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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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BSDE with quadratic growth and unbounded terminal

value

Philippe Briand Ying Hu

IRMAR, Université Rennes 1, 35 042 RENNES Cedex, FRANCE

philippe.briand@univ-rennes1.fr ying.hu@univ-rennes1.fr

Abstract. In this paper, we study the existence of solution to BSDE with
quadratic growth and unbounded terminal value. We apply a localization
procedure together with a priori bounds. As a byproduct, we apply the same
method to extend a result on BSDEs with integrable terminal condition.

1. Introduction.

In this paper we are concerned with real valued backward stochastic differential equations
– BSDEs for short in the remaining –

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs · dBs, 0 ≤ t ≤ T

where (Bt)t≥0 is a standard brownian motion. Such equations have been extensively
studied since the first paper of E. Pardoux and S. Peng [PP90]. The full list of contributions
is too long to give and we will only quote results in our framework.

Our setting is mainly the following : the generator, namely the function f , is of quadratic
growth in the variable z and the terminal condition, the random variable ξ, will not be
bounded. BSDEs with quadratic growth have been first studied by Magdalena Kobylanski
in her PhD (see [Kob97, Kob00]) and then by Jean-Pierre Lepeltier and Jaime San Martin
in [LSM98]. We should point out that BSDEs with quadratic growth in the variable z
have found applications in control and finance, see, e.g., Bismut [Bis78], El Karoui, Rouge
[EKR00], Hu, Imkeller, Muller [HIM05], . . .

All the results on BSDEs with quadratic growth require that the terminal condition ξ is a
bounded random variable. The boundedness of the terminal condition appears, from the
point of view of the applications, to be restrictive and, moreover, from a theoretical point
of view, is not necessary to obtain a solution. Indeed, let us consider the following well
known equation :

Yt = ξ +
1

2

∫ T

t
|Zs|

2 ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T ;
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the change of variables Pt = eYt , Qt = eYtZt, leads to the equation

Pt = eξ −

∫ T

t
Qs dBs

which has a solution as soon as eξ is integrable.

On this simple example we see that the existence of exponential moments of the terminal
condition is sufficient to construct a solution to our BSDE. Our paper will be focused
on the theoretical study of these BSDEs but with unbounded terminal value with only
exponential moments.

To fill the gap between boundedness and existence of exponential moments, we will use
an approach based upon a localization procedure together with a priori bounds. Let us
quickly explain how it works on a simple example. Let f : R × Rd −→ R be a continuous
function and ξ be a nonnegative terminal condition such that

|f(y, z)| ≤
1

2
|z|2, E

[

eξ
]

<∞,

and let us try to construct a solution to the BSDE

Yt = ξ +

∫ T

t
f(Ys, Zs) ds −

∫ T

t
Zs · dBs, 0 ≤ t ≤ T.

As mentioned before, BSDEs with quadratic growth in the variable z can be solved when
the terminal solution is bounded. That is why we introduce (Y n, Zn) as the minimal
solution to the BSDE

Y n
t = ξ ∧ n+

∫ T

t
f(Y n

s , Z
n
s ) ds −

∫ T

t
Zn

s · dBs,

and of course we want to pass to the limit when n→ ∞ in this equation.

The process Y n is known to be bounded but the estimate depends on ‖ξ ∧ n‖∞ and thus
is far from being useful when ξ is not bounded. The first step of our approach consists in
finding an estimation for Y n independent of n. In this example, we can use the explicit
formula mentioned before to show that

0 ≤ − ln E

(

e−(ξ∧n) | Ft

)

≤ Y n
t ≤ ln E

(

eξ∧n | Ft

)

≤ ln E

(

eξ | Ft

)

.

With these inequalities in hands, we introduce the stopping time

τk = inf
{

t ∈ [0, T ] : ln E

(

eξ | Ft

)

≥ k
}

∧ T

and instead of working on the time interval [0, T ] we will restrict ourselves to [0, τk] by
considering the BSDE

Y n
t∧τk

= Y n
τk

+

∫ T∧τk

t∧τk

f (Y n
s , Z

n
s ) ds−

∫ T∧τk

t∧τk

Zn
s · dBs, 0 ≤ t ≤ T.

By construction, we have supn supt

∥

∥Y n
t∧τk

∥

∥

∞
≤ k. This last property together with the

fact that the sequence (Y n)n≥1 is nondecreasing allows us, with the help of a result of
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Kobylanski, to pass to the limit when n→ ∞, k being fixed and then to send k to infinity
to get a solution.

The rest of the paper is organized as follows. Next section is devoted to the notations we
use during this text. In Section 3, we claim our main result that we prove in Section 4.
Section 5 is devoted to some additional results on BSDEs with quadratic growth in z.
Finally, in the last section, we apply the same approach to study BSDEs with terminal
value in L1.

2. Notations.

For the remaining of the paper, let us fix a nonnegative real number T > 0.

First of all, B = {Bt}t≥0 is a standard brownian motion with values in Rd defined on
some complete probability space (Ω,F ,P). {Ft}t≥0 is the augmented natural filtration of
B which satisfies the usual conditions. In this paper, we will always use this filtration. P
denotes the sigma-field of predictable subsets of [0, T ] × Ω.

As mentioned in the introduction, a BSDE is an equation of the following type

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds −

∫ T

t
Zs · dBs, 0 ≤ t ≤ T. (1)

f is called the generator and ξ the terminal condition.

Let us recall that a generator is a random function f : [0, T ] × Ω × R × Rd −→ R which
is measurable with respect to P ×B(R)×B(Rd) and a terminal condition is simply a real
FT –measurable random variable.

By a solution to the BSDE (1) we mean a pair (Y,Z) = {(Yt, Zt)}t∈[0,T ] of predictable

processes with values in R × Rd such that P–a.s., t 7−→ Yt is continuous, t 7−→ Zt belongs
to L2(0, T ), t 7−→ f(t, Yt, Zt) belongs to L1(0, T ) and P–a.s.

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds −

∫ T

t
Zs · dBs, 0 ≤ t ≤ T.

We will use the notation BSDE(ξ, f) to say that we consider the BSDE whose generator is
f and whose terminal condition is ξ;

(

Y f (ξ), Zf (ξ)
)

means a solution to the BSDE(ξ, f).
(

Y f (ξ), Zf (ξ)
)

is said to be minimal if P-a.s., for each t ∈ [0, T ], Y f
t (ξ) ≤ Y g

t (ζ) whenever
P–a.s. ξ ≤ ζ and f(t, y, z) ≤ g(t, y, z) for all (t, y, z).

(

Y f (ξ), Zf (ξ)
)

is said to be minimal
in some space B if it belongs to this space and the previous property holds true as soon
as (Y g(ζ), Zg(ζ)) ∈ B.

For any real p > 0, Sp denotes the set of real-valued, adapted and càdlàg processes
{Yt}t∈[0,T ] such that

‖Y ‖Sp := E

[

supt∈[0,T ] |Yt|
p
]1∧1/p

< +∞.

If p ≥ 1, ‖ · ‖Sp is a norm on Sp and if p ∈ (0, 1), (X,X ′) 7−→
∥

∥X − X ′
∥

∥

Sp defines a
distance on Sp. Under this metric, Sp is complete.

3



Mp denotes the set of (equivalent classes of) predictable processes {Zt}t∈[0,T ] with values

in Rd such that

‖Z‖Mp := E

[

(

∫ T

0
|Zs|

2 ds
)p/2

]1∧1/p

< +∞.

For p ≥ 1, Mp(Rn) is a Banach space endowed with this norm and for p ∈ (0, 1), Mp is a
complete metric space with the resulting distance.

We set S = ∪p>1S
p, M = ∪p>1M

p and denote by S∞ the set of predictable bounded
processes. Finally, let us recall that a continuous process {Yt}t∈[0,T ] belongs to the class
(D) if the family {Yτ : τ stopping time bounded by T} is uniformly integrable.

3. Quadratic BSDEs.

In this section, we consider BSDE(ξ, f) when the generator f has a linear growth in y and
a quadratic growth in z. We denote (H1) the assumption: there exist α ≥ 0, β ≥ 0 and
γ > 0 such that P–a.s.

∀t ∈ [0, T ], (y, z) 7−→ f(t, y, z) is continuous,

∀(t, y, z) ∈ [0, T ] × R × Rd, |f(t, y, z)| ≤ α+ β|y| +
γ

2
|z|2.

(H1)

Concerning the terminal condition ξ, we will assume that

E

[

eγeβT |ξ|
]

< +∞. (H2)

We will use also a stronger assumption on the integrability of ξ namely

∃λ > γeβT , E

[

eλ |ξ|
]

< +∞. (H3)

It is clear that we can assume without loss of generality that α ≥ β/γ.

As we explained in the introduction, our method relies heavily on a priori estimate. To
obtain such estimations, we will use the change of variable Pt = eγYt , Qt = γeγYtZt; if
(Y,Z) is a solution to the BSDE(ξ, f), (P,Q) solves the BSDE

Pt = eγξ +

∫ T

t
F (s, Ps, Qs) ds −

∫ T

t
Qs · dBs, 0 ≤ t ≤ T,

with the function F defined by

F (s, p, q) = 1p>0

(

γp f

(

s,
ln p

γ
,
q

γp

)

−
1

2

|q|2

p

)

. (2)

In view of the growth of the generator f , we have F (s, p, q) ≤ 1p>0 p(αγ + β| ln p|). For
notational convenience, we denote by H the function

∀p ∈ R, H(p) = p (αγ + β ln p)1[1,+∞)(p) + γα1(−∞,1)(p).
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It is straightforward to check that, since α ≥ β/γ, H is convex and locally Lipschitz
continuous and that, for any real p > 0, p (αγ + β| ln p|) ≤ H(p). Thus we deduce the
inequality

∀s ∈ [0, T ], ∀p ∈ R, ∀q ∈ Rd, F (s, p, q) ≤ H(p). (3)

To get an upper bound for Yt, the idea is to compare more or less Pt with φt(ξ) where,
for any real z, {φt(z)}0≤t≤T stands for the solution to the differential equation

φt = eγz +

∫ T

t
H(φs) ds, 0 ≤ t ≤ T. (4)

Using the convexity of H, we will able to prove that

Pt ≤ E (φt(ξ) | Ft) , Yt ≤
1

γ
ln E (φt(ξ) | Ft) .

Before proving this result rigorously, let us recall that the differential equation (4) can be
solved easily. Indeed, we have, for any z ≥ 0,

φt(z) = exp

(

γα
eβ(T−t) − 1

β

)

exp
(

zγeβ(T−t)
)

, if β > 0,

and φt(z) = eγα(T−t)eγz if β = 0.

Let us consider the case where z < 0. If eγz + Tγα ≤ 1 then the solution is

φt = eγz + γα(T − t)

and otherwise there exists 0 < S < T such that eγz + γα(T − S) = 1 and

φt = [eγz + γα(T − t)] 1(S,T ](t) + exp

(

γα
eβ(S−t) − 1

β

)

1[0,S](t).

It is plain to check that t 7→ φt(z) is decreasing and that z 7→ φt(z) is increasing and
continuous.

Lemma 1. Let the assumption (H1) hold and let ξ be a bounded FT –measurable random
variable.

If (Y,Z) is a solution to the BSDE(ξ, f) in S∞ × M2 then

−
1

γ
ln E (φt(−ξ) | Ft) ≤ Yt ≤

1

γ
ln E (φt(ξ) | Ft) .

Proof. Let us set Φt = E (φt(ξ) | Ft). We have

Φt = E

(

eγξ +

∫ T

t
H(φs(ξ)) ds

∣

∣

∣
Ft

)

= E

(

eγξ +

∫ T

t
E (H(φs(ξ)) | Fs) ds

∣

∣

∣
Ft

)

.

Thus writing the bounded brownian martingale

E

(

eγξ +

∫ T

0
E (H(φs(ξ)) | Fs) ds

∣

∣

∣
Ft

)

= E

[

eγξ +

∫ T

0
E (H(φs(ξ)) | Fs) ds

]

+

∫ t

0
Ψs·dBs

5



(Φ,Ψ) solves the BSDE

Φt = eγξ +

∫ T

t
E (H(φs(ξ)) | Fs) ds−

∫ T

t
Ψs · dBs.

On the other hand, if (Y,Z) ∈ S∞ × M2 is a solution of (1), setting as before Pt = eγYt ,
Qt = γeγYtZt, we have

Pt = eγξ +

∫ T

t
F (s, Ps, Qs) ds −

∫ T

t
Qs · dBs,

with F defined by (2).

It follows that

Φt − Pt =

∫ T

t
(H(Φs) −H(Ps)) ds+

∫ T

t
Rs ds−

∫ T

t
(Ψs −Qs) · dBs

where, in view of the inequality (3) and since H is convex,

Rs = E (H(φs(ξ)) | Fs) −H (E (φs(ξ) | Fs)) +H(Ps) − F (s, Ps, Qs)

is a nonnegative process.

H is only locally Lipschitz but since Φ and P are bounded we can apply the comparison
theorem to get Pt ≤ Φt and Yt ≤

1
γ ln Φt.

Finally, since the function −f(t,−y,−z) still satisfies the assumption (H1), we get also
the inequality −Yt ≤

1
γ ln E (φt(−ξ) | Ft).

We are now in position to prove that under the assumptions described before the BSDE (1)
has at least a solution.

Theorem 2. Let the assumptions (H1) and (H2) hold. Then the BSDE (1) has at least
a solution (Y,Z) such that :

−
1

γ
ln E (φt(−ξ) | Ft) ≤ Yt ≤

1

γ
ln E (φt(ξ) | Ft) . (5)

If moreover, (H3) holds, then Z belongs to M2.

Proof of the last part of Theorem 2. If (Y,Z) is a solution to the BSDE (1) such that the
inequalities (5) hold, then

|Yt| ≤
1

γ
ln E (φ0(|ξ|) | Ft)

and, under the assumption (H3), we deduce that, for some p > 1,

E

[

supt∈[0,T ] e
pγ|Yt|

]

< +∞.

For n ≥ 1, let τn be the following stopping time

τn = inf

{

t ≥ 0 :

∫ t

0
e2γ|Ys||Zs|

2 ds ≥ n

}

∧ T,
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and let us consider the function from R+ into itself defined by

u(x) =
1

γ2
(eγx − 1 − γx) .

x 7−→ u(|x|) is C2 and we have from Itô’s formula, with the notation sgn(x) = −1x≤0+1x>0,

u(|Y0|) = u(|Yt∧τn |) +

∫ t∧τn

0

(

u′(|Ys|) sgn(Ys)f(s, Ys, Zs) −
1

2
u′′(|Ys|)|Zs|

2

)

ds

−

∫ t∧τn

0
u′(|Ys|) sgn(Ys)Zs · dBs.

It follows from (H1) since u′(x) ≥ 0 for x ≥ 0 that

u(|Y0|) ≤ u(|Yt∧τn |) +

∫ t∧τn

0
u′(|Ys|) (α+ β|Ys|) ds−

∫ t∧τn

0
u′(|Ys|) sgn(Ys)Zs · dBs

−
1

2

∫ t∧τn

0

(

u′′(|Ys|) − γ u′(|Ys|)
)

|Zs|
2ds.

Moreover, we have (u′′ − γu′)(x) = 1 for x ≥ 0 and, taking expectation of the previous
inequality, we get

1

2
E

[
∫ T∧τn

0
|Zs|

2 ds

]

≤ E

[

1

γ2
sup

t∈[0,T ]
eγ|Yt| +

1

γ

∫ T

0
eγ|Ys| (α+ β|Ys|) ds

]

Fatou’s lemma together with the fact that eγ|Yt| ∈ Sp gives the result.

4. Proof of Theorem 2.

Let us first construct a solution to the BSDE (1) in the case where ξ is nonnegative.

For each n ∈ N∗, we set ξn = ξ ∧n. Then it is known from [Kob00, Theorem 2.3] that the
BSDE

Y n
t = ξn +

∫ T

t
f (s, Y n

s , Z
n
s ) ds−

∫ T

t
Zn

s · dBs, 0 ≤ t ≤ T

has a minimal solution (Y n, Zn) in S∞ × M2. Lemma 1 implies the inequalities

−
1

γ
ln E (φt (−ξn) | Ft) ≤ Y n

t ≤
1

γ
ln E (φt (ξn) | Ft) .

Since we consider only minimal solutions, we have,

∀t ∈ [0, T ], Y n
t ≤ Y n+1

t .

We define Y = supn≥1 Y
n.

Since 0 ≤ φt(ξ
n) ≤ φ0(|ξ|) and 0 ≤ φt(−ξ

n) ≤ φ0(|ξ|), we deduce from the dominated
convergence theorem, noting that the random variable φ0(|ξ|) is integrable by (H2), that

−
1

γ
ln E (φt (−ξ) | Ft) ≤ Yt ≤

1

γ
ln E (φt (ξ) | Ft) .
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In particular, we have limt→T Yt = ξ = YT . Indeed, for each S < T ,

lim sup
t→T

Yt ≤ lim sup
t→T

1

γ
ln E (φt (ξ) | Ft) ≤ lim

t→T

1

γ
ln E (φS (ξ) | Ft) =

1

γ
lnφS(ξ),

and limS→T
1
γ lnφS(ξ) = ξ. We can do the same for lim inf.

Let us introduce the following stopping time :

τk = inf

{

t ∈ [0, T ] :
1

γ
ln E (φ0 (|ξ|) | Ft) ≥ k

}

∧ T.

Then (Y n
k , Z

n
k ) := (Y n

t∧τk
, Zn

t 1t≤τk
) satisfies the following BSDE

Y n
k = ξn

k +

∫ T

t
1s≤τk

f (s, Y n
k (s), Zn

k (s)) ds−

∫ T

t
Zn

k (s) · dBs,

where of course ξn
k = Y n

k (T ) = Y n
τk

.

We are going to pass to the limit when n tends to +∞ for k fixed in this last equation.

The key point is that Y n
k is increasing in n and remains bounded by k. At this stage, let

us mention a mere generalization of Proposition 2.4 in [Kob00].

Lemma 3 ([Kob00]). Let (ξn)n≥1 be a sequence of FT –measurable bounded random
variables and (fn)n≥1 be a sequence of generators which are continuous with respect to
(y, z).

We assume that (ξn)n≥1 converges P–a.s. to ξ, that (fn)n≥1 converges locally uniformly
in (y, z) to the generator f , and also that

1. supn≥1 ‖ξn‖∞ < +∞ ;

2. supn≥1 |fn(t, y, z)| satisfies the inequality in (H1).

If for each n ≥ 1, the BSDE(ξn, fn) has a solution in S∞ × M2, such that
(

Y fn(ξn)
)

n≥1

is nondecreasing (respectively nonincreasing), then P–a.s.
(

Y fn

t (ξn)
)

n≥1
converges uni-

formly on [0, T ] to Yt = supn≥1 Y
fn

t (ξn) (respectively Yt = infn≥1 Y
fn

t (ξn)),
(

Zfn(ξn)
)

n≥1

converges to some Z in M2 and (Y,Z) is a solution to BSDE(ξ, f) in S∞ × M2.

Proof. It follows from Lemma 1 that there exists r > 0 such that, P–a.s.

∀n ≥ 1, ∀t ∈ [0, T ],
∣

∣

∣
Y fn

t (ξn)
∣

∣

∣
≤ r.

Let us consider the continuous function ρ(x) = xr/max(r, |x|). Since ρ(x) = x for |x| ≤ r,
(

Y fn(ξn), Zfn(ξn)
)

solves the BSDE(ξn, gn) where gn(t, y, z) = fn(t, ρ(y), z). Obviously,
we have, for each n ≥ 1,

|gn(t, y, z)| ≤ α+ β r +
γ

2
|z|2,

and thus we can apply the result of Kobylanski.
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Setting Yk(t) = supn Y
n
k (t), it follows from the previous lemma that there exists a process

Zk ∈ M2 such that limn Z
n
k = Zk in M2 and (Yk, Zk) solves the BSDE

Yk(t) = ξk +

∫ T

t
1s≤τk

f (s, Yk(s), Zk(s)) ds−

∫ T

t
Zk(s) · dBs, (6)

where ξk = supn Y
n
τk

.

But τk ≤ τk+1, and thus we get, coming back to the definition of Yk, Zk and Y ,

Yt∧τk
= Yk+1(t ∧ τk) = Yk(t), Zk+1(t)1t≤τk

= Zk(t).

As τk → T and the Yk’s are continuous processes we deduce in particular that Y is
continuous on [0, T ). On the other hand, as mentioned before limt→T Yt = ξ and YT is
equal to ξ by construction. Thus Y is a continuous process on the closed interval [0, T ].

Then we define Z on (0, T ) by setting :

Zt = Zk(t), if t ∈ (0, τk).

From (6), (Y,Z) satisfies:

Yt∧τk
= Yτk

+

∫ τk

t∧τk

f(s, Ys, Zs)ds −

∫ τk

t∧τk

Zs · dBs. (7)

Finally, we have

P(

∫ T

0
|Zs|

2 ds = ∞) = P

(
∫ T

0
|Zs|

2 ds = ∞, τk = T

)

+ P

(
∫ T

0
|Zs|

2 ds = ∞, τk < T

)

≤ P

(
∫ τk

0
|Zk(s)|

2 ds = ∞

)

+ P(τk < T ),

and we deduce that, P–a.s.
∫ T

0
|Zs|

2 ds <∞.

By sending k to infinity in (7), we deduce that (Y,Z) is a solution of (1).

Let us explain quickly how to extend this construction to the general case. Let us fix
n ∈ N∗ and p ∈ N∗ and set ξn,p = ξ+ ∧ n − ξ− ∧ p. Let us consider, (Y n,p, Zn,p) the
minimal bounded solution to the BSDE

Y n,p
t = ξn,p +

∫ T

t
f (s, Y n,p

s , Zn,p
s ) ds−

∫ T

t
Zn,p

s · dBs, 0 ≤ t ≤ T

which satisfies

−
1

γ
ln E (φt (−ξn,p) | Ft) ≤ Y n,p

t ≤
1

γ
ln E (φt (ξn,p) | Ft) .

We have,
∀t ∈ [0, T ], Y n,p+1

t ≤ Y n,p
t ≤ Y n+1,p

t ,

9



and we define Y p = supn≥1 Y
n,p so that Y p+1

t ≤ Y p
t and Yt = infp≥1 Y

p
t .

By the dominated convergence theorem, we have

−
1

γ
ln E (φt (−ξ) | Ft) ≤ Yt ≤

1

γ
ln E (φt (ξ) | Ft) ,

and in particular, we have limt→T Yt = ξ = YT .

(Y n,p
t∧τk

, Zn,p
t 1t≤τk

) solves the BSDE

Y n,p
t∧τk

= Y n,p
τk

+

∫ T

t
1s≤τk

f (s, Y n,p
s , Zn,p

s ) ds−

∫ T

t
Zn,p

s 1s≤τk
· dBs.

But, once again Y n,p
t∧τk

is increasing in n and decreasing in p and remains bounded by k.
Arguing as before, setting Yk(t) = infp supn Y

n,p
t∧τk

, there exists a process Zk such that
limp limn Z

n,p(s)1s≤τk
= Zk(s) and (Yk, Zk) still solves the BSDE (6). The rest of the

proof is unchanged.

5. Additional results on quadratic BSDEs.

5.1. Minimal solution. In this section, we give some complements on BSDEs with
quadratic growth in z.

Proposition 4. Let (H1) holds and assume moreover that there exists an integer r ≥ 0
such that P–a.s.

f(t, y, z) ≥ −r (1 + |y| + |z|) .

Let us assume also that (H3) holds for ξ+ and that, for some p > 1, ξ− ∈ Lp.

Then BSDE(ξ, f) has a minimal solution in S.

Proof. For each n ≥ r, let us consider the function

fn(t, y, z) = inf
{

f(t, p, q) + n|p− y| + n|q − z| : (p, q) ∈ Q1+d
}

.

Then fn is well defined and it is globally Lipschitz continuous with constant n. More-
over (fn)n≥r is increasing and converges pointwise to f . Dini’s theorem implies that the
convergence is also uniform on compact sets. We have also, for all n ≥ r,

−r(1 + |y| + |z|) ≤ fn(t, y, z) ≤ f(t, y, z)

Let (Y n, Zn) be the unique solution in Sp × Mp to BSDE(ξ, fn). It follows from the
classical comparison theorem that

Y r
t ≤ Y n

t ≤ Y n+1
t .

Let us prove that Y n
t ≤ 1

γ ln E (φt(ξ) | Ft). To do this let us recall that, since fn is Lipschitz,

Y n
t = limm→+∞ Y fn

t (ξm) where ξm = ξ 1|ξ|≤m. Moreover E (φt(ξm) | Ft) −→ E (φt(ξ) | Ft)
a.s. since supm≥1 |φt(ξm)| ≤ φ0(ξ

+) which is integrable. Thus we have only to prove
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that Y fn

t (ξm) ≤ 1
γ ln E (φt(ξm) | Ft). We keep the notations of the beginning of Section 4.

(Φ,Ψ) is solution to the BSDE

Φt = eγξm +

∫ T

t
H(Φs) ds+

∫ T

t
Γs ds−

∫ T

t
Ψs · dBs,

where Γs = E (H(φs(ξ)) | Fs) −H(Φs) is a nonnegative process since H is convex.

It follows by setting Ut = 1
γ ln Φt, Vt = Ψt

γΦt
that (U, V ) solves the BSDE

Ut = ξm +

∫ T

t
g(s, Us, Vs) ds −

∫ T

t
Vs · dBs

where we have set g(s, u, v) = (α+βu)1u≥0 +αeγ|u|1u<0 + γ
2 |v|

2 +Cs with Cs = 1
γ e

−γUsΓs.
Since the process C is still nonnegative, we have the inequalities

fn(t, u, v) ≤ f(t, u, v) ≤ g(t, u, v)

taking into account the fact that αγ ≥ β.

Since fn is Lipschitz continuous and
(

Y fn(ξm) − U
)+

belongs to S, we can apply the

extended comparison theorem (see Proposition 5) to get, for each m ≥ 1, Y fn

t (ξm) ≤ Ut

and thus the inequality we want to obtain.

We set Y = supn≥r Y
n and, for k ≥ 1,

τk = inf

{

t ∈ [0, T ] : max

(

1

γ
ln E (φt(ξ) | Ft) ,−Y

r
t

)

≥ k

}

∧ T.

Arguing as in the proof of Theorem 2, we construct a process Z such that (Y,Z) solves
BSDE(ξ, f).

Let us show that this solution is minimal in S. Let (Y ′, Z ′) be a solution to the BSDE(ξ′, f ′)
where ξ ≤ ξ′ and f ≤ f ′. It is enough to check that Y n ≤ Y ′ to prove that Y ≤ Y ′. But
this is a direct consequence of Proposition 5.

To be complete, let us claim and prove the extended comparison theorem that we used in
the proof of the previous result.

Proposition 5. Let (Y,Z) be a solution to BSDE(ξ, f) and (Y ′, Z ′) be a solution to
BSDE(ξ′, f ′). We assume that ξ ≤ ξ′ and that f satisfies, for some constants µ and λ,
P–a.s.

(y − y′) ·
(

f(t, y, z) − f(t, y′, z)
)

≤ µ|y − y′|2;
∣

∣f(t, y, z) − f(t, y, z′)
∣

∣ ≤ λ|z − z′|;

If (Y − Y ′)+ belongs to S, then P–a.s. Yt ≤ Y ′
t .

Proof. Let us fix n ∈ N∗ and denote τn the stopping time

τn = inf

{

t ∈ [0, T ] :

∫ t

0

(

|Zs|
2 +

∣

∣Z ′
s

∣

∣

2
)

ds ≥ n

}

∧ T.

11



Tanaka’s formula leads to the equation, setting Ut = Yt − Y ′
t , Vt = Zt − Z ′

t,

eµ(t∧τn)U+
t∧τn

≤eµτnU+
τn

−

∫ τn

t∧τn

eµs1Us>0Vs · dBs

+

∫ τn

t∧τn

eµs
{

1Us>0

(

f(s, Ys, Zs) − f ′
(

s, Y ′
s , Z

′
s

))

− µU+
s

}

ds.

(8)

First of all, we write

f(s, Ys, Zs) − f ′
(

s, Y ′
s , Z

′
s

)

= f(s, Ys, Zs) − f
(

s, Y ′
s , Zs

)

+ f
(

s, Y ′
s , Zs

)

− f ′
(

s, Y ′
s , Z

′
s

)

and we deduce, using the monotonicity of f in y that

1Us>0

(

f(s, Ys, Zs) − f ′
(

s, Y ′
s , Z

′
s

))

− µU+
s ≤ 1Us>0

(

f
(

s, Y ′
s , Zs

)

− f ′
(

s, Y ′
s , Z

′
s

))

.

But f (s, Y ′
s , Z

′
s) − f ′ (s, Y ′

s , Z
′
s) is nonpositive so that

1Us>0

(

f(s, Ys, Zs) − f ′
(

s, Y ′
s , Z

′
s

))

− µU+
s ≤ 1Us>0

(

f
(

s, Y ′
s , Zs

)

− f
(

s, Y ′
s , Z

′
s

))

.

Finally we set

βs =
(f (s, Y ′

s , Zs) − f (s, Y ′
s , Z

′
s))Vs

|Vs|2

which is a process bounded by λ.

Coming back to (8), we obtain the following inequality

eµ(t∧τn)U+
t∧τn

≤ eµτnU+
τn

+

∫ τn

t∧τn

eµs1Us>0βs · Vs ds−

∫ τn

t∧τn

eµs1Us>0Vs · dBs

By Girsanov’s theorem, we deduce that

E∗
[

eµ(t∧τn)U+
t∧τn

]

≤ E∗
[

eµτnU+
τn

]

,

where P∗ is the probability measure on (Ω,FT ) whose density with respect to P is

DT = exp

{
∫ T

0
βs · dBs −

1

2

∫ T

0
|βs|

2ds

}

;

it is worth noting that, since β is a bounded process, DT has moments of all order.

Since we know that U+ belongs to S, we can easily send n to infinity to get

E∗
[

eµtU+
t

]

≤ 0.

Thus Ut ≤ 0 P∗–a.s. and since P∗ is equivalent to P on (Ω,FT ), Yt ≤ Y ′
t P–a.s..
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5.2. One extension. In this paragraph, we explain how we can extend our results to a
more general setting allowing a superlinear growth of the generator in the variable y as in
the work [LSM98].

Let h : R+ −→ R+ be a nondecreasing convex C1 function with h(0) > 0 such that

∫ +∞

0

du

h(u)
= +∞.

We denote (H1’) the assumption: there exists γ > 0 such that P–a.s.

∀t ∈ [0, T ], (y, z) 7−→ f(t, y, z) is continuous,

∀(t, y, z) ∈ [0, T ] × R × Rd, |f(t, y, z)| ≤ h(|y|) +
γ

2
|z|2,

sup
y>0

e−γyh(y) < +∞.

(H1’)

Let us point out that the previous setting, namely the linear growth condition, corresponds
to h(y) = α+βy but we can also have a superlinear growth in y; for instance, we can take
h(y) = α (y + e) ln(y + e).

Before giving our integrability condition for the terminal value ξ, let us explain what is
the first modification we have to do. We consider only the case where h is not constant.

According to the third point of (H1’), let us denote by c = supp∈(0,1) γph
(

− ln p
γ

)

and let

us define

p0 = inf

{

p ≥ 1 : γph

(

ln p

γ

)

≥ c

}

.

We define finally

H(p) = γph

(

ln p

γ

)

1p≥p0
+ c1p<p0

.

Then H is convex and we have the following result.

Lemma 6. Let z ∈ R. The differential equation

φt = eγz +

∫ T

t
H(φs) ds, 0 ≤ t ≤ T,

has a unique continuous solution {φt(z)}0≤t≤T which is decreasing. Moreover, for each
t ∈ [0, T ], the map z 7−→ φt(z) is increasing and continuous.

Proof. φt is solution if and only if ut = lnφt/γ is a solution of the differential equation

u′t = −θ(ut), 0 ≤ t ≤ T, uT = z ≥ 0,

where θ(x) = h(x)1
x≥

ln p0

γ

+ c
γ e

−γx1
x<

lnp0

γ

. Let us consider the function Θ defined by

Θ(x) =

∫ x

−∞

1

θ(u)
du, x ∈ R.

13



Since θ is positive, Θ is an increasing bijection from R onto (0,∞) of class C1. It’s plain to
check that the unique solution to the previous differential equation is Θ−1(T − t+ Θ(z))
since for any solution we have Θ(ut)

′ = −1. Thus

φt = eγΘ−1(T−t+Θ(z))

and the proof of the lemma is complete.

We are now in position to give our second assumption.

φ0(|ξ|) is integrable. (H2’)

Exactly as in the linear case, we can prove the following existence result.

Theorem 7. Let assumptions (H1’) and (H2’) hold. Then the BSDE (1) has at least a
solution (Y,Z) such that :

−
1

γ
ln E (φt(ξ) | Ft) ≤ Yt ≤

1

γ
ln E (φt(ξ) | Ft) .

6. BSDEs in L1.

In this section, we use the method developed before to construct solutions to BSDEs when
the data are only integrable. BSDEs with integrable data have been studied in [BDH+03]
and we show that, in the one dimensional case, we can extend the result quoted before.

Let us recall the framework of [BDH+03]: assumption (A) holds true for the random
function f if there exist constants µ ∈ R, λ ≥ 0, δ ≥ 0 and α ∈ (0, 1) such that

(y − y′) ·
(

f(t, y, z) − f(t, y′, z)
)

≤ µ|y − y′|2;
∣

∣f(t, y, z) − f(t, y, z′)
∣

∣ ≤ λ|z − z′|;

y −→ f(t, y, z) is continuous;

for each r > 0, ψr(t) := sup
|y|≤r

|f(t, y, 0) − f(t, 0, 0)| ∈ L1((0, T ) × Ω);

|f(t, y, z) − f(t, y, 0)| ≤ δ (gt + |y| + |z|)α ,

where moreover the progressively measurable processes (|f(t, 0, 0)|) and (gt) and the ter-
minal condition ξ satisfy

E

[

|ξ| +

∫ T

0
(|f(s, 0, 0)| + gs) ds

]

< +∞.

Let us recall the following result.

Lemma 8 ([BDH+03]). Under the assumption (A), BSDE (1) has a unique solution
(Y,Z) such that Y is of class (D) and Z ∈ Mβ for some β > α. Moreover (Y,Z) ∈ Sβ×Mβ

for each β ∈ (0, 1).
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We should point out that the result holds true in all dimension not only in the real case.

The last assumption on the generator f does not seem to be very natural; it would be
better to have a condition of the type

|f(t, y, z)| ≤ c (1 + |y| + |z|α)

and the remaining of this section is devoted to the construction of a solution under this
assumption. But before, we state a comparison result for BSDEs under assumption (A).

Lemma 9. Let (A) holds. Then, if ξ ≤ ξ′ belong to L1, Y f
t (ξ) ≤ Y f

t (ξ′).

Proof. Let us fix n ∈ N∗ and denote τn the stopping time

τn = inf

{

t ∈ [0, T ] :

∫ t

0

(

|Zs|
2 +

∣

∣Z ′
s

∣

∣

2
)

ds ≥ n

}

∧ T.

Tanaka’s formula leads to the equation, setting Ut = Yt − Y ′
t , Vt = Zt − Z ′

t,

eµ(t∧τn)U+
t∧τn

≤eµτnU+
τn

−

∫ τn

t∧τn

eµs1Us>0Vs · dBs

+

∫ τn

t∧τn

eµs
{

1Us>0

(

f(s, Ys, Zs) − f
(

s, Y ′
s , Z

′
s

))

− µU+
s

}

ds.

We deduce from the previous inequality, using the monotonicity of f in y that

1Us>0

(

f(s, Ys, Zs) − f
(

s, Y ′
s , Z

′
s

))

− µU+
s ≤ 1Us>0

(

f
(

s, Y ′
s , Zs

)

− f
(

s, Y ′
s , Z

′
s

))

and taking into account the last condition on f , the right hand side of the previous
inequality is bounded from above by

Xs := 2δ
(

gs +
∣

∣Y ′
s

∣

∣+ |Zs| +
∣

∣Z ′
s

∣

∣

)α
.

It follows that

eµ(t∧τn)U+
t∧τn

≤ eµτnU+
τn

+

∫ T

0
eµsXs ds−

∫ τn

t∧τn

eµs1Us>0Vs · dBs

and thus that

eµ(t∧τn)U+
t∧τn

≤ E

(

eµτnU+
τn

+

∫ T

0
eµsXs ds

∣

∣

∣
Ft

)

.

Since Y and Y ′ belongs to the class (D), we can send n to ∞ in the previous inequality
(see [BDH+03] for details) to get

eµtU+
t ≤ E

(
∫ T

0
eµsXs ds

∣

∣

∣
Ft

)

.

As a byproduct, we deduce that U+ belongs to Sp as soon as αp < 1. Thus we can choose
p > 1 such that αp < 1.

Since U+ belongs to S, we can apply Proposition 5 to conclude the proof.
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From now on we assume that f is continuous and satisfies, for some constants c ≥ 0 and
α ∈ (0, 1),

|f(t, y, z)| ≤ c (1 + |y| + |z|α) . (H4)

Moreover we will suppose that ξ ∈ L1. This last assumption is denoted by (H5).

Theorem 10. Let (H4) and (H5) hold. Then the BSDE (1) has a solution (Y,Z) such
that Y belongs to the class (D). Moreover (Y,Z) belongs to Sβ × Mβ for all 0 < β < 1.

Proof. To prove this result, we use the same approach as in the case of quadratic genera-
tors. So let us fix n ∈ N∗ and p ∈ N∗ and set ξn,p = ξ+ ∧n− ξ−∧ p. Since f is assumed to
be a continuous map, we can consider, according to [LSM97],

(

Y f (ξn,p), Zf (ξn,p)
)

as the
minimal solution to the BSDE

Yt = ξn,p +

∫ T

t
f(s, Ys, Zs) ds −

∫ T

t
Zs · dBs, 0 ≤ t ≤ T.

Since we are dealing with minimal solutions, we have

Y f
t (ξn,p+1) ≤ Y f

t (ξn,p) ≤ Y f
t (ξn+1,p),

and we set Yt = infp≥1 supn≥1 Y
f
t (ξn,p).

In order to apply the method described before, we have to find an upper bound independent
of (n, p) for

∣

∣Y f (ξn,p)
∣

∣. For this let us observe that

|f(t, y, z)| ≤ g(y, z) := 2c (1 + |y| + |z|α ∧ |z|) .

This function g is globally Lipschitz continuous so that we have from the classical com-
parison theorem

Y f (ξn,p) ≤ Y g(ξn,p)

and since we have the same inequality for −f(t,−y,−z),

−Y f (ξn,p) ≤ Y g(−ξn,p).

But the function g satisfies also the assumption (A) and thus form the comparison theorem
in the integrable framework – Lemma 9 –, we deduce that

∣

∣

∣
Y f

t (ξn,p)
∣

∣

∣
≤ Y g

t (|ξ|).

Let us define Yt = infp≥1 supn≥1 Y
f
t (ξn,p) and for each k ≥ 1,

τk = inf {t ∈ [0, T ] : Y g
t (|ξ|) ≥ k} ∧ T.

Exactly as in the proof of Theorem 2, we construct a process Z such that (Y,Z) solves
the BSDE (1).

To conclude the proof, let us observe that since |Yt| ≤ Y g
t (|ξ|), Y belongs to the class (D)

and to Sβ for each β ∈ (0, 1). It follows from [BDH+03, Lemma 3.1] that Z belongs to
Mβ for β ∈ (0, 1).
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l’intégrale stochastique, Séminaire de Probabilités, XII (Univ. Strasbourg,
Strasbourg, 1976/1977), Lecture Notes in Math., vol. 649, Springer, Berlin,
1978, pp. 180–264.

[EKR00] N. El Karoui and R. Rouge, Pricing via utility maximization and entropy,
Math. Finance 10 (2000), no. 2, 259–276, INFORMS Applied Probability Con-
ference (Ulm, 1999).

[HIM05] Y. Hu, P. Imkeller, and M. Müller, Utility maximization in incomplete markets,
Ann. Appl. Probab. (2005), To appear.

[Kob97] M. Kobylanski, Résultats d’existence et d’unicité pour des équations
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