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1 Introduction

Two experiments have recently collected prompt photon data. For the first time, a collaboration
(PHENIX at

√
s = 200 GeV at RHIC) has been able to collect data both for the inclusive [1] and

the isolated case [2] which should help better understand the role of the fragmentation component in
prompt photon production. Furthermore, during run II of the Tevatron (

√
s = 1.96 GeV), the D∅

collaboration [3] has measured isolated prompt photons whose transverse momenta pT range from 23
to about 300 GeV, the widest domain ever covered. These new experimental results shed some light
on a controversy which has been plaguing prompt photon phenomenology since the late 90’s.

Indeed, many years of intense experimental efforts, ranging from fixed targets [4, 5, 6, 7, 8, 9, 10, 11]
to colliders [12, 13, 14, 15, 16, 17], have led to a wealth of experimental data on prompt photon
production in hadronic collisions, but also to a controversial situation. In particular, in the late 90’s
some confusion was created by one fixed target experiment [9] which found cross sections several times
above theoretical predictions based on Next-to-Leading Order (NLO) calculations; data and theory
disagreed both in magnitude and shape. This disagreement triggered a debate on large recoil effects
possibly of non perturbative origin. The resummation of threshold as well as recoil effects induced
by soft gluon radiation in the single particle inclusive cross sections have been performed. In the
meantime, full NLO calculations have been implemented in more flexible Monte Carlo programmes
at the partonic level. Programmes of this type account for experimental cuts in an easy way, match
naturally the binning of experimental data and, by histogramming of the partonic configurations
generated, allow for a straightforward study of correlations. The latter provide more constrained and
refined tests of the short distance dynamics than the single particle inclusive distributions.

In the present article we propose a reexamination of prompt photon data in the light of these new
experimental results. In section 2 we formulate the theoretical framework of our study, and discuss
the complementary features of dedicated resummed calculations and NLO calculations implemented
in Monte carlo programmes such as JETPHOX [18] used in the present study. In section 3, we present a
comparison of this theoretical framework with the new PHENIX data, and with the new D∅ data. We
then reexamine the older world data in the light of this comparison. Section 4 contains our conclusions.

2 Theoretical framework and ambiguities

2.1 Mechanisms of production of prompt photons

Schematically, the production of a prompt photon proceeds via two mechanisms. In the first one,
which may be called ‘direct’ (D), the photon behaves as a high pT colourless parton, i.e. it takes part
in the hard subprocess, and it is most likely to be well separated from any hadronic environment. In
the other one, which may be called ‘fragmentation’ (F), the photon behaves as a kind of (anomalous)
hadron, i.e. it results from the collinear fragmentation of a coloured high pT parton, and is it most
probably accompanied by hadrons - unless the photon carries away most of the transverse momentum
of the fragmenting parton, which is usually the situation in fixed target experiments.

From a technical point of view, (F) emerges from the calculation of the higher order corrections to (D)
in the perturbative expansion in powers of the strong coupling αs. At higher orders, final state multiple
collinear singularities appear in any subprocess where a high pT parton of species k (quark or gluon)
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undergoes a cascade of successive collinear splittings ending up with a splitting into a photon. These
singularities are factorised to all orders in αs according to the factorisation theorem, and absorbed into
fragmentation functions of parton k to a photon, Dγ/k(z,M

F
), defined in some arbitrary fragmentation

scheme, at some arbitrary fragmentation scale M
F
. The point-like coupling of the photon to quarks is

responsible for the well-known anomalous behaviour of Dγ/k(z,M
F
), roughly as αem.α−1

s (M
F
) when

the fragmentation scale M
F
, chosen of the order of a hard scale of the subprocess, is large compared

to O(1) GeV. In this article, (D) is precisely given by the Born term plus the fraction of the higher
order corrections from which final state collinear singularities have been subtracted according to the
MS factorization scheme. (F) is the contribution involving a fragmentation function of any parton
into a photon in the MS factorization scheme. The differential cross section in transverse momentum
p

T
and rapidity η can thus be written synthetically as:

σγ = σ(D)(µR,M,M
F
) +

∑

k=q,q̄,g

σ
(F )
k (µR,M,M

F
) ⊗ Dγ/k(MF

) (1)

where σ
(F )
k describes the production of a parton k in a hard collision. The arbitrary parameters µR,

M and M
F

are respectively the renormalisation, initial-state factorisation, and fragmentation scales.
Let us stress once more that the splitting between (D) and (F) is arbitrary: it relies on a choice
of factorisation scheme and scale to which refer the definitions of each of these contributions. In
particular, both (D) and (F) depend on M

F
, so that the partial cancellation of the M

F
dependence

in the predictions proceeds in a qualitatively different, and quite more complicated, way here than in
the purely hadronic case. The dependence of the NLO predictions with respect to µR, M and M

F

will be discussed in sect. 3. When all scales are taken to be equal, they will be noted µ.

The study provided in this article relies on the calculation of both (D) and (F) at next-to-leading
order (NLO) accuracy [18], which takes the form (η is the photon rapidity)

dσ

d~p
T
dη

=
dσ(D)

d~p
T
dη

+
dσ(F)

d~p
T
dη

(2)

where

dσ(D)

d~p
T
dη

=
∑

i,j=q,q̄,g

∫
dx1dx2 Fi/h1

(x1,M) Fj/h2
(x2,M)

αs(µR)

2π

(
dσ̂ij

d~p
T
dη

+
αs(µR)

2π
K

(D)

ij (µR,M,M
F
)

)
(3)

and

dσ(F)

d~p
T
dη

=
∑

i,j,k=q,q̄,g

∫
dx1dx2

dz

z2
Fi/h1

(x1,M) Fj/h2
(x2,M) Dγ/k(z,M

F
)

(
αs(µR)

2π

)2
(

dσ̂k
ij

d~p
T
dη

+
αs(µR)

2π
K

(F)

ij,k(µR,M,M
F
)

)

(4)

where Fi/h1,2
(x,M) are the parton distribution functions of parton species i inside the incoming

hadrons h1,2, at momentum fraction x and factorisation scale M ; αs(µR) is the strong coupling
defined in the MS renormalisation scheme at the renomalisation scale µR. The knowledge of Λ

MS
, e.g.

from deep-inelastic scattering experiments, completely specifies the NLO expression of the running
coupling αs(µR). The NLO correction terms to (D) and (F), K

(D)

ij [19, 20] and K
(F)

ij,k [21] respectively,

are known and their expressions in the MS scheme will be used. The dependence of these functions
on the kinematical variables x1, x2, z,

√
s, p

T
and η has not been explicitly displayed. The structure
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and fragmentation functions have been determined at the required level of accuracy by NLO fits to
the data.

The results of the NLO calculation of (D) have been known for a long time [19]. They were first
implemented in computer codes in a form dedicated to one particle inclusive distributions, the inte-
gration over the phase space variables being done analytically. As such, these codes were fast but not
flexible enough to account for the various experimental selection and, especially, the isolation cuts used
at colliders, and they were not suited to study correlations. The calculation has been subsequently
implemented using a ‘Monte Carlo’ method [22] which however included the (F) contribution only at
leading order (LO) accuracy. The calculation of the NLO corrections to (F) became also progressively
available along the same steps [21, 23, 18]. The present study relies on the implementation of the
NLO calculation of both (D) and (F) in a Monte Carlo programme∗, called JETPHOX, briefly described
in subsect. 2.3.

More recently, expressions involving the resummation, at next-to-leading logarithmic (NLL) accuracy
of terms which are logarithmically large at the phase space boundary (xT = 2pT /

√
s → 1) have been

obtained, first in (D) [24, 25, 26, 27, 28], and more recently in (F) as well [29]. This resummation is
performed only for inclusive p

T
distributions integrated over all rapidities. The effect of this resumma-

tion extends down to values of xT ≥ a few 10−1 and thus covers the range of fixed target experiments.
They provide a much reduced µR and M dependence than with the NLO approximation. The NLO
results roughly agree with the resummed calculation in the region populated by fixed target data,
when µR and M are chosen ∼ pT /2 in the former. As for collider experiments, these resummations
do not have much impact on the phenomenology in the xT range ∼ 10−2 to 10−1 covered by the data.
The impact of resumming logarithmically enhanced terms at small xT might be more relevant in the
smaller xT range, yet a proper resummation of this kind has not been studied so far in prompt photon
production, to our knowledge.

Even more recently, a joint summation of both threshold and recoil effects due to soft multigluon
emission has been performed in [30]. Recoil effects are logarithmically enhanced order by order in the
αs expansion of the qT distribution of a pair γ-jet; however this logarithmic enhancement is washed
out by the integration over the jet when passing to the single photon inclusive pT distribution. The
joint summation recently performed confirmed that this order by order conclusion also holds in the all
order resummed result when resummation is performed before the integration over the recoiling jet,
leaving un-enhanced contributions only, whose effects remain small. The joint summation makes also
contact with possible non perturbative effects of kT kick which are not accounted for in any fixed order
calculation. However these non perturbative recoil effects, which are to a large extend unconstrained
by theory so far, remain small unless large non perturbative parameters are used; one experiment only
argues in favour of such unexpectedly large parameters. This issue will be discussed in sect. 3.

All these resummed calculations have to be performed in a space conjugate to the physical phase space
through a Mellin/Fourier transform in order to put the kinematical constraints into a factorisable
form. So far they are performed analytically, requiring a dedicated calculation. They cannot easily
cop with the various cuts required by experiments, contrarily to the NLO calculation implemented
with a Monte Carlo method. Up to now, the use of a NLO Monte Carlo programme in prompt photon
phenomenology, supplied by motivated scale choices is still legitimate.

∗For inclusive observables involving no isolation cuts, we have also used the much faster NLO programme INCNLO [18]
implementing analytic expressions of the HO corrections.
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2.2 Isolated photons

Whereas the contribution from eq. (4) amounts† to roughly a few tens of percent of the contribution
from eq. (2) at fixed target energies, it becomes dominant at colliders at least in the lower pT range.
However collider experiments - besides PHENIX at RHIC - do not perform inclusive measurements of
photons, strictly speaking. In order to strongly suppress the overwhelming background of secondary
photons coming from the decays of hadrons, mainly π0, η, etc., collider experiments require an isolation
criterion on the photon candidates. A widely used calorimetric criterion, which has the virtue to be
implementable also at the partonic level‡, is the so-called ‘cone criterion’: in a cone about the direction
of the photon defined in rapidity η and azimutal angle φ by

(η − ηγ)2 + (φ − φγ)2 ≤ R2 (5)

the accompanying hadronic transverse energy ET had is required to be less than some finite amount:

ET had ≤ ET max (6)

R and ET max being specified by each experiment, ET max being given either as a fixed value, or as a
fixed fraction ǫh of the photon’s p

T
.

Cross sections for producing such isolated photons have been proven to still fulfill the factorisation
property, and are finite to all orders in perturbation theory for non zero R and ET max [31]. Isolation
through eqs. (5, 6) also reduces the contribution (F), although it does not kill it completely: a fraction
survives with z ≥ (1 + ǫh)−1, which involves the same fragmentations functions Dγ/k(z,M

F
) as in the

unisolated case. The dependence on the isolation parameters R and ET max is consistently included
in the expression describing the hard subprocess. At colliders energies the mean value < z > for non
isolated photons from fragmentation is fairly smaller§ than (1 + ǫh)−1, so that (F) is quite suppressed
by isolation cuts. Let us stress that ET max has to be non zero otherwise the calculation of the cross
section in perturbative QCD is infrared (IR) divergent order by order in perturbation theory, the (D)
contribution involving a term ∼ αS R2 log(pT /ET max). In practice, no IR sensitivity appears down
to fairly low values of ET max ∼ 1 GeV due to the smallness of αs R2. However, the reliability of
the theoretical predicition is jeopardized if the value of ET max is nearly saturated by minimum bias
hadrons, thus leaving almost no room for radiation from the hard event. Another source of trouble for
the NLO calculation is caused by the use of too small a cone size, where the collinear sensitivity would
require an all order resummation of large log R terms: the NLO calculation might not be reliable for
R ≤ 0.3 [31].

It is important to stress that the isolated cross section, measured experimentally, cannot be iden-
tified with the direct cross section calculated at the Born level, i.e. without any contribution of the
fragmentation processes. Indeed, besides the fragmentation piece left over (z ≥ (1+ǫh)−1) as explained
above, higher order terms originating from the non-collinear fragmentation processes contribute to the
isolated cross sections. Such terms may be important in some kinematical regions as they correspond

†This statement depends on the choice of scales, especially of M
F

. The order of magnitude given here corresponds
to a standard choice M

F
∼ O(p

T
).

‡Vetoes on charged tracks about the direction of the photon are also used experimentaly, however they cannot be
accounted for in a partonic calculation. A detailed description of the final state including full hadronisation would be
required.

§For example < z > is roughly 0.7 at the Tevatron, and 0.6 or less at the LHC [21], whereas typically (1 + ǫh)−1 ≥

0.8 − 0.9. On the other hand, notice that, at fixed targets, < z >∼ 0.9: in practice photons from fragmentation at fixed
targets are scarcely accompanied by hadrons, they are de facto isolated.
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to new hard processes, not allowed at the lowest order : for example, large terms involving the 3-gluon
vertex are possible at higher orders while they are forbidden at the lowest one.

2.3 Brief presentation of JETPHOX

We have implemented all contributions to (D) and (F) up to NLO in the computer package JETPHOX

[18]. This code is a general purpose cross section integrator of Monte-Carlo type, designed to calculate
both single photon inclusive and photon-jet inclusive cross sections and related correlations, accounting
easily for any kind of experimental cut (e.g. on kinematics, isolation) implementable at the partonic
level. It is the only available code including both (D) and (F) at NLO in a Monte carlo approach.
Details on the principles and implementation of this code can be found in [18, 31]. Let us only sketch
them briefly.

The treatment of the infrared (IR) soft and collinear singularities of the partonic transition matrix
element combines the phase space slicing [32] and subtraction [33] methods. The slicing of phase space
is designed as follows. For a generic partonic subprocess 1 + 2 → 3 + 4 + 5 two outgoing partons, say
3 and 4, have a high pT and are well separated in phase space, while 5, say, can be soft, or collinear to
either of the four others. The phase space is sliced using two arbitrary (unphysical) parameters pTm

and RTh, with pTm ≪ ||~pT 3,4|| and RTh ≪ 1, in four parts:

- Part I corresponds to ||~pT 5|| < pTm. This cylinder supports the IR and initial state collinear
singularities. It also yields a small fraction of the final state collinear singularities.

- Part II a corresponds to ||~pT 5|| > pTm, ~pT 5 ∈ C3, where C3 is the cone defined by (y5 − y3)
2 +

(φ5 − φ3)
2 ≤ R2

th. It supports the final state collinear singularities when 5 is collinear to 3.

- Part II b is defined in a similar way as II a but with the replacement of 3 by 4. It supports the
final state collinear singularities when 5 is collinear to 4.

- Part II c is the remaining region: ||~pT 5|| ≥ pTm, and ~pT 5 6∈C3, C4.

Collinear and soft singularities, which appear on parts I, II a and II b, are first regularised by di-
mensional continuation from 4 to n = 4 − 2ε with ε < 0. Then, the n-dimensional integration over
particle 5 is performed analytically over these parts. After combination with the corresponding virtual
contributions, the infrared singularities cancel, and the remaining collinear singularities which do not
cancel are factorised and absorbed in the parton distribution functions or fragmentation functions.
The resulting quantities correspond to pseudo cross sections in which the the “integrated out” parton
5 is unresolved from the remaining four hard partons. The word “pseudo” means that they are not
genuine cross sections, namely they are not necessarily positive, and they depend on the arbitrary
choice of factorisation scheme¶. Part II c yields no singularity, and is thus treated directly in 4 space-
time dimensions. These pseudo cross sections, as well as the transition matrix elements on the part II
c, are then used to sample partonic events according to a Monte-Carlo method. Last, these partonic
events are projected onto histograms thus providing any desired distribution.

By virtue of the factorisation theorem, the contribution (F) alone also provides the NLO cross sections
for inclusive hadron- and associated hadron + jet production, once the parton-to-photon fragmentation

¶The MS factorisation scheme is used.
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functions have been replaced by fragmentation functions of partons to the hadron species considered.
The phenomenology of correlations in associated prompt photon + jet and hadron + jet production
using JETPHOX will be presented in a future article [34].

3 Comparison with data

All the comparisons between data and NLO calculations provided in this section are made using
the parton distribution functions of set CTEQ6M [35] (αs(MZ) = .118) and the parton-to-photon
fragmentation functions of set BFGW (set II) [36]. Whenever the scales µR, M and M

F
are given a

common value, the latter is noted µ. The MS scheme is used throughout.

3.1 New data from D∅ and PHENIX

We start this section by the analysis of the new data taken by the D∅ collaboration [3] during the
Tevatron Run II at

√
s = 1.96 TeV. The measured cross section, in the range 23 GeV < pT < 300 GeV,

is for isolated photons and we account for the D∅ isolation criterion by requiring that the hadronic
transverse energy measured in a cone of radius R =

√
∆φ2 + ∆η2 = 0.4 around the photon is smaller

than 10% of the photon’s pT . Theory and data are compared in Fig. 1 and 2, the theoretical curves
being obtained with the inputs specified at the beginning of this section. In Fig. 1, all the scales have
been set equal to pT . We see that the agreement between data and NLO QCD is excellent in the whole
pT -range in which the cross section falls by about five orders of magnitude. A more precise comparison
is shown in Fig. 2 for the ratio data/theory calculated with several choices of scales between pT /2
and 2pT . The sensitivity to the changes in the common scale µ is of some ±10 % in the whole pT -
range. Using MRST 2004 [37] instead of CTEQ6M changes the predictions by ±2 %. The present
experimental errors have the size of the variations coming from the scale changes; with this accuracy
there is no evidence of any systematic deviation of the theory with respect to data.

Another set of recent - still ‘very preliminary’ - data is presented by the PHENIX collaboration
[1, 2] at RHIC. Measurement are done at

√
s = 200 GeV, an intermediate energy between collider

measurements at
√

s = 630 GeV and fixed targets measurement at
√

s ≤ 40 GeV which will be
discussed below. These data cover the range 4 < pT < 17 GeV and correspond to two methods of
analysis: a subtraction method in which the π0 background is identified and subtracted (inclusive
prompt photon cross section), and an isolation method. We start with a discussion of the isolated
data.

The isolation criterion used by the PHENIX collaboration is fitted to the acceptance of its detector.
Photons are detected in the coverage −.30 ≤ η ≤ .30 and −.73 ≤ φ ≤ .73 and the hadronic transverse
energy is measured in a cone of radius .5 if it also falls into the region −.35 ≤ η ≤ .35, −π/4 ≤ φ ≤ π/4.
When the hadronic energy is outside the acceptance, it is not taken into account. The fraction of
hadronic energy thus observed should be less than 10 % of the photon momentum. This criterion
amounts effectively to implementing isolation in a smaller region about the photon and we expect the
effect of isolation to be smaller than the one due to the standard procedure when all the energy in the
cone is taken into account. The NLO code JETPHOX allows us to study the effect of the PHENIX
isolation compared to the standard isolation. The ratios of isolated cross sections over the inclusive
one are shown in Fig. 3 where the scale pT /2 is used for the theoretical predictions. First, let us note
that the isolation effect is large at low pT . At larger values of pT the average value of z increases and
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the isolation cut is less effective. Also we note that the PHENIX criterion and the standard one lead
to appreciable differences in the predictions, of the order of 10 % at low pT .

Note that the NLO calculations are performed at the parton level for the QCD hard process and do
not account for hadronisation effects which can be large at low pt. Moreover we do not describe the soft
underlying event with transverse energy which can also fall into the isolation cone. This contribution
may even cut the Born contribution (unaccompanied photon). This effect has been studied by the H1
collaboration in the photoproduction of prompt photons and found to be non negligible [38].

The comparison of the PHENIX isolated cross section with the NLO QCD prediction with the
scale µ = pT /2 is shown in Fig. 4. The theory agrees very well with data within errors (systematic
errors are not shown in Fig. 4). A more detailed comparison is performed in Fig. 5 in terms of ratios
data/theory calculated for two different choices of scales. The statistical errors are relatively large, of
the order of the theoretical uncertainty when varying the common scale from pT/2 to 2pT . However,
the standard choice pT /2 reproduces the data extremely well over the whole pT range in which the
cross section varies by a factor 103.

3.2 Previous world data in the light of the new data from D∅ and PHENIX

As there is some overlap in xT between these new data and some of the previous ones, in particular in
the controversial 0.2 to 0.3 range previously covered by the ISR and E706 experiments, it is interesting
to reconsider how the ‘world data’ is described by theory.

We consider now the inclusive pp and pp data coming from the fixed target experiments from
WA70 (

√
s = 23 GeV) [6], UA6 (

√
s = 24.3 GeV) [11], E706 (

√
s = 31.6 GeV and 38.8 GeV) [10],

from the ISR experiments (
√

s = 63 GeV) R110 [7], R806 [5], AFS [8] and the isolated data from CdF
at

√
s = 1.8 TeV [16, 17]. The collider data at

√
s = 630 GeV will be discussed separately. Below we

shall also compare the pBe data from the E706 experiment [9] with the more recent pp data of the
same experiment [10]. The comparison is done with the scales µ = pT /2 in terms of ratios data/theory.
As explained in section 2.1, such a scale is motivated for the fixed target and ISR range by the recent
resummed calculations [24, 25, 26, 28, 29]. The results are shown in Fig. 6 which exhibits the striking
agreement between theory and data in the whole xT range, with the exception of the E706 data‖. This
last point has been already discussed at length for pBe data in ref. [39]. Here the new features are
the new D∅ and PHENIX data which confirms the ‘world’ agreement between theory and data. We
emphazise the very good agreement between theory and the PHENIX inclusive data which confirms
that already shown with the isolated data in Figs. 4 and 5. If we disregard the E706 data, there is
no evidence for any systematic discrepancy between data and theory. In Fig. 6, the fixed target data
are somewhat squeezed by the logarithmic scale. In Fig. 7 we emphasized the fixed target domain
by using a linear scale which makes the discrepancy between the E706 data and the other data more
obvious. The xT range from 0.15 to 0.3 is well described all the way from TEVATRON collider data
at

√
s = 1.96 TeV down to ISR data at

√
s = 63 GeV. The disagreement cannot be due to the ‘low’

center of mass energy, (
√

s = 31.6, 38.8 GeV), of the E706 experiment since the WA70 and UA6 fixed
target data at even lower energies,

√
s = 23 and 24.3 GeV respectively, (and higher xT ) are in good

agreement with theory. Let us note that a reasonably accurate determination of αs, in good agreement
with determinations from other processes,was performed by the UA6 collaboration [40].

‖Note that the smallest xT -values of the E706 data correspond to values of pT down to 3.5 GeV/c (averaged pT ≃

3.73 GeV in the first bin).
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Let us continue this ‘world’ comparison by a comment on the low-xT part of the CDF data. It has
been often claimed [41, 42, 16, 17] that there is a disagreement between data and theory, the latter
being unable to explain the rise of the former, a 20 % effect in the ratios of Fig. 6 and 7. Here we
would like to point out that the significance of this rise is much reduced when experimental errors
and theoretical uncertainties are taken into account. Concerning this last point, the slope in the ratio
data/theory depends on the choice of the scales as already noted in [43]. An example is given in Fig. 8
where the ratio data/theory is shown for the scales µR = pT , M = 2pT , MF = pT /2. The choice yields
a slight flattening of the curve.

The comparison with the isolated collider data at
√

s = 630 GeV from UA2 [13], CdF [16] and D∅
[15] are shown in Fig. 9. The errors being rather large, it is difficult to draw any precise conclusion
from these results. But within the errors, the agreement data versus theory is good : the CDF data
tend to be systematically somewhat above the predictions while the UA2 results tend to be slightly
below. The apparent slope effect of the D∅ data, at the lowest values of xT , is not meaningful when
taking into account the large systematic errors. As for UA1 data [12], the large error bars do not
constrain the theory very much, and we do not show these data here. One can note however that the
corresponding ratios would be above one.

We now turn to a comparison of the recent pp data from the E706 collaboration [10] with the pBe
data [9] of the same collaboration. This is done in Fig. 10. We clearly distinguish two domains for
the E706 data, one for xT ≥ .34 and a second one for lower values of xT . In the large-xT domain,
the ratio data/theory is approximately flat, or slightly decreasing with an average value close to 1.8.
Proton-proton data and proton-Berylium data are compatible within errors. The problem met here
by theory is that of the normalisation. Even the use of a small scale µ = pT/3 does not reconcile NLO
QCD with data [39]. The low-xT domain is characterized by a marked rise of the ratios, up to 4.5 (at
pT ≃ 3.73 GeV) when xT decreases. Here also pp and pBe data are compatible within errors. NLO
QCD cannot explain this rise and another mechanism, the κT -enhancement, has been put forward by
the E706 collaboration to explain the shape and normalisation of the cross sections. Let us note that
no other experiment needs such an enhancement.

We end this section by collecting all available prompt photon cross sections Ed3σ/dp3 (inclusive or
isolated) on the same plot and comparing them with theoretical predictions evaluated with the scale
µ = pT/2 (Fig. 11). The data span two orders of magnitude in energy and there is agreement over
nine orders of magnitude in the cross sections between theory and experiments. This is comparable
to the agreement between theory and D∅ run 2 data for the jet cross section [44] and similarly for
CDF data [45]. However the prompt photon data and the jet data do not cover the same kinematical
region defined in the (xT = 2pT /

√
s, p2

T ) plane (which is the equivalent, for large pT processes, of the
(x, Q2) plane of deep inelastic scattering) as shown in Fig. 12. The combined data therefore give an
extremely strong test of QCD.

4 Conclusions and outlook

Two new direct photon data sets shed a new light on the understanding of such processes within the
QCD framework, and they confirm that the

√
s dependence of the reaction can be properly described

within the NLO formalism. Agreement between data and theory from
√

s = 23 GeV to 1.8 TeV is
very good over nine orders of magnitude in the cross section.

This is in contrast to the view, based only on data from the E706 experiment, that the direct photon
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data cannot be understood in the NLO QCD framework without resorting to a non perturbative
‘kT kick’. Indeed, although refinements like resummed calculations have been important to reduce
the theoretical uncertainties, they have not permitted to reconcile one data set (namely E706) with
theory without using large non perturbative parameters. Such parameters are not needed by other
experiments.
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Figure 1: The isolated D∅ photon cross section in the central (|η| < .9) pseudorapidity region. The
histogram is the NLO QCD prediction discussed in the text. The errors are the sum of the statistical
and systematic errors. The scales are µ = pT .

Figure 2: The ratio of D∅ data to NLO QCD obtained with µ = pT . Ratios of the predictions for
µ = pT /2 (µ = 2pT ) to the nominal theory (µ = pT ) are shown by the upper curve (lower curve).
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Figure 3: Ratio σth isol/σth incl of the NLO isolated cross sections to the NLO inclusive prompt-photon
cross sections at

√
s = 200 GeV. The scales used are µ = pT /2. PHENIX criterion: colored dots;

standard criterion: black dots

Figure 4: The PHENIX isolated prompt-photon cross section at
√

s = 200 GeV compared with NLO
cross section predictions. Only the statistical errors on the data are shown. The scales used in the
theoretical calculation are µ = pT /2.
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Figure 5: The ratio of PHENIX isolated photon data to NLO QCD using µ = p
T
/2. The lower curve

corresponds to the ratio NLO(2pT )/NLO(pT /2). Only the statistical errors on the data are shown.
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Figure 6: Ratios data/theory for collider and fixed target data with the scale µ = pT /2. For PHENIX
and lower energy data the inclusive cross section is used while the isolated one is used for CDF and
D∅. Statistical erros only for PHENIX data.

Figure 7: Zoom on the large xT data with a linear scale in xT .
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Figure 8: CDF data versus theory for the choice of scales as shown in the figure.

Figure 9: Ratios data/theory for collider data at
√

s = 630 GeV. The scales are µ = pT /2.
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Figure 10: Comparison of pp and pBe data of E706 normalised by the theoretical predictions with
scales pT /2.
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Figure 11: World’s inclusive and isolated direct photon productions cross sections measured in proton-
proton and antiproton-proton collisions compared to JETPHOX NLO predictions using BFG II
(CTEQ6M) for fragmentation (structure) functions and a common scale pT /2. For the clarity of
the figure the E706 data are scaled by a factor 10−4.
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Figure 12: The kinematical region probed by prompt photon experiments compared to that relevant
for jet production. Each data point is represented by a symbol as in Fig. 11 for photons, and by open
triangles for jets.

19


