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Abstract. We propose a new method for the detection of spectral lines in
random noise. It mimics the processing scheme of matching filtering i.e., a
whitening procedure combined with the measurement of the correlation between
the data and a template. Thanks to the original noise spectrum estimate used in
the whitening procedure, the algorithm can easily be tuned to the various types
of noise. It can thus be applied to the data taken from a wide class of sensors.
This versatility and its small computational cost make this method particularly
well suited for real-time monitoring in gravitational wave experiments. We show
the results of its application to Virgo C4 commissioning data.

Persistent and narrow spectral peaks, known as lines are a typical feature of
the data from gravitational wave interferometric detectors (ITF). Lines can originate
from the ITF functioning (e.g., mirror or suspension resonant modes) and operation
(e.g., calibration lines) or from environmental perturbations (e.g., vacuum pumps).
Detecting the presence of such lines in ITF readout and control channels is very
important for the studying and monitoring of the detector performance. In this paper
we present a simple and versatile processing tool to address this issue.

Optimal strategies can be designed for the detection of sinusoidal signals in
random noise [1]. However, they are computationally expensive and thus not very
well-suited for monitoring purposes. In addition, the amplitude of the lines we are
dealing with, are usually large as compared to the noise level. A statistic which is sub-
optimal, but computationally acceptable, suffices in this context. Contrarily to [2, 3],
we are not interested here in the removal of the line once detected. Though estimates
of the line characteristics (such as the central frequency, amplitude and width) can be
obtained from the proposed tool, we don’t discuss this point here and concentrate on
the detection issue.

In Sect. 1, we give a general description of the line detection problem and point
out its main difficulties. In Sect. 2, we detail the proposed line search method. In
Sect. 3, we give several rules of thumb for adequately setting the free parameters
of the line search. In Sect. 4, we present the results of its application to Virgo C4
commissioning data.

1. A tricky detection problem

ITFs are sophisticated apparatus controlled by a complex network of feedback loops.
One way of locating the origin of a line in such a system is to check for the coincident
occurrence of the line in channels including the ITF readouts, the ITF controls and
the environmental sensors.

The line search has thus to be applied to many different channels. Generally, the
spectral lines are superimposed to a broadband random noise, hereafter referred to as
“background” noise. The power spectral density (PSD) of the background noise can
have very different shapes. In most cases, we only have a rough idea of the PSD shape
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which may also change with time. Therefore, the problem to address is the statistical
detection of a signal (lines) in a random noise of unknown PSD which thus needs to be
estimated from the data. This turns out to be difficult because lines and background
noise mix at all times i.e., there is no ”background noise only” data. The proposed
method tackles with this difficulty.

2. A simple line detection algorithm

The basic ingredient of the proposed method is the spectrogram. Let us assume that
the data x(t + tsn), n ≥ 0 are sampled at Nyquist rate fs = 1/ts and collected during
the time period from t to t + T . We divide this time period into N non-overlapping
intervals of equal duration T /N = tsN (which thus contain the same number of
samples N). The spectrogram S(t, f) is defined for f ∈ [0, fs/2] by [4]

S2(t, f) ≡ 1
N

N−1∑

k=0

∣∣∣∣∣∣
ts

(k+1)N−1∑

j=kN

x(t + tsj) h(tk − tsj) e−2πi tsjf

∣∣∣∣∣∣

2

,

where tk ≡ ts(kN + (N − 1)/2) is the center of the kth interval and h(t) is a window
function (e.g., Hanning type) centered around t = 0 and scaled to unit L2 norm.

Matched filtering [5] is an efficient method for detecting deterministic signals in
random noise. It can be viewed as a two-step process: a whitening of the data followed
by a scalar product with a template. The line search algorithm mimics this structure.
We assume that S(t, f) has been computed for some given time t and we detail now
the detection procedure.

step 1. background PSD estimate

We use S(t, f) to get a robust estimate of the background PSD: (1) the frequency
axis f ∈ [0, fs/2] is tiled into intervals. Their size is chosen sufficiently small that
each of them contains only a few lines (� 5) and that the background PSD can be
considered almost linear within the interval. (2) In each interval, we remove the Nq

points with the largest amplitude (these “outliers” are essentially corresponding to the
few frequency peaks belonging to the interval). (3) We make a least mean square linear
fit of the remaining spectrogram data points. The collection of the fits performed in all
frequency intervals yields the estimate of the background noise PSD, Ŝ(t, f). Clearly,
step (2) prevents that the lines (of large amplitude) bias this estimate.

step 2. whitening and scalar product with template

Roughly speaking, the lines can be described by the general model a(t) cosϕ(t) where
the envelope a(t) is slowly varying and the phase ϕ(t) is well approximated by a linear
function for time periods of duration not smaller than T .

The template matching to a line of duration T with a constant envelope a(t) = Cst

and a constant frequency f0 = (2π)−1dϕ/dt is a “simple” cosine function of the
same duration. The FFT (of time base T ) does exactly the scalar product with this
template. The above definition of the spectrogram is not identical to this (because
of the division of T into intervals and the modulus averaging) but it is similar. This
suggests to use S(t, f) in place of the exact template match. We consider the following
statistic W (t, f) ≡ S(t, f)/Ŝ(t, f) which includes both whitening and template match.
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step 3. detection and post-processing

The line detection is then made by comparing the statistic to a threshold: W (t, f) > η.
Once the three steps are completed, we restart the procedure from step 1 to

process the spectrogram computed over the next data chunk.

3. Choosing the parameters

Some tuning of the free parameters is required to ensure that the procedure works
properly. There is a total of six free parameters. The computation of S(t, f) uses
two of them: the total observation time T (typically T ≈ 300s) and the FFT time
base N ≡ T fs/N (set to a power of 2 for efficiency) which also sets the frequency
resolution (the orders of magnitude are: fs ≈ 10 kHz and we choose N ∼ 105 data
points corresponding to a frequency resolution of 100 mHz).

The PSD fit requires a value for Nq. A good value is given by the mean number
of lines per frequency interval times the peak average width (at half height, expressed
in bin).

The threshold η determines the minimum detectable signal-to-noise ratio (or,
more specifically, the ratio of the line amplitude to the neighboring background noise
level) and at the same time, the rate of false alarms. Typically, we choose η � 3 to 4.

The two remaining parameters are related to the tiling of the frequency axis
mentioned in Sect. 2. We discuss the question of choosing their value in the next two
sections.

3.1. Tiling types

The estimate of the background noise in step 1 of our algorithm relies on a tiling of
the frequency axis. In principle, any tiling method could be used but for practical
reasons (simple coding) we restrict the choice to the ones described in this section.

The FFT algorithm samples uniformly the frequency axis according to fk =
fsk/N for k = 0, . . . , N/2. We propose to divide this discrete axis in non-overlapping
intervals. These intervals are organized by successive blocks of intervals of equal size.
Each block is identified by the index j ∈ {−1, 0, . . . , jmax} and it is made of Nb

contiguous intervals of size Mj. Each interval Ii,j is labelled by i ∈ {0, . . . , Nb − 1}
and the block index j. We set Ii,j = {ki,j , . . . , ki,j + Mj − 1} with ki,−1 = iNn and
M−1 = Nn for j = −1, and ki,j = 2j(Nb + i)Nn and Mj = 2jNn for j ≥ 0. Therefore,
the tiling is completely determined by the two parameters Nn and Nb, respectively
the smallest interval size (in bins) and the number of intervals within a block. Since N
is a power of 2, Nn and Nb must also be so, and we have the condition NnNb ≤ N/2.
We also have jmax = log2(N/(2NnNb)) − 1.

Two types of tiling are thus defined, depending on the product NnNb, as
exemplified in Figure 1. If NnNb < N/2, we obtain a dyadic tiling for which the
size of the intervals is increasing with the frequency. If instead NbNn = N/2, the
frequency axis is tiled uniformly (all intervals are of size Nn).

3.2. Match the tiling to the data

The performance of the algorithm depends critically on the accuracy of the estimate
Ŝ(t, f) of the background noise PSD, which itself depends on the selected tiling. The
tiling choice results from a trade-off balancing the two following competing factors:
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Figure 1. Sketch view of two examples of frequency axis tiling.
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Figure 2. Result of the line search on the dark fringe photo-diode signal of Virgo
C4 commissioning run (fs = 20 kHz). The parameter set is: N = 20, N = 262144
i.e., total observation time T � 260s, Nb = 8, Nn = 64 i.e., dyadic tiling, Nq = 32
and the detection threshold η = 4.

long frequency intervals provide a better fit (because of the larger number of data
points), whereas short intervals allow to better follow curved (non-flat) PSD.

The main readout channel of the ITF i.e., the dark fringe (DF) signal is of special
importance, and deserves a specific attention. The noise PSD observed in the DF
signal has a characteristic shape: it is curved at low frequency (where the number of
lines is also larger) and it becomes almost flat at high frequencies. Consequently, we
need small intervals at low frequencies and large intervals at high frequencies. The
dyadic tiling is thus preferred for the DF channel as illustrated in Figure 2.

A different case is exemplified by a signal from a seismometer in Figure 3. The
PSD of the background noise for such signal is much flatter than DF (compare the
respective dynamical ranges) and its curvature is not localized specifically at low
frequency. The uniform tiling is thus the right choice.

In summary, the tiling type should be chosen according to the general shape of
the background PSD. However, for a given tiling type (dyadic or uniform), the size of
the typical interval is also important. The fit made with intervals of small sizes are
able to follow PSDs which are curved locally as illustrated in Figure 4. If the size is
too large, Ŝ(t, f) may not fit well the data and this causes an increase of the rate of
false alarms.
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Figure 3. Result of the line search on one seismometer signal (fs = 10 kHz).
The parameter set is: N = 20, N = 131072 i.e., total observation time T � 260s)
Nb = 1024, Nn = 64 i.e., uniform tiling Nq = 32 and the detection threshold
η = 4.
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Figure 4. Line search on the photo-diode signal used in C4 to control the beam
splitter mirror position. Two choices of the tiling size are made: 1) N = 262144,
Nb = 32, Nn = 32, Nq = 16, η = 3 (dashed line and empty circles); 2)
N = 262144, Nb = 32, Nn = 128, Nq = 64, η = 3 (continuous line and filled
squares). The coarser choice (2) has difficulty to follow the curved shape of the
background PSD. This causes false alarms which are indicated by arrows.

4. Line monitoring in Virgo data

We used the proposed algorithm to monitor the lines of the Virgo DF in the C4
commissioning run data (a total of 120 hours). The line search was applied over
T � 260 s long data chunks with a FFT time base Nts � 13 s (which corresponds to
N = 262144 and a frequency resolution � 0.07 Hz). We chose the tiling parameters
Nb = 8 and Nn = 64 (dyadic tiling), a rejection parameter Nq = 32 and a threshold
η = 4.

A number of 40 lines were detected during the entire run. (This number is
roughly constant when ITF is in stable operation). An overview is presented in the
time-frequency diagram in Figure 5 where 1 dot is 1 detected line. Isolated dots are
probably false alarms, vertical stripes correspond to ITF losses of lock, blank regions
correspond to unlocked periods. We see that some lines appear non-stationary.
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Figure 5. Lines detected in the Virgo DF during the entire C4 run (1 blue dot
= 1 detection).

Freq. [Hz] explanation Freq. [Hz] explanation

0.4 mirror suspensions θx mode 353.0 calibration line

3.2 mirror suspensions θx mode 355.0 calibration line

31.5 IB susp. vertical mode 357.0 calibration line

35.2 IB susp. θx mode 600.8 IB tower vacuum pump

40.9 IB susp. θz mode 1201.6 IB tower v. p. (1st harmonic)

55.0 IB wires violin mode 2402.4 IB tower v. p. (2nd harmonic)

56.1 IB wires violin mode 5543.9 NE mirror 1st symmetric mode

103.0 calibration line 5544.8 WE mirror 1st symmetric mode

105.0 calibration line 5583.9 WI mirror 1st symmetric mode

107.0 calibration line 5585.8 NI mirror 1st symmetric mode

230.8 water chiller pump

Table 1. Subset of 21 lines detected in Virgo C4 DF which have been identified
(acronyms: IB ≡ Input Bench, NI ≡ North Input, WI ≡ West Input, NE ≡ North
End, WE ≡ West End.)

We extracted a subset of 38 persistent lines i.e., lasting at least 3% of the whole
run duration. Among these: 11 are 50 Hz harmonics, 21 have been associated to
mirror internal modes, mechanical resonances of the mirror suspensions, vibrations
of vacuum and water pumps, and 6 have not been identified yet. Identified lines are
listed in Table 1.
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Conclusions

We propose a robust and versatile line detection algorithm and demonstrate its
validity on Virgo C4 commissioning data. The computational resources required are
reasonably cheap such that the processing pipeline is feasible in real-time. We are
presently studying the possibility to use this algorithm as the detection engine of a
“line monitor” for Virgo, and eventually interface it to a database which would help
to track the history of the detected lines.
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