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SUMMARY 

The Auger Effect is the emission of discretely energetic elec-

trons, rather than photons, in an atomic transition. In a solid state 

system, however, the Auger electrons produced by the analogous process 

are observed to have a continuous, rather than discrete, energy spec-

trum resulting from the replacement of atomic energy levels by continu-

ous bands. By use of first-order time-dependent perturbation theory 

the detailed structure of this Auger spectrum can be related to an ap-

propriately defined function of the participating band by means of a 

convolution integral. Practical methods for solving the convolution 

problem for the band function are investigated and applied to the ex-

perimentally observed Auger spectra in selected semiconductors (sili-

con, germanium, and graphite). In order to apply the theory consist-

ently it is necessary to subtract out the background present in the 

data. The background is a consequence of secondary electrons excited 

by single electron transitions and subsequently scattered into the Au-

ger energy region by multiple inelastic collisions. Further, the Auger 

electrons are also subject to such inelastic collisions resulting in a 

distortion of the true Auger distribution. Consequently, to take care 

of the background problem adequately, one is forced to consider the 

problem of the diffusion of electrons through the solid semiconductors. 

This is successfully approached by use of the Boltzmann transport equa-

tion, including the collision integral, and solutions are obtained by a 

Green's function technique. 

viii 
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Such a formal approach to the treatment of electron diffusion 

through a solid is sufficiently general that it is applicable not only 

in the Auger energy region but also throughout the entire secondary 

spectrum. Hence, by combining theoretical calculations with empirical 

observations derived from the data and the literature, all essential 

secondary electron source functions and loss mechanisms are judicious-

ly woven into the formalism and the predicted secondary spectrum is 

compared with the experimental results. 

A knowledge of the previously mentioned band function (called 

the transition density) and of the electron diffusion mechanism leads 

to the following. 

1. Test of theoretical calculations - The transition density 

is relatable to the density of occupied states and the band structure. 

Comparison with other results and predictions are then possible. 

2. Surface influence on electronic structure - Since the 

observed Auger electrons are created within the surface vicinity, sur-

face modifications (such as due to contaminants), which are expected to 

influence the electronic structure at the surface, can be investigated. 

Similar measurements could allow for a better understanding of the Auger 

neutralization phenomena because a transition density analysis, with 

minor modifications in concept, is also applicable to Auger neutraliza-

tion electrons (electrons resulting from the two electron process be-

tween a gas residing on the surface and the bulk). 

3. Predictions of true secondary spectra - The electron diffu-

sion formalism indicates the fundamental importance of plasmon excita-

tion as an energy loss mechanism and it can be used to predict true 
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secondary spectra as a function of such parameters as the band gap, 

work function and primary energy. The formalism can be used to correct 

for the effects of background and inelastic scattering distortion in 

true secondary phenomenon as in the case of the Auger effect. 



CHATTER I 

INTRODUCTION 

Scope and Objective  

The question of the behavior and the interactions of crystal 

electrons has been and is one of singular importance to the study of 

solid state materials. This question, with particular reference to 

surface influences, is explored theoretically and experimentally in 

this dissertation by consideration of electrons ejected from single 

crystal semiconductors as a result of the low energy electron bombard-

ment of the surface. These ejected electrons form a continuous energy 

spectrum most notably characterized by an elastic peak due to elasti-

cally reflected primaries, a characteristic loss region due to inelas-

tically rediffused primaries and a true secondary region comprising 

all electrons with energy less than half the primary energy. The cur-

rent investigation is restricted to the true secondary electron energy 

distributions including characteristic Auger spectra which appear as 

subsidiary maxima in this region. Based on these Auger spectra, a spec-

troscopy similar to photoelectron and soft x-ray spectroscopy is deve-

loped. In close relation to this development a model to explain true 

secondary electron energy distributions is proposed and the resulting 

theoretical distributions are compared with experimental observations 

from selected semiconductors. 

Strictly, the Auger Effect is the emission of discretely ener-

getic electrons, rather than photons, in an atomic transition. In a 

1 
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solid state system, however, the Auger electrons produced by the analo-

gous process are observed to have a continuous, rather than discrete, 

energy spectrum resulting from the replacement of atomic energy levels 

by continuous bands. The characteristic two-electron Auger process 

typically follows the creation of a vacancy in an inner band, usually 

narrow enough to be considered uniquely energetic, in which one elec-

tron of an electron pair originating in a broad, higher lying band 

fills the inner vacancy, the other electron becoming the Auger elec-

tron. It is not surprising, then, that the detailed shape of the re-

sultant Auger spectrum is dependent on the electronic properties of 

the participating broad band. With the aid of an appropriately defined 

function of the band (the transition density) it is possible to write a 

mathematical expression for this dependence. Solutions for the transi-

tion density naturally rely on the availability of accurate Auger data. 

Obtaining such data is both an experimental and theoretical task. The 

number of Auger electrons ejected by the sample is somewhat less than 

one per cent of the total number of secondary electrons. The experimen-

tal problem, then, is to detect a very weak signal buried in a much 

larger signal and obtain highly accurate, detailed distributions. The-

oretically, the background in the data must be accounted for in some 

reasonable manner and any distortion in the true distribution resulting 

from the multiple inelastic scattering of Auger electrons before ejec-

tion must be considered. Consequently, one is forced to regard the 

problem of the diffusion of electrons through the solid semiconductors. 

The solution of such a problem leads in a natural way to a complete the-

ory of true secondary emission -- the ejection of excited crystal elec-

trons as a result of primary bombardment. 
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The objective of the present work is therefore twofold. The 

characteristic Auger Effect observed in specific solid semiconductor 

single crystals (silicon, germanium, and graphite) is considered. 

The associated Auger distributions are used to establish a spectros-

copy based on the previously mentioned band function, the transition 

density. Indications are made as to how the transition density can be 

used to obtain further insight into the electronic structure in the 

surface vicinity of the specified semiconductors and into the depend-

ence of this structure on surface conditions. Secondly, a theory des-

cribing the diffusion of electrons through a solid is given in which 

the crucial dependences are explicitly exhibited. This theory permits 

predictions of true secondary electron spectra, and comparisons are made 

with the results in the semiconductor single crystals studied to test 

the theory and the dependences assumed. 

Historical Survey 

Since the induced emission of secondary electrons by primary 

electron impact was first observed by Austin and Starke' in 1902, physi-

cists have continuously sought to understand the mechanisms of this phe-

nomenon. The initial studies were primarily experimental in nature with 

emphasis on yield measurements, i.e., the number of secondaries emitted 

(without reference to energy) per primary electron. Of notable exception 

was the work of Rudberg2-4 who, beginning in the late twenties, studied 

the energy distribution of electrons emitted by various metals upon pri-

mary electron bombardment. The early theoretical attempts 5-8 were gen-

erally characterized by strongly simplifying assumptions concerning the - 

escape mechanism and by the ignoring of electron multiplication. 



Correspondingly, the results were not entirely satisfactory. This work 

was later refined by Baroody9  in 1950 who, using a classical free elec-

tron approach, drew upon the semiempirical work of Salow 10 to obtain 

good qualitative agreement with observed energy distributions. In the 

few years following Baroody's work theorists were rather active in pur-

suing the problem of the production of secondaries in metals from a 

quantum mechanical point of view. 11-15 However, it was not until the 

work of Streitwolf16 in 1959 that a truly satisfactory quantum mechani-

cal treatment of secondary electron excitation was available. During 

this decade the treatment of the escape mechanism also made substantial 

progress as a result of the investigations of Wolff. 17 
Wolff recog-

nized that the exponential decay law used heretofore was not sufficient 

and, calling upon the neutron absorption work of Marshak,
18 

proposed use 

of the Boltzmann transport equation to describe the electron cascade. 

However, in an attempt to treat the secondary emission problem, Wolff 

inadequately treated the sources of secondaries and their escape across 

the surface boundary. This was partially rectified by Stolz 19 
who, tak-

ing advantage of Streitwolf's efforts, treated the special case of low 

energy secondaries generated by primary electrons incident on metal sur-

faces. Guba
20 

and Grinchak
21 suggested how to generalize the approach 

somewhat by inclusion of higher energy secondaries, but their work suf-

fered from serious errors in analysis. 

During the years following Baroody's effort the experimental work 

continued as well. In 1953, J. J. Lander
22 

observed the presence of 

subsidiary maxima in the energy distribution curves which he ascribed to 

characteristic Auger processes. About this same time, Hagstrum began his 
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work on the Auger spectra resulting from the neutralization of an inert 

gas ion incident on a crystal surface.
23-26 Hagstrum observed that 

these spectra were sensitive to surface conditions and crystallographic 

face. However, because of mathematical and experimental complexities, 

it was not until late 1966 27  that he was able to interpret the results 

in terms of the electronic structure of the surface. Meanwhile, primar-

rflybecause of the contribution of Scheibner 28 in making possible a suf-

ficiently flexible low energy electron diffraction (LEED) system, secon-

dary emission studies became more detailed. Initially, investigators 

focused their attention on the characteristic loss portion of the energy 

distribution. However, with the refinement of electronic techniques, 

the more difficult studies of the true secondary region became possible 

with much of the first work being done at the Georgia Institute of 

Technology
29

'
30 from which this investigation was inspired. 

In Chapter II of this dissertation the theory of the Auger Effect 

is discussed. The Auger spectrum is shown to be related to the transi-

tion density through a convolution integral derived from arguments based 

on time-dependent perturbation theory. Various approaches to obtain 

practical solutions for the transition density are discussed. In Chapter 

III the theory of electron diffusion is developed culminating in a gen-

eral expression for true secondary electron energy distributions. The 

Auger process is explicitly included in the treatment, and methods of 

correcting the observed Auger spectrum for the effects of background and 

inelastic scattering are presented. In the following chapter the experi-

mental instrumentation and procedures required to obtain accurate Auger 

and secondary emission data are presented. The results in the cases of 
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silicon, germanium and graphite with accompanying discussions are given 

next. A detailed description of the analysis of Auger data is included. 

In Chapter VI the results are compared with available band structure 

calculations and interpreted in terms of the electronic properties near 

the surface. In the final chapter the work is summarized with recommen-

dations as to the course of future work along these lines. 



CHAPTER II 

THEORY OF THE AUGER EFFECT 

The Auger Effect in a Single Atom 

Before treating the solid state case, it is helpful to consider 

the simpler situation of the Auger Effect in a single atom. The Auger 

Effect is the radiationless reorganization of an ion as it proceeds 

from a highly excited state to a less energetic doubly ionized state. 

The additional electron lost is the Auger electron which leaves the ion 

with a kinetic energy depending on the initial and final states of the 

ion. As an example of the process, imagine an atom of atomic number Z 

which is ionized in the K shell by high energy electron bombardment. 

This highly excited ion may then have the K shell refilled by, say, a 

valence electron giving the excess energy by direct Coulomb interaction 

to a neighboring electron, often of the same shell. The result is an 

ion with Z-2 electrons and an Auger electron of kinetic energy (ignor-

ing recoil) 

E 	 E. E. - 	- E 1 	1 	s  (1 ) 

where E. - E. is the energy difference of the ion before and after the 

K shell is filled, and Es  is the ionization energy of the Auger electron 

from the final state ion. Unlike the solid state case, the energy of 

the ejected Auger electron is seen to be discrete. 

7 
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The standard method for calculating the transition probability, 

first investigated by Wentzel, 31 is to treat the electron-electron in- 
, 

teraction as a perturbation; (more recent detailed calculations have 

included a phenomenological spin-orbit term 32 ' 33 ' 34  with reasonable 

success; however, since this does not carry over to the solid state 

case in an unambiguous manner, the spin-orbit term is not considered 

here). Thus, in first-order time-dependent perturbation theory, the 

transition probability per unit time is given as 

wa = 21÷ l (f l e%12 1i)1213 
	

(2) 

Note that, as one might expect, the means by which the original ion was 

formed has no influence on the probability of the Auger Effect. Since 

the electron-electron interaction is treated as a perturbation, the 

initial and final states are described by product wavefu.nctions. Con-

sequently, if ua (r1) and va (r2 ) are the initial-state single-particle 

wavefunctions and if ub (rl) is the final bound-state wavefunction and 

vb (r2 ) is the free electron wavefunction of positive energy then 

wa 	21,17 	1(u(r1)vb (r2 ) - ub (r2 )vb (r1)1e2/Iri-r2 11 
	

(3) 

ua (r1)va (r2 ) - ua (r2 )va (r1 ))1 26(Ei  - 	- Es  - Ta) 

where exchange and energy conservation as a result of (1) have been 
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included. The right of equation (3) can be evaluated if assumptions are 

made about the form of the various eigenfunctions. The functions ua , 

ub  and va  are generally taken as hydrogenic in form. The Auger electron 

eigenfunction vb  is found by solving the Schrodinger equation for the 

bounded positive-energy solutions. With the potential taken as 

ZZ 1e2 	2e2  the solutions are well known to be 
 

r 	r 

vb (r) = Y
tm

(e)
'
cp)e 

Tra 
2 	11-(t+Ifici)1  (2kr) te1krF(ia+1,2t+2;-2ikr) 	(4) 

(2t+1): 

2e2m where Y (8,0 are the spherical harmonics, a = -7r--- and F is the con- 

fluent 	

k 

 hypergeometric function. Since the Auger electron is observed at 

distances far from the origin, expression (4) is simplified by investi-

gating its asymptotic behavior. One finds 

e
i(kr - 	 - a log 2kr) 

vb (r) 	Y(e ,cp) 

r large 

e lip 
where Auger energy = E 	2m  and 

= arg r(a. + i + ia ) 

TTE 2ir 
(5) 

By use of (5) and the hydrogenic wavefunction, eq. (3) can be 
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integrated, usually numerically, to obtain an expression for the tran-

sition probability per unit time. Comparison with experiment indicates 

correspondence to the theory within about 30 per cent. 33 For elements 

above atomic number 80 it is often necessary to take into account rela-

tivistic effects to get reasonable results. 34 

Strictly, eq. (2) can be carried over to the solid state system 

in which there is not one but many atoms present. One is no longer 

sure, however, about what to assume for the wavefUnctions. Indeed, the 

choice in the relatively simple cases of the single atom did not give 

impressive results. The situation is further complicated by virtue 

of the fact that atomic energy levels are replaced by allowed bands 

resulting in a continuous Auger spectrum for each permissible process. 

Nevertheless, it is possible to infer considerable information about a 

material by studying its Auger spectra. In the next section, eq. (2) 

is investigated in the solid state case and the detailed structure 

appearing in the Auger distributions is related to physical properties 

of the material. 

The Auger Effect in the Solid State  

As mentioned earlier, the Auger process in the solid state case 

is characterized by a continuous spectrum resulting from the energy 

band nature of solid matter. In the work to be presented, attention is 

restricted to those Auger processes which involve the highest valence 

band (limited by the band gap in semiconductors and the Fermi level in 

metals) and a low lying, very narrow level. Experimentally, such pro-

cesses appear to be the most likely and thereby offer the greatest pos-. 

sibility for investigation. 
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Such a solid state Auger event is schematically illustrated in 

Figure 1. Following the removal of an electron from an inner level by 

primary bombardment a valence band electron (the "down" electron) makes 

a transition to fill the unoccupied state while, in order to conserve 

energy, another valence band electron (the "up" electron) is ejected in-

to the continuum. In this energy level diagram the zero of energy is 

taken at the vacuum level and the energy difference between the two ini-

tial electron states is 2A. The midpoint between the two initial elec- 

tron states is designated C. It is convenient for the later calculations 

to use C as a new energy variable which is zero at the Fermi level and 

increases for more negative energies. In terms of this variable the in-

itial states are defined by energies C - A and C + A as indicated. Note 

that there is a one-to-one correspondence between C and E, the Auger kin-

etic energy. By use of conservation of energy an expression relating C 

and E can be written. Thus where - E2 is the energy of the inner "band 
It 

and cp is the work function 

E = E2 - 2(C + T) . 
	 (6) 

Since E2 and cp are considered constant, E and C are equivalent and 

either can be used in the mathematical development; however, C is the 

more convenient. 

Note that in equation (6) the variable A does not appear. Thus 

it must be that for a particular E (or C), p is arbitrary so long as 

C + A and C - A stay within the allowed band limits. These limitations 

can be formally invoked by the following set of inequalities. 



E 

12 

-E i  

	 VACUUM LEVEL 

FERMI LEVEL 

BAND EDGE 

- E2 	  INNER LEVEL 

Figure 1. Energy Level Diagram of a Typical Auger Process. 



- CgAgC when OgC= 

- (C i-C) g A 'g C l-C when 

The relations follow in a straightforward manner from Fig. 1. It fol-

lows that this arbitrariness of A (within the limits dictated by eqs. 

(7)) implies that to obtain the total number of electrons with energy 

E integration of the transition probability over the variable A is 

necessary. Thus 

F(E) « $ TPA  dA 

where the integration is carried over the limits indicated by eqs. (7). 

TPA 
is the transition probability of the Auger Effect with initial elec-

states at energies C+A and C-A and final electron states at E and - E2 . 

Since it turns out that it is more convenient to work with C as the 

independent variable, define f(C) = F(E). Hence 

f(C) m j TPA (C, A) dA • 	 (8) 

In order to obtain an expression for the transition probability 

for the Auger Effect, the Coulombic interaction between the two elec-

trons involved is considered a perturbation of their normal states. 

The respective solutions of the unperturbed problem are uncoupled and 

-cp 

2 
C l 
2 

Cl 

13 

(7) 
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the system is described consistently by product wavefunctions. Thus 

the process can be visualized as follows: The initial state is char-

acterized by two electrons in the allowed band residing in some state 

with wavefunction 1*i> = U(1, C ± A) U(2, C 6) where the one and two 

label the electrons and the ±, indicate the possible pairwise energy 

states for one and two -- this is because of the indistinguishability 

of which electron is the "up" electron and which is the "down." The 

electrons are then affected by a perturbation Hamiltonian of the form 

e2  and are found in the final state 1* f) = Va (1) Vb(2) where Va (1) r12 
is the wavefunction describing the Auger electron and V b (2) is the wave-

function of the other electron with energy - E 2 . Notice that the final 

state of the process is well characterized with respect to energy if E 2 

 is assumed to be a well defined energy. For such a process the Golden 

Rule of first order time dependent perturbation theory takes the form 

27 	 2 
TPA 	

1 e 1 - 	1(Va (1) Vb (2) 	U(1,C±A) U(2,01A))
i2

p  h 12 
(9) 

where now p is the density of initial (not final) states. 37 This fol-

lows from the assumption that the final states are well characterized. 

On the other hand, the initial states can vary in the allowed band in 

a way subject to the limitations expressed in eqs. (7). Hence if N(C) 

is the density of occupied states in the allowed band then 

p cc N (C + A) N(C - A) 
	

(10 ) 
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Consequently, combining eqs. (8), (9) and (10), the electron energy 

distribution takes the form 

f(C)°C 	2 	I r
12 	

ii)1 I 2N(C 	6) N(C - A) db. 

The Matrix Element  

Attention is now directed toward the matrix element appearing in 

the expression for the transition probability of the Auger process. 

Thus far neither spin nor the Pauli principle have been included explic-

itly except to mention that the Auger electron can arise from either 

the C + A or the C - A level. To do this, symmetric and antisymmetric 

orthonormal space functions are constructed in the usual way for the 

initial and final states. 

u-± 1 	/ 	/ 	\ 	/ = 	[U0-4 +6.) Uk24-6) ± 1414-6) Uk2,c+L)] (12) 

1 
- 	 ,./7 [Va (1) Vb

(2) ± Va (2) V.13 (1)] 

Still proceeding in a standard manner, orthonormal spin wavefunctions 

are selected as follows 

S1  = cy (1) or (2) , 	 (13) 



1 
S = 	[a(1) $(2) + 13(1) a(2)], 2 

S
3 

= $(1) 5(2) , 

S = 	Dy (1) [3(2) - [3(1) 01(2)] , 
4 	rz 

where the first three are symmetric and the last antisymmetric under 

particle exchange. 

Combining the space and spin functions to form a complete wave-

function, it is seen that only four initial state and four final state 

antisymmetric wavefunctions are possible. These are Vs Vs 2' 
Vs

3
, 

V
+

s ' 
•Us

1' 
Us

2'
Us

3' 
us

4. 
Sixteen matrix elements are therefore 

possible but because of orthogonality of the spin portions only four 

remain. Three of these are of the form 

2 
H
a 

= r12 

and one is of the form 

2 
Hb  = (1/

.,_
1—t---lu+) . 

r12 
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For purposes which will soon be obvious, two "elemental" matrix elements 



are now defined. 

2 

	

HAl = (V a  (1) Vb 	r 1  (2) H---1 U(1,5+L) U(2,C-A)) 12 

2 

	

HA2 	(V (1) V (2) P=---1 U(1,c-A) U(2,C+0)) 

	

A2 	a 	b 	r12 

Expressed in terms of these quantities the basic matrix elements 

Ha and Hb  become 

Ha = HA1  - HA2 

Hb =HA1HA2 

Consequently, the square of the matrix element appearing in the transi-

tion probability is 

2 

	

(1,1 e 	11)1 2 = * ‘J (oH  2 4. Hb2 )  

r12 	 a 

2 
= HAl + HA2  - HAl HA2 

17 

(15) 

Now HAl and HA2 are integrals over spatial coordinates and, consequently 
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they will either be equal or one will be greater than the other. Suppose 

then that 

HA2 = mH
Al  (0 g m g 1) 

where m is a function of A only. Then eq. (15) becomes 

2 /1, 1 	11)1 2 _ (1 	m 	m2)H  2
' 	/. -)

o/4 5 	m 	m2 , 
` I r

12 
I 	 Al  (16) 

and only one of eqs. (14) has to be considered. 

Introduction of the Transition Density  

The matrix element HAl is nothing more than an integration over 

spatial dimensions. Imagining the spatial integration to have been per-

formed the expression for the Auger distribution f(C) becomes 

f(C) a j (1 - m + m2) g ,2  (C,A) N(C + A) N(C - A) dA 	(17) 

where g /2  (C,A) is the squared matrix element after integration. 

The proper limits for this integral follow from relations (7). 

Further, if a band function g(C) is introduced such that 

g(C + A) = K,/ 1 - m + m2  e(C,A) N(C + A) 	 (18) 

g(C - A) = K ,‘/ 1 - m + m2 	g i (C,A) N(C - A) 



with K as a constant of proportionality, (17) becomes 

C l  g(C + A) g(C - A)dA; 	gc —2— 

0 

f(C) = 	 (19) 

C l -C 

g(C + 6) g(C - A)d.A; 2 s  C gc, 

The function g(()  thus introduced is termed the transition den-

sity  and is defined on the interval (0,C 1). Equations (19) can be 

written in a more convenient form if the region of definition is extend-

ed to (0,00) where the extended function is identically zero for values 

of C greater than C i . To avoid confusion, this extended transition den-

sity  function shall be denoted g. With this definition eqs. (19) can be 

written simply 

f(C) = j a(C 	A) E(C - A)dA 	 (20) 

This equation is called the Auger transform in this work. Subsequent 

efforts will consider the problem of solving this equation for the tran-

sition density function g(c). The transition density contains the fun-

damental physical parameters of interest as is clearly evident from eq. 

(18). Thus, if the Auger transform can beinverted, an inherently exper-

imental approach is available to determine these important physical 

19 
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quantities. Furthermore, by relating available theoretical band calcu-

lations to the results of this Auger electron spectroscopy, similarities 

can be recognized and new insight into basic solid state interactions is 

possible. Moreover, with adsorption of gases on the surface, the Auger 

spectrum is empirically observed to change for most materials. This is 

associated with the modification of the potentials in the surface vicin-

ity as well as the interaction of the crystal electrons with the adsorbed 

species. Greater understanding of such important mechanisms could be 

attained through use of Auger electron spectroscopy. In this same spirit 

Auger neutralization by band electrons of adsorbed ions by an Auger event 

is possible. Resultant distributions can be analyzed by the same tech-

niques to be described with only some minor modifications in concept. 

Motivated by such considerations, the next section is devoted to methods 

of solving the Auger transform. 

Solutions of the Auger Transform  

The transition density, the physical quantity of interest, is 

related to the Auger spectrum through the Auger transform. Expressed as 

it is in this equation, however, the form of the transition density is 

not transparent. Therefore inversion of the Auger transform is now in-

vestigated. The Auger transform, equation (20) of the previous section, 

is a non-linear integral equation with variable limits (Volterra type). 

Such equations are generally difficult to handle; however, as shall be 

shown, it is possible to invert the Auger transform exactly. As is 

sometimes the case, though, this is not always the most practical way to 

proceed in the applications. Consequently, three methods for evaluating 

the transition density are offered in this section. The first method -- 
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the Unfold technique -- was conceived by H. D. Hagstrum36 and, since it 

is treated extensively in the literature, is considered only briefly. 

The second method solves the equation exactly in terms of Laplace trans-

forms. In the discussion of this approach, the opportunity is taken to 

discuss two possible mathematical representations of the data. For 

these particular choices of representation the formalism transforms the 

problem to a linear system which can be attacked with standard methods. 

Finally, a self-consistent iterative approach similar to the Feynman 

perturbation scheme popular in field theory is offered. With only min-

imal restrictions in applicability, this analysis allows one to obtain 

approximate solutions with a precision dependent on the number of terms 

included. As will become clear, each of the methods has certain advan-

tages as well as disadvantages. The approach selected to obtain an ex-

pression for the transition density therefore depends on the particular 

case at hand and the accuracy desired in the resultant solution. 

Unfold Analysis  

This method is based on approximating the Auger transform with a 

sum rather than integral. The energy axis C is partitioned into incre-

ments of length e and the value of g on this interval is taken as con-

stant. Thus the transition density is given by a histogram which, ex-

pressed mathematically, is 

CO 

g(t) = V g.O. 	 (21) 
a. a_ 

1=1 

where 



1 for (i-1) e < t < ie 

0 otherwise . 

It is desired to determine the gi  steps. The Auger distribution f(c) 

is evaluated at points separated by 2  --- 	 2 starting with C = 	and a 

successive index is given to each subsequent value. Thus 

= f = 
1 	2 glgl 

= f
2 = 2 6 (g1g2 "I" g2g1);  

e = f 
k 	2 LI gigk + 1-i ' 

1=1 

The fk 's are obtained from the empirical evaluation of the Auger data 

and solutions for the transition density steps are obtained by sequen-

tially solving each equation. Thus 
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f( 

f (2 2 

f (k 2 

e 
2 

(22)  

(23) 

(24) 



g2 	g1 
	

e 
1 	f2 	

f2 

2f 1e 
1 
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s/2 

6 	s f - 	gigs-i+1] , s even 

i=-- 1 

g
s 

= 	X 2f1  

s-1 

F 
2 

f 	2 s+1 g.g 	, s odd - L e 	s 	2 g 	2 	 s 
i=2 

The method has the obvious advantage of being very straight-

forward and, if fine enough partitions are chosen, a reasonably faith-

ful approximation is possible. However, because each solution depends 

on all the previous solutions, errors in the data mount up exponential-

ly. Consequently, unless extremely accurate data is available or unless 

a method for adjusting the data is used, serious divergences in the solu-

tions can occur. In general, then, caution must be used in utilizing 

this method. 

Laplace Transform Analysis  

In this approach the Auger transform is shown to be expressible 

as a convolution integral for which the formalism of Laplace transforms 

is directly applicable. To proceed, the Auger transform is taken out 

of its symmetric form by changing variables to y = C + A. This yields 

1 



2C 

f(C) = j a(Y) a( 2C - Y) dY 

Similarly, a change of variables to y = C - 6 gives 

f(s) = a( y) g (2C - Y) dy  
0 

which, when added to the previous result, gives 

2C 

2f(C) = j a(Y) a(2C - Y)dY 

This is precisely the form necessary to apply the tconvolution theorem of 

Laplace transforms 38  which states that if w(t) = j u(y) v(t - y) dy then 

L[w(t)] = L[u(t)] X L[v(t)]. Application of this theorem to equation 

(25) results in 

a(t) = it/ L[2f(t/2)] 	 (26) 

= 2L 1[ F(2s) 
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(25) 

with F(s) = L[f(t)] and t = 2C. Equation (26) constitutes a closed 



2 5 

form expression for the transition density dependent on a knowledge of 

the indicated Laplace transforms of the data. In applying this form-

alism in practice, one must suitably represent the data mathematically 

so that (1) its Laplace transform exists, (2) the square root of the 

resulting expression is obtainable and (3) the inverse transform oper-

ation can be handled in a satisfactory manner. 

Two possible mathematical representations of the Auger data are 

considered: (1) power series and (2) linear segmentation. Power  

Series.  The power series approach to utilizing eq. (26) is based upon 

the assumption that both the Auger data f(C) and the transition density 

g(C) can be expressed as power series of finite order. That is suppose 

g(t) = 	gi  ti 
	

(27) 

i=o 

and 

2v+1 

f(c)La
l S

1 	 (28) 

i=1 

The philosophy is to relate the empirically determined a i 's to the 

.'s by use of eq. (26). Taking the Laplace transform of (26) and 
gi 

substituting in the power series representations yields 



v 

L[g (t )] = 	Y, 	5.!  
gi i+1 = „I raYi  s 	 !  

i=o 	 L 	
i  

si+1 
i=1 

with 

a. 
a.
1 
 - 	 

2i-1 

Squaring both sides of (29) and defining for convenience y i  = gii! and 

X,k = ak ik! it is found that 

2 	v 	v 

IL [g(t)]} = 	 YiYt 	 
si + t + 2 

v+1 i-1 	 2v+1 
Yei-t-1  

i+1 	
+ Yei-t-1  

si+1 s 
i=1 t=0 	 i=v+2 t,=i-v-1 

2v+1
k  Y, 	sk+1 k=1 

26 

(29) 

i=o t=o 

(3o ) 

It therefore follows from linear independence that 



k-1 

Xk = 	ytyk_t_, for 1 k v + 1 

4,=o 

	

Xk = 	Yek_t_i for v + 2 1-1 k 2v + 1 

t=k-v-1 

Equations (31) are now each multiplied by the factor 

	

$(k+2a-1) 	$('+a) (3(k-t-11-a) 
X 	= X 	X 	 (6u,O real and x > 0) 

and all equations are added together. 

v 	 2v+1 

YiX13(i+u)  = [ 	X $ (k+2a-1)2  
k 	

1 
X 	 for all x > 0 

i=o 	 k=1 

If the right hand side of (32), which is in principle known, is desig-

nated as H(x), then it is clear that (32) is solved for the y i 's by 

fitting the "best" power series (the left hand side) to the function 

H(x). Once these y i 's are found the transition density becomes, from 

( 27), 

E(t) = 	Yi  ti  
I-o i! 
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(31) 

(32) 

Expression (32) is a linear equation and the problem of solving it, which 
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is tantamount to solving the Auger transform problem, can be handled by 

standard linear techniques although this is sometimes tedious. Alterna-

tively, one can select a finite set of x's and convert (32) to a matrix 

equation of the form 

X = H 

which, if the inverse of X is obtainable, is easily solved 

/ = X-1  H 	 (33) 

In general, this is the most convenient approach although one is no 

longer sure that the solution is the best fit for all x . When X
1 

is 

found for a particular order v this order inversion need never be com-

puted again because X
-1 

does not depend on the data. Solutions are ob- _ 

tained immediately upon the determination of H and multiplication by 

-1 X . 

Another approach to finding the yi t s is to recognize that for 

a = S = 1, x =- 
1 

eq. (32) becomes 

L 	(t ) 	= 

2v+1 
1  

Yi i+1 	[ L ak
, 	 2 

s 	 t If 
i=o 	 k=1 

co 

j e -2st f(t) dt1 2  
0  

= 2  
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The integral on the right hand side of (34) is done numerically and the 

resultant relation is solved by the methods already discussed. The ad-

vantage lies in the fact that this numerical integral can, in general, 

be found much more accurately than H(x) resulting in a more precise de-

termination of the transition density. Further, since the right hand 

side of (34) does not depend on v (as does H(x)), v can be varied until 

a suitable result is obtained. 

Generally the power series approach to solving the Auger trans-

form problem is both mathematically and physically esthetic. Power ser-

ies of finite order are usually very pleasant functions with which to 

work. However, satisfactory results are obtained only when the coeffi-

cients can be determined to several significant digits of accuracy, and 

in practice, this is difficult. In the discussion immediately following 

a different approach to representing the data is considered which has 

less demanding requirements of accuracy. 

Linear Segmentation. Suppose that, similar to the Unfold analy-

sis, the data is segmented into intervals spaced apart and in each 

interval the Auger curve is approximated by a straight line in such a 

manner that the resulting approximate function is continuous. This is 

illustrated in Figure 2. 

It is easy to show by direct integration of eq. (20) that the 

transition density function necessary to produce such a curve is just 

the same function used in the Unfold approach, eq. (21) and (22). The 

Auger distribution function f in this approximation is given by 
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Figure 2. Linear Segmentation Representation of Auger Spectrum Data. 
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co 

f(t) = 	yi (t) 6 i (t) 
	

(35) 
i=1 

where 

yi (t) = 2 
f. - f. 
1 	1 - 1  (t - (i-i)+ f. 2 	1-1 

The f.'s are the end points of each linear segment sequentially ordered 

exactly as in the Unfold discussion. 

Equation (35) is more conveniently expressed as 

cc 

f(t) = 	f 5.(r)dr 
j=1 j  

t-7 

which can be easily verified. To utilize eq. (26) it is necessary to 

determine the Laplace transform of (36). 

Therefore (with A = e/2) 

t-A 

L [f(t)] = F(s) = L [f h(r)dr - j h(r)dr] 

co 

with h(r) = 	f.S.(r) 

t 

(36) 

j=1 
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and consequently 

F(s) = 	L [h(r) ] - 	  L [h(r) ] 

	

(37) 

	

e
sA 

- 1 	7  fj  e - isA  

j=1 

Finally, by taking the Laplace transform of (26) and utilizing (37) and 

(21), the Auger transform problem reduces to 

L, 1 	L e 	3 
 5,.e - ise = F 2 	

f .e 
 (j+l)sey 

2n-1 	 1 ..._, 
(38) 

i=1 	 j=1 

where n is an integer such that for all j 2n, f j  = 0. If x is set 

equal to e -s€ , then equation (38) takes a form exactly like that of eq. 

(32) and, hence, all comments given there on solving such a system car-

ry over. Equation (38) has the advantage of being expressed directly in 

terms of the g steps being sought. It is not necessary to fit a power 

series to the data and no factorials are present to complicate matters. 

In addition it is not usually necessary to know the value of the transi-

tion density histogram steps to the same accuracy required of the expan-

sion coefficients in the power series approach. In fact, the only dis-

advantage of the method is associated with the difficulty of solving (38) 

for large n. In general, the order n is much larger here than in the 
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case of (32) and the normal methods for handling linear systems become 

much more tedious. For large n, for instance, the Gaussian elimination 

procedure is not reliable because of round-off errors inherent in digi-

tal computers. 

Except for the difficulty just discussed, the linear segmentation 

approach is frequently the most accurate way to proceed -- especially if 

a good initial guess for the solution is available. In the next section 

a method for obtaining an approximate solution independent of the Lap- 

lace transform formalism is treated. 

Self-Consistent Iterative Analysis  

Recently it has been empirically shown 39 ' 40 that the first deri-

vative of the Auger spectrum obtained from ion neutralization and low 

energy electron studies of solid surfaces bears a striking resemblance 

to the transition density. In this section, this observation is put on 

a theoretically sound footing. Moreover, a self-consistent iterative 

technique, not unlike the Feynman perturbation expansion famous in field 

theory, based on the Auger spectrum derivatives is offered as a means of 

approximating the transition density. 

Starting with equation (25), the first derivative with respect 

Cl 
= 2 

2C 

df (c ) 	 - a (2C) a(o) 	g(y) a/(2c-y)dy dc 
0 

The primed notation above, as well as throughout this section, designates 

differentiation with respect to the argument. In terms of the transition 

density g, equation (39) becomes 

to the energy is taken (C 

(39) 



2C 

E(4) =  1 	{e(C) - j e(Y) a(2C -Y)dY1 
g(o) 

i(o) / 0 

where the primed term in the integral has been reversed by an integra-

tion by parts. The self-consistent iterative procedure consists of 

inserting the entire right hand side of (40) into the integral on the 

right and expanding the result. Thus, in terms of t = 2C, after one 

iteration 

2 t  
g(t) = 

1
f"(t/2) - ( 	1  ) j ffl (+)f i(4)dy 

i( 0 ) 	 2g(o) 	0  

+ Integrals involving g and g' 

The next order term is obtained by once again using the right hand side 

of (40) and inserting this into the integrals in (41) involving g and 

/ g . Thus, after two iterations, 

g(t) = 	
1 	{f , ( 2 ) _ (  _1 	' 2  " 

) fq.) 
g(o) 	 2g(o) 	0 
	Y 

t Y  (  1 ) 	fil( x2  ) [1 f/*f//(L_-Lc 
/ \ 2 2g(o) 

34 

(4o) 

0 

(41) 

(42) 

0 0 
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+ ffl \ 	f' (—Y=12  - dxdy + terms \ 

of order 	1 	
6 

 ) 
2g(o) 

Continuing in this manner, higher order terms can be obtained. However, 

as may seem apparent, the expressions become increasingly more complex. 

The convergence of this expansion depends in part on the value of 

i(o). The value of a(0) is easily determined from (40) 

g(o) 	[f/(o)] 2 
	

(43) 

which is generally not zero. In fact, in practice, for a convenient 

choice of coordinates, g(o) is on the order of ten. Further, since the 

integrals are well behaved, the series often converges quickly and the 

first three terms are frequently sufficient to obtain a reasonable first 

approximation to the transition density. The primary disadvantage of 

the self-consistent iterative approach is that the first and second deriv-

atives of the Auger data must be known and a method for calculating the 

integrals in eq. (42) must be available. Despite this, the formalism is 

very attractive since it is not necessary to sequentially solve any sys-

tems of equations. Moreover, the method is not dependent on the mathema-

tical representation of the Auger data. Consequently, when g(o) is of 

suitable value, this approach has much to offer, especially if extremely 

accurate results are not required. It is also possible to use the 
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solution resulting from this method as a first guess in one of the 

Laplace transform analyses and thus serve to simplify those approaches. 

Summary  

The two electron Auger effect involving an inner level and the 

broad allowed region near the Fermi surface is quantum mechanically 

treated by a first order time dependent perturbation analysis. Solving 

for the anticipated Auger spectrum f(C) in terms of a band function g(C), 

the transition density, results in a fundamental equation designated as 

the Auger transform 

f(c) = j 	E(c - A)dA 	 (20) 

0 

with 

E (0  =g(S) e (ci - 	; B (ci - 	= 

g(C) =(a term associated with exchange)x(a term 
	

(18') 

involving the matrix element)x (the density 

of occupied states). 

Three methods for obtaining an expression for the extended transition 

density function a(C) are possible. (1) Unfold -- the transition 
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density function is assumed representable as a histogram and the Auger 

transform integral is converted to a sum. The analysis leads to a non-

linear system of equations which can, however, be solved sequentially 

for the values of the histogram steps. The result is 

2f 
g1 = 	e

l 	; (24) 

  

f2 
; 

g . 	6  
2 

 
2f

1  

[ 

	

f 	

s/2 

2f1 	1  

	

- 	gigs S 	1 S - 	+ 1] 3 
s even 

2c  

gs 

1)/2 
, 	 1 2  

LE 1. S - 2 g  S+1 	gigs 	s odd s - 	+ 11 ' 2cf
1  2 	i=2 

where the fk 's are Auger data points separated 6/2 apart beginning with 

f1 at C 
= e/2. Each step is c wide. (2) Laplace transform -- the Auger 

transform is expressible as 

2C 

2f(C) = j g(Y) E( 2C - Y) dY 
	

(25) 

i=2 



which has as its solution 

g(t) = 2L 1  [ f F(2s) ] 

with F(s) = L[f(t)] and t = 2c. If f and g are assumed to be represen-

table as power series of finite order 2v + 1 and v respectively, then 

(26) transforms to a linear system 

Yi X$(i+a)  = kX (k+2-1) ]
12 2v+1 

(32 ) 

i=o 	 k=1 

for all x > 0 (a, (3, X real and arbitrary). 

which for selected x can be put in the form 

X y = x. 

The transition density function is then given by 

g(t) = 	Yi 	 ti 

i=o 
is 

If f and g are represented as in the Unfold approximation, then (26) 

transforms to a linear system 

38 

(26) 
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n 	 2n-1 	 1 

i., .e i"  = [
E. 1 f.e - (j+i)sc12 

gi 	 € 	J 
i=1 	 j=1 

for all s 

which again, for selected s, can be put in the form 

X g = H . 

In this case the transition density is given by 

n 

	

g(t) = 	g..5.(t) . 

i=1 

(3) Self-Consistent Expansion -- The derivative of (25) can be used to 

establish a new equation which is subject to an iterative expansion. 

Carrying out the expansion results in the following expression for the 

transition density 

i(t) 	1 	.{ f /( 2 	1 	2 	 ( 	 ■ 
dY I J f„  -V f\-14Y-) 

(0) 	 \ 2E (o) 

(38) 

(21) 

( 	 ) 14' 	f-'f"( x ) 	f'(=4 fll (l)+ffl (ILY)f 1 (2 .11  dxdy 
J J \2 / L 2 	\ 	\ 	\ 2 / \ 2 JJ 

2a (o) 
0 0 
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+ terms of order (  1 )61 

2g(o) / 

All three approaches have certain advantages and disadvantages which are 

discussed in the chapter. The choice of which to use depends on the case 

at hand. It is often effective to combine the techniques for greater 

flexibility in analysis. 

Thus far a detailed knowledge of the Auger spectrum has been 

assumed available. Indeed, it is possible to obtain magnified versions 

of the associated subsidiary maxima in the true secondary electron 

energy distributions. However, the question arises as to how much of 

this experimental spectrum is attributable to background. Further, 

since the measurements are obviously made external to the sample volume, 

one must also ask what is the effect on the distribution as the Auger 

electrons diffuse to the surface? The answer to these questions must 

rest on a theory of electron diffusion. Such a theory should addition-

ally be able to predict the slow peak shape -- a prediction that could 

be used to measure the accuracy of the theory and determine the confi-

dence with which it can be applied to Auger data analysis. In the next 

chapter, a general theory of electron diffusion is developed. 



CHAPTER III 

THE THEORY OF ELECTRON DIFFUSION 

Electron diffusion is the transport and multiple scattering 

of excited electrons in a solid material. Such diffused electrons are 

termed secondary electrons if the exciting mechanism is a primary beam. 

Alternatively, such electrons would be identified as photo emission 

electrons if the exciting mechanism is a light source. In the theory 

presented here, the former is the case considered, although, with 

appropriate modifications, it should be possible to treat the latter 

case as well. 

Theoretically the phenomenon of secondary electron emission is 

conveniently divided into two steps: (1) the production of the secon-

daries and (2) the diffusion mechanism. Whereas the factors in (1) are 

often reasonably well investigated, the effect of (2) is frequently 

overlooked or ignored. However, the highly interacting secondary elec-

tron is likely to suffer many inelastic collisions before emission as 

indicated by mean free path studies. 39 The result of these many scat-

tering events is a piling-up of electrons in a very low energy range 

giving rise to a large, broad peak with a maximum somewhere between one 

and five electron volts. This has been named the "slow peak." Often, 

processes of interest, including the Auger phenomenon, occur in regions 

where the slow peak is not negligible. Further, the Auger electrons 

are subject to the identical loss mechanisms resulting in a distortion 



of the true Auger spectrum. Consequently, any rigorous study of a 

secondary electron production mechanism must consider the diffusion 

problem. 

In the first section of this chapter a general formalism is 

developed for the diffusion of electrons through solid matter. In the 

next two sections two of the important terms of the formalism are dis-

cussed: (1) the source or production of secondary electrons and (2) 

the processes by which they can be inelastically scattered into lower 

energy states. In the fourth section the effect of the secondary dis-

tribution as the electrons cross the surface boundary is treated. In 

the last section, for purposes of convenience, the essential results of 

the theory are summarized and the appropriate integrations performed so 

that it is possible to write an expression for the true secondary elec-

tron energy distribution. 

General Formalism  

In attempting to write down a dynamical equation governing the 

production and diffusion of secondary electrons, it is important to 

observe two points: (1) in any sample which is being continually bom-

barded by primary electrons there is expected to be a large number of 

internal secondary electrons; (2) because of their highly interacting 

nature, these secondaries will inelastically scatter frequently. 

These two considerations suggest that a statistical approach should be 

of value. Assuming each secondary electron in the crystal can be char-

acterized by its position and momentum, a phase space ensemble is con- 

structed in which all electrons with position between r and r + dr and 



momentum between p and p + dp belong to that element of the ensemble 

labeled r,p. The population density of electrons in this phase space 

cell at time t is designated N(r,p,t) and, if the number of electrons 

in the cell is sufficiently large so that N can be treated satisfactor-

ily as a continuous quantity, then N is governed by a continuity equa-

tion of the form 

bN(;,;,t)  	. vN(1,1,5,t) = H(1.,i),t) 	 (1) 

where m is the electron mass and H is the non-conservative portion of 

the equation. Physically H represents the sources and sinks of secon-

dary electrons within the phase space cell r, p at time t. 

There are three contributions to H. One, the source term 

-4 
S(r,p,t), represents those secondary electrons which enter the phase 

space cell as a result of some physical excitation such as the Auger 

process. Another contribution to H comes about as a result of scatter-

ing. If X(5) is the mean free path, then 

m 	X p 

is the loss rate of the cell due to scattering. Likewise, the popula-

tion can increase as a result of scattering into the cell. For this 

case the appropriate expression is a collision integral 

(2 ) 
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r  IT;i1 	N5,;',t) 	r4 F(p,p ) dp i  m 	x(5') 
(3) 

where F(p,p ) is the probability that, given an electron at p , one 

will be found at p after scattering. Skr 
p4  
,p,t) and expressions (2) and 

(3) constitute the three factors in H. Consequently, the dynamical 

equation governing electron diffusion is 

_p_  • VN = S 	FP I 	N + f  1 5 '1 	N55;' , t)  F5,5 , ) x (p1) 

(4) 

The rest of the treatment in this chapter will center around the proper 

application of this equation and its solution within the context of 

certain specified approximations. 

Equation (4) can be simplified somewhat by considering the geom-

etry of the experiment. The most common experimental geometry, and the 

one used in this work, has the primary electrons normally incident on a 

plane crystal surface which is considered to be of infinite extent. 

Further, it is consistent with the model to assume azimuthal symmetry. 

This is tantamount to ignoring the details of the crystal field, which 

is valid if the spatial dimensions of the phase space cell is large com-

pared to atomic dimensions. This must be the case if it is assumed that 

there is a sufficient number of electrons in the phase space cell to 

treat its population density function N as a continuous variable. In 
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this same spirit, X(p) is assumed dependent only on the magnitude of 

-4 
p and is replaced by 1(E). Referring to Figure 3, the distance normal 

to the surface is taken as z, the angle that the momentum of the second-

ary electron makes with the normal as 8, and the energy as E (corres-

ponding to the momentum magnitude Ip1). Thus, in the steady state case, 

equation (4) reduces to 

1 5111 1  pN(z, Cm 8, E) CCs 0 = S(z, as 8, E) -  1;1 	N(z, 	B, E) 
(E) 

+ 	1 !: 1 N(zig, E')  F(0,E,0',E 1 )dE'd0' . 
 JJ 

The population function N, the source term S, and the scattering 

probability function F are now expanded in Legendre Polynomials. 

00 

N(z, Cm 0, E) - 	X 	+ 1) Nt (z,E) P,06 8) 	 (6) 

t=0 

S(z, CCs 0, E) - 	(2t + 1) St (z,E) Rt (CM 0) 

t=0 

CO 

F(0, E, 0', E') = ME C), E, E') = 	(2t. + 1) Ft (E, E') Pt., (0:8 0) 

t=0 

-4 
where 6 is the angle between p and p . 
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(5) 
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These expansions prove to be not only mathematically convenient but also 

physically meaningful. Expansion in Legendre Polynomials serves to seg-

ment the various functions of interest into components dependent on their 

angular distribution. Thus N0 (z,E), for instance, is that portion of 

the internal secondary electron energy distribution which is isotropic; 

N1 (z , E) belongs to the be group and so on. By investigating the popula-

tion of each group inferences can be made concerning any preferential an-

gular distribution. 

The orthogonality of the Legendre Polynomials can be used to 

advantage. After substituting equations (6) into (5) both sides of (5) 

are multiplied by Pk (Cos 0) and integrated over the solid angle sin Odedcp. 

The result is 

ft,  
(24., + 1) f 	 

2k + 1 [kPi-1 + (k+1) Pk+1] 
 pt  do 	(7) 

	

= 47Sk - 47 1;1 	Nic  

+ jjj dE 1  an. ' an.  
	

(2t, + 1) (2i + 1) Nt(z,E')Fi (E,E i )pt ((bs e i ) 

Pi  (Ccs 8) pt,  (as 0) 

P1Nk  If the substitution 4,1, 7  1mt(ED   is made and the following addition iden- 

tity used, 
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•   
Pi  (as 8) 	= 	(cos 0') Pi  (Cris 8)  + 2 	 m (0:12,  a) Pim ((CS  a) Cce(cp i-cp) 

m=1 

where P. m ((cs 8) are the associated Legendre functions, the diffusion 

equation finally becomes 

t(E)  F- 4k-1 	(k+i, 41[4.11 
k (z , E )  — 2k + 1 LK  6z 	 I 	J (8 ) 

CO 

Sk (z,E ) 
	f Ek(E,E') 4/k (z ' Ei)(17:  

Equations (8) are a set of coupled integro-differential equations 

which are in general very cumbersome. Note, however, that if the z de-

pendence is rather weak the equations uncouple and become much simpli-

fied. In the current work this is probably a reasonable approximation. 

Because of the heavy screening generally present in the materials stud-

ied, one would expect the scattering potentials involved in the electron 

diffusion to be effective only over short distances. Such an argument 

was used in the introduction of the transition density earlier. Conse-

quently, the volume within the screening length of the surface is much 

less than the total volume of interest. It is then likely that little 

error will be made if the z-dependence in (8) is ignored. Wolff,
17 us-

ing the technique of Weymouth,
40 has solved (8) for simple choices of S 

and F and found that the solutions differ very little from that of the 

z-independent equations. Thus, in this approximation, equations (8) 
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become 

CO 

*k (E) 	= j Ek (E,E') 	11►k (E') 	+ Sk(E) (9) 

Equations (9) are solved by assuming solutions of the form 

Eb  

Sk (E) = j Gk (E,E") Sk (e)de (lo) 

a 

where Gk is a Green's function. By substituting (10) into (9) a condi-

tion on the form of Gk can be obtained. 

CO 

Gk (E,E") = 6(E-E") + j Gk (E;E") Fk (E,E / )de 	 (11) 

where ,5(E-E") is the familiar Dirac distribution. Note that the Green's 

function depends only on the scattering function Fk (E,E'). Hence once 

the Fk 's are enunciated, the Green's functions can be found and used in 

(10) with any applicable source function to derive the secondary distri-

bution. 

The general formalism is developed; however, an analytical inves-

tigation of the appropriate source functions S(E) and the scattering or 

loss functions F(E,E') still remains. This is the context of the next 
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two sections. In the section pertaining to the loss mechanisms the 

required Green's functions are obtained. 

Secondary Electron Source Functions  

In order to use equation III-10 to obtain the secondary electron 

distribution interior to the crystal the appropriate source terms and 

Green's functions, expressed in Iegendre polynomial expansions, must be 

known. In this section the former are discussed. 

There are two important mechanisms which give rise to secondary 

electrons. From the work of the last chapter it is clear that the Auger  

process  is a source of secondary electrons. Another process, and perhaps 

the more important, is single electron excitations resulting from elec-

tron-electron collisions.  In this case the primary beam interacts in a 

Coulombic fashion with the crystal electrons and some are excited to 

available states above the fermi level leaving a hole in the fermi sea. 

In semiconductors such a process is often called pair production because 

the hole can, in many respects, be treated like a positive electron. 

Pair production and the Auger process are the only two mechanisms of 

secondary electron creation that will be considered. 

The Auger source function was actually derived in the last section. 

It is the self-convolution of the transition density. However, this ex-

pression gives no information as to the absolute magnitude of the effect. 

Further, the true shape of the Auger distribution is unknown, even empir-

ically, because of the effect of electron diffusion. These troublesome 

points not withstanding, the calculation will be continued assuming that 

the true distribution f(E) is known. In the applications the amplitude 
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is empirically estimated and the true distribution is adjusted so that, 

after the result of diffusion, experimental agreement is obtained. 

Further, it is assumed that the Auger distribution is spherically sym-

metric in the laboratory frame of reference. That this is the case may 

seem reasonable by recalling that the Auger mechanism is a two-electron 

process. The Auger electron has no way of "knowing" in which direction 

the primary beam, i.e., the z axis, is oriented. With no direct exper-

imental information available, isotropic production is probably a rea-

sonable choice. 

The calculation of the source function for pair production is 

more involved. The correct calculation was actually first done by 

Streitwolf16 in 1959. However, the derivation is repeated briefly on 

the following pages. This is done for several reasons: (1) the result 

is important to the work presented here and a knowledge of the origin 

of the expression is valuable, (2) Streitwolf's paper is in German and 

an English translation is not conveniently available, and (3) 

Streitwolf's presentation and notation are not ideally suited for the 

current application. 

Summary of Streitwolf's Energy Excitation Function Calculation  

Suppose that P(1i,V,i),5) is the transition probability per unit 

-4 
time and volume that a primary electron of momentum p will interact with 

a crystal electron of momentum k and will be found after scattering with 

momenta 5' and V respectively. The excitation function of crystal elec-
trons to momentum V is then given by 
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S 1 (1e) = 2 	jo131- 	jd313'' 	 (12) 

occupied unoccupied 
states 	states 

where the factor of two takes into account spin degeneracy. If only 

the final energy of the excited crystal electron is of interest, then 

one has for the source function 

S(E') 	k,2 — o 	s ' (1[41 ) 
	

( 13 ) 

where E' = E(k'). 

The hamiltonian for this process is 

c
2 

e
-X1141-1-I H = H0  + H1 

 = H
0 
 + 

eiR-ri 

with 

Ho 
 2 

2m 
h 	

R 
(,_,2  + 77-42 1 + v(;) 

X = screening parameters 

e = dielectric constant 

where R and r are the position vectors of the primary and crystal 

electrons respectively. The wave functions for the H0  Hamiltonian 

are expressed 



where 

and 

= t(;) t'ai) k 	p 

= (27) -3/2  e ii34  • V  

*25) = (27) -3/2  el-1-5  u17 (r) 

53 

(15) 

The term U-4k  (;) is the familiar Bloch function. The transition proba- 

bility as given by first order time dependent perturbation theory has 

the form 

1(ic',5 1 1Hi)1 2  o(E-' 	- 1 ' 	k,p 	k,p (16) 

The matrix element, after performing the R integration, is 

(1V,5 / 1H1 155) = (27) 	
47e 2  	f 	* 	i(ii)-ii)1 +c1) • r -.3 ult.. ke 	 dr 

e q2+X2 ) crystal 
volume 

P = 27 

q = p-p = momentum transferred 



The Bloch functions are now expanded in plane waves (Fourier series) 

k k = 
	x ; t) e2Trit • iz 

in which 

I(VX;t) = 1 	*2iri 

	

- 	:b • 1.7.4 	e V J k k 	
rd r 

R 
 

VR 

(17) 

VR = volume of reciprocal lattice unit cell 

Using these expressions, (16) becomes 

P 	2 
e  

- 	 )] 111 2  6,3( - 	+ 	+ 24) S(Eivi0o, - 62 21.1  m3p(q2+x2 ) 2 , 

' 	t 

Expression (18) has been normalized to the primary current density 

j 	= (270 -3  

(18) 

Using (18) and (12) the source function (13) becomes 



2 	7j(131 06' s(E') 
e 7hp t  

II2
+x2 ) 2 (e 	

53(g_R"qq+27-0 

55 

 

 

(19) 

Performing the integration over the final primary momentum p' one 

obtains 

S(E / ) - 2m3ek 1   7 r r,„ 
uJIk /  2 3 6 	L, J J

,3 
 Ik 	

111 2 
, 2 2 	2 	

/ /2 	\ 
okk +p /2  -k2  -p2  ) 

e 7 h p 	 kg 	) 

For the integration over the solid angle dri k /, it is convenient to 

define a new quantity 

5 + k  + 2TI b4  

Using this as the polar axis, the integration over the polar angle can 

be performed and yields (see Appendix A) 

27 3 	3-- 
S(E / ) - 	m  e 	d k 	r 	111 2 

2 '1 6 	 J 	2 2 2 
e Trh p t IGE■ 1 0  (q +X ) 

(20)  

In order to proceed it is necessary to set I = 1, t = 0, and 

X = 0. For the :5 = 0 case, it is easy to see from (17) that I is equal 

to or close to unity when (1) q is small or (2) the crystal electrons 

are assumed free. Even if these two requirements do not strictly hold, I 
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may still be close to unity. In (17) the excited state can be reason-

ably assumed to be of plane wave form. Essentially all that is ignored 

then is the dependence of the integral on k. Since the integration is 

over a reciprocal cell in which the function is basically oscillatory, 

the assumption of constant I with value one should not introduce seri-

ous errors. Further, the t # 0 case (phonon assisted processes) is gen-

erally ignored because, as shown by Streitwolf, it contributes less than 

per cent to the total excitation function. A similar argument holds 

for X = 0. The per cent change in the result by varying X from zero to 

a reasonable screening length is small. This however is not true in the 

0 case. 

With these values for I, 14, and X the azimuthal integration in 

(20) yields (see Appendix B) 

21102 e  4 	
j d k 	

, 2 2 /2, 	 . 2 2 /2. 
p 	) +k 	- 2(p.k) + k 	) -k  

S(Ei) 	
e
22

h
6
p 	

/2-k 2 31 
i
-4
p ) 	-ki 

The final integration over the initial crystal electron states (the 

fermi sphere) can be done in closed form (see Appendix C). Thus 

S(E') - 
ekF

3  

(21) 
e 237E (E' - EF) 2 

is the desired energy excitation function. A similar result has been 

obtained by Baroody, 15  and Dekker and Van der Ziel ll  but both had to 

approximate that 1-t' << 5. No such approximation is required in (21). 
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This completes the summary of Streitwolf's calculation. 

Angular Dependence  

The angular dependence in the excitation function can be obtained 

by putting (18) into (12) and doing the indicated integrations. The 

result for I = 1, t = 0 and X = 0 is 

2 11. 
= 1-774-1 p- 

p2k/24 .1i, /) 2_ (k /2_kF2 )(6-1,0 2 

(22) 1 5.1 /1 3 (k1 2-kF2 ) 2 

for VV.(5-INI 

= 0 otherwise 

The stipulation on the relation above indicates that S' must be non-

negative. Further, the integration of this equation over the appropri-

ate angles must yield (21). For the polar angle on the interval (0,7) 

S' is non-negative between the zeroes of the numerator. Thus the angu-

lar excitation must be 

s(E',e) - 
ekF

3 
a + b he - O?  
1 2 	3/2 7  (b +4a) 

(23) 
/ 37e

2  E kE -EF) 

2 
kF k

/2
-kF

2 

a - 	- 	 
k

/2 	p2 

where 



/ 
2kk

/2 
 - kp2 ) 

b - 	  
plc /  

Note that the integration of this function over sin 6 de between the 

b + b2 +4a 	 b - b2  +4a.  yields (21). zeroes 03S - 	 and be - 2 	 2 

S(E 1 ,0) is now expanded in Iegendre polynomials. 

so (E I ) 	- 	  
2 	/ / 3re E 	-E

F
) 2  

2b(a - )7) 

S1 (E 1 ) 	= S (E / ) 	 
0 b

2 
+ 4a 

S2 (E /  
) 

a
2 

a ab
2 

3b3 81D
4 b2 

6 	- + 	+ 8 - 	- 12-1  

b 
= S (E / ) 	5  0 2 + 4a 

s(E',e) 	(2t + 1) s(E') pt (cm e) 
t=o 

These equations for the coefficients in the expansion of the 

angular energy excitation function are extremely complicated, and ex-

cept for So (E / ), their use in equation III-10 is mathematically 
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(24) 
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prohibitive. They can, however, be simplified by considering two very 

important cases. These are (1) p >> 	kf (low energy secondaries) 

and (2) p >> k' >> kf (high energy secondaries). 

Case 1: Low Energy Secondaries.  In this case, it is easy to 

show that 

a -4  1 

0 

Therefore, 

s (E') --. 0 	 (25) 

S2 (E') --. so (E 1 ) (-1/5) 

Case 2: High Energy Secondaries.  In the limit of high energy 

secondary electrons the parameters a and b both tend to zero. There-

fore, 

S1 (E') 	0 	
(26) 

S2 (E / ) -4 S0  (E / )(-1/2) 

The contributions from the higher order coefficients are 
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ignored. It should be mentioned that the results (25) are the same as 

those used by Stolz.
19 

In the high energy case, however, equations 

(26) differ from those of Guba 2°  and Grinchak21  who considered (22) in-

correctly. 

As has already been stated these two sets of source functions are 

used in equation III-10 to obtain the internal secondary distribution. 

One set, equations (25), is used for low energy secondaries and the sec-

ond set, equations (26), is used for high energies. Thus the limits in 

equation III-10 for the former case are E a = EF, the fermi energy, to 

Eb  = E
m, some upper bound. This upper bound is set at 100 ev or the 

primary energy, whichever is smaller. In the latter case, Ea  = 100 ev 

and Eb  = 150 ev or E /2, whichever is larger. This case is not consid-

ered when E < 150 ev. 

At this time the choices of the limits may appear a bit arbitrary 

other than the fact that they correspond roughly to the E' energies men-

tioned in (25) and (26). The choices will seem more concrete after a 

discussion of the appropriate scattering and loss mechanisms - the topic 

of the next section. 

Scattering and Loss Mechanism Green's Functions  

In the last section, the appropriate source functions to be used 

in equation III-10 were discussed. In this section the loss mechanisms 

will be considered and the corresponding Green's functions will be ob-

tained. The Green's functions are found by solving equation III-11 for 

a particular choice of the scattering function Fk (E,E'). The applicable 

scattering functions are therefore discussed first. 
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There are several ways by which a secondary electron can lose 

energy as it cascades through the crystal. One way is clearly pair 

production. In this case a secondary electron has a "collision" with 

a crystal electron, exciting it to some level in the conduction band, 

and thereby loses some energy and changes direction - i.e., it is 

scattered into a new momentum state. There is, in addition, another 

loss mechanism that turns out to be of significant importance in the 

case of semiconductors. This is plasmon creation. A secondary elec- 

tron of sufficient energy can contribute to the collective oscillations 

of the valence electron by plasmon excitation and be subsequently scat-

tered into a new momentum state. It is this method, as shall be seen 

in the applications, which actually predominates in semiconductors and 

leads to satisfactory theoretical explanation of the observed distribu-

tions. 

An investigation of the screened Coulomb interaction reveals 

that, in the case of electron-electron collisions, the scattering is 

spherically symmetric in the center of mass system up to about 100 ev 

(for an appropriately chosen cutoff distance) after which it is more 

accurately described by Rutherford scattering. 17 It is clear that the 

modification of the scattering symmetry from a spherical behavior to a 

Rutherford behavior is a smooth monotonic transition. However, such an 

ideal description is very difficult to achieve theoretically. There-

fore, a cutoff energy 	100 ev) is defined above which the scattering 

is strictly Rutherford and below which the scattering is strictly spher-

ical. 

The case of low energy 	100 ev) initial secondaries is 
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considered first. For the propositon of pure spherical scattering 

the problem reduces to an exercise in kinematics. Assuming the crystal 

electron is at rest with respect to a scattering particle of energy E l , 

the energy of the secondary after the interaction is given strictly by 

E = E l  0m2 

 where 8 is the angle between the initial and final momentum vectors. 

Thus the scattering function is given by 

F((ks 9,E,E 1 ) - ---- 217 	e)4 GT, 9 

The factor 4 be is the Jacobian of the transformation from the center 

of mass to laboratory angles. The normalization 2/47 is such that 

E' 27 7/2 

j j j F(N 8,E,E l ) sin 8 dEd8dIT = 2 	 (29) 

o o o 

The normalization to two instead of unity, first recognized by Wolff, 

is crucial and amounts to a cognizance of the fact that for every par-

ticle which scatters , there are two electrons in the cascade after the 

collision. This is termed electron multiplication. As required by the 

formalism, FOos 0,E,E 1 ) must be expanded in Legendre polynomials. Thus 

(27) 

(28)  

F.t (E,E') = 	d.n.F(Ccs 6,E,E 1 ) Pt ((xs 0) 	 (30) 
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7/2 

= 27 j 	15(E-E p 
8) 4 be Pda3 0) sin 8 d9 

This is the result which must be used in equation III-11 to obtain the 

Green's function. With the above choice for Ft (E,E I ), III-11 is solved 

by use of the Mellin transform. The results for 4 = 0 and 4 = 2 (the 

only non-vanishing cases being considered) are (see Appendix D) 

E 

Go (E,E") = 	 (31) 

0 	 ; Ell  < E 

2  

E"E 
Oos[-L3.--- e424-)1+ 6(E-E") ; E ll  E 2 E 

G2 (E , E") = 

0 	 ; Ell  < E 

With these Green's functions, integration of equation III-10 is essen-

tially all that need be done to obtain an expression for the internal 

secondary electron energy distribution in the case of low energy secon-

daries scattered by crystal electrons. This operation, however, will be 

postponed until all contributions to the secondary distribution can be 

ff  E
2  2 	+ S(E-E") ; Ell 	E 



a2 
	

033 9 

E /2 
sin 9 

6(E-E' Ca? 9) 	 (32) F(Cm 8,E,E 1 ) - 

6 1+ 

included. 

The above Green's functions, which are based on the assumption of 

pure spherical scattering, are not applicable if the secondary electron 

is energetic enough for the scattering to be considered Rutherford. 

Consequently, instead of (28), for this case the correct scattering func-

tion is given by 

where 8, the laboratory angle, has the same significance as before. The 

quantity a is equal to e
2
/2. 

The expression (32) is not yet normalized. If one attempts to do 

so by means of equation (29), the integral is found to diverge. This 

problem is overcome by restricting consideration to large energy losses 

per collision. Actually, this is probably not a serious restriction 

since those electrons which lose large amounts of energy and are scat-

tered into low energy states are just those electrons which contribute 

to the slow peak. Investigation of the delta function in (32) indicates 

that this case corresponds to large angle scattering (8 -, Y). Expanding 

sin 48in this limit and keeping only the first two terms, (32) becomes, 

after proper normalization 

F(h 8,E,E 1 ) - 	CoS 0 (1+2 Ces28) 8(E-E
, 
CZ 8) 
	

(33) 
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Proceeding in the by-now-standard way, the Legendre polynomial expansion 

coefficients of (33) are 

F(E
'
E') = (1+2 

 E \ E  E  P / (34 ) 

This expression is put in equation III-11 and the Green's function 

solved for by the Me-11in transform. 

1  [4 sink (/7 eat 	+ 	CC1311 (T ent -EL)1 

+ Coo(E -E") ; 	Ell 	E 

G (E,Eu ) = 
	 (35) 

0 
	

< E 

Co 
2  

 

 

- 2 

G2 (E ' Ell ) = 

1[ 
5 77- 

 L. E  \ 1.15 1_ (E; )0 • 6{5 •8 cce(on (EE" ) 0 • 7) 

 E  

- 3.8 sin (On (4)°.7)11 + C2o(E-E") ; E ll 	E 

0 	 ; Ell  < E 
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3.63 - 1.6 agh 1.47 

(3.63 - 1.6 ash 1.47) 2  + 0.142  sinh 1.47 

These are the Green's functions to be used in equation III-10 for high 

energy secondaries (> 100 ev). Thus for single electron or pair produc-

tion type losses, a secondary is scattered by successive Rutherford type 

collisions (use (35) and (26) in (10)) until it falls below 100 ev at 

which time it participates in the cascade by spherically symmetric type 

collisions (use (31) and (25) in (10)). 

Attention is now directed to the situation of secondary scatter-

ing due to plasmon creation. As was mentioned earlier, this turns out 

to be an important contribution as might be expected if mean free path 

lengths are considered. Based on Quinn, s41  expression for the mean free 

path to plasmon scattering in the free electron approximation, it appears 

that for many semiconductors the plasmon mean free path is at least an 

order of magnitude less than that for pair production. The effective 

cross section for plasmon production has been calculated by D. Pains
42 

 for the case of small angle scattering (or E' >> hw ), 

	

dn. 	 E /  - E  
du 	27N0  

Eisin2 	( 	E-E  )
2
I 

2E' 

C2 

(36) 

where 8 is the scattering angle. The scattering function is then 
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F(02 8,E,E') - (E'-E) 6(E-E' Glio) (37) 
27 0.9 Ellsin28 + (-ELE)2] 

2E' 

where the normalization is now unity because electron multiplication 

does not apply. The coefficients of the expansion of the scattering 

function (37) are obtained in the form 

F (E
' 
 E') - 

2.2 P (41 -E— ) 
E i  

Eli E
(

5 E 
E' 	E il  

(38) 

The solution of III-11 by means of the Mellin transform results in the 

following expression for the Green's functions. 

Ell 

 [18.2 (4)5 ' 5  - 0.58 (4) -1.1] 

+ 0.25 6(E-e) ; Ell z  E 

Go (E,e) = 	 (39) 

0 	 ; Ell  < E 



,, 1.L 

En 
1  [42.7 (-11)3.2  — 7.1 (4) 

- 0.28 (--- 
E# N -1.7]  

E ) 	+ 0.13 S(E-E") ; E" 	E 

G2 (E , E") = 

0 	 ; E" < E 

Because of the requirement in (36) that E t  >> hw , these Green's 

functions should strictly be used only-for high energy secondaries. 

However, if the correct source function is used, satisfactory agreement 

can be obtained for secondaries with energy as low as 21w p . 

In this section the means by which secondary electrons can lose 

energy have been discussed. Scattering functions and their correspond-

ing Green's functions are now established. Thus, everything that is 

needed to calculate the internal secondary electron energy distribution 

N(E) is available. However, experimentally the distribution is meas-

ured external to the sample interior and it might be anticipated that 

the distribution is modified as it crosses the surface boundary. This 

is indeed the case and prompts the derivation of an expression for the 

external distribution in the next section. 

Escape Across the Surface Boundary  

In the previous sections of this chapter the necessary formalism 

to predict theoretically the internal secondary electron distribution 

has been enunciated. However, experimental observations are clearly of 

the external distribution. Such an experimentally measurable distribu-

tion can be related to a good approximation to the internal distribution 

68 
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by taking into account the surface barrier created by the presence of a 

work function. 

Imagine a perfectly smooth planar surface being approached from 

-4 

within by an electron of momentum p. As the electron crosses the 

boundary, the normal component of momentum will be modified by an amount 

depending on the work function. The tangential component, however, is 

continuous. If E is the energy of the electron interior to the crystal 

and E' its energy externally, then the two following relations must hold 

E /  = E - W 

E /  sin28 = E sin2O 

where W is the energy level of the work function, B and 0 the angles 

the electron makes with the normal internally and externally respec-

tively. It follows then that 

costs - E cos
2e - w  

E - W 

and hence 

cos 8  sin 8d8 - 	E  w 	cos 8 sin 8d8 • 

(4o) 

(41)  

(42)  

(43) 

Now the external distribution j(e,$) is related to the internal 
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distribution N(E,B) by the equation 

j(E / ,O)dE /  sin OdO = N(E,O) 	ae0 dE sin 0 dO • 	(44) 

This is easily seen by considering the fact that N(E,O) is the number 

2E 

	

of secondaries per unit volume in the crystal and the factor,1 	150, 

which is just the normal component of velocity, takes care of the rate 

at which the secondaries reach the surface. Using (44) and (43) it is 

possible to write the energy-angular distribution law for external sec-

ondaries, 

j(E / ,$) 	1 
E,0 
E,9 	0  

N j(E / ,0) 

with 

OM 0 	1 - E-14. sing  0 	. 

Not all secondaries reaching the surface can contribute to the 

external distribution. This is because there is a critical angle 0 0 , 

depending on the energy and less than r/2, for which electrons striking 

the surface at a greater angle of attack can not overcome the surface 

potential barrier. The critical angle 0 0  is determined from (40) by 

setting S = 7/2; thus 

(45) 

(46) 
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Cmo 
	E 

= 	• 	 (47) 

Recognition of this limiting factor is important when integrating over 

all angles to get the total external contribution at energy E'. Recall 

that 

CO 

N(E,O) - 	 -- 	(2t 	1) Ntd (E) pt (Oz 0) 

t=0 

Thus the external distribution takes the form 

j(E 1 ,18)de sin 8d13 = 	/ 2.1 	(2t+1) N (E) P 	0) Om 0 sin 0 ae dE 7ri N 

If J(E') is the total external contribution in the energy inter-

val E',E'+dE', then 

2Tr e o 

J(E') = 	2—mE  L (24.,+1) Nt (E) 	SP,f, (Qm 0) Om 8 sine dedtp 	(48) 

t=0 	 0 0 

1 
1 / 2(E 1 +W)  ): 
2 q 	 (2t + 1) N(e+W) j X Rt (X)dX 

t=0 

W  E'+W 
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Since it has been established that = 0 and 4, = 2 are the only 

non-vanishing cases being considered, (48) can be written more explic- 

itly. 	Consider 

=0: 

= 2: 

the integral on the 

1 

j 	X Po (X)dX - 

right 

El  z 

E' [2 2 

+ W 

W2  0) 

E ---r— W  +W 

1 

j X p
2 
 (x)dx = 1  (1 - 

(E '+W) E' + W j  

E + W  

The experimentally observable distribution thus takes the form 

J(E) - 	/ 2(E'+W)  f  E I  
m 	 N (E'+W) 

E'+W 

N2 (Ei+W)  [3-2 (1 	142  ) (E / 4.14 )2 

Hence, once No  and N2  are found the external secondary electron 

energy distribution is obtained from (49). No  and N2 are secured by 

solving III-10 with the appropriate source and Green's functions. In 

the next section the theory developed throughout this chapter is re-

viewed and summarized for future reference. Integration of equation 

III-11 for the source and Green's functions discussed in the previous 

two sections is also carried out. 

(49) 

E I 



Summary and Integration of Distribution Equations  

The electron diffusion formalism is based on a Boltzmann trans-

port equation of the following form: 

bB(
-4  

r.P3t) 4. _2— .
at 	m 
	

(r,p,t) 
	 (4) 

1 5I N(;;;, t) 	S(r,p, t) 	i p li N (;:11I, t )  F (p ,p) dp 
mx(p') 

The first term on the right describes the rate of secondary loss from 

the phase space cell at r,p at time t as a result of scattering; the 

second describes the rate of secondary creation; and the third the rate 

of gain due to scattering into the cell. F5,51 is the scattering 

function giving the probability that an electron at p will be found 

at p after a collision. 

Equation (4) can be simplified somewhat if attention is restric-

ted to the steady state case and if the common geometry of electrons 

incident normally on a planar surface is included. The resulting ex-

pression is then expanded in spherical harmonics, and, by including 

the previously mentioned assumptions concerning the crystal field and 

surface effects, equation (Li) becomes 

OD 

irk (E) = S Fk (E,E 1 ) lirk (E')dE' + Sk (E); k = 0, 1, 2, . . 	(9) 
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where 

IVIN(E) 
*k (E) 	 • mt (E) 

Fk (E , E') and Sk (E) are the expansion coefficients of the scattering and 

source functions respectively. Solutions to this integral equation are 

of the form 

*k (E) = j Gk (E,E") Sk (E") dE" 	 (10) 

with the Green's functions condition 

CO 

Gk (E,E") = El(E-E") + 	Gk(E',E") Fk (E,E') de 	 (11) 

Solution (10) then depends on the source function directly and the 

scattering mechanism through the Green's function condition. The 

various source and scattering mechanisms appropriate to the present 

work are as follows: 

Source Functions  

1. Single electron excitations 

2. Auger electrons 

Scattering Functions 

1. Single electron collisions 

a. low energy (< 100 ev) - spherically symmetric 
scattering assumed 
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b. high energy (> 100 ev) - Rutherford scattering assumed 

2. Plasmon creation 

The applicable source functions include the Auger process and 

pair production. For the Auger process the self-convolution F(E) is 

used as the zeroth order source coefficient with all other terms van-

ishing (the Auger process is assumed to be isotropic). In the low en-

ergy range (< 100 ev), the pair production source functions were shown 

to be 

(1)/_/. 	e
3 

bo kE  ) a JetElo (E BF ) 

S2 (1)  (E ' )= - 
1  So

(1) 
 (E , ) 5  

with higher order terms being ignored. In the high energy region 

(> 100 ev) 

e4kF3 

So
(2)

(E) - 	  
37e

2
Ep (E'-Ev) 2  

(2)/E  /. S2 	k ) = - 
1 
 So 

(2) 
(E / ) 

Again the higher order terms are ignored. 

The electron scattering mechanisms considered were electron- 

(25) 

(26) 
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electron collisions and plasmon creation. The expansion coefficients 

of these scattering functions were found to be 

Et k (1),E,E , )  = 

E / 	E' 
—

t 
 ) ; (low energy electron scattering) 	(30) 

(2) EE  /. F
t 	

) = 1 (1 + 2 -1) P (,1 — ) ; (high energy electron (34) 
E / E t 	scattering) 

 

F
t
(3) , k

'
E 	- 	

 
) . 
	2.2 P (j -- ) 

E , (5  Et  
( 

	
, (plasmon creation; E t  >> hw ) 	(38) 

The corresponding Green's functions, which are dependent only on the 

scattering mechanism, are obtained by solving equation III-11 by means 

of the Mellin transform. They are 

/ 	ll. Go
(1)  kE,E ) = 

(1) G2 	(E'E ) = 

2+ b(E-E") ; Ell 	E 
E 

 

0 	 ; Ell  < E 

2  033 
L 
	 (1E—)] 

o(., ) ; Ell 	E 

0 	 E" < E 

(31) 
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1 	 1.4 

	

[42.7 ( 
e )3. 2 

 — 	- 7.1 ( 	) 	- 0.28 ( " )
'1. 7 

En  

+ 0.13 S(E-E") ; E" z  E 

(3) 	RN G 	(EE = 

	

0 	 ; EY  < E 

With these Green's functions and source functions, equation 

III-10 can be integrated to give the internal secondary distribution. 

This is now done for the six possible combinations. 

Case 1: Low energy secondaries scattered by electron collisions. 

Ifl uk (1)(E ) 	E  m 

	

Vk(1)tv - 
	a (E) 	Gk(1)(E,..) s,(1)(e)de 

PP 	 " 
EF 

E -E N  (1) (E) = PP (E)y{: 
2 
 [onz 

 E-EF 
 E 

 F  ( E-EF Em-EF

1 	1 )1 (5o) 

1  

(E-E ) 2  ) 

CO 

N2
(1) (E) 	1 _ tpp  (E) Y 	

1 	+ 4 	(2n+3)
2
(n+1) 	(51) 

(E_EF ) 2 	E2 n=o (2n+3) 	3 
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1  [4 sinh (f` 	L) + 3 JTOmh 	2 ML) 
ET27  

+ C
o
8(E-Ea ) ; Ea  -1z E 

/ 	" 
Go

(2)  kEE ) = 

0 	 ; Ea  < E 

Co - 	2  

317:7  

1.15 	, o.8 
[o .8 (1-) 	 Ell + (EEL) 	{5.8 026 (0.7 	) 

a  E 	E 

- 3.8 sin (0.7 MCI] + C2o(E-E") 	Ell  E 

/ 	/IN G2
(2) 

 kE,E ) = 

0 	 ; 	< E 

3.63 - 1.6 ash 1.47  C
2 

- 
(3.63 - 1.6 ('Ash 1.47) 2  + 0.142  sinh 1.47 

1  [18.2 ( ElL )5.5  - 0.58 ( 	)

-1. 1] 

E" 

+ 0.25 o(E-E") ; Ell 	E 

(3)/ 	0 Go 	kE,E ) = 

(35) 

0 	 ; Ea  < E 
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X  [(1)

3/2 

 ( ;F  sin ( "72  em -51-) \  

n r  

1 2n-1-3 

Em 	EF  Nn-ri  

2 	E 	 Ji 

EF = fermi energy, Em = min(100 ev, Ep ) 

4 3 2m e kF 
Y 

Case 2:  High energy secondaries scattered by electron collisions. 

III 
(2 ) 	Nk(2)(E) 

sk  (E) - 	app  (E ) 

E max 
f 	(2) 	I/ 	 (2) 	fl% Gk 	(E,E ) Sk 	(E )dE 

E . min 

(52 ) 

No
(2) (E) 	

Pp (E) y 

  

[10 sinh c/T- Pm 
E max 
E 

 

 

1 (53) 

  

 

max 

 

min) n mi 2 Qin 7,17-  Oceh (17  Qin  lax)] EE1  [ 10 sinh min 

E 	 c
o  + 7/5-  Omb (,\/7- min_] 	N2 (E-EF) 
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C - 	2  
0 

- 2 

(2 	. 	 E
1.15 ( 	1  

N2 )(E) = - 5 4-PP (E) Y i 3.15
E 	3.15 	E 	3.15/  . max 	min 

(54) 

cos  [on  (Ema3
E 
 6 10.7  

E 

0.52 s . [_ (Elax)0.7I in Wei 2 
max 	 E max 

2 	sin  Dill  ( Eng'n  )

0.7

I - 	

E 	

)

0.7

] E min 	 E  

(E-EF) 2 	' 	2 - (3.63 -1.603h 1.4r) 2  + 0.142  sink 1.411 

2 	 3.63 - 1.6 ash 1.4r • 	C 

(2), Nx  kE) = 0 if E < 150 ev 

minn max = 100 ev, E ax = max (150 ev, E /2) nu  

Case 3:  Low energy secondaries scattered by plasmon creation 



E 
k (3) (E) 	m 	(,\ 

(3)/ 
*k 	lE) - 	  - j Gk k3f (E,Efl ) Sk (1) (e) 

p 	
de 

mt t (E) 
czpit  

No (3) (E) = 	(E) y 15.2 [E 3 ' 5  - (2E )31 

	

Pt 	 Pt 	51.5 E 

	

+0.19 	1 	 1 	
E
1.1 + 0.25 	1.  

L E  3.1 	(2EPt ) 3 ' 1 	(E-EF ) 2 j  

(2E ) 1.21 	1  f,- [ En11.2 

	

N
2
(3)(E) = pt (E) y 	 pt / 	J E

3.2 

+ 11.8 ( 	 1 	) 1 + 0.07( 1  

	

E 0 ' 6 m 	
- 

Em
3.7 	(2E  1)3.7

)E1.7 
( 	)0.6 / E7:4" 2Ept 	

Pt' 

0.13  1 

(E-EF) 2 j  

Case 4:  High energy secondaries scattered by plasmon creation. 

11K  (4)(E) 	Emax (0\  
(4) 

Sk 	(E) 	- 	= 	j Git ‘')/ (E,Ell ) Sk(2)(e) dEa 

int(E) 
min 

81 

(55) 
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()( 	(3)( 1 N 	kEi = N 	kE) with E 	and E . replacing 

Em and2Ept  respectively 

(), 	 (3) ( N2 (E) = - 2N2 kE) with E max  and Emin replacing m 

Em and 2Ept 
 respectively 

Case 5:  Low energy Auger electrons scattered by both mechanisms. 

When an Auger spectrum is present with average energy less than 

100 ev, the following expression is to be used. 

E 

N (5) (E) = K 	f(E")[11,pp (E) Go (1)(E ' ll) +
pt.  (E)Go  (3) (E E")] d" (59) 

E 

where K is an adjustable constant and Eu  is the upper limit of the Auger 

spectrum (f is non-zero only over the spectral region E t, En). The 

Go
(3)( kE,E") term is included only if the Auger spectrum is of energy 

greater than twice the plasma excitation energy. Assuming this to be 

the case 

Eu 
(E) 

 No (5) (E) = K { pipp (E) 	]f  (E) + 	PP 	j ef(e)de 	(60a) 
E

2(E)  

E")5 ' 5  - 	Efl -1.1 
+ t (E) j f(E  )  [18.2 (- 	

0.5
8 (T) 

E Pt 	 ll 

max 	min (57) 

(58) 

E
u 
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The last two integrals are done numerically. Consistent with the de-

convolution approach of the last chapter, this is usually done by the 

trapezoidal technique. 

Unlike the Nk (i) (E) . contributions discussed previously, the amp-

litude of No (5)  (E)  is uncertain because of a lack of a knowledge about 

the intensity of f(E). Consequently when reconstructing a true secon-

dary distribution theoretically the amplitude is included empirically 

through the parameter K. That is, K, rather than based on theoretical 

considerations, is adjusted so that the results of the theory most 

nearly agree with experiment. 

As will be done later, it is often the purpose of a diffusion 

theory analysis to determine the "true" Auger spectrum rather than just 

predict a secondary distribution based on an Auger spectrum obtained 

elsewhere. There are two ways to approach such a problem. One way is 

to build up a true secondary distribution theoretically except for the 

Auger contribution and then adjust f(E) in (60) point by point starting 

with Eu and working toward E until the theoretical and experimental 

curves match over the Auger region. To do this one must assume a value 

for K. Alternatively, it is possible to determine the "true" Auger 

spectrum by assuming a trapezoidal rule for (60) and attempting to 

invert the equation. No
(5) (E) is determined empirically by subtract-

ing out all other possible contributions. It is possible to do this 

but again K must be assumed. If it is difficult to estimate K from the 

data (as is often the case) one can accomplish the same task by estima-

ting where the spectrum falls to zero (that is, estimating both E u  and 

Et ). It is not difficult to show that this is the same as estimating 
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K. Carrying out this inversion results in the following expression for 

the "true" Auger distribution in the trapezoidal approximation: 

f(Ell-nAE) = fn  = 

n-1 	n-1 f. 2A 	 AE No (5) E k u-nAE=En) - 2 	fiEi  - 	LF(Ei ,En) 

	

1 	i En  1=1 	i=1 

+ 1 	LE ( 1 	8.8 
4X, 	En 	Xi  

(60b) 

En = Eu - nAE • X ' 	1 

t (E) 

t 
P 
 (E) 

P 

E. 5.5 	E. -1.1 
F(E.,E n) = 18.2 (—e) 	- 0.6 (-T--) n 	 n 

Case 6:  High energy Auger electrons scattered by both mechanisms. 

If the Auger spectrum has an average energy greater than 100 ev 

then the following is applicable: 

Eu 
(6) 	 f 	(2 )/ 	\ N 	(E) = K j f(E") 	kE)Go 

	(E'E'/) 
 + pt (E)Go (3) (E ' E")] dE" (61) pp  

E 



1 (E) 7 
N (6) (E) = [C 	(E) 	13'4' 	 f(E) o pp  

E 
 

(E) 	
Ell + 
	

Ell PP 	/‘ fkE
/ 
 ) [hi sinh 	 3/ 7  aricf 7m —AdEll 

E 

E
u 

95.5  
-1.1 

+ 	(E) r 	[18.2 	- 0.58 (-=-) 	] de

E 	E" 	
( 

 

C - 	
2  

o  
3,57- 2 

Again the integrals are done numerically and all comments made in the 

previous case carry over. 

The total internal distribution is therefore given by 

11(E) = 	Xki  Nk (i) (E) Pk (Cose) 
	

(63) 
k i 

where the normalizing factors }s ki  contain information dependent on the 

material and Pk (he) are the familiar Legendre polynomials. The k ex-

pansion in (63) is empirically found to converge rapidly and it is suf-

ficient to consider k = 0, 1, 2 only. 
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Experimentally, however, one does not observe 71(E), the internal 

secondary electron energy distribution, but rather an external current 

which is a function of the energy J(E') where E ' denotes the external 

energy of an electron which, because of the work function, had energy 

E(/ E') internal to the sample. Careful consideration of the effect 

on the internal distribution as it crosses the surface boundary and is 

collected leads to the following theoretical expression for the exter-

nal secondary electron energy distribution experimentally observed. 

J(E') = 5 { E/ EI 	w 	. ol (E ) N (i) (E ' + W) 

1 

(64) 

-[ 	(1  - 	) 	EI  I 2 	2 	 2i (E)N2 (i)(E'  

	

+ W) 2 	E + W 

where 

= 1/2 ,\1 E i  + W 

and 	 W = energy of the vacuum level. 

Equation (64) can be evaluated as soon as certain values are given as 

input information. 
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Input Information  

1. Primary electron energy 

2. Conduction band bottom 

3. Work function 

4. Fermi level 

5. Auger spectrum (spectra) and amplitude(s) 

6. Mean free paths 

This expression (equation (64)) concludes the discussion of the 

theory of electron diffusion. All the physical equations necessary to 

analyze the experimental true secondary electron energy distributions 

for the Auger spectrum and to compare the theoretical true secondary 

distributions with the experimental findings have been established. It 

is now time to turn to the problem of obtaining experimental distribu-

tions. Correspondingly the experimental instrumentation is discussed 

in the next chapter. 
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CHAPTER IV 

EXPERIMENTAL INSTRUMENTATION 

Throughout the discussion thus far it has been implicitly 

assumed that the Auger and true secondary electron energy spectra data 

were experimentally realizable. It is now time to consider the problem 

of acquiring such data by discussing the experimental requirements. 

Apparatus  

The principal piece of apparatus used to obtain the data is a 

modified Varian low energy electron diffraction (LEER) system capable of 

energy analyzing backscattered electrons (Fig. 4). The details of this 

instrument have been discussed extensively elsewhere.
45 

Consequently, 

the current presentation will be limited to a brief description of the 

general system with emphasis on those particular elements specifically 

related to accumulating Auger and true secondary distribution data. 

For purposes of discussion, the general system apparatus can be 

conveniently divided into three segments: (1) the ultrahigh vacuum 

arrangement, (2) the test or sample chamber and (3) the electronic sig-

nal processing configuration. 

Vacuum System  

In order to achieve and maintain atomically well defined crystal 

surfaces, it is necessary to perform the experiments in a high vacuum 

nominally 10 -9 torr (one torr = one mm of Hg). To obtain such pres-

sures it is essential to utilize special equipment and to observe proper 

vacuum procedures. 
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Figure 4. Photographs of Experimental Apparatus. 



Figure 5. Schematic Diagram of LEED Vacuum System. 
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Equipment.  The vacuum system is shown schematically in Figure 5. 

All tubing in the system is stainless steel connected by flanges with 

copper gaskets. The system employs three pump types: (1) cryogenic mol-

ecular sorption, (2) ion and (3) titanium sublimation. The cryogenic 

pumps use a synthetic zeolite core which, when cooled to liquid nitro-

gen temperatures, adsorbs gases readily. The ion pumps utilize strong 

electric and magnetic fields to ionize residual gases and accelerate 

them to titanium plates in which the molecules are buried. Finally, the 

titanium sublimation unit operates on the principle that fresh titanium 

adsorbs gases. A large current is periodically passed through a titan-

ium rod, subliming the outer few layers of it, and continually recoating 

the pump walls. The ion pumps and the titanium sublimation unit are 

each supported by appropriate commercially available electronics which 

supply the necessary voltages and currents. 

In addition to the tubing and pumps, the vacuum system is equipped 

with several valves, both manual and automatic. The primary function of 

the manual valves is to isolate various segments of the vacuum system for 

the purposes of performing certain experiments and changing samples. The 

automatic valves, on the other hand, are used for admitting gases in con-

trolled amounts into the system so that their reaction with the crystal 

may be observed. These automatic valves along with the pure gas reser-

voirs and delivery tubes leading to the sample chamber are collectively 

known as the gas delivery system. As before, the motors and power sup-

plies for these automatically controlled valves are commercially avail-

able. 

The final element of the vacuum system is the ovens used for con- 
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ducting bake-out operations. Heating elements capable of 250 degrees 

centigrade or more are located in the ion pump area and the gas deliv-

ery system. In addition, a removable clam-shell type oven is available 

for baking the sample chamber. Associated with the oven electronics 

are safety circuits for detecting temperature and pressure which turn 

off the ovens if the prescribed limits of these parameters are exceed-

ed (250° C and 10 -5  torr). 

Procedures. The procedures necessary to attain satisfactory 

pressures in the sample chamber are probably most easily illustrated by 

describing a typical sample changing operation. 

Assuming the system to be at high vacuum, the first step is to 

valve off those portions of the system which need not come up to atmos-

pheric pressure. Any pumps not in these areas are shut off. After 

opening the valve between the test chamber and the cryogenic chemical 

pump area, the system is slowly brought to room pressure in a dry nitro-

gen atmosphere. These higher pressures are monitored by thermocouple 

gauges. The crystal manipulator is then removed and the new sample 

properly installed. During this operation the opening created by the 

absence of the manipulator flange is covered with lint free paper to 

prevent dust particles from settling in the system. A slight positive 

pressure of dry nitrogen is maintained. After selecting a new copper 

gasket and cleaning it and the flanges with methanol, the sample holder 

assembly is replaced and bolted in position in a uniform manner. The 

dry nitrogen supply is valved off. The cryogenic pumps are then chilled 

to liquid nitrogen temperature (taking approximately one-half hour) and 

the system is "roughed" down to about five microns (5 x 10 -3 torr). 
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After having valved off the cryogenic pumps, those ion pumps which have 

been at atmosphere are put in the "start" mode and turned on. All re-

maining valves are opened. With the ion pumps started the pressure soon 

falls into the 10 -7 torr range at which time the ion pumps are put in 

the "protection" mode. After turning on the sublimation unit and degas-

sing (if necessary) the titanium filaments, the system is ready for 

bake-out. 

For bake-out it is necessary to remove the Helmholtz coils (to be 

described) from around the test chamber and any other temperature sensi-

tive electronics in the vicinity. The clam-shell oven is positioned and 

plugged into the controller circuit. The oven timing controls are then 

set (usually twelve hours for the test chamber and 8-9 hours for the 

pumps and gas delivery system) and the ovens turned on. After bake-out 

the system is allowed to cool to room temperature during which time the 

Helmholtz coils and other necessary facilities are replaced. The final 

pressures, read on a standard ionization gauge, are generally on the or-

der of 5 x 10 -10  torr. 

Test Chamber  

With a high vacuum achieved it is now possible to conduct experi-

ments all of which are performed in the test chamber. The test chamber 

is a stainless steel enclosure of approximately cubic geometry with di-

mensions 9" by 9" by 92" and containing numerous flanges for greater 

flexibility. On the side that shall be called the front is a viewing 

port for visual control and. LEED pattern observation. Directly to the 

rear of the viewing port is the electron optics containing a three grid 

analyzer, fluorescent screen/collector and a low energy electron gun 



capable of delivering approximately one microamp to the crystal surface. 

Mounted from the top is the crystal manipulator capable of rotation 

about a vertical axis and translation along this same axis. The sample 

is normally positioned directly in front of the electron gun and at nor-

mal incidence to the electron beam. On the side of the chamber, to the 

observer's left, is the ion bombardment unit for the purpose of surface 

cleaning by inert ion impact. To the right is the quadrupole assembly 

for analysis of residual gases within the test chamber. 

Electronics  

Surrounding the sample chamber is a pair of Helmholtz coils which 

serve to cancel stray magnetic fields in the target region. The appro-

priate magnetic field is created by adjusting the coil current until the 

beam exhibits a straight line of flight from the gun to the viewing port 

which is capable of fluorescing. 

Returning consideration to the electron optics, there are normally 

two modes of operation when conducting electron scattering investiga-

tions. One is the observation of diffraction patterns which result from 

coherent Bragg reflection of electrons from the single crystal surface. 

To observe such patterns, the analyzer is set with the second, or sup-

pressor, grid at a retarding potential such that only the elastically 

reflected electrons are passed. The first and third grids are grounded 

for field isolation purposes. A potential of approximately five kilo-

volts is put on the screen resulting in post acceleration of the passed 

electrons to energies capable of exciting the phosphors on the fluores-

cent screen. The result is a diffraction pattern visible on this screen. 

For the purposes of obtaining energy distribution curves the five 
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kilovolt screen potential is replaced by a nominal 225 volt collector 

potential and the suppressor grid is programmed with a ramp voltage op-

erating between cathode potential and ground. Superimposed on this 

slowly changing ramp is a small ac modulation on the order of one volt 

peak to peak. This ripple imparts an ac component to the collected 

current which is proportional to the change in the number of electrons 

collected divided by the constant magnitude of the ripple. If the rip-

ple can be considered small in comparison with the total energy scale, 

this ac component is just the derivative of the collected current --

the energy distribution. 

The ramp voltage is supplied by a voltage programmer which is 

driven by the x-axis of the xy recorder. The ac ripple (nominally 150 

cps) is supplied either by an audio oscillator or the reference termi-

nals from a phase sensitive lock in amplifier. This lock in amplifier 

is additionally used to detect the ac component (first harmonic) of the 

collected current. If the second derivative of the collected current is 

desired, one simply locks in on the second harmonic . 46  A block diagram 

of the electronic configuration is shown in Figure 6. 

Data Accumulation  

The acquisition of data in practice proceeds in an automatic mode 

with the xy recorder as the driving mechanism. The type of data being 

taken and the anticipated strength of the signal dictate the various in-

strument settings such as amplification, filtering, voltage per inch 

scale and speed of plotting. Although a certain amount of testing is re-

quired to find the optimum settings for any particular study, it can gen-

erally be stated that the more detailed readings are taken with larger 
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amplification and filter settings and smaller voltage per inch and plot 

speeds than usual so as to enhance the statistics. There are various 

controls available to the experimenter. From the standpoint of practi-

cality in accumulating data, complete control of the x and y coordinate 

scales is essential. The abscissa factor is regulated by the x-axis 

controller which has incremental choices of 1, 1, 2, 3, 4, 5, 10, 15, 

20, 25, 50, 75, 80, 85, 90, 95, 100, and 125 volts/inch plus one con-

tinuously adjustable selection. The continuous selector must be recal-

ibrated at each new setting but its availability allows one to select 

some unusual scale factor which might be desirable for a particular ex-

periment. The ordinate scale is controlled by the lock in amplifier. 

The collector current is put into a pi filter network (two resistors 

and a capacitor) and the voltage developed across the second resistor 

is read by the lock in amplifier. The filter is for the purpose of 

eliminating the dc portion of the signal so that a maximum ac signal 

can be put into the lock in amplifier without overloading it. For 

weaker signals larger resistances are used. Nominally five to ten meg-

ohm resistors are used with a one-tenth to one microfarad capacitor. 

For signals which still must be amplified a great deal, the integration 

or signal averaging time on the lock in amplifier is increased from its 

nominal value of one second. So as not to lose resolution the plotting 

time must be slowed down proportionately. A typical plotting time for 

an average distribution curve is fifteen minutes, although the modified 

recorder can plot at speeds which vary the total time from two and one-

half minutes to two and one-half hours. The longer times are often 

necessary to acquire statistically accurate Auger data. This is also 
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the case when taking second derivative or second harmonic data. The 

second harmonic is generally very weak and extraction of accurate data 

requires longer time constants to average the noise to an acceptable 

level. 

Noise is not the only source of error in the data. One element 

of uncertainty is the primary beam energy. There is a Gaussian spread 

about the desired energy of the beam which has been estimated to have 

a standard deviation on the order of two-tenths of an electron volt. 

Similarly the three grid analyzer has resolution limitations. In this 

case, the grid resolution standard deviation is a function of electron 

energy -- being smaller at lower voltages. It has been shown that the 

standard deviation varies linearly with electron energy starting close 

to zero at zero energy and going to several electron volts at 1000 ev 

electron energy.
5 

In effect, the resolution limitations smooth the 

data -- i.e., neighboring points in the distribution are weighted and 

averaged by an equation of the form 

8 

f(x) = 	F(x')G[x',x, a(x')]dx 1  

cx 

where x and x' represent the independent variables of the distribution 

function, a and are the upper and lower limits on the independent var-

iable of the energy distribution F and G is a resolution function whose 

analytic form depends on the experimental apparatus. Generally it is 

sufficient to assume that G can be represented by a Gaussian of charac-

teristic resolution width 6.
7 Such smoothing can obscure any "fine 
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structure" if it is present but the general trend of the curve should 

be satisfactorily represented. Since fine structure (millivolt fluc-

tuations) is not of interest in the current work and since it has often 

proven necessary to purposely smooth the Auger data to obtain satisfac-

tory deconvolutions,
48 

the experimental apparatus poses for the most 

part no serious limitations with respect to resolving power in the in-

vestigations reported here. On the other hand, if it is desired to in-

vestigate the details of a spectrum whose signal is down several orders 

of magnitude (empirically, larger than four orders of magnitude) from 

the fundamental, then a better electron gun and analyzer system, such 

as the electrostatic system, 49 ' 50 ' 51  is necessary. 

The results obtained with the apparatus described in this chapter 

are presented next. Included with the results are experimental points 

which are peculiar to the particular sample being studied such as clean-

ing and preparation of the sample. 



CHAPTER V 

RESULTS 

The combined experimental and theoretical results of Auger spec-

tra and true secondary electron investigations on silicon, germanium and 

graphite are presented in this chapter. Because of the varied approach-

es needed to study each material, they are treated separately herein al-

though common points of analysis among the materials studied are not re-

peated. Comparisons and contrasts are deferred until the next chapter. 

Silicon 

Preparation  

A six millimeter by ten millimeter by one millimeter silicon crys-

tal with a (111) orientation on the broad face was obtained from Dr. G. 

W. Simmons who had already prepared the crystal for LEED studies. Fur-

ther preparation was therefore unnecessary in this case although there 

are several preparation methods available in the literature (see ref. 52 

for example). Once in the vacuum system, the silicon surface was atomi-

cally cleaned by repeated Argon ion bombardment treatments (each treat-

ment averaging 45 minutes with a one microampere ion current and 300 volt 

ions). After five such treatments the pattern shown in Figure 7 was ob-

tained. A representative energy distribution from this surface is also 

shown. The characteristic losses adjacent to the elastic peak are due 

to excitation of plasma oscillations within the valence electron gas by 

primary electrons. Electron losses to such a collective phenomenon are 

100 
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of extreme importance and have been observed in all materials studied. 

There have been numerous studies of the solid state plasma phenomenon. 

Therefore it will not be treated here but results will be used as 

needed. 

Auger and True Secondary Distributions  

Based on x-ray data the L2,3 level in silicon lies some 100 elec-

tron volts below the vacuum level. It is therefore expected that an 

Auger spectrum involving this shell and the valence band should occur 

in the 100 volt energy range of an energy distribution resulting from 

primary electrons of energy greater than 100 ev. However, discernible 

results were not visible below a primary energy of 200 ev. This is pro-

bably due to a rapid falling off of the cross section for ionization by 

way of the L shell. Figure 8 shows the true secondary portion of the 

electron energy distribution from a clean silicon surface for a primary 

energy of 1000 ev. The Auger distribution which occurs at roughly the 

expected energy region is seen to be rather prominent. Nonetheless the 

background and distortion effects discussed earlier are quite apparent 

and cannot be ignored. 

Analysis of these results proceeds qualitatively as follows. 

Numerous (10 to 20) curves of the Auger spectrum and true secondary dis-

tribution are taken for a given surface condition (clean for example) . 

The distributions are normalized to the same area and averaged to mini-

mize any spurious effects. The experimental points thus obtained in the 

Auger region are then read into a computer program which evaluates equa-

tion 111-64 and adjusts the Auger spectrum in such a manner that agree-

ment is obtained between the theoretical and experimental results. The 
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distribution thus obtained is considered to be the "true" Auger spectrum 

and is to be used to solve for the transition density. Confidence as to 

the accuracy and applicability of the theory is established by comparing 

the predicted slow peak with the empirical observations. 

Analysis of Secondary Distribution  

In order to illustrate the above procedure the analysis for sili-

con is now presented. Starting with the averaged experimental data, the 

"true" Auger distribution is found by requiring consistency between the 

theory and experiment. This is performed by a computer procedure as men-

tioned above in which each point along the Auger spectrum is considered 

sequentially starting with the high energy limit and varied so that sub-

sequent to the operation of diffusion agreement is attained with the ex-

perimental results. 

There are two basic steps in accomplishing the objective of 

obtaining the "true" Auger spectrum. Step one involves subtraction of 

the background and step two corrects for the inelastic scattering of the 

Auger electrons. In order to carry out Step one it is recognized that 

there are five contributions which give rise to the observed true secon-

dary electron energy distribution. These are just the five cases dis-

cussed in Chapter III. One of these is the Auger contribution which is 

just the part needed to go on to Step two. In order to subtract from 

the data the contribution of the other four cases (low energy and high 

energy singly excited electrons scattered by electron collisions and 

plasmon creation) equation 111-64 is evaluated for these cases. 
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/  7 
J(E') = 	E/

E 	
i (E) N (i)  (E' + W) , 	o (111-64) 

-r 	(1 	
2  

 142 	)  	E' 	XX2i (E)N2 (i)(El+W)1 
E l  + W) 	E /  + w 

where 

= 1/2 / E W  
q 2m 

and 

W = energy of the vacuum level . 

In these calculations for silicon 1
PP 

 (E) is assumed to be a con- 

stant 270A53  and 1p1 (E) — 101. 43  The X's are given values such that each 

contribution is commonly normalized for silicon if the mean free paths 

were the same but weighted proportionately toward the smaller value for 

differing mean free paths as in the case here. The fermi level occurs 

at 4.45 ev with respect to a zero of energy which is determined by the 

following considerations. During the diffusion process new secondary 

electrons are constantly being created by the elevation of crystal elec-

trons within the fermi volume to higher vacant states. The closer an 

electron is to the fenmi surface the more likely it is to be affected. 

Not as much energy is needed to excite it to an unoccupied level. To 
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formally take such a matter into consideration would be extremely diffi-

cult. Thus in the same spirit embodied in the theory thus far, an effec-

tive penetration of the fermi volume below the surface is imagined. This 

penetration depth level is taken as the zero of energy. Electrons below 

this point form the "hard core" and are assumed not to participate in a 

way described by the theory of Chapter III. If the fermi level is taken 

at the midpoint of the band gap as is expected for a pure intrinsic semi-

conductor at zero degrees Kelvin and the penetration depth is five elec-

tron volts below the bottom of the conduction band, then for a band gap 

of 1.1 ev the fermi level occurs at 4.45 ev as mentioned. The choice of 

penetration depth is hardly more than an educated guess based on a review 

of Kane's work. 54 However, the results are not overly sensitive to the 

choice and a nominal value of five volts below the bottom of the conduc-

tion band seems to be a good choice for the semiconductors studied. In 

metals, on the other hand, one would choose the bottom of the conduction 

band as the zero of energy. 

With a calculated expression for J(E') for cases one through 

four the Auger contribution is obtained by subtracting this J(E') from 

the experimental data which have been digitalized so that this can be 

done automatically. There is one complication with this operation: the 

experimental data and the calculated J(E') which is to be subtracted 

from the data to give the Auger contribution are not in the same units. 

The experimental data is in arbitrary units because of the extreme dif-

ficulty in an absolute calibration of the experimental equipment. Con- 

sequently, before the subtraction operation defined above can be logical-

ly carried out it is necessary to multiply (or divide) one curve or the 
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other by a factor so that they will be suitably expressed. This factor 

can be determined if one point outside the Auger region is known -- the 

two curves can then be matched at this point. Although straightforward, 

experience has shown that this is difficult to accomplish accurately in 

practice. There is, however, an alternative way to proceed which has 

proven to be satisfactory and is now incorporated as an automatic part 

of the computer program. The logic revolves around the requirement that 

the "true" Auger spectrum finally obtained by the analysis must be zero 

at Eu and E as defined. If both Eu and E (the limits of the Auger 

spectrum) can be determined from the experimental data (or at least es-

timated with reasonable accuracy) then the desired factor is determined 

uniquely. The procedure operates as follows: a value for the desired 

factor, call it N., is estimated (if one has no idea what the factor may 

be, a completely arbitrary choice will work just as well). Thus, for 

example, suppose it is assumed that the theoretically obtained J(E') for 

cases one through four should be multiplied by two in the case of sili-

con. Then J(E') is multiplied by this factor (two), subtracted from the 

experimental data to obtain a trial Auger contribution which is in turn 

solved for the trial "true" Auger spectrum. This last step is done, 

again in the case of silicon, by the use of equation III-60b. 

f(Eu-nAE) = fn  = 

n-1 	n-lf  
(5) ( 	\ 	2AE 	f.E. - N 	kEll 	n  -nAE=E) - 	 — F E., n 

 Ei 	
E ) o  1 1 . E

2 

i=1 n 1=1 	1=1 

4y1  -I-  1 	AE 	
8.8 	 + –E-- (1 x
1 1 

(III-60b) 
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(E) 
E
n 

= Eu - na • X1  
PP 

E. 5.5 	E. -1.1 
F(Ev En) = 18.2 (-7) - 0.6 (-7) 

with 
NO  (E) E l  + W  

(data - factor X J(E i ) 1-  ) E' 

Equation III-60b is applicable not only to silicon but also for any mate-

rial which has the Auger spectrum of interest at less than 100 ev. If 

f(E ) turns out to be zero then the correct factor was chosen. If f(E ) 

is positive then n should be larger and vice versa. Therefore i. is ad-

justed until f(E ) is zero. The computer program does this by altering 

X, in steps of unity until the closest digit is found, then altering in 

steps of 1/10 until the closest value to one decimal is found and so on. 

When the proper n is determined the "true" Auger spectrum is printed out 

and punched on computer cards for the purpose of transition density anal-

ysis by a subsequent program. The "true" Auger spectrum determined in 

this way for silicon is shown in Figure 9 where Eu and E are chosen as 

100 ev and 40 ev respectively. 

If the "true" Auger spectrum is known either from an independent 

study or from a previous analysis as above, it can be used in the theo-

retical prediction of the true secondary electron energy distribution. 

This, of course, is done by evaluating III-64 for the various cases and 

the appropriate choice of values for the parameters. Thus for the case 

of silicon the results which are shown in Figure 10 are obtained from 

III-64 for the following parametric values: 1p1 = 101, 1PP 
 = 2701, pri- 
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mary energy E = 1000 ev, work function cp = 4.85 ev, 55 band gap Eg  = 1.1 

ev, and plasma energy Epl = 16 ev. Other parameters used which hold for 

most other materials as well are cutoff energy E m  = 100 ev (most energet-

ic low energy electron), high energy minimum Emin=100 ev, high energy 

maximum Emax  = Ep  /2 = 500 ev and the number of terms kept in the infinite 

series in N2 
(1) / 
-EiNmax = 10. In Figure 11 the theoretical results are 

compared with the experimental findings after adjusting them to a common 

maximum. The fit appears satisfactory implying that the diffusion theory 

has not ignored any important effects for the case of silicon. Similar 

results will be shown to hold for germanium. It should be mentioned that 

the contribution to the distribution from the N 2 terms is about ten per 

cent of the total suggesting that only about one per cent is being ignored 

by keeping only the first three terms of the Legendre Polynomial expansion. 

Auger Spectrum Analysis  

As shown above the result of the diffusion theory analysis is the 

predicted true secondary spectrum and the internal Auger spectrum. Using 

the formalism developed in Chapter II it is possible to analyze this Auger 

spectrum to obtain an expression for the transition density. In this sec-

tion such an analysis is presented for silicon. The approach is given in 

sufficient generality to be directly applicable in the analysis of other 

materials and, consequently, is not repeated when offering the results 

for the other materials studied. 

A typical analysis -- and the analysis for silicon -- proceeds in 

the following steps. 

(1) An expression for the "true" Auger distribution is obtained 

using the diffusion theory analysis described above. 

(2) The self-consistent derivative expansion is applied to the 
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distribution to obtain an approximate solution. For purely 

qualitative considerations, one could stop at this step al-

though a knowledge of the errors of the method should be 

known. 

(3) The Unfold technique is also utilized to obtain an approxi-

mate solution. In general this approximate solution is 

better than that of (2) but there is more labor involved in 

obtaining results. Again a knowledge of possible errors is 

important. 

(4) Comparison is made between the results of (2) and (3) and a 

final estimated solution is established based on a knowledge 

of the possible errors generated by methods (2) and (3). 

(5) This new estimate is put into one of the Laplace transform 

methods and, if necessary, refined until a result consistent 

with estimated experimental limitations is obtained. 

These five steps are now discussed in detail in the following paragraphs. 

Having obtained the Auger spectrum by the method of the last 

section the derivative expansion, based on equation II-42, is employed 

first. 

t  
g(t) - 	{1' 1( ) ( 	1 

2 

Sfn(i-)fi(V)dY 	
(II-42) 

g(o) 	 2g(o) )  0  
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+ fg(Lt / \ 2 /J4e( tYOdxdy + . . .1 \ 2  

g(o) = ,J e(o) 

It is clear from the expression that the solution does not depend direct-

ly on a choice of the mathematical representation for the Auger distri-

bution f(t). However, because it must be possible to estimate the first 

and second derivatives of f(t) it is sometimes convenient to express the 

spectrum as some polynomial expansion. Since it is used elsewhere in 

the analysis, a power series expansion is often a desirable choice. 

This is not always sufficient justification to use the power series rep-

resentation however. In situations where it is difficult to express the 

Auger spectrum accurately as a power series other representations such 

as Fourier expansion or linear segmentation can be successfully and eas-

ily used. The Auger spectrum can be written in terms of a power series 

as 

n 

f(C) = 	fici 
	

(1) 

i=1 

where the f.'s are chosen so as to yield a least squares fit to the data. 

For silicon a reasonably faithful representation is obtained for n = 21. 

A linear segmentation approach is also possible for silicon. In this 

case the Auger spectrum is partitioned into 0.5 ev intervals and the 



115 

value of the y-coordinate is recorded in a manner identical to the linear 

segmentation discussion of Chapter II. The derivative at the end of the 

ith partition is expressed 

f. - 
f. 	- f 
1+1 	i-1 

2A 
(2) 

where A is the partition width. The second derivative is expressed 

f.,, - 2f. + f.
-1  n 	1 7'1 	 1  fi  - 

6
2 (3)  

At i = 0 these expressions are not valid. The first and second deriva-

tive at zero is estimated by assuming the second derivative to be the 

same as f1
1/ and the first derivative is written 

f 1  = f - Af 0 	1 	1 

The necessary integrations in 11-42 are performed using the trapezoidal 

rule. It is typically convenient to rescale the energy axis so that 

o g t g 1 for all t. Such a step often guarantees the convergence of 

the expansion. The evaluation of expression 11-42 for the polynomial 

and linear segmentation representations results in the approximate sili-

con transition density solution shown in Figure 12. 

Note the tendency of the solution to go negative for greater 

(4) 
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values of the band energy C. This unphysical tendency seems to result 

from the dominance of the first term in the series. It is possible, 

however, to make a qualitative correction to the approximate solution 

and thereby obtain a better estimate of the transition density. The 

successively higher terms in this expansion for the extended transition 

density are just higher order convolutions of the Auger spectrum first 

and second derivatives. A smoothing effect is likely. Thus, most of 

the important structure of the transition density is expected to be con-

tained in the first few terms. The sum of all terms ignored should have 

the general character of a rather smooth curve starting at zero and mon-

otonically changing as C approaches C l . From the definition of the ex-

tended transition density function es), the solution is expected to be 

identically zero for values of C greater than C.  Since C l  is known to 

assume a value equal to one-half the Auger spectrum spread, C i  is ob-

tained through a knowledge of the Auger distribution. The correction 

to the approximate solution is such that the solution will be approxi- 

mately zero on the interval [s1, 41]' Moreover, the error exhibited by 

the solution on this interval is expected to be more or less the same as 

on the interval [o, C i]. Now expression II-42 is not strictly correct 

on the interval [s 1,  2C 1] because the discontinuity at C i  has not been 

explicitly considered. Taking this into account results in a delta 

function which, when integrated, gives an additional term on the right 

of II-42. The additional term is 

1 	, 
- 	(g(t - c

l)g(C 1)) ; t > C i  (5) 



118 

Using this an expression for g(t) on [C
l' 

2C
1
] can be obtained and used 

as an estimate of the error in the solution due to the omission of the 

higher order terms. If desired, a new estimated transition density can 

be obtained by adding the negative of the results on [C 1 , 2C 1] to the 

solution obtained on [o, C i]. Once corrected the amount of uncertainty 

in the new estimate of the transition density is anticipated to be at 

most twice the amplitude of the average structure in the [C 1, 2C
1
] in-

terval. The results of such an operation for silicon are shown in Fig-

ure 12. 

The next step in the analysis of the Auger spectrum data is to 

return to the original distribution and obtain a solution by use of the 

Unfold technique which was discussed in Chapter II. As required by the 

method, the analysis begins by dividing the data into n equally spaced 

divisions and recording they ft coordinate of the data at each division 

point. For silicon a partition of clC = 0.5 ev is selected. The solu-

tion, which is in the form of a histogram, is obtained by evaluating 

each of equations 11-24. 

g1 = 
2f

1  (11-24 ) 
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Because of the sensitivity of the solution to the initial points, 

wild oscillations often begin to dominate the solution as C approaches 

C l . This can usually be satisfactorily reconciled by employing a three-

point smoothing program. Thus each data point is replaced by f. = 

fi fi+1 
+ f. + 

3 

sary, this smoothing procedure is repeated twice more. On occasion it 

is found that the resulting solution still does not behave in a satis-

factory manner. In such instances, improvement in the solution is usu- 

ally obtained by truncating the first point or two from the data and pro-

ceeding from there as the new zero. (Recall that there is a finite un-

certainty in the choice of Eu). This is especially effective if the 

original f / (0) is small. In the rare case when this is still not suffi-

cient, the data points in the vicinity of the origin can be replaced by 

a "smooth" function such as f(C) = C
2 . This is usually restricted to the 

first several partitions (generally < 1 ev).
27 
 For silicon it is neces-

sary to truncate the first two points as well as smooth the data. The 

solution for the transition density in silicon by the method of Unfold-

ing is given in Figure 13. This is to be compared with the result ob-

tained earlier by the self-consistent iterative technique. Based on a 

. Equations 11-24 are then re-evaluated. When neces- 
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Figure 13. Transition Density Solution for Silicon (111) Obtained by the Unfold 
Approximation. 
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comparison of these two, a probable solution can be inferred. 

Generally speaking, there is no cut and dry method for the infer-

ence of this probable solution. However, an understanding of the possi-

ble sources of error in the two estimates can serve as a guide. The 

following statements can be made about the two types of transition den-

sity analysis considered thus far. 

(1) Both methods tend to be accurate for small  C although the 

Unfold is generally superior. 

(2) The self-consistent derivative expansion method tends to 

overlook the fine structure as well as be somewhat less 

than the correct value for C approaching C i . 

(3) The Unfold technique averages around the correct value but 

tends to break into unphysical oscillations for C approach- 

ing  Cl .  

Based on these considerations the result shown in Figure 14 is selected 

as the probable solution for the transition density of clean silicon 

(m). 

The final step in the analysis is a check on this transition den-

sity solution by use of one of the Laplace transform methods. The easi-

est of these methods to apply is usually the linear segmentation approach 

although the others are not significantly more difficult. For the linear 

segmentation method equation 11-38 is used. 

n 	 2n-1 	 1 

g1e
- ise = r2 

Le  
f.e - (j+1)se l 

J2 

,3  
i=1 	 j=1 

(11-38) 
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The estimated solution from above is divided into n segments -- the ith 

segment having the value gi . The left hand side of the equation is 

then evaluated for the various values of s. For mathematical conven-

ience, these values of s are generally chosen so that exp(-se) falls in 

the interval (1,2) although this is by no means essential. The result 

is some function of s. Similarly the right hand side is evaluated us-

ing the data points. A probable experimental error is associated with 

each of the data points so that the result of evaluating this side of 

the equation is not a line but a band of values. If the trial solution 

used generates a function of s (the left side of equation 11-38) which 

falls in the allowed band, then the solution is considered satisfactory. 

If not, the transition density function is modified until this condition 

is met. This is done by modifying gn  first in such a manner that the 

solution moves toward the allowed band; then gn-1 is adjusted and so on. 

This procedure begins with gn  because the methods used to estimate the 

trial solution are most likely to be in error for C near C l . A similar 

philosophy is employed when utilizing one of the other two Laplace trans-

form formulations as a check. For silicon with a value of n=30 and a 

ten per cent margin of error in the data, the estimated solution produces 

a function of s which falls within the ten per cent band and hence no 

further adjustments are necessary (Fig. 15). 

Silicon With Oxygen Contamination  

While carrying out the necessary experimental work it was observed 

that the Auger spectrum from silicon is sensitive to surface conditions 

(Fig. 16). To investigate this observation further, the silicon crystal 

was reacted with 02 at a pressure of 5 X 10
-7 torr for fifteen minutes. 



Figure 15. Plot of the Forcing Vector Generated by the Solution 
in Terms of the Laplace Frequency Variable Compared 
with the Experimentally Determined Allowable Limits. 
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Figure 16. Comparison of the Silicon (111) Auger Spectrum From a Slightly Contam-
inated Sample with That From a Clean Surface. 
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For two of the fifteen minutes the crystal was heated to 600 degrees Cen-

tigrade. After returning to a background pressure of 1 X 10 -9  torr, a 

diffraction pattern like that of Figure 17 was observed. The surface is 

clearly contaminated. Electron energy distribution measurements and dif-

fusion theory analysis results in a characteristic Auger distribution 

somewhat different from that of the clean system (Fig. 18). All measure-

ments were taken with the same instrument settings as the clean silicon 

data so that direct comparisons could be made. Likewise, the transition 

density analysis proceeded in a manner identical to that reported above. 

The results seen in Figure 19 are to be compared with the transition den-

sity for the clean Si(111) surface. 

Germanium 

Preparation  

Several germanium single crystals oriented along the (111) and 

(100) surfaces were obtained from Dr. F. Jona of IBM Watson Research Cen-

ter. Each crystal had been mechanically cut to approximately li t  x 3/8" 

X 3/32". The preparation of the samples for the electron scattering stud-

ies was carried out in three steps. First, the sample was mechanically 

polished by hand using a medium nap polishing cloth and a 0.3 micron fol-

lowed by a 0.1 micron polishing solution. The germanium crystal was then 

chemically etched using the technique given by Tegart. 56  Finally, the 

sample was polished using the sodium hypochlorite procedure described by 

Reisman and Rohr. 57 All samples were quenched in methyl alcohol before 

insertion into the vacuum system. After Argon ion bombardment of the 

germanium surface in a manner similar to the silicon treatment satisfac-

tory diffraction patterns characteristic of the (111) and (100) structures 

were obtained. 



Figure 17. LEED Pattern From Silicon (111) Surface Heavily Contaminated with Oxygen. 
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Figure 18. Corrected Auger Spectrum Resulting From Oxygen Contaminated Silicon 
(111) Surface. 
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Figure 19. Transition Density for Oxygen Contaminated Silicon (111) Surface Com-
pared with Clean Surface Results. 



130 

Auger Spectrum and Transition Density  

Germanium is the element following silicon in group IV of the 

periodic chart and hence the K, L, and M levels are all filled. Auger 

processes involving the valence band and any one of these low lying 

levels are possible. However, because of energy limitations with the 

experimental apparatus only the M shell interaction was observed. Ac-

cording to characteristic x-ray data, 58 the M shell has five sublevels: 

one at about - 175 ev, two about - 110 ev, and two about - 30 ev. Al-

though evidences of Auger spectra arising from these three regions were 

observed 	- 140 ev, - 90 ev, - 50 ev) only the Auger spectrum origi- 

nating from the highest M level was sufficiently strong to obtain satis-

factory data. The Auger spectra resulting from diffusion theory analy-

sis (Figures 20 and 21) for the (100) and the (111) surfaces are shown 

in Figure 22. The values used for the various parameters in the diffu-

sion theory were the same as silicon except for the work function cp = 

4.5 ev, band gap Eg  = 0.85 ev, and primary energy Ep  = 950 ev. The 

transition density solutions obtained by the methods already described 

are shown in the next figure. 

Graphite  

The third and final system to be considered is the basal plane of 

single crystal graphite. 59 Also a member of group IV, the hexagonal lay-

ered carbon structure has properties which resemble both semiconducting 

and metallic materials. The conduction and valence bands touch at one 

point only (the I' or K = 0 point) according to Corbato's calculation60  

and thus the system can be viewed as a zero band gap semiconductor. None-

theless, there is generally a sufficient number of electrons thermally 
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Figure 20. True Secondary Energy Distributions in Germanium 
(a) Experimental Results for 950 Electron Volt 
Primaries (b) Theoretical Results 
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Figure 21. Comparison of the Theoretical and Experimental Results for the True 
Secondary Electron Energy Distribution From Germanium. 
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Figure 22. Auger Spectra for Germanium After Correcting for the 
Effects of Background and Inelastic Scattering Dis-
tortion (a) for (100) Surface (b) for (111) Surface. 
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Figure 23. Transition Density of Germanium (a) (100) Surface (b) 
(111) Surface. 



135 

excited to the conduction band for it to conduct reasonably well. Fur-

thermore, the wide spacing between the various planes justifies treating 

the system as a two dimensional entity at least as a first approximation 

(this is in fact the basis of Corbato's band calculation). 

Preparation  

The graphite single crystal is initially prepared by cleaving it 

in the air and immediately locating it in the vacuum system. Although 

a diffraction pattern is then attainable, the crystal is not atomically 

clean. This objective is achieved in the following way. Beginning with 

a background pressure of 5 X 10-10  torr, an 02 treatment is administered 

in which oxygen is allowed to react at a pressure of 5 x 10-6  torr and an 

optical pyrometer temperature reading of 900 ° C for 30 minutes. Follow-

ing this the crystal is allowed to cool slowly to room temperature and 

the sample chamber is permitted to return to the standard background 

pressure. This having been accomplished, the crystal is flashed to 1500 ° C 

for five seconds for the final step of cleaning. Figure 24 demonstrates 

the LEED patterns at various stages of the cleaning procedure. The repro-

ducibility and cleanliness of the crystal surface is established in three 

ways. First of all, the LEED patterns must be sharp and clear. Secondly 

the energy distribution curves must be entirely reproducible. Finally, a 

residual gas analysis must reveal no gas desorption. 

Use of the quadrupole residual gas analyzer interestingly revealed 

the tendency of graphite to adsorb CO, contrary to previously published 

results. During the oxygen treatment it is observed that the carbon mon-

oxide background increased markedly implying that the oxygen was indeed 

reacting with the carbon. In Figure 25 the mass spectrum (actually m/e) 



(a) Before cleaning the 
sample. Notice diffuse 
background. 
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( b) After 02 exposure a 
5X10- 6 Torr for 30 
minutes during which 
crystal heated to 900 C. 

( c) After 5 second flash 
to I 500°C. 

Figure 24. LEED Patterns for 70 Volt Primaries During Cleaning 
Procedure of Basal Plane of Graphite. 
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Figure 25. Residual Gas Analyzer Mass Spectrum Traces During Cleaning Procedure 
of Graphite. Numbers in Parentheses Refer to Relative Scale Sensi-
tivity. 
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is displayed at various times during the cleaning procedure. Notice, 

too, that during the flashing procedure a steady evolving of carbon mon-

oxide is evident. This apparently means that carbon monoxide must have 

been physically adsorbed to the graphite surface. However, since there 

are no observable changes in the diffraction pattern, the adsorption 

must not be ordered. 

Auger Spectrum and Transition Density  

Because carbon has a low atomic number, graphite has only the K 

shell filled. Therefore, the only possible Auger transition is that 

which appears in the true secondary distribution at an energy of about 

270 ev (Figure 26). This relatively high energy removes the Auger spec-

trum from the slow peak making corrections for background contributions 

of minor importance. Moreover, because of the two dimensional nature of 

the system the effects of distortion due to inelastic scattering are ex-

pected to be minimal. Nonetheless, some scheme to arrive at an express-

ion for the true Auger distribution is needed. This is done in the case 

of graphite by correcting only for the effect of refraction across the 

surface potential, ignoring background and inelastic scattering distor-

tion. Based on the earlier comments this should introduce only a small 

error. The resultant Auger spectrum is given in Figure 27 followed by 

the transition density solution next. 30 

Summary of Data Analysis Technique  

In this section a step by step summary of how the analysis of 

characteristic Auger spectrum data proceeds is presented. 

(1) The experimental data throughout the Auger region is digital-

ized (that is, each point is given an x and y coordinate). 
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Figure 26. Emitted Electron Energy Distribution for 425 Elec-
tron Volt Primary Electrons on the Basal Plane of 
Graphite Showing the KVV Auger Peak. 
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Figure 27. Corrected Auger Spectrum for the Basal Plane 
of Graphite. 
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Figure 28. Transition Density of Graphite. 
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(2)A value for E
u and EL, 

the limits of the Auger distribution 

are selected. Alternatively, if Et  is highly uncertain or unknown a 

value for the Auger amplitude K is estimated. 

(3) The data is rescaled such that the y-coordinate at Eu 
is 

zero. 

(4)Equation 111-64 is evaluated for the cases i = 1, 2, 3 and 4 

and adjusted so that they-coordinate at Eu  is zero. Values for fermi 

level EF, the work function cp, the primary energy E , the mean free 

paths and any other required parameter are included at this point. 

(5) The results of step (4) are subtracted from the digitalized 

experimental data after multiplication by at = 1/K (K is the estimated 

Auger amplitude). At this point x is just an initial estimate subject 

to refinement if E is assumed known and K unknown. 

(6) The result of (5) is corrected for refraction across the sur-

face boundary to obtain N0 (5 or 6) (E). 

(7) This NO 
(5 or 6) (E) is then used to determine f(E), the "true" 

Auger spectrum. This is done either by 

(a)Randomly adjusting f(E) in equation III-60a or equation 

111-62, whichever is applicable, starting at Eu  and working toward Et  so 

that each point predicted by the distribution matches the experimental 

data before going to the next point, or 

(b)Inverting equation III-60a (which resulted in III-60b) or 

equation 111-62, whichever is applicable, and putting the experimentally 

determined N0 
(5 or 6)

(E) in the resulting equation. 

In either case above, the analysis goes back to step (5) and is 

repeated for varying x until f(Et) = 0 as required. That is, neither 
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(a) nor (b) are said to give the "true" Auger distribution unless they 

predict f(Et„) = 0. This condition can always be met by adjusting Y., . 

Alternatively, if n is fixed, E is variable and is determined to be 

that point at which f(E ) is zero. Whether one chooses to vary K or E 

depends on which can be estimated most accurately. 

(8) Step (7) results in the "true" Auger spectrum which can be 

analyzed to determine the transition density. The distribution is gener-

ally first analyzed by the self consistent derivative expansion (equation 

11-42). For purely qualitative considerations it is often satisfactory 

to keep only the first term (a f'(t/2)). For more complete studies, at 

least three terms must be kept. 

(9)A better estimate of the transition density can be made by 

employing the Unfold approximation (equation II-24). It is often neces-

sary, however, to employ smoothing and/or truncation procedures in this 

analysis in the manner discussed earlier. 

(10)Based on steps (9) and (10) a final estimated transition 

density solution is established by a knowledge of the possible errors 

in the two techniques. 

(11)This new estimate is refined, if necessary, by inserting it 

into one of the Laplace transform methods and adjusting the solution, 

beginning at c i, until agreement within estimated experimental limita-

tions is achieved. 



CHAPTER VI 

DISCUSSION OF RESULTS 

Although the transition densities for the various group IV ele-

ments studied are now known, it remains to consider in greater detail 

the significance and usefulness of such a quantity with particular ref-

erence to the materials studied. It is to be recalled that the transi-

tion density according to first-order time-dependent perturbation theory 

is proportional to a product of the density of occupied states and the 

square root of the spatially integrated square of the Auger matrix ele-

ment including exchange. If the latter quantity is a rather monotonic 

function of the energy then it is useful to compare the results of the 

Auger electron spectroscopy with the theoretically obtained density of 

occupied states and band structure as well as with other spectrographic 

methods. In this chapter such comparisons are made not only to lend 

credibility to Auger electron spectroscopy as a valid technique but al-

so to infer information about the electronic nature of the materials 

studied. 

Comparison with Other Results  

In Figure 29 the transition density obtained for silicon is shown 

on the same energy scale as two of the accepted energy band calculations. 

It is to be noted that the maxima in the transition density occur at en-

ergies very close to energies where the E versus k curves cross the Bril-

louin zone boundaries. This is the expected behavior. At the Brillouin 

zone boundaries, it is easy to see that v = dE/dk 0 (v is the 
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average velocity of a Bloch state). The expression for the density of 

states in the one electron model is given by 

N (E ) 	V 	dS 

h(2n)3 I  Ivi 

where the integration is over a constant-energy surface in the Brillouin 

zone. This predicts that the density of states should be large when the 

energy surfaces cross points of small v. The state density for silicon 

has been calculated by Kane61 and is compared with the transition density 

in Figure 30. Also included in the figure is the result of a soft x-ray 

study62 of silicon. Since the transition density includes the density 

of states in a dominant manner the results shown are not surprising and 

give support to Kane's calculations. The difference in the results of 

the soft x-ray work may result from contaminated surface conditions (or 

x-ray absorption). However, the author of that work makes no report on 

the state of the surface. 

The comparison between the energy band calculations and the tran-

sition density for germanium and graphite are given in the next two fig-

ures. Structure comparison can be made in a manner analogous to that de-

scribed above. For the case of germanium the transition density results 

are also compared with the work of Hagstrum
67 

who used ion neutraliza-

tion spectroscopy. The method is similar to characteristic Auger elec-

tron spectroscopy except that the Auger mechanism is initiated by the 

neutralization of an inert gas ion (e.g. helium) accelerated to the vi-

cinity of the surface. The transition density result for germanium is 
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seen to be similar in character to that of silicon. This is attributable 

to,  the very similar energy band structure of the two materials. The ger-

manium results given here by the method of Auger electron spectroscopy 

are reasonable. The same is true for the graphite results. The compar-

ison with the two dimensional band calculation of Corbato indicates that 

the transition density peaks where the a and 7 states cross the Brillouin 

zone boundaries as expected by the arguments above. The germanium sur-

faces showed sensitivity of the Auger spectrum to surface adsorption as 

in the case of silicon. This was not investigated quantitatively how-

ever. Graphite did not demonstrate such a tendency. This, perhaps, can 

be explained by the fact that at room temperature graphite is reluctant 

to adsorb most atmospheric gases; the only adsorbed gas detected being 

carbon monoxide as mentioned earlier. However, this adsorption is appar-

ently weak because (1) no diffraction pattern showing ordered adsorption 

was observed as one would expect if the bonding were strong, and (2) 

simply heating was generally sufficient to clean the surface. Moreover, 

the surface tended to stay clean for considerable lengths of time (on 

the order of one or two days). Consequently, it is not expected that 

such a weak adsorption would affect the electronic structure signifi-

cantly. 

It is by now evident that the predominant characteristic of the 

comparisons is the high correlation of the peak location and low correla-

tion of the corresponding amplitudes. This unfortunately appears to be 

typical of the energy band work to date. And likewise with the technique 

offered here there is not an insignificant uncertainty in the amplitude 

information due to the several corrections which must be made. One must 
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therefore be cautious with respect to how much emphasis is placed on the 

abvolute amplitudes given. However, relative amplitude comparisons such 

as those made between two different surface conditions on the same crys-

tal are probably sound because the same sort of uncertainty enters into 

both results. Furthermore, the locations of the maxima and minima offer 

a good deal of information in themselves and shifts in these probably im-

ply greater significance than amplitude modifications. Such shifts are 

observable without undo difficulty in the present technique. 

Effects of Surface Modification  

When oxygen is adsorbed on a silicon surface the transition den-

sity and likewise the Auger spectrum are modified. Similarly in german-

ium the (111) and (100) surfaces reveal different transition densities 

and Auger spectra. These are clearly seen in the results already pre-

sented. As a consequence of this sensitivity to surface modification 

characteristic Auger electron spectroscopy offers not only the ability 

to detect surface changes but also the possibility of interpreting the 

effects of these changes on the electronic structure of the system. 

In the oxygen contaminated silicon system the primary alteration 

of the transition density is in the vicinity of the top of the valence 

band, the lower-lying states being relatively unaffected. This is rea-

sonable since one might intuitively expect the less tightly bound states 

to be more easily perturbed. However the perturbing effect is manifest-

ed most probably on the so-called surface states as opposed to the bulk 

states. This is because the bulk states by their very nature are unaf-

fected by the presence of a surface whereas the surface states are de-

fined in terms of the boundary conditions that exist there. The sensi- 
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tivity of the Auger spectrum to the surface conditions seems to suggest 

that the surface states play an important role in the transition den-

sity. Apparently then the modification in the transition density wit-

nessed in the oxygen contaminated silicon system is a demonstration of 

the presence of new and different surface states resulting from the new 

potential array at the surface. In addition the bonding character of 

the foreign species should influence the results but any quantitative 

statements about this aspect would have to be based on a careful study 

of adsorption and are beyond the scope of the present effort. 

There is yet one problem remaining to be discussed which 

arises from the apparent contradiction between the observed results and 

the sensitivity to the surface. On the one hand the transition density 

has been shown to be nicely consistent with the energy band results 

based on a bulk state model (e.g., energy band calculations and density 

of states) whereas on the other hand a heavy dependence on the surface 

state structure has been demonstrated. This apparent inconsistency is 

not actually a problem and can be resolved by considering the character 

of the bulk and surface states of a clean system. 

The energy band crystal problem can be conveniently divided into 

two parts: 

(1) The "unperturbed" infinite crystal that has no surface 

(i.e., periodic boundary conditions). 

(2) The effect on this unperturbed lattice when a surface at 

z = constant is introduced. 

In the first case, all three dimensions are periodic and kx y  , k , and kz 

are all good quantum numbers. Any acceptable wave function must obey 
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the fundamental Bloch condition 

1-1[ • g 
*
n 	+ R 

 ) = e 	v  *n (V, 

where 

R = vlal + v2a2 + v3a3 

are the symmetry translations in three dimensions. 

The second case (that of the perturbed lattice) where a surface 

has been introduced can be thought of as creating a reduction in the 

symmetry. Thus the quantum number kz  is no longer sharp since transla-

tions in the z direction no longer leave the crystal invariant. Accep-

table wave functions for this "perturbed" crystal are characterized by 

i (g, r + 5v) = e 
iI . 5 

v  

where 

Pv  = symmetry translation in the x-y plane 

= kx + kyy  = good quantum numbers related to the two 

dimensional translational symmetry. 

This reduction in symmetry in going from the "unperturbed" to 
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the "perturbed" crystal in general results in a mixing of states.
64 In 

this particular case, the reduction of symmetry in the z-direction will 

result in a mixing of Bloch states of different lc 

Sx '(Z, ") = )] 	Cxn(kz ) 	;) 

n kz 

However, even though the z translational symmetry has been destroyed in 

the strict sense, there still remains a great deal of periodicity in 

this direction as long as the point in consideration is deep in the bulk 

of the crystal. One might therefore expect this to lead to a simplifi-

cation of the mixing coefficients Cxn (i4). Indeed these mixing coeffi-

cients fall into two broad categories: 

A. All assume a value of zero except for those for which k is 

in the neighborhood of the surface value (i.e., k z ). In 

this vicinity there is a sharp distribution of non-zero terms 

with half width Ali. 

B. Same as A except the distribution of non-zero values is wide. 

A. Sharp Distribution 

This case arises when En is not flat (dEidk / 0) around 

X . = + kzz . This means that since the energies vary strongly with kz 

in this region there is qualitatively little mixing of Bloch states of 

different kz and hence kz  remains relatively sharp. Placing the origin 

at the center of the crystal one gets 
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I (g, 	+ 1
"V
) = 	C

kn
(k

z
)  *
n' 	

+
V

) 

n k z 

= 	e  

ik • 

V cxn(kz)1111,1(k,r) 

n kz 

If r • 2 and al
"V 

• Z are small in comparison to the distance to the sur-

face then 

ik • g 
* Icg, 	g ) 	e 	" sx ioz, 

As the crystal gets larger and larger the CXn(kz)  become sharper and 

sharper until finally in the limit of an infinite crystal the p,s sign in 

the above equation becomes an = sign and k z  is again a good quantum num-

ber. However for a finite crystal the Ftd sign in the last equation will 

not hold for 171
"V 

• Z large with respect to the crystal size for then 

waves of different kz within the spike of the CXn 
will have radically 

different phases and will be cancelling each other out. As has been 

demonstrated by Slater and Koster65 the effect of the surface potential 

is to cut these states out of the surface region. Note also that tak-

ing the limit of letting the crystal surface go to infinity will have 

no effect on the cancellation at the surface since even though Akz  -• 0 

the value of ; to the surface will tend to infinity and the surface 

cancellation will remain. 

The wave functions for this case therefore look like Bloch waves 

within the bulk and damp out strongly to zero as the surface is 
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approached. For crystals of macroscopic dimensions Akz  is so small for 

this case that kz is approximately a good quantum number. For this reas-

on crystal states which fall into this category are called the bulk 

states. 

B. Flat Distributions 

Qualitatively speaking this case arises when En  is flat around k = 

X A + kzz. This means that since the energies are nearly degenerate about 

kz there is a much stronger mixing of the associate Bloch states 

over a much wider range of k z  about k
X than was the case in A. As one 

can easily imagine, the wider the peak in ICXn  (k z ' ) 1 the more localized 

the *
X 
 '(g 1).) are going to be. Indeed it is just these functions which 

give rise to the localized surface states. Taking the limit of moving 

the surface to infinity will have little effect on these states since 

they will follow the surface. Furthermore, deep within the bulk these 

states are essentially zero and thus obey the Bloch condition in a tri-

vial manner. The way these *
X 
 (K

' 
 r) oscillate from layer to layer is 

/ 	\ determined roughly by the exp(ikz
X  z). Thus a surface state arising from 

the F(k = 0) point will decrease in a monotonic manner from outer to in-

ner layers while that arising from an X point (k - 27  (0, 0, 1)) will 
a 

oscillate from layer to layer with an exponentially decaying envelope. 

Notice that as a consequence of this analysis it is apparent that 

the surface states arise from only those Bloch states which correspond 

to points of high state density in the k z  direction. Most of these 

states will be approximately centered about the unperturbed energies al-

though this is not exact since the effect of the surface potential will 

be to shift the energies of the surface states somewhat. This relation- 
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ship between the surface state picture and the identification of the 

Auger spectrum in terms of the points of high density of states of the 

unperturbed crystal is very direct. In fact the slight differences be-

tween the Auger spectrum analysis and the actual density of states spec-

trum might be used in a more quantitative analysis to give direct meas-

urements of the surface potential and of the energy spectrum of these 

surface states. Obviously these surface states would be strongly 

affected by the presence of an adsorbate. 

Also notice that this analysis has little or no bearing on the in-

terpretation of the graphite results, for in graphite each layer acts to 

a large extent as an isolated two dimensional crystal. In fact in his 

analysis of the band structure of graphite Corbato did not directly con-

sider Bloch waves moving in the z direction. To the extent that such an 

approximation is suitable (and in such an extreme case as graphite such 

an approximation is probably quite satisfactory for this particular 

analysis), the analysis of Corbato will have validity even for the sur-

face layers. The effect of the surface potential will be relatively 

small when compared to the dominant free atom contributions and the rel-

ative positions of the two dimensional density of states will remain ap-

proximately unmoved. It is only when going to a more general case (such 

as silicon), where running Bloch waves in the z direction are important, 

that an analysis of the origin of the surface states in terms of the re- 

gions dk
E 
	x  = 0 becomes a crucial factor. z kz 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The work presented herein has described the theoretical and ex-

perimental investigations into the energy spectrum of electrons ejected 

from selected semiconductor surfaces with energy less than one half the 

primary electron energy with particular reference to the characteristic 

Auger process. It was found that the details of the characteristic 

Auger spectrum could be interpreted in terms of the energy band infor-

mation in the surface vicinity. The Auger spectrum was extracted from 

the experimental distribution by subtraction of the background and cor-

rection of inelastic scattering distortion by a theory of electron dif-

fusion based on a statistical model. This theory predicted the true 

secondary spectrum reasonably well and indicated the fundamental impor-

tance of plasmon creation as a loss mechanism in semiconductors. The 

transition density 	density of occupied states times square root of 

the spatially integrated square of the Auger matrix element) was estab-

lished as a physical quantity of interest and was related to various 

energy band quantities. It was found that the transition density is 

sensitive to the conditions at the surface and indicated that modifica-

tions in the transition density due to adsorption, for example, could 

be interpreted in terms of surface states. 

Characteristic Auger electron spectroscopy has some advantages 

over other electronic structure analysis techniques. First, as has al-

ready been established, it is sensitive to surface conditions. Second, 
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it is not energy limited as to the depth below the fermi surface which 

can be studied. Finally, it is readily experimentally realizable. 

Most LEED systems can be easily adapted to allow for the semi-quantita-

tive investigation of Auger spectra. Moreover, if the instrumentation 

is equipped to take the derivative of the energy distribution, the first 

derivative of the Auger spectrum can be obtained. This has been shown 

to be the lead term in an expansion of the transition density and often 

looks very much like the true solution. o Consequently, a purely ex-

perimental approach to qualitative energy band information is possible. 

For adsorption studies this could prove to be extremely usefUl. 

The work was restricted somewhat by experimental limitations. It 

would be highly desirable to include the following items in any future 

efforts along this line: 

(1) better energy resolution 

(2) the ability to select a small solid angle 

(3) increased primary energies and flux. 

Such modifications would not only yield more detailed information than 

is currently attainable but also permit the technique to be used satis-

factorily on a much wider class of materials (particularly compounds, 

which have competing Auger processes). 

From the theoretical standpoint, much effort is needed in the 

understanding of the influence of surface states on the transition den-

sity beyond the qualitative discussion of the last chapter. In particu-

lar, it would be of extreme value to know what quantitative inferences 

can be drawn from the transition density modifications as a result of 

chemisorption or physisorption. Is it simply surface potential modifi- 
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cation, virtual bound state creation, or a complicated alteration of the 

wave function and energy band character in the surface vicinity? The 

arguments given herein suggest the latter case but more definitive in-

vestigations are needed. 

Finally, the applicability of the technique to the results of 

Auger neutralization studies needs exploration. In this situation the 

primary electron excites a low lying state in an adsorbed species as the 

initial step in the Auger mechanism. The energy of the resultant dis-

tribution is thus characteristic of the adsorbed atoms. If the adsorp-

tion is small enough and if the foreign atoms do not cluster, then the 

details of the resultant distribution are expected to be characteristic 

of the substrate. However, if these conditions are not met it is not at 

all clear what kind of spectrum one should expect. As of yet the neces-

sary experimental data to resolve the situation is not available because 

of the low relative probability of these events. It is difficult there-

fore to make further comments but the importance of the phenomenon as a 

means of identifying and studying the effects of surface impurities is 

evident. 

The results of this investigation can be briefly summarized in 

the following: 

1. The concept of the transition density introduced in Chapter 

II as a result of a perturbation theory analysis of the Auger process is 

a physically meaningful quantity. Interpretations in terms of it have 

been shown to be generally consistent with existing knowledge. 

2. The transition density contains terms associated with the 

density of occupied states and the energy band structure and is relatable 
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to these parameters most notably at points of high symmetry. Thus, for 

example, it is expected that for a "clean" system the transition density 

will peak at or close to the values assumed by the system energy eigen-

values at the Brillouin zone boundaries. 

3. The transition density is sensitive to surface modifications 

and should be useful as a qualitative measure of the state of a solid 

surface and the effects rearrangements or impurities have on the elec-

tronic structure of the host system. 

4. With increased instrument sensitivity the general technique 

should be extendable to analysis of spectra resulting from the Auger 

neutralization of ionized impurities. Such measurements should prove 

valuable not only as a means for identifying foreign species but also 

as a possible means for interpreting the nature of the bonding between 

the foreign and bulk species. 

5. In comparison with other quantitative techniques of energy 

band analysis (such as photoemission spectroscopy) Auger electron spec-

troscopy offers a great deal in experimental simplicity with the addi-

tional advantage that second derivative measurements can often be 

directly interpreted in terms of transition density features. 

6. The theory of electron diffusion presented in Chapter III as 

a means of correcting observed Auger spectra for background and inelas-

tic scattering effects, although somewhat idealized by numerous approx-

imations, offers a reasonably accurate quantitative means of analyzing 

experimental true secondary electron energy distributions in detail. 

7. This theory of electron diffusion made clear the intrinsic 

importance of plasmon excitation as an energy loss mechanism for ex- 
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cited electrons. If the plasmon contribution is ignored the predicted 

half-width of the slow peak can be in error by as much as one hundred 

per cent with a similar error for the most probably energy. 

8. The diffusion theory formalism is of a general nature and 

with minor modifications should be applicable to other problems con-

cerned with the diffusion of excited crystal electrons. 

In performing the work reported in this dissertation it was es-

tablished that study of the inelastic mechanism of the true secondary 

electron energy distribution is of definite value in adding to the 

understanding of the electronic nature of solid matter. In particular 

the development of characteristic Auger electron spectroscopy as a tool 

in quantifying this understanding has verified this value and given im-

petus to the achievement of a greater comprehension of the behavior of 

crystal electrons in the vicinity of the surface. To this end same se-

lect comments have been offered above as possible avenues of departure 

for further study and are meant to suggest that this may be the begin-

ning - not the end -- of understanding solid surfaces. 
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APPENDIX A 

INTEGRATION OF EXCITATION FUNCTION OVER POLAR ANGLE 

Consider the integral 
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Thus the argument of the delta function above can be written 
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Recognizing that there is no contribution from the second delta function, 

this becomes 

27 
m3  e4 	3- r 	dk 	r 	111 2  s(Ei) - 3 6 	j -Ta—r- J , 2 2 2 # • 
r h p 	--, 	t 	,ci +X ) t fermi 	o 

sphere 



APPENDIX B 

INTEGRATION OF EXCITATION FUNCTION OVER AZIMUTHAL ANGLE 

Consider the integral 

27 
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where q is the momentum transferred. Thus 
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and p o  and p have the meaning given in Appendix A. If j; makes an angle 

of y with the polar axis defined by --C4t  and p makes an angle 0, then 
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a, = 1 - cosy COSO 
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2 
Making the variable change coscp - 	one obtains 
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where 
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The integral is now easily done by parts. After re-inserting the de-
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APPENDIX C 

INTEGRATION OF EXCITATION FUNCTION OVER THE FERMI SPHERE 

OF INITIAL ELECTRON STATES 

Consider the integral 
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APPENDIX D 

DETERMINATION OF THE GREEN'S FUNCTION FROM EQUATION III-11 

FOR A SPECIFIC CHOICE OF SCATTERING FUNCTION 

It is desired to solve equation III-11 for the Green's function 

in the case of a particular scattering function 

F(E ' E I ) - 
P  (J IL  )E i 

(III-30) 

The Green's function condition then takes on the form 
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The Mellin transform of the Green's function is defined 
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and that of the delta function 
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An expression for the Green's function now follows from the inverse 

Mellin transform 
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The contour 0 is parallel to the imaginary axis of the complex 

s-plane and to the right of all singularities in the integral. To carry 

out the integration it is convenient to replace 	by eP  (p = WE'/E) 

and p < 0 when E /  < E and p > 0 when E l  > E) . Consider the case p < 0: 

Take as an integration path an infinitely large semicircle closed in the 

right half plane. One obtains immediately 

GL (E,E') = 0 ; 	E > E' 

For p > 0: Take the corresponding integration path closed in the left 

half-plane. The integration can be carried out using Cauchy residues. 
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r 	 lim 	1 G (E E l )dE = 1 s(2s+2) 	( E ,  )s-1 

2 	' 	C-40 47i J 

-e 
n2  

( 

ds  2 
-s+1)(s-1) 	E'-e 

= lim 2 - 1[(1 - j_„5 ) ( E' ) 2 
c-KD 

E' -e 
+ 1+4 (_EL) 	2  ] 

E'e 

= 1 . 
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Again the result implies a delta distribution. Hence 



+ a (E-E') ; E f E i  
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2 
cos 

EE 

G2 (E 'E') = 

0 	 ; E > E 1  
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