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Abstract

The performance of lead tungstate crystals using photomultipliers and Si avalanche
photodiodes to detect the scintillation light has been studied using high energy electron,
pion and muon beams at CERN. Results from tests carried out in 1993 and 1994 are
presented. Good energy resolution has been obtained using photomultipliers. Some
further development is required of crystals and avalanche photodiodes in order to
achieve a performance, with avalanche photodiode readout, similar to that obtained
using photomultipliers.



1. Introduction

The physics process that imposes the strictest performance requirements on the electromagnetic
calorimeter at the LHC is the intermediate mass Higgs decaying into two photons [1]. The natural
width of the Higgs boson in the intermediate-mass (mz < my < 2mgz) region is small, and the
observed width of a H — 1y signal will be entirely dominated by the instrumental two-photon mass
resolution. Thus the benchmark against which the performance of the electromagnetic calorimeter
(ECAL) is measured is the two-photon mass resolution. The mass resolution has terms that depend
on the resolution in energy (E,,E,) and the two photon angular separation () and is given by
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where ® denotes a quadratic sum, E is in GeV and 0 is in radians. The energy resolution is usually

parameterized as
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where a is the stochastic term, b the constant and oy is the energy equivalent of electronic noise. At
high luminosity og/E will contain a contribution from pileup which adds to the electronic noise. In
order to achieve a good energy resolution all the contributing terms have to be kept small at the
relevant photon energies of = 50 GeV.

For the Higgs two-photon decay at the LHC the angular term in the mass resolution (Eqn. 1)
can become important and, at high luminosity, it may be necessary to measure the direction of the
photons using information from the calorimeter alone.

Most fully active media, such as scintillating crystals, have the potential to achieve a stochastic
term below 2%. The energy resolution is then limited by the control of systematics that build up
the constant term. Achieving a constant term smaller than 0.5% for a large calorimeter is a
challenging task. The CMS experiment has emphasized the benefit of a homogeneous ECAL since
its inception and has tested several candidate media over the last few years. Amongst these are
scintillating crystals, such as cerium fluoride (CeFs3) [2] and lead tungstate (PbWO,) [3], and heavy
scintillating glasses (hafnium fluoride HfF,) [4]. The properties of these are compared in Table 1.
The properties of BGO, pure Csl and BaF; are also shown for comparison.

The CMS collaboration has chosen lead tungstate crystals as the active medium for the
electromagnetic calorimeter. Some of its desirable characteristics are:

i) a very short radiation length (0.9 cm) so that the volume needed to construct an
electromagnetic calorimeter is relatively small,

if) a small Moliere radius (= 2 cm). About 80% of the electromagnetic shower energy is
contained in a crystal with lateral dimensions of 2 X 2 cm? and a depth of 25 Xj for particles
incident at the centre of the crystal. This allows a reduction in the size of the area used for energy
measurement thus reducing the energy pileup at high luminosities.

ii) fast scintillation light (80% of the light is captured in a gate of 25 ns as compared with that
collected in a gate of 1 us) and,

iii) some full size crystals have been shown to be radiation hard up to doses of 10 Mrad.
The calorimeter will sit in a 4T solenoidal magnetic field. In a high transverse magnetic field the
scintillation light has to be detected by Si photodiodes or Si avalanche photodiodes (APDs) [5]. The
latter can provide gain (< 100) in the presence of high magnetic fields.

The scintillation mechanism in lead tungstate is severely quenched and hence a sizable
temperature variation of the light yield is expected. The measured variation of the light yield with
temperature is = —1.9%/°C at room temperature [3, 6]. The gain of APDs is also temperature
dependent. For example, at room temperature and a gain of 50, a gain variation of 0.3% results
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from a temperature change of 0.15 "C or a bias voltage change of 60 mV for the Hamamatsu
S5345LC low capacitance APDs .

Table 1. A comparison of the properties of scintillating crystals and glasses.

Property BGO |Pure CsI| BaF, CeF3; | PbWO4 | HfF4
Glass
Radiation length cm 1.12 1.85 2.06 1.68 0.89 1.6
Moliere radius cm 2.3 3.5 34 2.6 2.0 2.8
Density g/lem3 | 7.13 4.51 4.89 6.16 8.28 6.0
Small sample light yield yYMeV | 4000 1500 8500 2000 140 165
T (short) ns 300 6 0.9 9 <10 8
(long) ns 35 630 30 36 25
% Light in 25 ns 85 25 50 80 70
Peak wavelength (fast) nm | 480 310 220 300 |450-500 325
(slow) 420 300 340
Temp. dependence (fast) %/°C | -1.6 -0.6 0 0.15 -1.9 -04
of light yield (slow) %/OC -2.0
Index of refraction 2.15 1.95 1.5 1.62 2.2 1.5

This paper is organized as follows: Section 2 gives the details of the two matrices of PbWQO4
crystals exposed to the high energy beams. Section 3 discusses Si avalanche photodiodes and their
use. Section 4 outlines briefly the beamlines and the data taken. Section 5 describes the results, and
conclusions are drawn in Section 6.

2. Description of PbWQ4 Test Matrices

2.1 Test Matrix I

The first matrix, used in 1993, consisted of 21 parallelepiped crystals with lateral dimensions
of 20 x 20 mm? and differing lengths (Table 2). They were mounted so that the front faces were
flush, with longer crystals protruding back into the box containing the front-end electronics. This
was done to ease the task of injecting light into crystals via optical fibres for the purpose of
monitoring. Each crystal was wrapped with 150 pm of reflecting millipore paper and 30 pm of
aluminized mylar.

The scintillation light was detected by Hamamatsu S3590-03 Si photodiodes with an active
area of 10 x 10 mm?2. The preamplifiers were modified versions of those used with vacuum triodes
in the OPAL endcap lead glass calorimeter [7]. The shaping time was set to be 30 ns. The silicon
photodiodes were glued onto the crystals with Dow Corning 3145 RTV adhesive/sealant optical
compound with a refractive index of 1.41. A short run was also made with one Hamamatsu S5345
high capacitance Si avalanche photodiode with an active diameter of 5 mm.

In this exploratory test the temperature of the crystals was not stabilized.

The photoelectron yield for the central nine crystals was measured using muons traversing the
crystals and the Si photodiodes. The most probable signal for a minimum ionizing particle
traversing a 300 um thick Si detector is = 25,000 electrons. The smallest trigger scintillator was
large enough in area that some triggering muons did not traverse the diode. The pulse height
spectrum for one crystal is shown in Fig. 1. The energy calibration obtained from 80 GeV electron
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runs gives 8.0 ADC counts/GeV for the crystal shown in Fig. 1. The energy is summed over nine
crystals. It is assumed that = 80% of this energy is deposited in the crystal struck at the centre.
From this it can be calculated that the yield of photoelectrons is 6.7 p.e./MeV. A light yield of 38
photons/MeV is estimated assuming that the diode covered 25% of the rear face (the rest of the face
was left bare) and that the diode had a mean quantum efficiency of = 70% at the relevant
wavelengths. The photoelectron yield for the central nine crystals ranges from 6.7k to 11.2 k
p.e./GeV (or 38-64 ¥/MeV) and is tabulated in Table 2. We assign an error of about 20% on these

figures though the relative error should be considerably smaller.

Table 2 : Some parameters of the PboWO4 Test Matrix L

18 cm 18 cm 18 cm
18 cm 18 cm 20cm 18cm 18 cm
10.2 p.e. 8.1 pee. 11.1 pe.
1.9k 19k 22k
18 cm 20cm 22.5cm 20cm 18 cm
8.9 pe. 6.7 pe. 9.0 pee.
24k 20k 23k
18 cm 22 cm 20 cm 18 cm 18 cm
8.9 pe. 11.2 pe. 9.9 pe.
22k 23k 22k
18 cm 18 cm 18 cm

Key Length of crystal
Photoelectron yield ( p.e. / MeV using Si PIN Diodes)
Electronics noise at the output of the preamplifier/shaper ( in electrons)

2.2 Test Matrix II

The second matrix, used in 1994, consisted of 35 tapered crystals (truncated pyramids) with
nominal front face dimensions of 18 x 18 mm?2, rear face dimensions of 21.5 X 21.5 mm? and a
nominal length of 214 mm. Each crystal was wrapped in Tyvek-90 paper of a thickness of = 150
pm. Prior to the beam test the light yield and the longitudinal uniformity of the crystals were
measured. The non-uniformity was defined as NU = (LY pax—L Ymin)/LY min where LY max was the
light yield measured in a region 5 cm from the rear and LY iy is the minimum light yield.

The crystals were mounted on a base plate as shown in Fig. 2. The front fixture enabled light
to be injected into the crystals via optical fibres. The assembly was placed in a custom built,
insulated and light-tight enclosure and maintained at a stable temperature. Two schemes for
temperature stabilization were used, one employing air at a fixed temperature, forced through the
enclosure, and another employing water circulating through copper plates which were in contact
with the outer surface of the crystal matrix. The latter scheme provided a more stable temperature

-whereas the former did not deliver enough cooling and there was a residual day-night variation of
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temperature of about 2 °C. The enclosure was placed on a platform that enabled translation and
rotation of the test matrix. The crystal array was positioned so that the inner faces of the crystals lay

on a spherical surface with a radius of 1.46 m, close to the eventual situation expected in CMS at
n=0.

The scintillation light was detected by low capacitance Hamamatsu Si avalanche phototodiodes
(S5345LC) and later by Phillips PM1911 photomultipliers. The photodetectors were coupled to the
crystals with optical grease (Oken 6262A, n=1.42 at A = 450 nm). The useful area of the
photodetectors amounted to 4.3 % and 38 % of the crystal rear surface for the APDs and PMs
respectively. As the remainder of the rear face was left bare we assume that the fraction of the
emerging light collected was the same as the fractional area covered.

Table 3 : Some parameters of the PbWO4 Test Matrix II.

209 cm 212 cm 21.8 cm 21.5cm 22.1cm Al
1.0 1.4 1.0 1.1 0.8 dummy
13 % 7 % 9% 7 % 12 %

212 cm 213 cm 214 cm 21.1cm 21.7cm 213 cm
1.6 1.4 1.0 1.4 1.1
5% 5% 3% T8 4 % 14 % 14 %

20.4 cm 21.5cm 214 cm 214 cm 22.6 cm 213 cm
1.2 1.1 1.4 1.2 1.1
9 % 2% 1% Ti4 5% 11% 13 %

21.8cm 21.7 cm 21.7cm 222 cm 21.5cm 21.5cm
0.9 1.1 1.1 1.2 0.8
9% 3% 3% 3% 10 % 12 %

21.6 cm 22.1cm 21.6 cm 20.1 cm 21.6 cm 21.5cm
1.2 1.1 0.9 1.2 1.2
7 % 6 % 9% 8 % 9% 2%

209 cm 21.2cm 21.0cm 219 cm 2l4 cm 21.6 cm
1.1 1.4 1.6 1.0 1.2
11 % 8 % 7% 8 % 14 % 19 %

Key Length of crystal
Relative light yield (Unity corresponds to = 50 yMeV)
Longitudinal non-uniformity of the crystal

The front-end electronics chain (pre-amplifier, shaper and line driver) were specifically
designed to minimize the electronics noise for the given characteristics of the APDs. The
preamplifiers were AC coupled to the APDs with CR-RC shaping time of 35 ns. Each amplifier
was calibrated by applying a negative step function to a 1 pF capacitor at the APD signal node. The
accuracy of the relative calibration was limited by the 10% spread in the capacitances of the test
capacitors. The signal was sent over 80m of RGS8 cable and split in the ratio 1/8:7/8 before
integration in independent channels by LeCroy FERA 11 bit ADCs with a 150 ns gate. The pulse
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shape of the signal before entering the ADC is shown in Fig. 3. Temperature probes were
embedded in each front-end assembly and in contact with the respective APD package.

Data were also taken with a preshower detector consisting of one detector plane of Si strips

with a pitch of 2 mm preceded by a variable number of 4 mm lead plates. The preamplifiers were
those used with the Si photodiodes in the Test Matrix 1.

The light yield of PbWOy crystals is too low to enable the use of conventional Si PIN
photodiodes to detect the scintillation light from high energy electrons without inducing significant
tails in the energy distributions (see Section 5.1). A photodevice with gain and a small response to
ionizing radiation (r.i.r.) is necessary. Si avalanche photodiodes (APDs) can provide modest gain
and have a smaller r.i.r. than Si PIN diodes. The main tests in 1994 were made using Si APDs to
detect the scintillation light.

3. Silicon Avalanche Photodiodes

Recent developments in avalanche photodiode design have led to their consideration as
replacements for photomultipliers [S]. APDs can provide gain and are insensitive to high magnetic
fields in any orientation. APDs are reverse biased diodes with an internal field high enough
(> 10% V/cm) that electrons and holes acquire sufficient energy to generate further electron-hole
(e-h) pairs by impact ionization, yielding avalanche gain. The gain mechanism depends strongly on
the applied electric field and the device temperature.

The structures of the three APDs tested are shown in Fig. 4. Incident photons convert in the
first part of the p layer. The resulting electrons are accelerated in the high field p-n junction region
and generate further e-h pairs. Below a certain field strength holes are not able to generate e-h pairs.
The electrons are collected at the back contact. In the EG&G APD the electrons are collected after
drift in the -region. For incident charged particles the electrons (from e-h pairs) created in the p
region undergo multiplication whereas those created in the n and 7 regions do not.

Avalanche multiplication is a random process which leads to an additional fluctuation in the
collected charge characterized by an excess noise factor, F. The r.m.s. broadening of a signal from
n photoelectrons is given by 6 = ¥ (F/n). The coefficient a in Eqgn. 2 then becomes

F
a = Qiptr 2] VN_W
where ajy; also contains contributions to the stochastic term other than that due to finite
photostatistics and Np is the number of photoelectrons/MeV. Typical APDs have F = 2.

To first order the energy equivalent of electronics noise, on (see Eqn. 2), at the output of the
APD, can be expressed as

2 14p.F
LT 1 o 1o ML Fy

MeV)]2=C '
[on MeV)] gm ‘C(C.M-Npe)2 4(C.M.Npe)2

where e is the electric charge, M the avalanche gain, I4s is the component of dark current that is not
amplified (surface leakage current), Igp is the component of dark current that is amplified (bulk
leakage current), T is the shaping time, k is Boltzmann's constant, T is the absolute temperature, g,
is the first stage transconductance, t is the integration gate time and C is the total parallel
capacitance.
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The detailed APD requirements for our application are :

* the p layer should be thick enough to absorb most of the incident light in the relevant
wavelength range. The wavelength range of the scintillation light of PbWOQy is 400 - 600 nm. In
this range the photon absorption length in Si varies from 0.1 pm to = 2 um. However the thickness
of this layer has to be kept thin enough to minimise the response to ionizing radiation and keep
small the bulk leakage current (Ip) which undergoes multiplication. The bulk leakage current
becomes sizable if the APD suffers significant radiation damage.

* the electric field in the avalanche region should be large enough to allow multiplication by
electrons but small enough not to allow significant hole multiplication. The size and the shape of the
electric field in this region determines the excess noise factor F.

* the size of the drift region should be large enough for a low capacitance device but small
enough to keep low the response to ionizing radiation and the bulk leakage current.

A good design of an APD for electromagnetic calorimetry at the LHC is therefore a
compromise between the various opposing requirements. We consider below the details of
Hamamatsu and EG&G APDs.

The APDs manufactured by Hamamatsu are made by epitaxial growth on a silicon
substrate. The impurity concentrations and types can be accurately controlled during this process
and thus diodes with suitable doping profiles can be made. When under bias the depletion region
extends across the full width of the epitaxial layer. The standard 5 mm diameter APD made by
Hamamatsu (Fig. 4a) has a capacitance of 325 pF suggesting that the total thickness of the device is
around 7 - 8 um. The photo-conversion layer is estimated to have a thickness of ~ 2 um. Any
charge produced in this layer undergoes the full gain whereas the charge produced uniformly in the
avalanche region undergoes an average of half of the full gain. Hence the effective thickness of Si,
teff(Si), for the charged particle traversal will be = (2 + 5/2) um = 4.5 um which is consistent with
the measurements described below. The low capacitance APD has a thicker p layer (see Fig. 4b).
This had the undesirable consequence of increasing the size of r.i.r. to a level found later to be
unacceptable. Another undesirable feature of the low capacitance Hamamatsu devices was a high
surface leakage current.

The EG&G APDs are manufactured by ion implantation using thin wafers of crystalline
silicon. The internal structure is such that the avalanche region, with a thickness of = 5 um, is
located behind the photo-conversion region with a thickness of = 2 pm (Fig. 4c). When the APD is
fully biased the depletion region extends right through the wafer with the result that the device
capacitance is much lower than the Hamamatsu APDs. The capacitance of the 5 x 5 mm? device is
= 25 pF suggesting an overall thickness of = 100 pm. These devices have a smaller t.{Si) than the
low capacitance Hamamatsu APDs but larger than the high capacitance ones due to the contribution
from the = 90 um thick drift region. This contribution amounts to the thickness of the drift region
divided by the gain. The surface leakage current of the EG&G APDs is considerably smaller than
that of Hamamatsu ones. However preliminary measurements indicate that the excess noise factor
for these diodes is larger than that measured for the Hamamatsu devices.

Low capacitance Hamamatsu APDs were used in the beam tests described in Section 5.2.2.
The r.m.s. of the electronics noise, referred to the input, as a function of voltage for one APD is
shown in Fig. 5 [8]. Also shown are the gain and noise referred to the output. The running
condition selected corresponded to a gain of = 25. The voltages on all the APDs were set to give
this value of gain. The voltage required was found using low energy X-rays which convert in the
active region of the APD and deposit a known amount of charge. Ag K radiation was used for the
gain optimization. For the calibration procedure a 55Fe source, capable of producing a signal
simultaneously in all the APDs, was used. A 5.9 keV X-ray leads to the creation of 1640 electrons
in silicon so permitting the gain of the APD to be estimated.
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An important parameter of the APDs is the size of the response to ionizing radiation. It can be
quantified by expressing it in terms of the thickness of Si PIN diode required to give the same
signal as that arising from the traversal of a charged particle in the APD. We have exposed three
APDs and a 200 pm thick Si PIN diode to protons with a kinetic energy of 64 MeV in a beam at the
Paul Scherrer Institute. The resulting pulse height spectra are shown in Fig. 6. An attenuation of
6 dB was applied to the signal from the low capacitance Hamamatsu APD. The results are given in
Table 4. The effective thickness of Si, tef(Si), is evaluated by

200pum (peak position) ApDi
peak position)pIN M

teff(Si)APDI = (

The values obtained for tesf(Si) for the various APDs can be understood by examining their
internal structure.

Table 4 : Results from an exposure to 64 MeV protons of a Si PIN diode and different APDs.

PIN Diode Hamamatsu Hamamatsu E.G. & G.
APD APD APD
high capacitance | low capacitance
Peak position® (arb.) 175 160 696* 273
Voltage ) 20 146 288 280
Gain M) 1 53 53 325
tegr(Si) at M=50 (um) 200 3.5 15 8.6
# pedestal subtracted.

* corrected for an attenuation of 6 dB

The various properties of the APDs tested are summarized in Table 5. R&D is being carried
out with Hamamatsu to decrease the leakage current and the capacitance of their APDs without

increasing tof(Si). A decrease of the excess noise factor is sought for the EG&G devices.

Table 5. The parameters of the different photodevices.

Parameter Si PIN EG&G Hamamatsu | Hamamatsu
Diode (High C) (Low C)
Size [mm?] | 10x10 5x5 6=5mm|¢=5mm
Capacitance [pF] 40 25 320 80
Leakage current * [nA] =~ few 20 100-300 400-900
QE at 500 nm [%] = 60 =75 = 65 =~ 65
Photosensitive layer  [um] = 2 =2 = 2 = 2
Multiplication layer  [lim] none = 6 <6 = 25
IMxdM/T *  [% per °C] - -3.5 -2.3 -2.5
IMxdM/dV *  [% per V] - 2 15 4
Excess noise factor F * 1 2.8 2.0 2.1
teff (Si) (M=50) fum ] 200 8.6 3.5 15

* at a gain of M = 50 for APD

4. The Beamline and Data Taking

In 1993 the beam tests were carried out in the CERN H2 beamline and in 1994 in the CERN
H4 beamline. We describe the layout of the latter beamline. Electrons in the momentum range from
10 GeV to 150 GeV were used. Data were also taken with 225 GeV muon and 80 GeV pion
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beams. The detecting elements in the beam line included beam-defining trigger scintillation
counters, a beam halo veto scintillator and four planes of drift chambers. The scintillators allowed
the selection of "narrow" beam (4 x 4 mm?2) or "wide" beam (20 x 20 mm?) triggers. Most of the
data were taken with the 20 x 20 mm? trigger. Drift chamber information was used off-line to
define smaller regions when needed. The drift chambers allowed the measurement of the position
of incidence of the beam on the crystal front face to an accuracy of = 300 pm. The incident flux
was below =~ 5000 particles per SPS spill ( of a duration of = 2 seconds). The beam momentum
spread was defined by collimators which were set such that Ap/p < 0.2%. This spread is not
unfolded in the results presented below.

Tower to tower calibration was carried out using 50 GeV electrons. About 25k events were
recorded for the calibration of each tower. A scan in energy was made with the beam centered
successively in each of several towers. About 100k events were recorded at each energy. Data were
also taken with 225 GeV muons at normal incidence and with the crystals rotated by 90° so that the
muons traversed the crystals perpendicular to their long axes. The transverse scan muon data were
used to investigate the longitudinal uniformity of light collection. To investigate electron-pion
separation some 200k pion events were recorded.

5. Results

5.1 Results from Test Matrix I

Data were taken with incident electrons with momenta of 20, 40, 80 and 150 GeV/c, and with
muons of 225 GeV/c in the H2 beam of the CERN SPS North Area.

The distribution of the energy summed over nine crystals for 150 GeV electrons is shown in
Fig. 7. A long tail was observed on the high energy side of the spectra. This is due to charged
particles passing through the 300 pm thick Si photodiodes. This was verified by placing a diode
directly behind the one detecting the scintillation light. A long tail is observed when the pulse height
distribution for the "light blind" diode is examined (Fig. 8). This diode did not see the scintillation
light and the signal is due to the energy deposited by charged particles leaking out of the crystal at
the end of the shower. The energy deposited in the blind diode can be used to correct for the signal
observed in the light detecting diode. However the resolution expected from a crystal calorimeter
cannot be attained as can be seen by the large width and the tails in the corrected pulse height
distribution for 150 GeV electrons shown in Fig. 9. A cut on the signal in the blind diode can be
used to obtain narrower distributions but at the price of a much lower efficiency for electrons. Data
were also taken with differing thicknesses of lead in front of the crystals. The distribution of the
sum of energy in nine crystals are shown in Fig. 10 for lead of thickness of 10 mm or 25 mm
placed in front of the crystals. It can be seen that the high side tail is much reduced when 25 mm of
lead is placed in front of the crystals but the width increases considerably.

The tails on the high energy side result from the fact that the direct response of the Si
photodiodes to ionizing radiation leaking from the rear of the crystal is significant compared with
the scintillation light. For this reason an attempt was made to detect the scintillation light using Si
APDs. A 5 mm diameter Hamamatsu Si APD was mounted on the rear of an 18 cm long crystal. In
Fig. 11 the pulse height distributions obtained from an 18 cm long crystal with a Si APD, to detect
the scintillation light, are compared with those from a 20 cm long crystal using a photomultiplier
and an 18 cm crystal with Si photodiode. It is evident that the high energy side tail in Fig. 11c
almost disappears due to the smaller response of the APDs to ionizing radiation.

It was decided to make further tests in 1994 with a matrix of longer crystals using Si APDs to
detect the scintillation light.
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5.2 Results from Test Matrix II

5.2.1 Response to muons and electrons using photomultipliers

The temperature of the setup using PMs as photodetectors was stabilized by water cooling.
The stability attained was * 0.2 9C over the period of the run (= 20 hrs). This is shown in Fig 12.

The longitudinal uniformity of the response of the crystals was measured by firing muons
transverse to the long axis of crystals. This is shown in Fig. 13 for Tower 8.

The calibration constants were deduced by two methods: one using a minimization
procedure and the other using 50 GeV electrons shot in the centre of each crystal. In the
minimization procedure the calibration coefficients of a 3x3 array of crystals, used to reconstruct
the energy when an electron was incident in the central crystal, were obtained by minimizing the
width of the energy distribution. Both methods give results that are consistent with each other. The
reconstructed energy distributions for electrons with energies of 35 and 150 GeV, incident over
almost the whole face of the central crystal, are shown in Fig. 14. The energy is summed in 9
crystals centered on Tower 14. A tail on the low energy side is observed especially for the higher
energies. This is due to longitudinal energy leakage and longer crystals are therefore needed. The
energy resolution measured using PMs is shown in Fig. 15. The line corresponds to the
parameterization

2 =23% & 035%

The dispersion in the beam momenta has not been unfolded. For comparison the effect on
energy resolution of limited shower containment in the 3 X 3 array of crystals was studied using
GEANT. The resulting parameterization leads to 6/E = 2.25%/NE @ 0.26%. The test beam results
show that an energy resolution of = 0.5% can be obtained at high energies. In the measurement the
dominant contribution to the stochastic term is from limited photostatistics. It is estimated that about
2500 photoelectrons / GeV were detected by the photomultiplier for Tower 14. The PM covered
about 35% of the rear face of the crystal and had an emission spectrum weighted quantum
efficiency of = 12% .

5.2.2 Response to electrons, muons and pions using APDs
These tests were carried out using low-capacitance Hamamatsu APDs.

Energy equivalent of electronics noise

The width of the sum of pedestals of 9 crystals was used to establish the energy equivalent of
the electronics noise. It was found to be = 250 MeV corresponding to about 75 MeV per crystal.
The introduction of a preshower detector in the same enclosure as the crystals led to an increase in
the electronics noise to = 350 MeV for nine crystals but only = 90 MeV/crystal indicating that there
was a sizable amount of correlated noise. This did not improve very much once the preshower was
removed. Due to insufficient beam time we did not investigate the cause of this increase.

Response to ionizing radiation

Muons with an energy of 225 GeV were fired uniformly into the front face of Tower 14. The
hit pattern of muons depositing more than 600 MeV in the crystal is shown in Fig. 16. With the
600 MeV cut there is a higher density of impacts in the area covered by the APD. This is due to the
energy deposited by the muons traversing the APD. The size of the response to ionizing radiation
can be determined from the distribution shown in Fig 17. The first peak, at = 300 MeV, is due to
the scintillation light produced by muons traversing only the crystal whereas the second peak, at
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=~ 1.2 GeV, is due to muons that also go through the APD. Hence the most probable energy that a
minimum ionizing particle deposits in the APD is equivalent to 900 MeV.

The photoelectron yield can be deduced from the above numbers once the internal structure of
the APD is known. The measurements described in Section 3 indicate an effective diode thickness

of 13 um of Si. This leads to a photoelectron yield of = 1200 p.e./GeV. This is consistent with the
value deduced from the test pulse.

Temperature stability

Forced air cooling was employed during the test using APDs as photodetectors. The
temperature stability achieved was poor. A typical trace of the variation of temperature is shown in
Fig. 18 and the day-night cycle can clearly be seen. This complicated the task of energy calibration
as the calibration runs were not necessarily taken at the same temperature as the runs used in the
study of energy resolution. For this reason the minimization procedure for the study of energy
resolution was preferred. The electron data runs were of very short duration and during them the
temperature changed by less than 0.05 °C. These results are consistent with those when the
temperature corrections are properly taken into account (see later).

The influence of changing temperature on the response of the crystals to 50 GeV electrons was
studied during a twenty hour run [9]. Fig 19 shows the variation of the measured response versus
temperature. The temperature was measured only on the outer surfaces of the matrix. The thermal
diffusion time results in a time lag between the temperature measured at the crystal surface and that
deep in the crystal. The system as a whole, including the APDs, shows a time-lag of about
2.1 hours between the maximum of the measured temperature and the minimum of the response.
When allowance is made for this time-lag a temperature coefficient of -2.2%/ °C is obtained.

Response to electrons

Electrons of momenta 20, 35, 50, 80 and 120 GeV/c were fired in the centre of Tower 8. The
distribution of the measured energy in 9 crystals, centered on Tower 8, is shown in Fig. 20a for
electrons with an energy of 120 GeV. The electrons were incident uniformly over an area of 3 x 3
mm? at the centre of Tower 8. The tail on the high energy side is due to particles leaking out of the
rear of the crystals and into the APD. This hypothesis was verified by placing a preshower detector
with 16 mm of lead in front of the crystals (Fig. 20b). Table 6 quantifies the effect of placing 16
mm (2.9 Xg) of lead in front of the crystals. The size of the tail is considerably reduced since the
flux of particles leaking out of an e.m. shower is decreased by the increased length of the
calorimeter. In order to reduce the size of such tails it is clearly desirable to :

« increase the light detected by the APDs by increasing the light generation and light collection,

* increase the length of the crystals,

* design APDs that have a smaller response to ionizing radiation.

The EG&G and the high capacitance Hamamatsu APDs are respectively about a factor of 2.5
and 4 less sensitive to charged particles than those used in our tests (see Table 5).

Table 6: The percentage of events with energy E = <E> + 26(E).

Energy 80 GeV 120 GeV 120 GeV with 16mm
Pb preshower
Area of 3 x 3 mm? 14.4 % 18.5 % 10.6 %
impact full area 9.4 % 10.8 % 6.9 %
Gaussian resolution o/E (%) 0.87 % 0.79 % 0.71 %

The energy resolution measured using the minimization method is shown in Fig. 21. The line
corresponds to the parameterization
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The dispersion in the beam momenta has not been unfolded. The energy equivalent of
electronics noise, amounting to = 250 MeV, has been subtracted from the measured width in order
to display the stochastic term (given by the slope of the line shown in Fig. 21) and the constant
term (given by the offset at 1/E=0). The difference between the stochastic terms for the APD and
PM readouts is due to smaller photostatistics and a larger excess noise factor for the APDs. The
central crystal (Tower 8) used in the measurements with APDs had a light yield which was lower
by 30 % compared with that from the central crystal (Tower 14) used in tests with PMs. The APDs
covered only = 5% of the rear face of the crystals and had a quantum efficiency of = 65%. It is
estimated that about 900 photoelectrons/GeV were detected. The excess noise factor F is large for
the APDs (F = 2 - 3) and a stochastic term around 5%, i.e. +/(F/900), is therefore expected. In
order to reduce the size of the stochastic term to the value found in the data using photomultipliers,
an increase, by a factor of at least three, is required in the product of light generation, light
collection and light conversion. A lower value of the F would also help. Further R&D is being
carried out to improve the crystal quality, increase the light yield and reduce F.

The energy resolution was also measured using the calibration constants obtained from 50
GeV electron beam runs in the nine crystals. The measurement of the time-lag between the
measured and the actual temperature of individual crystals was used to correct the crystal response
[9]. Crystals 1-3, 7-9 and 13 -15 were calibrated by correcting and equalizing their response to 50
GeV electrons incident in a 2 x 2 mm? area in which the response of the crystal is the maximum.
The measured energy resolution after temperature correction is shown in Fig. 22. The energy
equivalent of the electronics noise has been subtracted from the measured energy resolution. These
results are consistent with those shown in Fig. 21. The linearity of response for both the methods
is found to be better than 1% over the range studied.

Position resolution

The small Moliere radius of lead tungstate results in narrow showers. A particle incident in the
centre of a crystal with front face dimensions of 18 x 18 mm?2 will deposit = 72% of its energy in
that crystal. Nevertheless the energy deposited in the neighbouring eight crystals is large enough to
enable measurement of the position of impact [10]. The centre of gravity, X, is defined as

X, = Lieft — Zright
X9

where Zjef and Zright refer to the summed pulse height in the column of three crystals to the left
and to the right of the central crystal (Tower 8) and Xy is the pulse height summed over all the nine
crystals.

The beam telescope consisting of four layers of drift chambers was used to measure the
position of incidence of the beam, labeled Xp. The variation of X; — Xp with X for 50 GeV
electrons at normal incidence is shown in Fig. 23. However it is possible to apply a correction to
X, in order to make the mean value of X — Xp, zero at any given X¢. A look-up table is computed
for each energy and a correction is obtained by interpolation. The distribution of the resulting
position determination for S0 GeV electrons incident uniformly across the front face of Tower 8 is
shown in Fig. 24. The position resolution as a function of energy is shown in Fig. 25. A linear
least squares fit to the data yields the relationship

+
o(Xc) =g'—0—23;:0—'48- ® (0.2940.06) mm. (E in GeV)
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Electron charged-pion separation
The difference between the lateral and longitudinal development of electromagnetic and
hadronic showers can be used to distinguish electrons from charged pions [11]. A charged hadron
usually deposits only a fraction of its energy in the ECAL. Hence the difference between its
momentum measured in the tracker and the energy measured in the e.m. calorimeter allows the
separation of electrons from charged pions.

The electron pion separation was studied using 80 GeV electrons and pions. In the absence of
a hadron calorimeter this study used only the energy deposits in the crystals. The energy spectrum
as measured by a 3 x 3 array of crystals, for pions incident over Tower 14, is shown in Fig. 26. As
expected the majority of pions deposit a small fraction of their energy in the calorimeter.

Two distinct types of cut were used to distinguish electrons from charged pions :
* an energy cut, Ecy, on energy deposited in the 3 X 3 array of crystals centred on the central

crystal for an "E/p" measurement,
X9 -E¢

* a lateral shape cut, S¢y¢ = , where Xg is the energy in the 3 x 3 array and E is the

X
energy in the central crystal. ’

The difference between the measured energy spectra for electrons and pions can be seen in
Fig. 27. The distribution of the variable S¢y is shown in Fig. 28. for electrons and charged pions.
For the electron runs there is a clear peak around S¢yy; = 0.2. This is consistent with the fact that an
electron, incident in the centre of a crystal, will deposit around 77 % of the energy contained in
9 crystals, in the central crystal. The plot for pions is much flatter with a broad peak around
Scut = 0.5. Table 7 gives the electron identification efficiency and the pion rejection factors obtained
for various choices of cuts.

Table 7: The electron identification efficiency and the pion rejection factors.

Energy Cut Scut e~ events 7 events |pionrejection| electron
factor efficiency
none none 85646 86763 | 100 %
*3c0 none 80324 225 386 94 %
+3¢0 0.18 <S¢yt < 0.45 77792 95 913 91 %

We expect some improvement in the pion rejection by using an APD with a smaller response to
ionizing radiation.

5.2.3 Response to electrons in the presence of a preshower

Energy resolution
The energy deposited in the silicon detectors of the preshower can be used to correct for the
energy lost in the lead placed in front of the crystals. The reconstructed energy, Erec, is given by
Erec = 0 Epresh + Xo.
An example of the distribution of the reconstructed energy is shown in Fig. 20b. The energy
resolution, as a function of incident electron energy, with and without correction is shown in
Fig. 29. The line corresponds to the parameterization

o _8.5%
E- ~E

The position resolution of the preshower
The transverse spread of the electromagnetic shower, after = 3 X of lead, is of the order of a
few mm., which means that signals are seen in more than one silicon strip. This enables a centre-
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of-gravity calculation to be performed. The relatively poor precision of the drift chambers and large
amount of cross-talk present in the system prevented any effective "S curve" correction to be made.
The distribution of the difference between the position of the incident electron measured by the
beam chambers (Xp) and that measured by the preshower for 50 GeV electrons is shown in
Fig. 30. The spatial precision at this energy is approximately 410 um which is somewhat worse
than previous measurements ( < 350 um [12]). Fig. 31 shows the measured spatial precision as a
function of the reciprocal of the energy and is fitted by :

+
o(Xp) =252 & (0.3640.06) mm

It can be seen that the stochastic term is smaller than that found using crystals but the constant
term is larger. This is probably due to the presence of noise and cross-talk.

Angular resolution

In principle the measurement of the angular resolution of the preshower-crystal system is
simple : it is the spread of X — Xp divided by the distance along the beam direction between the
planes where the two measurements are made (Z; — Zp); Zp is the position of the preshower plane
and Z. is, approximately, the position of the shower maximum. However Z; is not known directly
and must be estimated from data taken with particles incident on crystals at known angles. This
measurement is complicated by the "S-curve" which is different when the beam is not at normal
incidence. Fig. 32 shows how the "S-curve" (in this case it is a plot of X, - Xp versus Xp) changes
with angle. The mean values of X — X}, are shown as horizontal lines. It can be seen that the mean
value of X; — X, depends on the angle of incidence, and it is this mean divided by the angle in
radians (small angles) which yields the lever-arm and thus the depth given by Z. Five runs, with
angles of incidence between —5° and + 5°, were studied. A least squares fit was performed through
the means (Fig. 33). The gradient determines the lever-arm. The lever arm is found to sit at 58.5
mm, which after the subtraction of 7.5 mm for the distance between the preshower and the front of
the crystals, yields a depth of = 5.7 Xj. If 2.85 Xy for the lead of the preshower is added to this
one obtains a depth of = 8.5 X corresponding roughly to the shower maximum for electrons with
an energy of 50 GeV. The same depth is found from runs made with 2.1 Xg of lead in front of the
crystals.

Once the length of the lever-arm has been determined the angular resolution can be estimated
by

o(Xc ~ Xp)
% = Tever-am
for small angles. Fig. 34 shows how the angular resolution depends on the incident energy of
electrons. It is assumed that the distance between the preshower detector and the front face of the
crystals is 4 cm as would be the case in the CMS barrel design. The angular resolution is fitted by

+
Co =%'5E6—'5® (4.140.8) (mrad)

6. Conclusions

The results presented here demonstrate that lead tungstate crystals are suitable for use in the
CMS experiment at the LHC. The drawback of the low light yield of these crystals can be
overcome by the use of relatively large area Si avalanche photodiodes. Development work is
continuing to further improve the crystal characteristics such as the light yield, the radiation
hardness and growth techniques, and the characteristics of the avalanche photodiodes such as the
response to ionizing radiation, the excess noise factor and leakage current.
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The pulse height spectrum for muons traversing a crystal.
The layout of crystals.
The shape of the signal due to electrons (after 80 m of cable).

The internal structure of APDs; a) Hamamatsu - high capacitance, b) Hamamatsu - low
capacitance and c) EG&G.

The gain of a typical Hamamatsu low capacitance APD and the r.m.s. of the electronics
noise in terms of electrons referred to the input and output of the preamplifier as a function
of the bias voltage.

The pulse height spectra due to 64 MeV protons in different photodetectors a) Si PIN
photodiode, b) Hamamatsu APD - high capacitance, c) Hamamatsu APD- low capacitance
and d) EG&G APD. The lower peak in the APD distributions is due to incident protons
missing the APD.

The distribution of energy for 150 GeV electrons using Si PIN diodes.
The pulse height distribution for a light blind Si PIN diode.

The distribution of ADC counts for 150 GeV electrons using the light blind diode to correct
for the energy deposited by shower particles traversing the light detecting diode.

The sum of energy in 9 crystals when lead of a thickness of a) 10 mm or b) 25 mm is placed
in front of the crystals. Also indicated is the fraction of the events that are beyond the peak
and outside the Gaussian curve.

The pulse height distributions obtained from a) 20 cm long crystals using a photomultiplier
to detect the scintillation light, b) an 18 c¢m crystal with Si photodiode and c) an 18 cm long
crystal with a Si APD.

The temperature stability of the setup cooled by water.
The longitudinal uniformity of the response of crystals using muons.

The reconstructed energy distribution for electrons with energies of 35 and 150 GeV
incident over almost the whole face of the central crystal.

The energy resolution measured using PMs.
The hit pattern of muons depositing more than 600 MeV in crystal 14.

The size of the response to ionizing radiation. The first peak is due to the scintillation light
produced by muons traversing only the crystal whereas the second peak is due to muons that
also go through the APD.

A typical trace of the variation of temperature when forced-air cooling was used. The day-
night cycle can clearly be seen. The line is to guide the eye.

The variation of the measured response versus temperature.

The reconstructed energy distribution for 120 GeV electrons: a) without and b) with a
preshower detector. A correction has been applied for the energy lost in the lead.

The energy resolution using the minimization method (see text). The line is to guide the eye.

The measured energy resolution using the 50 GeV electron calibration runs. The calibration
coefficients have been corrected for temperature variation.

The variation of the difference between the position of incidence deduced from the crystals
(X,) and that from the beam drift chambers (Xp) versus X.

The distribution of the position determined using crystals.
The position resolution, deduced using the crystals, as a function of energy.

The pion energy distribution measured using a 3 X 3 array of crystals with the beam incident
on crystal 14.

The measured energy spectra for 80 GeV electrons and pions.
The distribution of the variable S¢y,.

The energy resolution as a function of energy with and without correction using the
preshower signal.



Fig. 30

Fig. 31
Fig. 32

Fig. 33
Fig. 34
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The distribution of the difference between the position of the incident electron measured by
the beam chambers (Xp) and that measured by the preshower (Xp) for 50 GeV electrons.

The position resolution of the preshower detector as a function of 1/E.

The difference between the position measured using the crystals (X;) and that using the
preshower detector (Xp) versus X.

The mean value of (X—Xp) versus the angle of incidence of electrons.
The angular resolution as a function of the energy of electrons.
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