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SUMMARY 

Inelastic collisions of small molecules were studied 

at two energetic extremes. High energy (2000 eV) collision 

induced dissociations of N+2' 2 0+ ' CO
+ , and NO+ were studied 

as a function of reactant ion internal energy by varying the 

kinetic energy of the ionizing electrons used to produce the 

reactant ions. Relative cross sections and product ion ve-

locity distributions were obtained with a mass spectrometric 

apparatus. Dissociation was found to proceed via collision 

induced Franck-Condon type electronic transitions to repul-

sive portions of the molecular ion potential energy curves. 

This determination of the diatomic ion dissociation mecha-

nism permitted determination of the internal energy of CO + 

 and N0+ ions resulting from unimolecular decomposition of 

triatomic ions. 

Inelastic energy losses in low energy (16 eV) colli- 

+ sions of H
3 
with Ne were measured in a tandem mass spectrom-

eter designed to direct mass analyzed ion beams onto target 

molecules and scan the energy, mass, and angular distribu-

tion of charged interaction products. The experimental 

energy loss spectra correspond to that expected for vibra-

tional excitation of H +
3' 
 and frequencies obtained from these 

inelastic energy data are found to agree with recent quan-

tum mechanical calculations reported in the literature. 

ix 
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A similar investigation examined energy conversion 

in vibrationally inelastic, low energy CO +  and Ar collisions 

with a higher resolution, ion impact spectrometer. In this 

apparatus a CO  beam interacts with a neutral Ar beam and 

the energy, mass, and angular distribution of scattered CO 

is measured. Energy loss spectra were obtained for 1.56 to 

25.5 eV incident CO+  kinetic energy and 0 to 25 degrees 

laboratory scattering angle, and maxima in these spectra oc-

cur at energies corresponding to the known CO+  spectroscopic 

vibrational spacings. The probabilities for multiquantum 

transitions were found to increase with both incident ion 

kinetic energy and scattering angle. Cross sections for 

vibrational excitation at small scattering angles are ade-

quately described by a semiclassical oriented nonlinear en-

counter model in which an impact parameter treatment is 

used to estimate collisional energy transfer for a forced 

oscillator and time dependent wavefunctions are employed to 

evaluate transition probabilities. The energy widths of 

these inelastic peaks indicate simultaneous vibrational-

rotational excitation to occur. Weakly inelastic processes 

are observed below the threshold for vibrational excitation, 

corresponding to pure rotational excitation of Ce. The 

relative importance of rotational transitions increases with 

decreasing energy and scattering angle. 



CHATTEH I 

INMODUCTION 

A collision of a molecule ion with a neutral target 

atom or molecule proceeds in either an inelastic or elastic 

manner. In the former case, translational energy is con-

served during the collision and the colliding entities re-

tain their internal energy states. In the latter case, 

transfer between translational and internal energy occurs, 

i.e. some kinetic energy of the incident molecule is con-

verted into electronic, vibrational, and/or rotational ex-

citation. Collision-induced dissociation or ion-molecule 

reaction (mass transfer) may also result from inelastic 

collis ion. 

Beam experiments provide an excellent method for 

study of inelastic collisions since the kinetic and internal 

energy of the incident molecule ion may be precisely speci-

fied, and the mass, scattering angle, and kinetic energy of 

charged interaction products may be determined. Knowledge 

of these data enable the testing of theoretical models for 

the collision process. To attempt an understanding of their 

mechanisms, ion-neutral collisions were studied at two 

energetic extremes in the present work. 

kt high energies (2000 eV), collisions of diatomic 

1 
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molecules lead to their dissociation. The product atomic 

ions emerge with velocity distributions determined by the 

potential energy curves, internal energy states, and elec-

tronic transitions of the molecule ions. Gas phase, elec-

tron impact ionization produces molecule ions in selected 

internal energy states, and a mass spectrometric apparatus 

measures the velocity distributions of charged dissociation 

products. Thus one may seek to answer the question: Do 

diatomic molecule ions dissociate in high energy collisions 

via Franck-Condon type transitions? Understanding diatomic 

molecule ion collision-induced dissociation then allows de-

termination of the internal energy of Ne and Ce formed by 

unimolecular decomposition of triatomic ions. 

At low energies (2-25 eV), Inelastic collisions ex-

cite vibrational and rotational transitions, with collision-

al kinetic energy loss determined by the molecular vibra-

tional and rotational energy levels. Ion impact spectroscopy 

can therefore be used to measure vibrational frequencies 

whose optical determination is difficult, such as those of 

H. In the present work the kinetic energy loss of H 3  col-

liding with Ne at low energies was measured. since several 

theoretical calculations of H +
3 
 vibrational frequencies have 

been reported, this work provides a test of their validity. 

In cases where vibrational frequencies are well 

known, experimental energy loss spectra can test the appli-

cability of theoretical models of vibrational excitation by 



collision. For this purpose, inelastic collisions of CO + 

 with Ar were examined at 2 to 25 eV incident CO+  kinetic 

energies and 0 to 20 degrees laboratory scattering angles, 

and an oriented nonlinear encounter model was used to cal-

culate predicted transition. probabilities for comparison 

with the experimental energy loss spectra. 



adAPTER II 

COLLISION INDUCED DISSOCIATION OF DIATOMIC MOLECUUE IONs 

AT HIGH ENERGIES 

Introduction 

Collision induced dissociations of 2000 eV N2, 0 2 , 

CO+ , and NO+ ions were studied as a function of reactant 

ion internal energy. Relative cross sections and product 

ion velocity distributions for dissociative scattering proc-

esses through angles less than two degrees were examined as 

a function of reactant ion internal energy by changing the 

kinetic energy of the ionizing electrons. Product ion ve-

locity distributions are consistent with a mechanism that 

assumes Franck-Condon type transitions between electronic 

states of the reactant species. These dissociative reac-

tions involving diatomic molecule ions have been used to 

probe the internal energy of NO and CO+  ions resulting from 

the unimolecular decomposition of triatomic molecule ions 

formed by electron impact ionization. 

The collision induced dissociation of molecular ions 

has been the subject of a number of investigations over the 

years (1-8). However, most of these studies have examined 

the dissociation of 11+2  ions because of the accurate theoret- 

ical data available (9-14) on this system and the intrinsic 
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interest in establishing its high energy reaction mechanism. 

Another impetus for these investigations has been the prac-

tical application (15) of the corresponding, D 2 dissociative 
reactions in magnetic mirror traps of thermonuclear devices. 

A study of these 14 collisions in the 5-80 keV energy range 

has shown (16) that scattering of the H -4.  and H reaction 

products takes place predominantly through small angles and 

corresponds to electronic excitation of the IT+2, - F1 molecule "2  

ion to the Y] u repulsive curve. The angular distributions 

of the reaction products are in harmony with the assumption 

of vertical Franck-Condon type transitions (17) and the mo-

mentum distributions measured at specified angles (18,19) 

are quite sensitive to the initial vibrational population 

distributions of the reactant H 2 ions. Similar dissociative 

reactions of polyelectron ions have been investigated using 

standard techniques (20-23) of mass spectrometry. Product 

ions from such collision induced dissociations give rise to 

relatively diffuse, low intensity peaks (Aston Bands) ap-

pearing at both integral and nonintegral mass numbers. 

These very broad ion peaks are similar to those from meta-

stable transitions of polyatomic ions undergoing unimolecu-

lar decomposition (24,25). In order to understand the mech-

anisms of high energy reactions and to gain information on 

the internal energy of ions formed via electron impact ioni-

zation, dissociative transitions of diatomic molecule ions 

have been examined. 
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Apparatus 

The experimental arrangement used in this work is 

shown schematically in Figure 1. Ions are formed in an 

electron bombardment source with the electron beam energy 

in the ionization region (26) controlled from 2 to 150 eV. 

The absolute energy of the electrons in the ion source re-

gion was calibrated during each experiment by comparison of 

our experimental ionization efficiency curves with those 

tabulated in the Literature (27). Voltages applied across 

a series of accelerating plates focus ions produced in the 

source into the collision chamber. The reactant ion beam 

emerges from the final accelerating slit with 2000 eV kinet-

ic energy and passes into a collision chamber containing 

neutral target gas molecules. 

The length of the collision chamber shown in Figure 

1 is 5.0 inches and the width of the acceptance angle de-

fining slit nearest the ion source is 0.030 inch and that 

of the second 0.060 inch. The distance between these two 

slits is 3.5 inches with the average ion-neutral molecule 

interaction occurring in the center of the collision region, 

thus defining respective acceptance angles of 0.30 and 1.75 

degrees in the directions perpendicular and parallel to the 

longitudinal axis of the second slit. The port of the pump-

ing system is located between the two acceptance angle de-

fining slits and maintains a differentially pumped region 

between the collision chamber and the magnetic analyzer. 



ACCEPTANCE 
ANGLE DEFINING 

SLITS 

,60° MAGNET 

TO PUMP 

COLLISION 
CHAMBER 

MAGNETIC 
SHIELDS 

ACCELERATING SLITS 

COLLECTOR 

`ION SOURCE 

Figure 1. Schematic Diagram of the Experimental Apparatus Used to Study High 
Energy Collision-Induced Dissociation. 
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Method 

Velocity dependent discrimination (21,28) by mass 

spectrometer slit systems has been considered in the compar-

ison of measured and calculated product ion momentum dis-

tributions. The acceptance angle defining slits insure that 

product ion beams entering into the magnet are spatially 

defined and can be momentum analyzed in the magnet, thereby 

allowing the corresponding energy distributions to be deter-

mined. ,qtomic ions recoiling with only a few electron volts 

in the molecular domain can give rise to large energy 

spreads in the laboratory system. Purser et al. (29) have 

pointed out that, in the dissociative transition of D 2 from 

the bound Z 
g 
 state to the repulsive 2 u state, the poten- 

tial energy of the system at the initial internuclear spac-

ing can be transformed into translational energy of the sep-

arating product, giving them a component of velocity u in 

the center of mass system. When u is directed at 0 or 180 

degrees with respect to the reactant ion beam direction, the 

product ions are formed with respective energies E+  and E 

given by 

E* = Wu * Vo ) 2 
	

(1) 

where m is the mass of the neutral atom. V o and u are the 

respective velocities in the laboratory and center of mass 

2 systems. E 0  = -p7m1/0  and E l  = .ffmu . The energy spread E of 
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the product ions is 

AE = e - E -  = 4(E 06) 3 . 	 (2) 

Energy spreads of several hundred volts are typical when 

2000 eV reactant projectiles are used. 

Ions undergoing dissociation after acceleration but 

prior to analysis in the magnetic field are focused at an 

apparent mass corresponding to 

(m/q) 
	

1 
2
/(m i/q i ) 
	

(3 ) 

where mf/qf is the mass to charge ratio of the final product 

ion and m /q. is the mass to charge ratio of the initial 

reactant ion (21,25,30). Similar transitions giving rise 

to nonintegral masses have been observed (31) in the uni-

molecular decomposition of excited polyatomic ions. How-

ever, for all systems reported in the present work, a linear 

relationship between the product/reactant ion intensity ra-

tio and the collision chamber pressure was observed. Such 

behavior is characteristic of bimolecular reactions and is 

illustrated in Figure 2 for the nitrogen reaction, a typical 

case. 
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Results and Discussion 

N 2 

The product N +  ions formed by the reaction 

- N 2  +N2 4N+ 
 + N + 11

2 

were monitored at an apparent mass (m/q) of 7.0. According 

to equation 3, the peak appearing at (m/q) = 7.0 unambigu-

ously identifies both the ionic reactants and products in 

reaction 4. The momentum spread of this peak has been meas-

ured with the aid of carefully calibrated electrostatic and 

magnetic fields using techniques previously outlined (17, 

21). The velocity distributions of the N-1-  product ions have 

been determined from these momentum measurements and are 

presented as the solid lines in Figure 3 for various ioniz-

ing electron energies. 

In order to elucidate the reaction mechanism of dis-

sociative reactions, a comparison of the experimentally 

measured product ion velocity distributions with those pre-

dicted on the basis of collision induced electronic transi-

tions of the reactant ions has been made. The number of 

product ions formed by reaction 4 per unit target gas den-

sity and unit path length in the collision region is 

11 

(4) 

N(R,0)dRd0 = 27-(1)(5)0-(R,0)sin0dRdd 	 (5) 
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ary Reactant Ions Formed Via Ionization of 
N2 with 18, 20, and 80 volt electrons.) 
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where D(R) is the distribution of reactant N 2 ions as a 

function of internuclear distance R, and d  is the angle be-

tween the incident velocity vector Vo  of the reactant ion 

4  beam and the N2 internuclear axis. (7(R,0) is the cross sec-

tion for dissociation at given R and 0. The vector rela-

tionship for this model of the dissociation process is given 

in Figure 4. As a result of the dissociation of 4, both '2 

the N+ and N fragments emerge from the collision with a ve-

locity u characteristic of two-body breakup in the center of 

mass system. The shape of the 4 repulsive potential ener-

gy curve determines the relationship between 9 and R and 

enables N(R,O) to be expressed in terms of u and 0: 

2rrD(R.,0)cr(R,95)sinddgSdR = 27NN(u4P-duelny5d0. 	(6) 

From equation 6, the number distribution of product ions in 

the center of mass system is given by 

H(1,1,0 ) = D( R ,0) 47( R,0)(E). 	 (7) 

Using the vector diagram in Figure 4, it can be shown (17) 

that the Jacobian of transformation between the center of 

mass coordinates (u,i) and the laboratory coordinates (V,8) 

is 



Figure 4. Vector Diagram of the Ionic Dissociation Process. (6 is the Labora-
tory Scattering Angle, 0 is the Angle between the Reactant Ion Inter-
nuclear Axis and the Initial Direction of the Ion Beam, u is the 
Dissociation Velocity of the Atomic Ion with Respect to its Center 
of Mass, V is the Initial Velocity of the Reactant Ion Beam, and 
V is the Re

o 
 sultant Product Ion Velocity.) 
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(8) 

This allows N(11,95) to be related explicitly to the number 

distribution P(V,O) of product ions in the laboratory sys-

tem through the expression 

2  dR 
P(V,e) 	D(R)ulli 3 O)(ai7)( VTO . (9) 

The reactant ion internuclear distance is taken to be con-

stant during the transitions, which are assumed to be ver-

tical Franck-Condon type transitions to repulsive potential 

energy surfaces. dR/du is determined from the shape of the 

repulsive curves. 

The statistical distribution D(R) of ions as a func-

tion of R is determined by the initial population distribu-

tions of ions formed by electron impact ionization and by 

the spontaneous transitions that occur within 6x10 -6 second, 

the time required for reactant ions to travel from the 

source to the collision region. The vibrational population 

of different electronic states initially produced in the 

ionization process can be estimated using the Born-

Oppenheimer approximation. The probability of transition 

from vibrational level v' of electronic state i of a dia-

tomic molecule to vibrational level v" of the electronic 



state j is 

r) 1/41 P110,jv" ,-0/47 1R  ij(R•— v "dR1
2 , 	 (10)  

where vi  and  v"  are the vibrational wavefunctions corres- 

ponding to levels v' and v" respectively and R i!j (R,r) is the 

electronic transition moment (32). 

Rij (R,r) is a slowly varying function of R and its 

average value can be taken outside (33) the integral giving 

P iv i ,jv"'414i (ITTP.v" )]
2
1/frli ndR 1

2
•  

Therefore, the probabilities Piv,,jv" will be determined 

essentially by the square of the vibrational overlap inte-

grals. These integrals have been calculated. using both 

Morse anharmonic oscillator (34) and RKR vibrational wave-

functions (35) for the excited N2 states. The RKR wavefunc-

tions are more nearly accurate than the Morse functions, 

but adequate (36-38) overlap integrals can be calculated 

from the latter if the former are not available. Although 

vibrational distributions of the ions excited by electron 

impact ionization can thus be estimated, electronic transi-

tion moments are also needed to calculate P ivl, jvo . Pub-

lished photoionization data have been used (34,39) to cal-

culate the electronic transition moments and it is found 
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that relative populations of the 4 X z p, A2 Hu,  and B2Z 

states are 0.4, 0.5, and 0.1 respectively, which values are 

confirmed by recent (37,40) photoelectron measurements. 

Relative electron impact ionization cross sections estimated 

(41) from optical oscillator strengths and electron scatter-

ing experiments tend to weight the N X 	state more heav- 

ily than the A 2 IT u  state, but these results agree with the 

photoionization data in assigning minor importance to the 

+ 2 N2 B,-, u state. Spectroscopic analysis of nitrogen excita- 

tion by 1MA-1/ protons (42) has also indicated that the proba- 

+ bility for formation of N2  2, u  ions is small. Furthermore, 

the B state undergoes spontaneous radiative decay (43,44) 

within 6x10-8 second., a shorter time than that required for 

the ions to reach the collision region in the apparatus. 

This transition populates the lower vibrational levels of 

the X state since the B-4X vibrational overlap integrals 

strongly weight (35) the 02-  X 2 E g  (v=0,1) levels. Maio-

gously, the A2 IIu  state has a lifetime of 3x10 -6  second 

(39) and the A-4X soontaneous radiative transitions occur-

ring prior to ion-molecule reaction populate the lower vi-

brational levels of the X 2_, state. Thus, the major por- 

tion of the reactant ion beam in the collision region is in 

the X 	(v=0,1) levels. 

An estimate of the number distribution D(R) has been 

made using the above transition moments, spontaneous radia-

tive lifetimes, and vibrational overlap integrals. D(R) is 
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shown as the darkened area in Figure 5 along with the rele-

vant potential energy curves (45). The range of R over 

which D(H) contributes significantly to the collision in-

duced dissociation process is shown as the shaded Franck-

Condon region in this figure. These collision induced elec-

tronic transitions are assumed to occur from the X L, state 

to the repulsive portion of the D217 state of the ion and 

equation 9 is used to calculate the velocity distribution 

of N+  product ions, with the cross section Or considered to 

be independent of R and 0 in this calculation. This calcu-

lated 11+  product ion velocity distribution is shown as the 

dashed curve in Figure 3 along with the experimentally meas-

ured curves. Only one reaction mechanism, involving elec- 

1-1. tronic transitions to the D2  IL state, need be invoked to 

obtain agreement between measured and calculated product ion 

velocity distributions, but transitions to other states (45) 

are not entirely excluded. Transitions to the repulsive 

portion of the D 211 states by electron impact ionization of 

nitrogen have been suggested (46) to rationalize the low 1,1+ 

 appearance potential; however, transitions to other states 

occur (47) at higher electron energies. 14 -4-  is produced 

with an almost isotropic distribution by electron impact 

dissociation and a similar angular dependence is expected 

(48) in these experiments because of the symmetry (18) of 

the states involved. 

Although the experimental velocity distributions in 



34 

32 

30 

28 

5 26 
03 

CC 
LiJ 

24 

22 

20 

18 

16 

1 9 

1.0 	 2.0 
	

3.0 

INTERNUCLEAR DISTANCE (A) 
Figure 5. Potential Energy Curves of N' 49- . (See Reference 

45. The Shaded Region from the X to the D 
State Indicates Values of Intgrnuclear Dis- 
tance Used to Calculate the 11 1  Product Ion 
Velocity Distributions Given in Figure 3.) 



20 

Figure 3 are consistent with dissociation via X-.>D transi-

tions, a critical test of the participation of long-lived 

excited states can be made by varying the energy of the ion-

izing, electron beam. The results of this experiment are 

shown in Figure 6. The e(product)/4- (reactant) ratios are 

proportional to the reaction cross section. The N +2  ioniza- 

tion efficiency curve, given by the solid circles, extrapo-

lates to the 15.58 eV nitrogen ionization potential and 

provides an internal check on the energy of the electron 

beam. From 15.58 to 21 eV the 11+/N+2  ratio is constant, as 

expected if the A-“ and B- 4X spontaneous radiative transi-

tions occur prior to reaction. Eowever, this ratio starts 

to increase at approximately 21 eV, which corresponds to 

the appearance potential of the 1\1 .12-  quartet states (45). 

These states contribute to the ion-molecule reactions (49, 

50) producing N+ and their lifetimes (51) are longer than producing 3 
3x10 6 second. The 10 percent increase in cross section 

can be attributed to their reactions. Since the reactant 

ion beam is almost entirely composed of X state ions, a very 

large cross section is indicated for dissociative reactions 

of these quartet states. 

CO 

Dissociative processes for 2000 eV CO+  ion impact on 

CO molecules are illustrated in Figure 7. e is observed 

at (m/q) *  = 5.15 as the major ion product, with the abun-

dance of 0+ an order of magnitude smaller than that of C + . 
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The normalized C +  ion intensity in this figure is given as 

a function of velocity for various ionizing electron ener- 

gies. Approximately 25 data points have been taken through-

out the velocity range for each of the experimental curves 

given in Figure 7, but the individual data points are not 

presented since the precision of each point approximates 

the thickness of the solid lines. As the energy of the ion-

izing electrons is increased from 16 to 80 v, the measured 

distributions are displaced to higher velocities indicating 

the presence of excited CO +  levels in the reactant ion beam. 

Excited CO+  states are well characterized and photoioniza-

tion data (52) have been used to calculate the relative 

electronic transition moments Rij(R,I)  from which the rela- 

+  tive populations of the CO X22,  , A II, and B22 states are 

found to be 0.35, 0.58, and 0.07 respectively. Our reactant 

ion beam contains no component from the A or B states since 

spontaneous radiative B-4X and B-4A transitions occur (44, 

53) 4.5x10-8  and 10-7  seconds after ion formation, and spon-

taneous radiative 11---X transitions are reported (36) to oc-

cur with a 2.6x10 6 second lifetime. Thus, the majority of 

the CO+  ions will be in the X2Z state prior to reaction in 

the collision chamber. The vibrational distributions of 

the ions initially formed in the X, A, and B electronic 

states are calculated using equation 11 with the vibrational 

wavefunctions (34,35) for the CO and CO +  states, and the 

C0+ 2K, CO X 2_, vibrational distributions from the B-4X and A-..X( 



spontaneous transitions are estimated from the Franck-

Condon factors (34,35,50 tabulated in the literature. 

From the resultant X state vibrational populations and the 

CO+  X2 /: anharmonic oscillator wavefunctions, the number 

density of CO+  K2/: ions are then calculated as a function 

of R. These results are preSented in Figure 8 as the dashed 

line through the lower part of the around state potential 

energy curve which has been constructed from the data com-

pilation of Krupenie (55). If it is assumed that the mech-

anism of CO +  dissociation by 2000 eV collisions is similar 

to that invoked in the case of N dissociations, then the 

shape of the repulsive CO +  potential energy curve is the 

only additional information needed to predict the velocity 

distribution of the C +  product ions. Alternatively, if the 

repulsive curve is not well characterized, then the meas-

ured velocity distributions can be used to establish its 

shape. We have used this latter approach to construct the 

C0+ repulsive curve given in Figure 8, the shape and posi-

tion of which is similar to the repulsive portion of the D 

state of the isoelectronic N2  given in Figure 5. The C+ 

velocity distribution obtained using this curve is given as 

the dashed line in Figure 7. The slight shifting of the 

measured velocity distributions with increasing ionizing 

electron energy is consistent with the formation of vibra- 

+ tionally excited CO X22, reactant ions resulting from 

radiative transitions of the A and B states. Evidence for 
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long-lived electronically excited states is presented in 

Figure 9 where the C + (product)/C0+ (reactant) ion intensity 

ratio, proportional to reaction cross section, exhibits a 

threshold for a 10 percent increase at 2n eV. This ener-

getic onset is approximately the same a$ that observed by 

Cermak and Herman (49) in low kinetic energy C01-  ion-

molecule reactions. They suggest the presence of a long-

lived quartet state in the reactant CO +  ion beam which is 

consistent with these observations. 

o+ 2 

Dissociative reactions by 02 + 0 2  collisions produce 

0+ ions at an apnarent mass of 8.0. The measured 0 +  veloc-

ity distributions are presented in Figure 10 for various 

ionizing electron energies. In contrast to the CO +  reac-

tions, the velocity distributions of the product 0+  ions 

from 0 2 + 0 2 interactions are shifted to tower velocities 

as the energy of the ionizing electrons increases. The 

population of excited 0 2 states from electron impact ioni-

zation has been estimated from photoionization data by 

Vance (39), who finds that the relative weights for the 

states are: 0.24 - X
2 
IT g , 0.07 - a4 

11 u 0.29 - A
2

u , 0.26 

- g , and 0.14 - 2  2, g . These populations agree with 

those estimated previously (34), with relative transition 

moments obtained from photoelectron spectroscopy (52), and 

with recent calculations (56) using a modified Born approxi- 
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mation. Radiative transitions have been observed (57) to 

occur between the 	and b-40. levels within 1x10 6 second. 

The lifetime of the 2: state before undergoing the 2, -4 

A
2 	transition is estimated (39) to be the same order of 

magnitude (10 -6 second). The transitions between the 	II u.  

and X 2 II states are spin forbidden and will not occur in 
P 

the time required for 0; reactant ions to reach the colli-

sion region in the apparatus. Thus, from the above transi-

tion moments and radiative decay, 33 percent of the ion 

beam is estimated to be in the a 4  II u state prior to reac- 

tion. This rather high fraction of 0 42' ions in electronical-

ly excited states agrees with the results of Turner, 

Rutherford, and Compton (61), who estimate from ion beam 

attenuation measurements that 30-33 percent of the O2 ions 
are in this long-lived excited quartet state when the ion 

beam is produced by 50 to 100 eV electron impact ionization. 

Product 0+ ion velocity distributions are calculated by as-

suming that reactant ions dissociate via collision induced 

X2 Il -4A2II u (repulsive section) and 4IIuu electronic 

transitions. The regions for these dissociative transitions 

are shaded in Figure 11. The potential energy curves in 

this figure have been taken from the compilation of Gilmore 

4 (45), except for the Z state which has been shown to have 

a slightly deeper attractive potential. The vibrational 

distributions of the various electronic states produced by 

the initial electron impact ionization are estimated from 
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the respective overlap integrals (34,35) and agree with ex-

perimental data (58, 59) obtained from photoelectron spec-

troscopy. The vibrational distributions resulting from the 

spontaneous 	and b-4a radiative transitions in the ion 

beam are estimated from the respective (34,60) overlap in-

teprals tabulated in the literature. These vibrational dis-

tributions and the respective anharmonic oscillator wave-

functions are then used to calculate the statistical dis- 

tributions DM of ions in the X2 II
g 

and a4-rrU  states, which 

are displayed as the dashed curves in Figure 11. The 0 + 

 velocity distributions calculated using this P(R) are given 

in Figure 10, and reasonably good agreement is found between 

the calculated and experimental curves. The product 0 + 

 distribution at 13 v appears at higher velocities than at 

80 v since the former is entirely produced by transitions 

+ 
from the 0 2 X

2  II p state to a steeply rising, repulsive, up- 

per potential energy curve. This is schematically shown by 

the Franck-Condon regions in Figure 11. A closer examina-

tion of the low velocity 0+  product ions is made in Figure 

12, where the ratio 0 +1042 is plotted as a function of the 

ionizing electron energy. The 0 +  intensity is taken near 

Vo' so this ratio characterizes reactions producing 0+ ions 

with very little recoil velocity u in the center of mass 

+ system. The 0+!02  ratio is expected to increase rapidly 

with increasing ionizing electron energy if the conjecture 

concerning low 0+  ion product velocities from dissociation 
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of the - II state is correct. Indeed, the experimental 

curve in Figure 12 shows an upward break at 16 eV, the 

threshold for the a4 	state, and an increase through the n. 

energetic onset of the b 2 state which spontaneously de-
g 

cat's into the a4„  state. The breaks in this curve above 

20 eV are in approximate accord with similar observations 

of McGowan and Kerwin (62) who suggest that they are due to 

reactions of long-lived excited states that have not been 

observed spectroscopically. The agreement between the cal-

culated and measured momentum distribution curves in Figure 

10 would indicate that although these long-lived excited 

states above 20 eV are a minor constituent of the ion beam, 

they have a relatively large cross section for dissociative 

reactions producing low velocity 0 + . 

NO -1.  

The 2000 eV dissociative reactions of NO yield ap-

proximately the same number of Nr +  and 0+ products, and their 

velocity distributions are presented in Figures 13 and 14. 

Both the N+ and 0+ distributions are similar functions of 

electron energy, which shows that both ions are produced 

from the same reactant ion states. These velocity distribu-

tions are sensitive functions of ionizing electron energy, 

suggesting the participation of excited reactant ions in the 

reaction mechanisms. The potential energy curves for NO + 

 excited states given as the insert in Figure 14 are those 

presented by Collin and Natalis (63,64). The relative prob- 
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abilities for populating these different electronically ex-

cited NO+  states have been estimated (39) to be 0.45 - X 1 E, 

0.0 - 3 Y„ 0.43 - 3L and 32, and 0.12 - Alrr. U_though 

there is evidence for the existence of the a 3Z, state, the 

probability for producing this state (59,63-65) by the ion-

ization of NO molecules is very small. The spontaneously 

radiative A 1 11-4X 12: transition occurs in 6x10 -6  second but 

the triplet levels are spin forbidden to decay into the 

ground state within 6x10 6 second, the time interval be-

tween formation of an ion in the source region and its reac-

tion in the collision chamber. It is assumed that about 22 

percent of the reactant ion beam is in the 3A state and 

about 22 percent is in the 311 state. These estimates are 

only approximate since the population of only four states by 

electron impact ionization has been assumed. The 1/\  state 

is produced with a reasonably large cross section (64); 

however, the 10--A lTI transition enables an A lit-*02 cas-

cade to take place, which populates the ground state. 

Therefore, the inclusion of the 1L state in the considera-

tion of the relative transition probabilities will not 

change the estimate that 43 percent of the reacting ions are 

in electronically excited triplet states. Mathis, Turner, 

and Rutherford (66) have concluded from ion beam attenuation 

measurements that 42 percent of an NO +  ion beam formed by 

50 eV electron impact ionization is in long-lived excited 

states. 
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Collision induced transitions producing N I-  ions are 

assumed to take place to repulsive portions of the poten-

tial energy curves (45) from both ground and triplet states 

of the reactant ions as indicated in Figure 14. The 1 + 

 velocity distributions are calculated from equation 9 and 

are compared with the experimental data as shown in Figure 

13. The measured 0 +  velocity distributions from N0+  disso-

ciations are presented in Figure 14. Reactions that pro-

duce 0+ are assumed to be a consequence of collision induced 

electronic transitions to the 5 Y, state from the ground 

, 	 3z and long-lived 	and 	states in calculating the 

dashed curve. The Franck-Condon region for this reaction 

extends to approximately 1.3 R. where the 52 curve crosses 
the 0+ dissociation asymptote at 20.1 eV. Further evidence 

that both the ground X l>: and excited 	and and 32 states 

participate in the production of 0+  is given in Figure 15, 

where the 0 4- (product)/Ne(reactant) ion intensity ratio is 

presented as a function of electron energy. As seen in 

this figure, 0+  ions are initially formed at the ionization 

potential of nitric oxide, indicating dissociative transi- 

X 14 tions from the ground X l4 state. As the ionizing electron 

energy increases, the 0+/N0+  curve exhibits a break near 

the energetic threshold of the NO + 3A and 3 2', states, which 

is to be expected if reactions producing 0 +  proceed via 

these long-lived states. The fact that the cross section 

for N+ formation as a function of electron energy has the 
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same shape as the 0+  curve indicates similar mechanisms in 

which both product ions are produced from the X 12, 3L, 

and 3 2, NO+  states. 

NO+ (NO 2 ) 

Diatomic reactant ions may also be produced by elec-

tron impact ionization of triatomic species. It is of in-

terest to compare the internal energy of diatomic ions pro-

duced in this manner with that of those produced directly 

from ionization of diatomic molecules as discussed above. 

Analogous studies of the dissociation of neutral NO 2  by ul-

traviolet photons (67,68) and low energy electrons (69) 

have shown that electronically excited NO molecules are 

formed from NO2'  • however, detecting excited NO
+ ions from 

NO 2 is somewhat difficult. Collision induced dissociative 

reactions may be used to probe the internal energy of dia-

tomic ions since such reactions are very sensitive to the 

internal energy of the reactant ions. Ionization of NO 2 

 results in the formation of NO+  ions that dissociate in 

2000 eV collisions, with both N+  and 0+  observed as reac-

tion products. The measured velocity distributions of the 

product 0+  ions are given in Figure 16 as a function of 

ionizing electron energy. NO +  ions formed by 80 v electron 

impact ionization of both NO and NO 2  result in similar 0+ 

 velocity distributions as seen by comparing Figures 14 and 

16. A quantitative fit to the 80 v data in Figure 16 (anal- 
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ogous to the dashed .Line in Figure 14) may be obtained by 

assuming that 50 percent of the reactant YO -1-  ions are in the 

ground X 171  state and the remainder equally populate the 

3,n, and 3 Y, states, with vibrational distributions approxi-

mating those of We ions formed by ionization of NO. The 

shape of the N+  velocity distributions observed to result 

from the dissociation of MO+ from NO 2 is identical to that 

of the curves in Figure 1.3. Further indication that Ion-

lived, _excited states are present in the reactant NO ions 

from NO 2 is given in Figure 17, where the N+/NO
+  ratios ex-

hibit a dependence on electron energy similar to that in 

Figure 15. 

All reactions discussed in this chapter require 

transfer of reactant ion kinetic energy into electronic ex-

citation during collision. The apparent mass (m/q) of the 

product ions is observed to be displaced toward a slightly 

lower value than that predicted by equation 3 and this small 

shift in apparent mass (m/q) can be related, using stan-

dard techniques (21), to a kinetic energy loss in the col-

lision. Table 1 presents this data for the various reac-

tions, corrected for the initial kinetic energy distributions 

of the reactant ions, i.e. Maxwellian for those produced by 

ionization of diatomic molecules, but finite for diatomic 

ions produced by ionization of triatomic molecules (27,46). 

The precision of the energy loss data in Table 1 is ±1.5  eV. 

Reactions 4 and 6 were further studied by substituting ar- 
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Table 1. Energy Loss in Dissociative Reactions of 2000 eV 
Diatomic Ions. (Precision of these Values is 
1..5 eV.) 

Reaction 	 Energy Loss (eV) 

(1) 2  + N2  —4 114- 	 10.3 

(2) co+  + CO —4 e 	 14.8 

(3) 02 0 21-  	-30+ 	 8.7 

0 	 8.4 
(4) N0+ + NO —

4N+ 	 10.9 

(5) CO(CO 2 ) + CO 2  -4 e 	 11.0 

o+ 7.0 
(6)Ne(NO2 ) + NO 2  -4 _,_ 

N 	 10.0 
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F,on for the neutral target species and no change in energy 

loss was observed. This suggests that simultaneous inter-

nal excitation of target molecules by coLLision is not dom-

inant, but that the energy required for dissociative elec-

tronic transitions of the reactant ions accounts for their 

Loss of kinetic energy. The comparable energy loss for re-

actions 4 and 6 of Table 1 provides additional evidence 

that the population distribution of reactant NO among the 

various long-lived excited electronic states is similar 

whether the N0+ is formed by ionization of NO or of. NO 2' 

CO+ (CO ) - 2 

Collision induced. dissociation of CO +  formed by 

electron impact ionization of CO ?  yields e as the major 

reaction product. The 0 +  product ion intensity is less 

than 0.1 that of the C+  product, a fraction similar to that 

observed for the Ce(CO) reactions. C+ (CO 2 ) velocity dis-

tributions, presented in Figure 18 for various ionizing 

electron energies, are distinctly different from those in 

Rigure 7 for the reactions of Ce from CO which would in-

dicate that internal energies of Ce ions depend on their 

manner of formation. Normalized e velocity distributions 

given in Figure 18 decrease as the ionizing electron energy 

is increased from 22 to 80 v. The CO+  ions produced at 22 v 

have a maximum internal energy of 1 eV, since the energetic 

threshold for CO +  formation by electron impact ionization 
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of CO2 is approximately 21 en,/ (25,70). 	s the electron en- 

ergy is increased, the reactant CO +  may be formed with more 

internal energy (71) and/or recoil kinetic energy (70) from 

the unimolecular fragmentation of CO; in the ion source. 

The lowered velocity distributions are ascribed to a change 

in CO+ internal energy since these distributions have been 

corrected for the small initial CO +  recoil energy. Since 

electron impact ionization of CO 2  does not produce (72) 

electronically excited Ce, vibrational excitation in the 

reactant CO+ ions is suggested to explain the shift in the 

measured C+  velocity distributions. A. quantitative fit to 

the experimental points in Figure 18 is obtained using equa-

tion 9 with D(R) computed from CO +  anharmonic oscillator 

wavefunctions and the electron energy dependent wei }its as-

signed to the CO +  vibrational level populations. The curves 

are calculated by weighting vibrational populations of lev-

els v=0,1,2 respectively: curve a - .58, .32, and .10; 

curve b - .42, .34, and .24; curve c - .33, .33, and .34. 

For curve d the population of each of the first 10 vibra-

tional levels is weighted equally. Supplementary evidence 

that electron impact ionization of CO 2  produces CO+  in high 

vibrational levels is presented in Figure 19 where the e/ 

CO+ ratio (with C+ measured near V o ) shows a fivefold in-

crease with increasing electron energy. According to the 

model presented above, reactant CO +  in high vibrational 

levels would yield a greater proportion of slow product 
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ions. These excited. 00+  ions are expected to require less 

incident beam kinetic energy for dissociation and, there-

fore, exhibit a smaller observed energy loss than corre-

sponding ions in low vibrational levels. Comparison of the 

energy losses in reactions 5 and 2 of Table 1 further sug-

gests that highly excited CO +  ions are produced by the elec-

tron impact ionization of CO 2' 

Conclusions 

Collision induced dissociations of 2000 eV N4 0+ 2' 	2' 

CO+ , and. N0+  proceed via Franck-Condon transitions to the 

repulsive portions of the potential energy curves. Product 

ion velocity distributions measured with a mass spectromet-

ric apparatus show the effect of internal ionic excitation 

on the dissociation process. 

The velocity distributions of N+  from N-19-  collision 

induced dissociation do not vary significantly as the ener-

gy of the ionizing electrons increases from 18 to 80 v, in-

dicating that electronically excited k and B states formed 

by ionization decay spontaneously to the ground X state be-

fore collision. Hence dissociation of N 2 in 2000 eV colli-

sions occurs by a vertical transition from the lower vibra-

tional levels of the ground X state to the repulsive portion 

of the 1) state. 

The C+  velocity distributions from CO +  collision in-

duced dissociation are displaced to slightly higher veloci- 



ties as the ionization energy is increased from 16 to 80 v, 

indicating the vresence of vibrationally excited CO +  in the 

reactant ion beam. rpontaneous decay of A and 	states ini- 

tially formed by ionization populate excited vibrational 

levels of the CO +  ground X state, and dissociation proceeds 

via a vertical transition from this state to the repulsive 

potential energy curve. 

Collision induced dissociation of 0 +2  rroduces 0+  ions ' 

whose velocity distributions shift to lower velocities as 

the electron ionization energy increases from 13 to 80 v, 

tory 	
+ i because the ions-lived U 	 0 state of 	is formed along - 2 

with the ground x 2rr state by ionization and 0+  from the 

dissociation of the excited electronic state emerges with 

relatively less translational energy than from the ground 

state. 

The N+ and 0
+ 

velocity distributions from NO +  col-

lision induced dissociation are similar functions of elec-

tron energy, therefore both product ions are produced from 

the same reactant ion states. The velocity distributions 

shift to lower velocities as ionization energy is increased 

from 11 to 80 v, since excited long-lived triplet 1''0 -1.  states 

are formed by ionization at higher energies and participate 

in the collision process. 

Unimolecular decomposition of NO2 produces N0+  in 

electronically excited triplet states, while CO+  is formed 

from CO2 decomposition with vibrational excitation only. 
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Kinetic energy loss of diatomic moLecule ions under-

going dissociation corresponds to the energy required for 

dissociative electronic transitions of the reactant ions. 



CHAPTER III 

LOW ENERGY INELASTIC ENERGY LOSS 

Introduction 

While at 2000 eV ion-neutral collisions lead to 

electronic excitation and subsequent molecular dissociation, 

at lower kinetic energies nondissociative channels of reac-

tion predominate. Thus, at incident energies on the order 

of 10 eV, a molecule ion may be inelastically scattered by 

a neutral target while undergoing a kinetic to internal 

energy transfer. Such scattered molecules will be in higher 

vibrational-rotational states after collision and their de-

gree of excitation may be elucidated by experimental obser-

vation of the kinetic energy of the charged particle before 

and after it undergoes collision. 

Kinematics of Collision 

The relationship between collisional kinetic energy 

loss by inelastic collision and internal energy excitation 

of the colliding molecule may be derived in a straightfor-

ward manner from considerations of momentum and energy con-

servation and the law of cosines. A schematic representa-

tion of in-plane scattering is shown in Figure 20, in which 

Po is the momentum of the incident ion, P is the momentum 

of the scattered ion, F is the momentum of the center of 
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Figure 20. Schematic Momentum Vector Diagram for Elastic and Inelastic Scattering 
Processes. 
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mass, R is the momentum of the scattered ion with respect to 

the center of mass, A is the laboratory scattering angle, 

and 0 is the center of mass scattering angle. Subscripts e 

and i refer to elastic and inelastic parameters respective-

ly. The larger circle is the locus of terminii of all pos-

sible momentum vectors for elastic scattering (translational 

energy transfer only), while the smaller circle is that for 

inelastic scattering (translational to internal energy con-

version). The momentum of scattered ions may be shown to be 

P = Fcose + (R
2 
 - F 2sin2 4 
	

(12) 

Making use of equation 12 and the equalities 

F2 = 2m 3E limm) 2 ,  
o fkr' m  

E s 	MEo/(M+m), 

H
e mF/M, 

H i  = mF(1 - AE/E s ) 7 /M, and 

E = P2/2M, 

the difference in kinetic energy of elastically and inelas-

tically forward scattered ions at a given laboratory scat-

tering angle A is given by 

(1 3) 



mAE 2MEocose E e -E 	M+m (M+m) 2 

x(1112  - M2  sin21  e)2 - [1 - in± 12)4E  mE o 

, 2 	M2sin2 e 	]\ A m - 1 --TTRT;TAT/MT]o l j / 

where Eo is the energy of the incident ion mass M, m is the 

mass of the target molecule or ion, and AE is the internal 

excitation of the inelastically scattered ion. 

If the incident ion is diatomic and inelastic colli-

sions proceed via translational to vibrational energy trans-

fer, AE is calculated from (73) 

AE = hccue (vi-v) - hcCu exe pvi+2) 2  - (v+i) 21, 	(15) 

in which h is Planck's constant, c is the speed of light, 

w e  and W exe  are spectroscopic constants, and v and v' are 

vibrational quantum numbers of the diatomic species in its 

initial and final states respectively. Rotational excita-

tion may be included in equation 15 by addition of the ap-

propriate terms. 

Previous Investigations 

Most experimental studies of collision induced vibra-

tional excitation have examined the bulk properties of 

(1 4) 
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gases, from which it is difficult to extract information 

about individual collisions. Beam experiments are a more 

attractive alternative for such studies since the energy, 

mass, position, and scattering angle of the interacting ions 

may be very precisely defined. 

Collisions of Li+ with H2 were analyzed by Schoettler 

and Toennies (74) from the velocity spectrum of back-

scattered ions using a time-of-flight technique. Inelastic 

processes corresponding to vibrational excitation of H 2  were 

identified and, while individual vibrational transitions 

could not be completely resolved, the probabilities of mul-

tiquantum transitions were found to increase as the kinetic 

energy of incident Li +  increased from 10 to 50 eV. Improved 

resolving power in a later experiment of Held, Schoettler, 

and Toennies (75) enabled them to obtain relative excitation 

probabilities and absolute differential cross sections for 

the v=0-3v'=1°-9 vibrational transitions of H 2  struck by 

Li+ . 

Vibrational excitation of H2 and D2 from K
+ colli-

sions was reported by Dittner and Datz (76), who also used 

time-of-flight techniques. No cross sections were reported, 

but inelastic energy loss was found, in general, to increase 

with increasing relative collision energy. 

Moore and Doering (77) observed unusually large 

cross sections for pure vibrational excitation in collisions 

of 100-600 eV H+  and HI with H 2 , D2 , and N2 . They also (78) 
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reported electronic transitions of the target molecule to 

occur upon bombardment of N2 , CO, C 2H 2 , and C 2H4  with 150- 

+ 500 eV H + and H2 . 

Relative transition probabilities were found by 

Moran and Cosby (79) to be relatively constant for nonreac- 

tive inelastic Ar+ and D2 interactions. Competition between 

channels of reaction was observed for this system in the 

11-17 eV range, as kiletic energy may be transferred into 

D2 vibrational excitation or Ar
+ electronic excitation or 

both. 

In a subsequent paper (80), Cosby and Moran reported 

vibrational excitation in collisions involving oxygen ion 

beams. Inelastic energy loss in 0 +  + 02  and 02  + Ar colli-

sions was studied with a beam apparatus which scanned the 

mass, angle, and energy of the forward-scattered ions. 

Energy losses calculated from equation 14 for vibrational 

excitation of the diatomic species agreed with observed 

maxima in the scattered ion intensities, and higher vibra-

tional transitions were found to predominate as the labora-

tory scattering angle was increased from 0 to 25 degrees 

and incident ion kinetic energy was increased from 10 to 20 

eV. The experimentally measured transition probabilities 

were used to test the validity of theoretical models of 

collisional energy transfer. 



CHAPTER IV 

+ H
3 
VIBRATIONAL FREQUENCIES FROM ION IMPACT SPECTROSCOPY 

Introduction 

Previous experiments mentioned in the preceding 

chapter generally involved attempts to secure cross sec-

tions, impact parameters, and transition probabilities for 

collision phenomena of molecules whose spectroscopic param-

eters are well known. Examination of equation 14 reveals 

an intriguing possibility: Can inelastic energy loss 

(E e -E) be used to determine spectroscopic excitation ener-

gy (LE) and thence vibration frequency? H+
3 
 has been ob- 

served in mass spectrometers for many years (81) and the 

mechanism of its formation by H 42 + H 2  reactions is well un- 

.+ derstood (82). Optical measurements of the E
3 spectroscopic 

constants have proved difficult, however. 

Experimental 

For reactants of known mass and velocity at a given 

laboratory scattering angle, the only unknown in equation 14 

is LE; hence, experimental measurement of the inelastic 

energy loss in the collision 

+ H+
3 
 + Ne 	H

3 
 + Ne 

57 

(16) 
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allows determination of the internal energy states of H . 
3 .  

E e -E i  was measured with the tandem mass spectrometric ap- 

paratus shown in Figure 21 and exhaustively described by 

Cosby (83). The apparatus directs mass analyzed low energy 

ion beams onto target molecules and scans the energy, mass, 

and angular distribution of charged interaction products. 

3 
+ The reactant H is produced via H 2  + 1-1 2  ion-molecule reac- 

- 
tions in the high pressure ion source. H

3 
so formed has 

been shown to equilibrate with neutral H 2  background gas by 

relatively few collisions (84); hence,
3 
 emerging from the 

ion source is essentially in the ground vibrational state 

under these experimental conditions. 

This h
3 

is then accelerated, mass separated from H+ 

and H 2  by a 60°  Nier mass spectrometer, decelerated to 16 

eV, and focused into the interaction region containing Ne. 

The angular, mass, and velocity distributions of scattered 

H
3 
are then measured with a 127 o electrostatic sector, mass 

filter, and associated counting equipment. The forward- 

scattered ion current consists primarily of elastically scat- 

tered H
3 
with the inelastically scattered ions appearing as 

humps on the low energy side of the elastic peak. The ine-

lastic processes are resolved by numerical subtraction of 

elastically scattered ion intensity from total scattered ion 

intensity and the resulting energy loss spectra for labora-

tory scattering angles 19=0 °  and 10°  are shown in Figure 22. 

Since the inelastically scattered ions reach the de- 
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tector with less kinetic energy than those that are elasti-

cally scattered, translational-to-internal energy transfer 

must occur by collision, and vibrational-rotational excita- 

tion of H
3 

is the only process which can account for the 

inelastic energy loss. The observed energy loss corresponds 

to that expected for vibrational transitions. Peak broaden-

ing suggests simultaneous rotational excitation, but this 

could not be resolved. 

Results and Discussion 

Theoretically calculated fl;-  vibration frequencies 

are listed in Table 2. If these frequencies are used to 

calculate inelastic energy losses by equation 14, a direct 

comparison with experiment can be made. The predicted posi-

tions of the energy loss peaks associated with excitation 

of H 3 
symmetric stretching A' and doubly degenerate bending 

modes E', given by the arrows in Figure 22, have been cal-

culated using Christoffersen's frequencies and a harmonic 

oscillator approximation. The solid lines are obtained by 

summing the individual transition curves, which are the 

dotted and dashed lines. 

Specific excitations appear as rather broad peaks 

due to thermal movement of Ne target gas and the energy 

spread of the incident H+
3  beam, since energy resolution must 

be experimentally sacrificed for sufficient beam intensity. 

Experimental energy loss spectra presented as the open cir- 
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Table 2. 	Spectroscopic Data for 1-1 1-  
3' 

••■■■••■•■••■••••■■■•■• 

Investigator E(a.u.) and Method R(bohr) 
- o(cm 1 ) 

(stretch) E'(bend) 

Borkman (85) 	 -1.3392 1.639 3294 2850* 
SCCI, 	85 terms 3450* 
Slater orbitals 

Christoffersen (86) 	-1.3326 1.658 3354 2790 
MCCI, 12 terms 3400* 2850* 
Slater orbitals 

Schwartz and 	 -1.3376 1.650 3301 
Schaad (87) 
CI, Gaussian 
orbitals 

Ellison et al. 	(88) 	-1.357 1.76 3450 2330 
Diatomics-in-
molecules 

Pearson et al. 	(89) 	-1.319 1.66 3610 4440 
CI, 	18 terms 
Gaussian orbitals 

Hirschfelder (90) 	-1.293 1.79 1550 1100 
CI, MO 

This Work 3350±200 2800±150 
Experimental 

*Corrected for anharmonicity. 
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cles in Figure 22 for 8=0°  and 10o are to be compared with 

the solid lines calculated from theoretical H
3 

frequencies. 

Attempts to fit the experimental energy loss data 

have ruled out all sets of frequencies other than those of 

Borkman and of Christoffersen, since the other calculations 

predict maxima and minima inconsistent with the experimental 

data. Although they only calculated one frequency, Schwartz 

and Schaad's value is also confirmed by experiment. Higher 

vibrational transitions predominate when H
3 

is scattered to 

larger laboratory angles, giving indication of more violent 

encounters at smaller impact parameters, as shown by compar-

ison of the 0°  and 10°  data. 

The area under an individual curve is proportional 

to the probability of the corresponding transition. 'The 

best fit to the experimental data at 0 °  is obtained with the 

ratio of curve areas corresponding to the approximate rela-

tive transition probabilities - E': P 0.41=0.50, P0_ 2=0.33, 

P0-43 =0.07; At: P0-41=0.06,  P0-42=0.04. 

Conclusions 

Ion impact spectroscopy is a useful technique for 

estimating vibrational frequencies of molecules such as 1-1; 

whose optical measurement is difficult. Experimental energy 

loss spectra for vibrational excitation of 114-
3 
 confirm vibra- 

tional frequencies calculated by Borkman and Christoffersen 

within ± 200 cm -1 . Transitions involving doubly degenerate 
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bendinp, modes are dominant under the conditions of these 

experiments. 



CHAPTER V 

THEORY OF VIBRATIONAL EXCITATION BY COLLISION 

Introduction 

Theoretical calculations on simple collision systems 

such as the archetypal A + BC encounter have received con-

siderable attention in recent years (91-93). Approaches to 

the problem of estimating transition probabilities and in-

teraction potentials have ranged from the exact quantum 

mechanical calculations of Secrest and Johnson (94) to the 

exact classical calculations of Kelley and Wolfsberg (95). 

Semiclassical Treatment 

Between these extremes is the semiclassical treat-

ment developed by Treanor (96) in which the collision is de-

scribed in terms of a quantum mechanical harmonic oscilla-

tor perturbed by a linear forcing potential 

V(r,d) = OcY2  - YF(t), 	 (17) 

where d is the internuclear distance of molecule BC, r is 

the distance from atom A to the center of mass of BC, k is 

the harmonic oscillator force constant of BC, F(t) is the 

force on the oscillator due to collision A+BC, Y=d-d0, and 

do is the BC equilibrium internuclear distance. The time- 

65 
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dependent Schroedinger equation for this system may be writ-

ten as 

2 2 
- 	DAY ?'" - YF t 	= if! ,TFlir 	(18) 

2/A oy 

in which ix. is the reduced mass of BC. 

Kerner (97) has obtained a solution to equation 18 by 

using the transformations 

1J(Y,t) =;'[Y - u(t),t] exp[Yg(t)] 	(19) 

(Y,t) = Y - u(t) 

where g(t) and pq,t) are undetermined functions. g and u 

are chosen such that equation B is separable in the varia-

bles and t with the solution 

*Jm (Y,t) = N mexp(,ktlYil) exp(41 
	t 

(8 + En )dt) 	(20) 

xexpo--,x2 (y - u) 2  Fi ni [t(cy - to], 

where 841.41).2 -i- ku2 , Nm is a normalization factor (c4/7J2 nnt), 

m2=cak)", Hm  is the mth Hermite polynomial, and Em=-(m+i)hco 

is the energy of the mth vibrational state of the harmonic 

oscillator. This solution may be interpreted as describing 

an oscillating wave packet whose center moves under the 
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equations of motion of the classical forced oscillator 

+ ku = F(t). 	 (21) 

Following the procedure of Treanor (96), the wave function 

for the forced oscillator in the vibrational state m, 

Yr(Y,t), may be expanded in terms of the complete set of 

normalized harmonic oscillator wave functions 

_ Xn (Y,t) = Nnexp(042 /2 )H n (cxY)exp(-iE nt/h) 	(22) 

such that 

Ori-1 (y,t) = 2bmn(t)xll mt). 	 (23) 

Hence 

bmn = 	/ 11/fmdt, 	 (24) 

where the course of the collision occurs in the interval 

t=-0o, r=00.- t=oo , r=00. Using equations 20 and 22, 

Treanor has integrated equation 24 to obtain 

bmn = (-1)
m(m!nt) zexp( -2 

lE
o 
 )s 

mn eo 
 (m+n)/2 
	

(25) 



ft 
expEi(m-n)(Wt+C) t ) -*( 	&dt -/-1- 11-220 

_co 

where 

o
mn 	1-77-)Tit (m-nt 

(-1)40- .1  

j=0 

et  = tan-1 ((/cou), 	 (27) 

z is the lesser of m and n, cAD=2-ro) is the angular frequency 

of the oscillator and 

E 0 (t) = (kAa2  + iku
2
)/fic0 • 
	 (28) 

It can be seen that Eo is simply the energy a classical os-

cillator would absorb if acted on by the forcing potential 

divided by flu), and will be written 

kiEc  
E 	• o 	-flu) (29) 

If the oscillator is in state m at t=-co, the prob-

ability of finding it in state n at time t is the square of 

the magnitude of the expansion coefficient bmn, 

68 

(26) 
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Pmn = bmn 1 2 	ml n! e -EoEo( m+n) S mn' 
	 (30) 

For the particular case in which the oscillator is original-

ly in its lowest vibrational level (m=0), 

-Eo n 
Po,n 	

(1)e 	E ' (3 1) 

Shin (98) has also derived equation 17 with a time-

independent Schroedinger equation using Green's functions. 

The problem, then, revolves around choice of a suit-

able interaction potential to give F(t), and thence the 

transition probabilities. The above mentioned studies as-

sume the model of a diatomic molecule interacting with an 

atom which is approaching along the molecular line of oscil-

lation, i.e. linear encounters with zero impact parameter. 

Considering the obviously primitive nature of such models, 

what success they have enjoyed in predicting experimental 

results (80,83) may be fortuitous. 

Oriented Nonlinear Encounters 

A more physically realistic model is one which in-

cludes consideration of impact parameter b, defined as the 

distance separating asymptotes to the trajectories of the 

colliding partners, and the rotational orientation of the 

diatomic molecule. H. K. Shin (99) has formulated a proce- 
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dure for evaluating, the vibrational energy transfer co  with 

such a model in order to show how non-zero impact parameters 

and oriented encounters affect the collision process. 

The collision model for the oriented nonlinear en-

counter of. AB+C is shown in Figure 23. The Lennard-Jones 

potential used to describe the interaction in terms of the 

coordinates defined in Figure 23 is 

12 m  6 
u( r ,r ) = 2D 	(f-- ) 	- (== ) 	; r i  i 

i=1 

where 

2 r 1,2 = r
2 
T 21)(d+x)rS 2,1cod)C+ (d+x)

2S 2 ,1 ; 2 

S 1,2=mBc/(mB+mc ); D,cr are the L-J potential parameters; d 

is the equilibrium bond distance of BC; and x is the vibra-

tional amplitude. Neglecting terms in (d+x)/r of third or 

higher order (i.e. r>> d/2) leads to an overall interaction 

energy 

12 	6 
U(r,x,%) = 4D[(f.-) 	- 	] 	 (34) 

r_ 	12 	6 1  

	

+ 24DL( 9i..;) 	- 	](S2-3 1 )(P)coa 

12 	 3 	6 1 	2 d 	2  

	

+ 4D[(42cos 2X-3)q.-- ) 	- (12cos 2X-7) 	j(S
2 

 1,32)(""TI) 

( 32 ) 

(33) 
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Figure 23. Collision Model for Oriented Nonlinear Encounter of BC+A. 
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The force acting on the molecule in the collision is calcu-

lated from equation 21 by establishing the dependence of r 

on time from the equation of motion 

t = (a/2) ,1  dr  
2 	 7 

Eo - ()  Eo 	 - u(r,0,),) 

(3 5) 

where /a is the reduced mass of the collision system, E 0  is 

the initial relative kinetic energy, r is the largest root 

of the radical in the denominator, and u(r,O,Y,) is obtained 

from equation 21 by choosing a particular molecular orien-

tation X. 

From the time-dependent driving force 

r , 13 	7. 
F[r(t)] = 	( g)(s 2 -3 1 )c°826 n---) 	- 4(1") 	(36) 

14 	 8 + 8(Dd/2)(S 21+4) (42 cos 2X-3)( 9i) 	- ( 12cos 27e-2)(r) 

an approximate analytic solution for E 0  may be found 

2 	1 2  E0  = (24uhoo)[(6d7cp-w/7)(S + S)(cos X,  - -).] 	(37) 

, 	2 
X[1 - (  ,÷cos I, - P:  )( 	1 	14DY 

14cos X -1 	r(8/7))/
6/7) + (d

criuu;
) 
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X( '' 

- s, 	 0  T6/7 	2 
2 	72- )( --- 	 - i ,(1 -477T) exp(-26o7), 1 	2 	cos 

S i + S 2 cos -1/14 

where 

(Wall.4)(tA-7213)')  

0-  1-T2) / 413,12 	1, 1'4) 2 
)(e- )][1 - a = -T  

7(7 	 kv, 	[i - 1 .k 	1 , 

0 

- / 
Tr _ 	,(24.Dpo 112 	 „_ 

n 7/12) 	 F,51 /12  ) 2 ( 	7 )-2 
1-(1/12) 2 ) 	, 777-- 	- 

1 
 72( 17(7 ./120

2 
 (f- ) 57 

	

o 	 o Fi 

2 

+ 
5 	12 nµ 	 b -  
44 	' 	) 1 	11, 12 	2 	1/12 1/6 5/12 Q 	E0  

Pi = 1 	6(52-s2 )(Aocosx+ (42cos 2X-3)(S 21+q)(4-.)
2
, and 

2 
P2  = 1 + 3(s 2  -s )(47.)cosX,4 - (12cos 2X - i)(4.+4).) . r  

Thus the `Min oriented nonlinear encounter method 

enables one to calculate; for a given incident energy F o , 

reduced impact parameter b , and molecular orientation *)(4 

the energy transferred by collision E o . This E0  is then 

used in equation 31 to calculate the probability that a dia-

tomic molecule in its ground vibrational level will be ex-

cited to a final level n on collision with a target atom. 

(38) 
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Since molecules in ion-impact experiments will be randomly 

oriented, U(r,%) and P 0,n  are calculated for many "X., to give 

probabilities of excitation averaged over all molecular ori-

entations. 



CHAPTER VI 

CO+ VIBRATIONAL AND ROTATIONAL EXCITATION IN LOW ENERGY 

COLLISIONS WITH kr 

Introduction  

In order to test the applicability of the Shin model 

to real molecules, excitation of CO +  on collision with Ar 

was studied at incident energies between 1.56 and 24.50 eV 

and laboratory scattering angles between 0 and 20 degrees. 

Apparatus 

The ion impact mass spectrometer (Figure 24) used to 

measure the CO+ energy loss spectra was designed by George 

Turner and consists essentially of two 127 °  electrostatic 

sectors, an ion source, a collision chamber, a quadrupole 

mass filter, a channel electron multiplier, focusing and 

defining slits, and associated electronics. 

Description 

Ions are generated. by gas phase electron impact ioni-

zation in a source (not shown) similar to that described by 

Cosby (83) and are removed from the source by a drawout po-

tential, accelerated through a split-plate focusing slit, 

then decelerated into the primary ion energy defining sector 

(sector I). The cylindrical plates of this sector are fine 

mesh wire screens, to reduce space charge caused by out-of- 
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Figure 24. Schematic Diagram of Ion Impact Spectrometer 
Used to Measure Energy Loss Spectra of CO  In-
elastically Scattered from Ar. 
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focus ions and provide non-sputtering surfaces. Space 

charge is further reduced by applying a voltage attractive 

to the ions on the two outer plates paralleling the setter. 

Ion transmission by the sector is improved with a repulsive 

positive voltage on the vertical focus plates. 

Ions exiting sector I are accelerated and focused 

through another series of slits into the collision chamber, 

comprised of a stainless steel cylinder on which the entire 

primary ion generating train is mounted. The entire scat-

tered ion detection system may be rotated about the colli-

sion chamber from -15 °  to +90°  with respect to the incident 

ion beam. Neutral target atoms enter the collision chamber 

through a sintered glass capillary array which effectively 

removes two translational degrees of freedom from the target 

atoms while aiming them into a well defined collision region 

of about 1/8" diameter. 

After collision, the scattered ion acceptance angle 

is defined by the two entrance slits of sector II, where 

energy analysis of the scattered beam occurs. Sector II 

plates are solid, and vertical focusing similar to that of 

sector I is provided. Ions exit sector II and are focused 

into the mass filter through a vertical-horizontal split 

plate assembly. Mass analysis of the scattered ion beam is 

provided by an Ultek EAI QUAD 150 mass filter. A channel 

electron multiplier (100) detects the energy-angle-mass 

analyzed ions. Pulses from the channeltron are amplified, 
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shaped, and displayed by an (MEC 400 series instrument 

package. 

Voltages to all the ion optics are furnished by 

BATFAK and are stable to less than a millivolt per hour. 

The entire apparatus is mounted on an optical bench 

inside a stainless steel cylindrical vacuum chamber pumped 

to 10-7  torr background by a six inch oil diffusion pump. 

A glass system with 24 liter ballast and needle 

valve flow rate regulation provides gas for both primary 

and target beams. 

The kinetic energy of charged particles passing 

through parallel cylindrical electrostatic plates is given 

by LV.E[21n(r2/r 1 )], where AV is the difference in potential 

between inner and outer sector plates, E is the kinetic 

energy of ions passed by the sector, and r 1  and r2  are radii 

of the inner and outer plates respectively (101). The 

quantity 21n(r2/r 1 ) is the sector constant and may be ex-

perimentally determined from the slope of a AV vs. E plot. 

For sector I the calculated and experimental constants are 

0.8366 and 0.824, while for sector II they are 0.6544 and 

0.645. 

Energy resolution, E/AE, of an electrostatic sector 

is determined by its aperture width (0.010 inch entrance 

and exit slits on both sectors) and mean radius. AE is the 

energy spread of the beam passed by the sector FWHM. For 

sectors I and II, the resolution is calculated to be 221. and 
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231, corresponding to FWHM of 0.045 eV and 0.044 eV respec-

tively, for a 10 eV ion beam. Experimentally, a CO +  beam 

at this energy, passed by sector I and measured by sector 

II, has a FWHM of 0.05 eV. 

Angular resolution of the apparatus is defined by 

the two 0.010 inch slits separated by 0.360 inch at the 

entrance of sector II, and is 1.5°  FWHM. 

Thus, the parameters sufficient for plotting an 

energy loss spectrum are evaluated as follows: 

a. Primary ion intensity: Read directly from an 

ORTEC 430 scaler in counts/second with target gas off, 

b. Scattered ion intensity: Head directly from the 

scaler in counts/second with target gas on, 

c. Laboratory scattering angle: Head directly (83) 

in degrees, 

d. Ion mass: Selected by quadrupole mass filter, 

e. Gas pressure: Measured with CVC GPH-1004 dis-

charge vacuum gauge, 

f. Incident ion kinetic energy: Derived from the 

potential difference between the source and the collision 

chamber, and 

g. Scattered ion kinetic energy: Determined from 

the AV of sector II and its sector constant. 

Method 

Energy loss spectra for low energy CO +  + Ar collisions 
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are presented in Figures 25-32. In these figures, 9 is the 

laboratory scattering angle, the energy given is that of 

incident CO+ , and the arrows are the expected energy loss 

for vibrational excitation from v=0 to v=1,2,3,'" calcu-

lated from equation 14. 

Data points (dots) in these figures were obtained by 

first recording the total scattered ion beam intensity, 

which is the sum of elastically plus inelastically scattered 

ions and, therefore, broadened on the low energy side. The 

maximum intensity of the total scattered beam corresponds 

to the centroid of elastically scattered CO + , and was found 

to occur at the energy predicted by the relation 

M2so  
L e _ 	2cos2  9 - 1 + 22 + 2cose (m2 -M2 sin2 9) 	(39) 

(M+m) 2 M2 

obtained from equation 14 with M=28 and m=40. 

The intensity of inelastically scattered ions as a 

function of E e  -E 	the energy displacement from the elastic 

centroid, was then obtained by subtraction of elastic in-

tensity (symmetric about elastic centroid) from total scat-

tered ion intensity. Since the elastic peak is quite narrow 

(less than the vibrational spacing of CO P ), inelastic scat-

tering with energy loss corresponding to vibrational exci-

tation of incident COP  may be unambiguously resolved. 
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Relative differential cross sections are obtained 

from scattered ion intensities by use of the equation 

T(9) = kli s/i0g(G) 	 (40) 

in which i s and i o are intensities of the scattered and 

incident beam, g(9) is the fraction of the scattering volume 

subtended by the detector at the laboratorj scatterin angle 

9, and k' includes pressure dependence and a small correc-

tion term to account for the energy dependence of sector 

transmissivity. 

Discussion of Results 

General 

A cursory examination of the energy loss spectra 

reveals several intuitively gratifying trends. First, at a 

given 9, higher incident energies appear to correlate with 

larger energy loss. Second, at a given energy, larger 

scattering angles correlate with larger energy loss. Third, 

relative cross section decreases as 9 increases from 0 to 

20 degrees. None of these observations are surprising, of 

course, since one would expect more energetic encounters to 

lead to greater energy loss, larger scattering angles to re-

sult from the more energetic encounters, and the likelihood 

of scattering to large angles to be smaller than that for 

small. 
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Comparison of Experiment with Shin's Theory 

The CO+ + Ar system furnishes a convenient test for 

the validity of Jhin's model. Lennard-Jones parameters, 

D=1.612x10-14 erg andT=3.504 R, were calculated using the 
combining rules for the Ar-Ar and CO-CO systems (104). 

6pectroscopic parameters for CO +  are (73): (.0=2214.24 cm -1 , 

ex e=15.16 cm -1 , and d=1.1150 R. 
The ion beam used in this work was generated bj 60 v 

electron bombardment and before collision is primarily in 

the v=0 vibrational level. The apparatus used does not have 

the resolution to distinguish between different transitions 

with the same AV, i.e. v=2-43, v=3-.4, etc., will show up 

as v=0-41. Using Shin's method as outlined in the previous 

chapter, 1) 6n  (averaged over all )0 was calculated and plot- , 

ted as a function of E o for n=1,2,3,4,5 and various b* 

(b=bkr, the reduced impact parameter). 

A careful comparison of the observed experimental 

relative cross sections ((11) ) for v=0-1,2,3,4,5 with the 

calculated P 0,n  for n=1,2,3,4,5 provided identification of 

the b which best describes the interaction at a given E
o 

and @ of experiment. Table 3 lists the b so obtained, 

with U(rd0 calculated from the above parameters. 

The stars in Figures 25-32 represent relative cross 

sections calculated from the relation (105) 
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Table 3. 	b* Characteristic of Given Interaction.* 

8 = 0 6°  10°  

o (eV) 	= 

24.5 1.10 1.05 

21.5 1.05 1.00 0.95 

18.5 1.05 0.95 0.90 

15.5 1.00 0.925 0.825 

13.5 0.95 0.85 0.75 

11.5 0.825 0.75 0.65 

9.5 0.75 0.70 0.65 

7.5 0.75 0.70 

5.5 0.65 0.30 

*Error in b* due to uncertainty in fitting the experimental 
data is ±0.05. 
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I 	P b*/sin0 (db*/d95) I 1 	1 1 	1 	1 

12 	P2b:/sin02  (db /d0) 2  
(41) 

(in which 91 is the center of mass scattering angle) normal-

ized to the 8=0 0 , Eo=15.50 eV curve, and are seen to be in 

reasonably good agreement with experimental relative dif-

ferential cross sections for 9- 0 °  and 9=60 . 

Limitations of Shin'. Them 

Comparison of theory and experiment at 8=10 0 , on the 

other hand, is disconcerting in two respects. First, the 

numerical value of the stars has been multiplied by one-

fourth in order to place them on the graph. Second, and 

worse, above 15.50 eV, theory predicts v=0-1 to be the most 

likely transition, whereas multiquantum transitions are ex-

perimentally observed to predominate at higher energies. 

Indeed, this 10° , 15.50 eV spectrum is where Shin's theory 

breaks down, as applied to the present work, because it is 

at this energy and angle that multiquantum transitions are 

observed to have a higher cross section than that for 

v=0-1; whereas Shin's theory, as a consequence of averaging 

P over all 9C, always predicts, for all E o  and all b# , P0,1 

to have the greatest value. 

Oriented nonlinear encounters may have a preferred 

orientation for exciting a given series of transitions, as 

shown in Figure 33, where P0,n (n=1,2,3,4,5) are plotted as 
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functions of molecular orientation for several b . E o is 

21.50 eV and the dashed vertical line indicates preferred 

molecular orientations which would give probabilities in 

agreement with observed cross sections at 10 °  and 21.50 eV. 

Thus, for example, Ce colliding with Ar at 21.50 eV, 

b =0.85 and -X.37o , would have a transition probability 

greatest for v=0-43 and least for v=0-41. 

The incident CO+  is, however, randomly oriented prior 

to collision; hence, P must be averaged over all 	These 

-kaveraged probabilities are shown as the horizontal bars on 

Figure 33, and 13 0,1>P0,2>P0,4>P0, 5  in all cases. 

There are several shortcomings of the Shin theory, 

which probably account for its poor fit to high angle ex-

perimental results. Classical calculations (106) have in-

dicated that Xis not necessarily constant during a colli-

sion, as assumed by Shin. Also, the potential does not 

 include an r 4 polarization term. While inclusion of r 4 

terms would significantly alter the shape of the potential 

in the region of the minimum, their effect is less pronounced 

in the strongly repulsive regions of the curve which are 

typical of most of the repulsive scattering interactions 

studied here. 

Total Inelastic Cross Section 

A series of careful angular scans were executed at 

several CO+ incident energies to measure total inelastic in- 

tensity from CO+  + Ar collisions as a function of scattering 
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angle; from which total inelastic cross sections as a func-

tion of 8, normalized at 0 ° , were obtained (Figure 34). 

The curves in Figure 34 are qualitatively similar to elastic 

differential cross section curves for similar systems (107), 

and out to 10 °  are fit reasonably well by equation 40. 

Comparison  with Amdur's Potential 

Jordan et al. (108) have used high energy scattering 

of neutral particles to obtain 6_1 empirical potential of 

interaction for the CO-Ar system given by 

V(r) - —5615- 	 (42) 
r " 

for 2.09<r<2.68. \s shown in Figure 35, shin's U(r,%) lies 

at a considerably higher energy in this region. U(rX may, 

of course, be fitted to V(r) by proper choice of Lennard-

Jones parameters, and this has been done at r=2.43 R with 
two different sets of D and 0, to investigate the effect on 

b of such a "fitted Shin potential." 

Results are shown in Table 4, where the b* is on each 

line result in similar predicted probabilities of vibrational 

excitation on collision. 

Pure Rotational Excitation 

The energy loss spectra of Figures 25-32 are strik-

ingly indistinct in terms of resolving vibrational struc-

ture, considering the very narrow energy spread of incident 
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Table 4. b* from "Fitted" Shin's U(r).* 

Curve A Curve B Curve C 

b*=0.50 b*=0.70 b*=0.70 

0.55 0.75 0.75 

0.60 0.80 0.80 

0.65 0.85 0.85 

0.70 0.90 0.90 

0.75 0.95 0.95 

0.80 1.00 1.00 

0.85 1.05 1.05 

0.90 1.05 1.10 

0.95 1.10 1.15 

1.00 1.15 1.20 

1.05 1.20 1.25 

1.10 1.25 1.30 

*See figure 35. Error in b* due to fitting experimental 
data is ±0.05. 
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CO+ and the removal of most out-of-plane kinetic energy com-

ponents from target Ar. This "band" structure clearly indi-

cates simultaneous rotational-vibrational excitation to be 

occurring on collision. 

A closer look at the energy loss spectrum below the 

v=0-1 transition (Figure 36) reveals structure correspond-

ing to pure rotational transitions of CO -4-  on collision with 

Ar. This iJ the first, reported observation of pure rota-

tional transitions induced by collision performed by an ion 

beam experiment. 

The solid curve, centered on the Ee-Ei zero of ener-

gy, represents a typical primary CO  kinetic energy distri-

bution. The rotational population of CO +  at 473°  K, the 

temperature of the ion source, is sketched in the upper part 

of Figure 36, with the most highly populated level (J=9) 

directly above E e -E i.O. Error bars in Figure 36 give an in-

dication of difficulties arising from subtraction of a large 

elastic intensity from a large total scattered ion intensity 

to get a small inelastic intensity. This uncertainty is 

only a problem for very small energy loss, as the elastic 

peak is quite narrow. 

Since most (-51%) of the incident CO+  is in rota-

tional levels J=5-13 and most (-61%) of the pure rotational 

excitation on collision produces CO in J=25-31, the approx-

imate average change in rotational state of CO +  by collision 

with Ar at 5.5 eV and 0°  is J--1119. Table 5 lists the ap- 
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Distribution. The Points are Experimental Inelastic Energy Loss Data 
with the Bars through Several Points Giving Typical Error Limits through-
out the Energy Range. The Top Portion of this Figure Gives the Incident 
CO+ Rotational Distribution.) 
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Table 5. Approximate Average Rotational Excitation in 
CO}  + Ar Collisions. (Incident CO+ Assumed 
to be in J=9 Rotational Energy Level; Error 
in 4J is Approximately ±10.) 

e=o°  e=6°  

E0 (eV) = LIJ= 8J= 

24.50 19 19 

21.50 19 20 

18.50 16 20 

15.50 16 18 

13.50 20 19 

11.50 18 20 

9.50 15 19 

7.50 18 20 

5.50 18 18 

4.00 18 

3.9 8  14 

3.10 7 18 

2.25 7 

1.56 7 
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proximate average change in rotational quantum number for 

pure rotational excitation induced by collision. At 0=0 °  a 

general trend of greater excitation with increasing incident 

energy is observed, qualitatively similar to that noted for 

vibrational excitation. Also, scattering to e=6 °  appears 

to involve greater rotational excitation than to e=0 °  for a 

given incident CO+  kinetic energy. 

Conclusions 

An oriented nonlinear encounter model for vibrational 

excitation of CO+  on collision with. Ar adequately describes 

experimental energy loss spectra at small laboratory scat-

tering angles, while multiquantum transitions at large an-

gles contradict such a model. The impact parameters charac-

teristic of the collisions decrease with increasing angle 

and increase with increasing energy. Pure rotational exci-

tation with a large change in rotational quantum number is 

observed at small scattering angles. 
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CHAPTER VII 

CONCLUSIONS 

Collision-induced dissociations of 2000 eV diatomic 

molecule ions were found to result in product ion velocity 

distributions consistent with a mechanism that involves 

Franck-Condon type transitions between electronic states in 

the excitation of the reactant species. Unimolecular de-

composition of triatomic ions was found to product CO +  and 

N0+ with considerable internal excitation. 

Low energy collisions of H
3 
with Me result in vibra-

tional excitation, and the inelastic kinetic energy losses 

furnish an estimate of the vibrational frequencies of H+ 3 
Inelastic low energy collisions of CO+ with Ar yield 

energy loss spectra which confirm predictions of an oriented 

nonlinear encounter model for vibrational excitation by col-

lision at small scattering angles, while multiquantum vi-

brational excitation observed at larger angles contradicts 

such a model. Simultaneous rotational excitation of CO +  is 

observed in the energy loss spectra, with the relative im-

portance of rotational transitions increasing at smaller 

scattering angles. 
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