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Abstract

Unveiling the mechanism leading to the breaking of supersymmetry is among the
outstanding questions for future colliders. To achieve this goal, models will need to be
scrutinized and their parameters assessed. Global fitting tools, like Fittino and SFitter,
have been developed and set a robust framework for such analyses.

Using the SPS1a snowmass point as an example for the SUSY and Higgs parti-
cles that could be observed at the LHC and at a future TeV Linear Collider, we have
studied the determination and its precision of MSUGRA parameters from the mea-
surements expected in this point. While the LHC will provide the first measurement
of the parameters, the Linear Collider will increase their precision by an order of mag-
nitude.

However, when moving to the unconstrained weak-scale MSSM, measurements
from the LHC, such as the gluino and squarks masses and couplings, and from the
LC, such as charginos and high precision slepton mass measurements, are necessary
to reconstruct the Lagrangian with the best available precision.

Using a set of hypothetical measurements at LHC and at a future LC, we will
show how these colliders probe different sectors of the MSSM Lagrangian and how
this complementarity increases our handle on the determination of the weak-scale
parameters of the Lagrangian. In fact, the combination of the measurements of the
LHC and the LC is essential to probe the complete MSSM weak-scale lagrangian.

Note: although this conference paper may describe the work upon which the corresponding
talk and proceedings will be based, it might not completly reflect their actual contents.

1 Introduction

If supersymmetry [1] or any other high-scale extension of the Standard Model is discov-
ered, it will be crucial to determine its fundamental high-scale parameters from weak-
scale measurements [2]. The LHC and future Linear Colliders will provide us with a
wealth of measurements [3, 4], which due to their complexity require proper treatment
to unravel the corresponding high-scale physics. Even in the general weak-scale mini-
mal supersymmetric extension of the standard model (MSSM [5]) without any unifica-
tion or SUSY breaking assumptions some of the measurements of masses and couplings
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mSPS1a ∆
exp
LHC ∆

exp+th
LHC ∆

exp
LC ∆

exp+th
LC ∆

exp
LHC+LC ∆

exp+th
LHC+LC

h 111.6 0.25 3.01 0.05 3.0 0.05 3.0
H 399.6 1.5 3.35 1.5 3.35
A 399.1 1.5 3.35 1.5 3.35
H+ 407.1 1.5 3.35 1.5 3.35

Table 1: Errors for the mass determination in SPS1a, taken from [6, 7, 19]. Shown are the
nominal parameter values and the experimental and sum of experimental and theoretical
uncertainties for the LHC alone, the LC alone, and a combined LHC+LC analysis. All
values are given in GeV.

are not independent measurements; moreover, linking supersymmetric particle masses
to weak-scale SUSY parameters involves non-trivial mixing to mass eigenstates in essen-
tially every sector of the theory. On top of that, for example in gravity mediated SUSY
breaking scenarios (mSUGRA/cMSSM) a given weak-scale SUSY parameter will always
be sensitive to several high-scale parameters which contribute through renormalization
group running. Therefore, a fit of the model parameters using all experimental infor-
mation available will lead to the best sensitivity and make the most efficient use of the
information available.

In a fit, the allowed parameter space might not be sampled completely. To avoid
boundaries imposed by non-physical parameter points, which can confine the fit to a
‘wrong’ parameter region, combining the fit with an initial evaluation of a multi-dimens-
ional grid is the optimal approach.

In the general MSSM the weak-scale parameters can vastly outnumber the collider
measurements, so that a complete parameter fit is not possible and one has to limit one-
self to a consistent subset of parameters. In SFITTER both grid and fit are realised and
can be combined. This way, one can ultimately eliminate all dependence on the starting
point of the parameter determination. SFITTER also includes a general correlation matrix
and the option to exclude parameters of the model from the fit/grid by fixing them to
a value. Additionally, SFITTER includes the option to apply a Gaussian smearing to all
observables before they enter the fit/grid in order to simulate realistically experimental
measurements. In this preliminary study, however, correlations and systematic uncer-
tainties are neglected and the central values are used for the measurements.

Currently, SFITTER uses the predictions for the supersymmetric masses provided by
SUSPECT [8], but the conventions of the SUSY Les Houches accord [9] allow us to in-
terface other programs. The branching ratios and e+e− production cross sections are
provided by MSMlib [10], which has been used extensively at LEP and cross checked
with Ref. [11]. The next-to-leading order hadron collider cross sections are computed
using PROSPINO [12]. The fitting program uses the MINUIT package [13]. The deter-
mination of χ2 includes a general correlation matrix between measurements. In its next
version SFITTER will be interfaced with the improved branching fraction determination
of SDECAY [14], as well as alternative renormalization group codes like SoftSUSY [16],
ISAJET [17] or SPHENO [18].
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mSPS1a ∆
exp
LHC ∆

exp+th
LHC ∆

exp
LC ∆

exp+th
LC ∆

exp
LHC+LC ∆

exp+th
LHC+LC

χ0
1 97.03 4.8 4.81 0.05 0.30 0.05 0.30

χ0
2 182.9 4.7 4.93 1.2 1.92 0.08 1.50

χ0
3 349.2 4.0 5.0 4.0 5.0

χ0
4 370.3 5.1 5.92 4.0 5.0 2.3 3.78

χ±

1 182.3 0.55 1.32 0.55 1.32
χ±

2 370.6 3.0 3.91 3.0 3.91
g̃ 615.7 8.0 15.26 6.4 14.53
t̃1 411.8 2.0 13.15 2.0 13.15
b̃1 520.8 7.5 18.03 5.7 17.36
b̃2 550.4 7.9 18.20 6.2 17.53
q̃1 551.0 19.0 24.21 16.0 21.93
q̃2 570.8 17.4 26.51 9.8 22.27
τ̃1 135.5 6.5 6.55 0.3 0.85 0.3 0.85
τ̃2 207.9 1.1 1.49 1.1 1.49
µ̃1 144.9 4.8 4.84 0.2 0.63 0.2 0.63
µ̃2 204.2 5.0 4.92 0.5 1.21 0.5 1.21
ẽ1 144.9 4.8 5.04 0.05 0.60 0.05 0.60
ẽ2 204.2 5.0 5.12 0.2 1.12 0.2 1.12
ν̃e 188.2 1.2 1.63 1.2 1.63

Table 2: Errors for the mass determination in SPS1a, taken from [6, 7, 19]. Shown are the
nominal parameter values and the experimental and sum of experimental and theoretical
uncertainties for the LHC alone, the LC alone, and a combined LHC+LC analysis. All
values are given in GeV.
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SPS1a StartFit LHC ∆LHC LC ∆LC LHC+LC ∆LHC+LC

M0 100 500 100.0 3.9 100.0 0.08 100.04 0.08
M1/2 250 500 250.0 1.8 250.0 0.13 250.01 0.11
tan β 10 50 10.0 1.3 10.0 0.14 9.98 0.14
A0 -100 0 -100.0 38.3 -100.0 4.40 -98.25 4.13

Table 3: Summary of the mSUGRA fits in SPS1a: true values, starting values, fit values
and absolute errors from the fit. As in SPS1a we fix µ > 0. The mass values of the fits are
based on values found in Tab. 2 taken with experimental uncertainties.

SPS1a StartFit LHC ∆LHC LC ∆LC LHC+LC ∆LHC+LC

M0 100 500 100.0 4.6 100.0 0.70 100.0 0.68
M1/2 250 500 250.0 2.8 250.0 0.72 250.0 0.67
tan β 10 50 10.0 3.4 10.0 0.49 10.0 0.49
A0 -100 0 -100.0 50.5 -100.0 13.9 -100.0 13.1

Table 4: Summary of the mSUGRA fits in SPS1a: true values, starting values, fit values
and absolute errors from the fit. As in SPS1a we fix µ > 0. The mass values of the fits are
based on values found in Tab. 2 taken with experimental and theoretical uncertainties.

2 mSUGRA/cMSSM Parameter Determination

Assuming that SUSY breaking is mediated by gravitational interactions (mSUGRA/cMSSM)
we fit four universal high-scale parameters to a toy set of collider measurements: the uni-
versal scalar and gaugino masses, m0, m1/2, the trilinear coupling A0 and the ratio of the
Higgs vacuum expectation values, tan β. The sign of the Higgsino mass parameter µ is a
discrete parameter and therefore fixed. In contrast to an earlier study [15] we assume the
set of mass measurement at the LHC and at the LC, shown in Tab. 2. The central value
for our assumed data set corresponds to the SUSY parameter point SPS1a [20], as com-
puted by SUSPECT. As mentioned in the introduction correlations, systematic errors and
theoretical errors are neglected. As the central (true) values are used as measurements in
order to study the errors on the determination of the parameters, the χ2 values are not
meaningful and therefore are not quoted.

The starting points for the mSUGRA parameters are fixed to the mean of the lower
and upper limit (typically 1 TeV/c2) of the allowed parameter range, i.e. they are not
necessarily close to the true SPS1a values. The result of the fit is shown in Tab. 3 and
Tab. 4. All true parameter values are reconstructed well within the quoted errors, in spite
of starting values relatively far away. The measurements of m0 and m1/2 are very precise,
while the sensitivity of the masses on tan β and A0 is significantly weaker. The results for
the LHC alone are generally an order of magnitude less precise than those for the LC, and
this qualitative difference is expected to become even more pronounced once we properly
include systematical errors.

Because the data set is fit assuming mSUGRA as a unification scenario the absence of
measurements of most of the strongly interacting particles, in particular the gluino, does
not have a strong impact on the precision of the LC determination. Therefore the results
for the combined measurements LHC+LC show only a small improvement.

Assuming an uncorrelated data set, the correlations between the different high-scale
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SPS1a Start Fit ∆LHC ∆LC ∆LHC+LC

M0 100 500 100.0 4.6 0.70 0.68
M1/2 250 500 250.0 2.8 0.72 0.67
tanβ 10 50 10.0 3.4 0.49 0.49
A0 -100 0 -100.0 50.5 13.9 13.1

Table 5: Summary of the mSUGRA fits in SPS1a: true values, starting values, fit values
and absolute errors from the fit. As in SPS1a we fix µ > 0. The mass values of the fits are
based on values found in Tab. 2 taken with experimental and theoretical uncertainties.

LHC Suspect ∆ Softsusy ∆ IsaSusy ∆

M0 100.0 4.6 97.9 4.1 99.7 4.4
M1/2 250.0 2.8 252.5 2.0 252.3
tanβ 10.0 3.4 11.6 3.4 9.2 2.4
A0 -100.0 50.5 14.7 14.2 -34.3 8.4
LC Suspect ∆ Softsusy ∆ IsaSusy ∆

M0 100.0 0.7 98.7 0.7 100.6 0.5
M1/2 250.0 0.7 250.7 0.7 252.7
tanβ 10.0 0.5 10.1 0.5 9.95 0.4
A0 -100.0 14 -45.2 16 -71.7 9.6
LHC+LC Suspect ∆ Softsusy ∆ IsaSusy ∆

M0 100.0 0.7 98.5 0.8 100.7 0.6
M1/2 250.0 0.7 250.9 0.8 252.7
tanβ 10.0 0.5 10.1 0.6 9.9 0.3
A0 -100.0 13 -43.4 17 -70.1 8.5

Table 6:

SUSY parameters which we obtain from the fit are given in Tab. 8. We can understand
the correlation matrix step by step [21]: first, the universal gaugino mass m1/2 can be
extracted very precisely from the physical gaugino masses. The determination of the
universal scalar mass m0 is dominated by the weak-scale scalar particle spectrum, but
in particular the squark masses are also strongly dependent on the universal gaugino
mass, because of mixing effects in the renormalization group running. Hence, a strong
correlation between the m0 and m1/2 occurs. The universal trilinear coupling A0 can be
measured through the third generation weak-scale mass parameters Ab,t,τ . However, the
Ab,t,τ which appear for example in the off-diagonal elements of the scalar mass matrices,
also depend on m0 and m1/2, so that A0 is strongly correlated with m0 and m1/2. At this
point one should stress that the determination of A0 is likely to be dominated by At as
it appears in the calculation of the lightest Higgs mass mh. After taking into account
the current theoretical error of 3 GeV on mh [22] we expect the determination of A0 to
suffer significantly. The experimental errors therefore can be considered a call for an
improvement of the theoretical error.

In general, tan β can be determined in three sectors of the supersymmetric spectrum:
all four Higgs masses, and for large values of mA in particular the light CP even Higgs
mass mh depend on tanβ. The mixing between gauginos and Higgsinos in the neu-
tralino/chargino sector is governed by tanβ. Finally, the stop mixing is governed by
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LHC Suspect ∆ Softsusy ∆

M0 100.0 4.6 97.9 4.1
M1/2 250.0 2.8 252.5 2.0
tanβ 10.0 3.4 11.6 3.4
A0 -100.0 50.5 14.7 14.2
LC Suspect ∆ Softsusy ∆

M0 100.0 0.7 98.7 0.7
M1/2 250.0 0.7 250.7 0.7
tanβ 10.0 0.5 10.1 0.5
A0 -100.0 14 -45.2 16
LHC+LC Suspect ∆ Softsusy ∆

M0 100.0 0.7 98.5 0.8
M1/2 250.0 0.7 250.9 0.8
tanβ 10.0 0.5 10.1 0.6
A0 -100.0 13 -43.4 17

Table 7:

m0 m1/2 tanβ A0

m0 1.000 -0.602 0.422 -0.424
m1/2 1.000 -0.250 0.636
tanβ 1.000 -0.241
A0 1.000

Table 8: The (symmetric) correlation matrix for the mSUGRA fit given in Tab.4 with data
set LHC+LC.

µ/ tanβ, while the sbottom and stau mixing depends on µ tanβ. The correlation of tan β
with the other model parameters reflects the relative impact of these three sectors. In an
earlier analysis we assumed a uniform error of 0.5% on all mass measurements [15] and
saw that in this case tan β is determined through stau mixing, which in turn means that it
shows very little correlation with m1/2.

For the more realistic scenario in Tab. 2 the outcome is the following: the relative
errors for the light Higgs mass and for the light neutralino masses at the LC are tiny. The
relevant parameter in the Higgs sector is the light stop mass, which is governed by m1/2;
similarly the gaugino mass m1/2 which fixes the light neutralino and chargino masses
does not depend strongly on tan β. The slepton sector introduces a strong correlation
between m0 and m1/2. The resulting correlation matrix is shown in in Tab. 8. The results
obtained with SFITTER are in agreement with expectation.

3 General MSSM Parameter Determination

In this study, the unconstrained weak-scale MSSM is described by 24 parameters in ad-
dition to the standard model parameters. The parameters are listed in Tab. 9: tanβ as
in mSUGRA, plus three soft SUSY breaking gaugino masses Mi, the Higgsino mass pa-
rameter µ, the pseudoscalar Higgs mass mA, the soft SUSY breaking masses for the right
sfermions, Mf̃R

, the corresponding masses for the left doublet sfermions, Mf̃L
and finally
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AfterGrid AfterFit SPS1a AfterGrid AfterFit SPS1a
tan β 100 10.02±3.4 10 MũR

532.1 532.1±2.8 532.1
M1 100 102.2±0.74 102.2 Md̃R

529.3 529.3±2.8 529.3
M2 200 191.79±1.9 191.8 Mc̃R

532.1 532.1±2.8 532.1
M3 589.4 589.4±7.0 589.4 Ms̃R

529.3 529.3±2.8 529.3
µ 300 344.3±1.3 344.3 Mt̃R

420.2 420.08±13.3 420.2
mA 399.35 399.1±1.2 399.1 Mb̃R

525.6 525.5±10.1 525.6
MẽR

138.2 138.2±0.76 138.2 Mq̃1L
553.7 553.7±2.1 553.7

Mµ̃R
138.2 138.2±0.76 138.2 Mq̃2L

553.7 553.7±2.1 553.7
Mτ̃R

135.5 135.48±2.3 135.5 Mq̃3L
501.3 501.42±10. 501.3

MẽL
198.7 198.7±0.68 198.7 Aτ -253.5 -244.7±1428 -253.5

Mµ̃L
198.7 198.7±0.68 198.7 At -504.9 -504.62±27. -504.9

Mτ̃L
197.8 197.81±0.92 197.8 Ab -797.99 -825.2±2494 -799.4

Table 9: Result for the general MSSM parameter determination in SPS1a using the toy
sample of all MSSM particle masses with a universal error of 0.5%. Shown are the nominal
parameter values, the result after the grid and the final result. All masses are given in GeV.

the trilinear couplings of the third generation sfermions At,b,τ .

3.1 Toy model with all masses

For testing purposes, we first consider a toy data set which includes all supersymmetric
particle masses. The universal error on all mass measurements is set to 0.5%.

In any MSSM spectrum, in first approximation, the parameters M1, M2, µ and tan β
determine the neutralino and chargino masses and couplings. We exploit this feature to
illustrate the option to use a grid before starting the fit. The starting values of the param-
eters other than M1, M2, µ and tanβ are set to their nominal values, this study is thus
less general than the one of mSUGRA. The χ2 is then minimized on a grid using the six
chargino and neutralino masses as measurements to determine the four parameters M1,
M2, µ and tan β. The step size of the grid is 10 for tanβ and 100 GeV for the mass pa-
rameters. After the minimization, the four parameters obtained from grid minimization
are fixed and all remaining parameters are fitted. In a final run all model parameters are
released and fitted. The results after the grid (including the complementary fit), after the
final fit and the nominal values are shown in Tab. 9. The smearing option has not been
applied. However, the errors on the fitted values (once the fit converges) should not be
sensitive to these shortcomings.

The final fit values indeed converges to the correct central values within its error. The
central values of the fit are in good agreement with generated values, except for the trilin-
ear coupling Ab,τ . The problem is using only mass measurements to determine the three
entries in a (symmetric) scalar mass matrix: in the light slepton sector there are three
masses, left and right scalars plus the sneutrino, so the system is in principle calculable.
In the third generation squark sector we have three independent diagonal entries per
generation and two off-diagonal entries. But the number of mass measurements is only
four, therefore the system is underdetermined in first order. The off-diagonal entry in the
mass matrix for down type scalars includes a term Ab,τ and an additional term µ tanβ.
Even for very moderate values of tanβ the extraction of Ab,τ requires precise knowledge
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of tan β. The use of branching ratios and cross section measurements (with polarised
beams) which carry information about the scalar mixing angles should significantly im-
prove the determination of At,b,τ .

3.2 Toy model with LHC+LC mass measurements

∆LHC ∆LC ∆LHC+LC SPS1a value
tanβ 9.1 0.3 0.2 10
M1 5.3 0.1 0.1 102.2
M2 7.3 0.7 0.2 191.8
M3 15 fixed 500 11 589.4
Mτ̃L

fixed 500 1.2 1.1 197.8
Mτ̃R

6.9 0.3 0.6 135.5
Mµ̃L

5.1 0.5 0.5 198.7
Mµ̃R

5.0 0.2 0.2 138.2
MẽL

5.1 0.2 0.2 198.7
MẽR

5.0 0.05 0.05 138.2
Mq̃3L

110 4.4 39 501.3
Mt̃R

fixed 500 2.1 12 420.2
Mb̃R

113 fixed 500 61 525.6
Mq̃2L

13 fixed 500 5.5 553.7
Mc̃R

20 fixed 500 15 532.1
Ms̃R

20 fixed 500 15 529.3
Mq̃1L

13 fixed 500 6.5 553.7
MũR

20 fixed 500 15 532.1
Md̃R

20 fixed 500 15 529.3
Aτ fixed 0 89.5 171 -253.5
At 91 2.7 3.3 -504.9
Ab 35600 fixed 0 12500 -799.4
mA fixed 500 0.9 0.8 399.1
µ 7.3 2.3 1.0 344.3

Table 10: Result for the general MSSM parameter determination in SPS1a using the mass
measurements given in Tab. 2 with experimental errors only. Shown are the nominal
parameter values and the result after fits to the different data sets. All masses are given
in GeV.

In the study of the three data sets LHC, LC, and LHC+LC in the MSSM, a fit was
performed for the data sets LHC and LC, whereas for LHC+LC additionally the GRID
was used for M1, M2, µ and tan β with the five chargino and neutralino masses. The
starting points were chosen to be the true values (with the exception of the parameters
used in the grid). In order to obtain a solvable system, for the LHC data set mA, Mt̃R ,
Mτ̃L

, Aτ were fixed. For the LC data set the first and second generation squark soft SUSY
breaking masses, the gluino mass M3, Mb̃R

and Ab were fixed. These parameters were
chosen on the basis of the measurements available in Tab. 2. The values to which these
parameters were fixed is not expected to influence the final result of the fit. The results
for the two data sets are shown in Tab. 10 and Tab. 13.
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∆LHC ∆LC ∆LHC+LC SPS1a value
tanβ 11 6.1 5.5 10
M1 5.3 1.2 0.9 102.2
M2 8.2 3.6 3.2 191.8
M3 20 fixed 500 21 589.4
Mτ̃L

fixed 500 8.9 8.7 197.8
Mτ̃R

16 13 12 135.5
Mµ̃L

5.1 1.3 1.25 198.7
Mµ̃R

5.0 0.7 0.7 138.2
MẽL

5.1 0.9 0.9 198.7
MẽR

5.0 0.7 0.65 138.2
Mq̃3L

110 330 21 501.3
Mt̃R

fixed 500 160 83 420.2
Mb̃R

112 fixed 500 21 525.6
Mq̃2L

13 fixed 500 17 553.7
Mc̃R

20 fixed 500 23 532.1
Ms̃R

20 fixed 500 23 529.3
Mq̃1L

13 fixed 500 16 553.7
MũR

20 fixed 500 23 532.1
Md̃R

20 fixed 500 23 529.3
Aτ fixed 0 2900 3160 -253.5
At 106 140 126 -504.9
Ab 35100 fixed 0 fixed 0 -799.4
mA fixed 500 2.0 2.0 399.1
µ 8.2 3.2 3.0 344.3

Table 11: Result for the general MSSM parameter determination in SPS1a using the mass
measurements given in Tab. 2 with experimental and theoretical errors. Shown are the
nominal parameter values and the result after fits to the different data sets. All masses
are given in GeV.

Note that the general rule that the LHC is not sensitive to weakly interacting particle
masses is not entirely true: while the LHC has the advantage of measuring the squark
and gluino masses, the first and second generation slepton mass parameters are also de-
termined with a precision of the order of percent. The results in Tab. 13 show that the
LHC alone is well capable of determining for example all gaugino mass parameters as
well as most of the scalar mass parameters.

The situation at the LC is slightly different. Only marginal information on the squark
sector available at the LC. The measurement of At from the Higgs sector should be taken
with a grain of salt (theoretical error on the lightest Higgs mass). Adding the stau mixing
angle to the set of LC measurements will improve the determination of Aτ . However, the
measurements of the parameters, in particular slepton and gaugino parameters are far
more precise than at the LHC.

For the LHC+LC data set, a sufficient number of mass measurements is available,
so that no parameters need to be fixed. The superiority of the combination of the mea-
surements at the two colliders is obvious from this observation and from Tab. 13: The
LHC contributes to reduce the error in the weak sector (M2) and the LC in the strongly
interacting sector (third generation squarks). Even more important: of 13 parameters un-
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∆LHC ∆LC ∆LHC+LC SPS1a value
tan β 11 6.1 5.5 10
M1 5.3 1.2 0.9 102.2
M2 8.2 3.6 3.2 191.8
M3 20 fixed 500 21 589.4
mA fixed 500 2.0 2.0 399.1
µ 8.2 3.2 3.0 344.3

Table 12: Result for the general MSSM parameter determination in SPS1a using the mass
measurements given in Tab. 2 with experimental and theoretical errors. Shown are the
nominal parameter values and the result after fits to the different data sets. All masses
are given in GeV.

determined by either the LHC or the LC, 11 are determined with good precision in the
combination. For Aτ , Ab, we expect an improvement with the use of branching ratios and
cross section measurements.

A complete measurement of all parameters at the weak scale is particularly important
if one wants to probe unification scenarios which link subsectors of the parameter space
which are independent at the weak scale. An advanced tool like SFITTER can extract the
information to probe supersymmetry breaking scenarios from any set of measurements,
provided the set is sufficient to overconstrain the model parameters.

4 Conclusions

SFITTER is a new program to determine supersymmetric parameters from measurements.
The parameters can be extracted either using a fit, a multi-dimensional grid, or a combi-
nation of the two. Correlations between measurements can be specified and are taken
into account. While it is relatively easy to fit a fixed model with very few parameters
for example at a high scale to a set of collider measurements, the determination of the
complete set of weak-scale MSSM model parameters requires this more advanced tool. A
mSUGRA inspired fit does not include the full complexity and power of the combined
LHC and LC data compared to the measurements at either collider alone. The results
from SFITTER in the MSSM with the three data sets show that only the combination of
measurements of both the LHC and the LC offers a complete picture of the MSSM model
parameters in a reasonably model independent framework.
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