the LHC energy gives the unique opportunity to make exclusive measurements of the
Higgs production using the CMS+TOTEM facility [30].

6. Conclusion

We have compared the predictions of the PYTHIA and PHOJET MC event generators
with the available experimental data from the ISR, the SPS and the Tevatron. Also we
have compared the predictions of PYTHIA and PHOJET for minimum bias events and
diffractive processes at the LHC energy.
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There are large divergences between PYTHIA and PHOJET in the prediction of the
cross-sections. They start to differ at energies 600÷700 GeV. The difference in elastic
and double diffractive cross-sections becomes larger than 50 % at the LHC energy, while
the difference in single diffractive and non-diffractive cross-sections remains at the level
of 22÷23 %. The reason of such a large discrepancy lies in the different models used
by PYTHIA and PHOJET for the cross-section calculations. Unlike PYTHIA, PHOJET
suppresses the diffractive cross-sections at high energy providing a reasonable description
of the existing experimental data.

On the basis of the comparison of the PYTHIA predictions for the charged particle
density in non-single diffractive and inelastic events to the UA5 and CDF data, we would
recommend to use the set of parameters called Scenario 3 (see table 2) for any minimum
bias simulation. This scenario of PYTHIA or PHOJET, with its default parameters, give
a reasonable description of the experimental data at different energies up to 1800 GeV.
However, these two generators differ at higher energy and the differences in the predictions
become larger with the rise of the c.m. energy.

The comparison of the PYTHIA and PHOJET simulations to the UA4 data for single
diffraction shows that PHOJET describes the diffraction processes better than PYTHIA.
We have also compared PYTHIA and PHOJET for single and double diffraction at the
LHC energy. PHOJET predicts ∼2 times larger charged particles multiplicities.
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