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CHAPTER I

INTRODUCTION

" 1. A Historical Note

The spectral theorem asserts, in essence, that a bounded normal
operator on Hilbert space carn be approximated in the operator norm by
linear combinations of projection operators (a "spectral resolution' or
"decomposition'" of the bounded normal operator). Since the inauguration
of modern trends in spectral theory by J. von Newmann, M, H. Stone and
others, proofs of the spectral theorem have been given in various set-
tings for Hermitian, unitary, and normal operators. While the spectral
theorem for Hermitian operators is comparatively easy to prove, the same
result for normal operators is much more difficult,

The ''algebraization' of the spectral theory was initiated by
J. von Newmann [20] (1936), H. Freudenthal (6] (1936) and S. Steen [26]
(1936). M. Nagumo (18] (1936) contributed the notion of Banach algebras
to analysis. The tendency to emphasize the algebraic aspects of the
spectral theory was continued in the work of S. Kakutani (12] (1939),

F. Riesz [23] (1940), M. H. Stone [27] (1940, 1941) and B. Vulich [33]
(1940). The ideal theory of normed rings due to I. M. Gelfand [7] (1941)
proved to be vitally important in following developments. K. Yosida and
T. Nakayama [32] (1942) applied the Gelfand theory in proving an "ab-
stract spectral theorem' for elements of certain semi-ordered rings, and

obtained the spectral theorem for bounded Hermitian operators on Hilbert




space as a specialfcase. A proof of the spectral theorem for beunded
normal eperaters (independent of the Hermitian case) was given by

K. Yosida [29] (1943), where the ideal theory of normed rings was
applied directly te a commutative ring of normal operateors.

Note. In much of the literature the terminelogy ''ring" is used

in place of "algebra,! for the algebraic structure with a multiplication
defined. In this thesis the later termineleogy will be adopted. In this
connection, we shall speak of the 'Gelfand theory of Banach algebras’'

rather than 'the ideal theory of normed rings.''

2. Summary

The aim of this thesis is to give the main prerequisites for a
study of abstract spectral theory from the algebraic viewpoint and a
proef of the spectral theorem for nermal operaters in this setting. It
is intended that the exposition should be readable on the basis of a
good general background in real analysis. Throughout this thesis refer-
ences are provided for the more basic, well-known results, in lieu of
proofs.

Chapter II consists of the more fundamental definitions and facts
concerning Hilbert spaces, operators on a Hilbert space, and Hermitian
operators, in particular. The main results of this chapter, which are
needed later on, are the supremum formula for the norm of a Hermitian

operator T,

7| = sup{|(mx,x)| : [lxl| s 1} ;




the partial ordering = on the class of Hermitian operators; the
Hermitian decomposition of an operator; and the fact that the operators
I+ T*T, I+ TT* are invertible, where T is Hermitian.

Chapter III gives pertinent’results from the Gelfand theory of
Banach algebras. Section 1 deals with the general properties of complex
commutative algebras with unit, maximal ideals, homomorphisms, and quo-
tient algebras modulo a maximal ideal. In order to fully develop the
Gelfand theory of Banach algebras, we shall make use of a generalized
concept of analytic functioh. Section 2 indicates how the theory of
ordinary analytic functions is extended to cover 'abstract analytic
functions’ which have values in Banach space. The abstract versioens of
the Liouville theorem, the Cauchy integral theorem, the Cauchy integral
formula, and the Taylor series expansion of an analytic function are
given. The proofs of the theorems c{:éd above in their abstract ver-
sions rest on a consequence of the Hahn-Banach theorem. The principal
results of Section 3 are the Gelfand~Mazur theorem, the characterization
of a commutative Banach algebra A with unit by the Gelfand representa-
tien, and the Spectral Radius Formula,

px) = Lim [xY1/®

n—"®

(x €4) .

The Gelfand topology on a maxiﬁél ideal space is discussed in Sectien
4. In this concluding section of Chapter III we also prove the Alaoglu
theorem, and the fact tHat the structure space of a commutative Banach
algebra with unit (the maximal ideal space with the -Gelfand tepology)

is a compact Hausdorff space. The Tychonoff theorem on product topel-




ogies is uséd in the proof of the Alaeglu theorem.

In Chapter IV the Gelfand theory of Banach algebras is applied
to a certain commutative Banach algebra of normal operators on Hilbert
space. This particular Banach algebra, called 'the Banach algebra B

' is constructed in Sectien 1. The

generated by a normal operator,’
fundamental properties of the Gelfand representation of the Banach
algebra B are proved in Sectien 2. An impertant cenclusion in this
development, proved Ey using a consequence of the Stone-Weierstrass

theorem, states that the space of coentinuous functions which represents

the Banach algebra B by the Gelfand representation is actually equal te

the totality of centinuous functilons on the structure space of B. We

relate convergence in norm (strong limit) of a menotone sequence of pos-
itive operaters in B to coenvergence (uniform limit) of a sequence of

continuoeus functioens en the structure space of B in Section 3, by using
two theorems due to Baire. The spectral reselutien of a normal operator

is constructed in the concluding sectien.

3. No ta;t‘?i‘on

Within this thesis, items (définitions,‘lemmas, theorems, corol-
laries, and remarks) are numbered qonsecutively within a section. Chap=-
ters are referred to by roman numerals, sections and items are referred
te by arabic numerals. Thus, "Theorem III.3.10" refers to Theorem 10
of Section 3(the tenth theorem of Section 3)*in Chapter III. If no
chapter number appears in a reference then the item referenced is within
the same chapter. Similarly, if no sectien number appears in a refer-

ence, then the item referenced is within the same sectien. Thus,




"Remark 1" refers to the first remark in the section in which the refer-
ence "Remark 1" appears. Equations, inequalities and other conditions
are also numbered consecutively within a section, with no connection to
the numbering of the items mentioned preﬁiously. These conditiens will
be referenced by a number in parenthesis; For example, "by III.3(14)"
refers to the condition numbered (14) in Section 3 of Chapter III.
Bibliographical references are cited by the name of the author

followed by the number of the reference in the alphabetized BIBLIOGRAPHY

in square brackets.




CHAPTER II
BACKGROUND IN HILBERT "'SPACE THEORY

l. Hilbert Spaces

Definitions. A linear space H over the complex field C (the

scalar field) is an inner product space (or pre-Hilbert space) if there
is a mapping which makes correspond to each pair x,y € H a complex num-

ber (x,y), called the inner product of x and y, which satisfies the

following cenditions feor all x,y,z € H and all A € C:

(x,x) 2 0, and (x,x) = 0 if and only if x = 0 (1)
(x +y,2) = (x,2) + (y,2) (2)

(Ax,y) = A(x,y) ‘ 3

G.¥) = (y,x), where (x,y) is the (4)

complex conjugate of (x,y).
It is easily verified that (x,y + z) = (x,y) + (x,z) and (x,Ay) =
X(x,y).

If H is an inner product space, a norm is introduced in H by
defining Hx“ = (x,x)%. It follows from properties-of the inner preduct

that, for all x,y € H and all scalars A,




||| = 0, and ||x|| = 0 if and only if x = 0 (5)

A=l = A« (6)

| x,v)| < ||lx|l“|llyll (Schwarz inequality) (7)
llx + vl = |Ix|| + ||yl (Minkowski inequality) . (8)

The Schwarz inequality is proved in Rudin [25], for example. This nerm,
in turn, induces a metric d on H defined by d(x,y) = Hx-y”, called the

distance between x and y. An open ball in H with center x and radius

r > 0 is denoted by S(x,r). Thus
Sx,r) = {y:y€H [x-y]| <t} . (9

The corresponding metric topology in H is obtained by specifying the
class of open sets as follows. A set EC H is an open set in H if teo
each point x € E there corresponds an open sphere S(x,r) (with r > 0
depending on x) such that S(x,r) © E. A sequence {xn} in H is a Cauchy
sequence (in the metric space H) if, for each € > 0, there exists a
positive integer N such that ”xm - an < € whenever m,n > N. An inner
product space which is complete as a metric space (with the metric
induced by the inner product, as outlined above) is called a Hilbert
space. An inner product'spéce H is complete if, whenever {xn} is a

Cauchy sequence in H. there exists an element x € H such that




lim Hxn -x| = o . (10)
n=e
We now mention some examples of Hilbert spaces. Proofs are omitted in
this section.

Examples. (a). Suppose (X,M,.) is a measure space, with u a
positive measure on a O-algebra M of subsets of X. Let SZ(X,u)vbe the
class of all complex-valued measurable functions £ on X such that |f|2
is integrable. This class is a complex linear space. Two functions £,

g, € SZ(X,u) are called y-equivalent if f(x) = g(x) except on a set of

{\-measure zero. By this equivalence relation, SZ(X,u) is split into
A
disjoint equivalence classes. Let f be the equivalence class containing
the function £, that is,
A 2
£f = [g : g € 8"(X,W); £, g are u-equiValent}
The space of equivalence classes (which is a complex linear space if we

A A . A
define f + g = f/:>\, Af = XB; is called £2(X,u) when it is understood

as equipped with the norm
A 2
RN (1)
X
If £,8 € £2(X,u), let

¢ = [ezan . (12)




In this way, an inner product is specified, and it can be proved that
£2(X,u), with this inner product, is a Hilbert space. For the. detailed
arguments necessary in this example, sef for instance Rudin [25], PP -
66-67. In practice, and in much of the literature, less precise nota-
tion is employed, and no explicit mention is made of equivalence classes.
With the less precisé notation, one simply refers to the function space
S(X,.) as the Hilbert space, and agrees to "identify' |U-equivalent
functions. |

(b). Let {? be the space of all sequences {an} of complex num-

L)

bers such that

© ,
Y lal?<e .
n
n=1
Define
-]
(a,b) = Zanbn if a = {an}, b = {bn} .
n=1

Then LZ can be shown to be a Hilbert space.

2. Operators on a Hilbert Space

Througheut this thesis, the term operator on H will refer to a

linear transformation T mapping H inte H which is bounded in the sense

that

sup{[|lTx|| : x € H, |Ix]| s1} s.= . (1)
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The set of all operators on H will be denoted by A(H). For all §,T €
A(H) and all scalars A, define AT, S + T (operator sum), and ST (oper-

ator broduct) by

(AT)x = A(Tx) , » (2)
(S +T)x = Sx+ Tx , (3)
(8T)x = s(Tx) , (4)

for every x € H. It is easily verified that AT, § + T, and ST are

elements of A(H), and that A(H) is a complex .linear space under the
scalar multiplication and addition defined. Since, in addition, a

multiplication is defined under which

S(T1 + TZ) = ST, + ST2 and (5

1

(s1 + 32)': = §.T + 321‘ s 6)

1

A(H) is called an algebra of operators. A(H) contains the identity

operator I defined by Ix = x for all x € H, The zero operator 0 of

the linear space A(H) is def;ned by Ox = 0 for all x € H. If n is a

positive integer, ™=7... T, the product of T which itself n times.

It is convenient to set T° = I for each T € A(H). 1If
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.n

p(z) = Z a2
j=0

is a polynomial in z with complex coefficients, it is easily verified

that p(T), defined by

n
‘o - 3
p(T). E: ajT ,
§=0

is contained in A(H) if T € A(H).

Definition 1. The norm of an operator T, written HTH, is the

nennegative real number

Tl = supl|Tx| : x € H, ”xH <1} .

By (1), HTH is finite for each T € A(H). Since a linear trans-
formatien is bounded if and only if it is centinuous, every element of
A(H) is a continuous function on H. The norm of an operator T is also

given by the formulas (see Rudin (25], p. 96; Berberian (2], pp. 94-96)

IT|| = supf Hgﬁu : x €H, x # 0}, if H # {0} (7
| = supl|Tx| : x € H, lx|| = 1}, 1£ 1 # {0} (8)
ITl] = infly : ||Tx|| = v||x|| for a1l x € W} . (9)

Theorem 1. Let S and T be operators on H, and let & be a complex




12

number. Then

ezl = o -l (10)
Is + Tl = ||s|| + ||z (11)
Ist|| = |s| Izl . (12)

This theorem is provéd in Halmos [9], p. 35.
Properties (1ll) and (12), and the fact that “TH = 0 if and only
if T = 0, show that ||-|| is a norm on the space A(H). The linear space

A(H) is complete in the norm defined; that is, A(H) is a Banach space.

(Refer, for example, to Tayler [28], p. 163, or to Hewitt and Stromberg

(10], p. 211.)

Definition 2. An operator T € A(H) is said to be invertible if

there exists an operator S € A(H) such that ST = TS = I.- If such an
operator S exists for T € A(H), then S is unique, and is called the in-
verse operator of T, and denoted by T-l. An operator which is not
invertible is said te be gipgular.

Note., If ST=TS =1 and S,T = TS

1 1= I, then § = IS = (SlT)S

=5,(18) =5,I =5

1 1
Definition 3. Let T be an operator on H. The set of all complex

numbers M such that T - AL is singular is called the spectrum of the
operator T, and is denoted by 0(T). The complement of 0(T) in the com-

plex plane C is called the resolvent set of T, denoted by r(T).
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3 Hermitian Operators on a Hilbert Space

*
Definition 1. Let T € A(H). 1If there exists an operator T such

% *
that (y,Tx) = (T y,x) for all x,y € H, then T is called the adjoint

operator of T, or the Hilbert space adjeint of T.

The existence of a unique adjoint operator T* for every operator
T € A(H) can be proved as a consequence of the Riesz-Fréchet representa-
tion theorem for bounded linear functienals on a Hilbert space. (See,
for example, Halmos [9], pp. 17, 38.)

Theorem 1. Let S,T € A(H) and A € C. Then

%%

T = T (L)
on”* = T.r 2)

s+m* = s¥ 41 (3)

s = 18" . (4)

If S is invertible, then S* is invertible, and (S*)-l = (S-l)* . (5

A proof of this theorem is given in Halmes [9], p. 39.

Definition 2. An operator T on H is said te be Hermitian (er

% % %
self-adjoint) i£f T = T, and normal i{f TT =T T,

Remark 1. Note that a real scalar multiple of a Hermitian opera-

tor is Hermitian, and the sum of two Hermitian operators is Hermitian.
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The class of all Hermitian operators on H forms a.real normed linear space
which will be denoted B(H). If T is a Hermitian operator on H, then for

any element x € H
T@x) = 1% = (xT'x) = (Txx) . 6)

Thus, if T € A(H) is Hermitian, (Tx,x) is real for every x € H. The
converse is aiso true; that is, if (Tx,x) is real for every x € H,
then T is necessarily Hermitian. This is proved as follows.

Suppose that T € A(H), and (Tx,x) is real for every x € H. Then
(Tx,x) = (x,Tx) = (T*x,x) for every x € H. Hence ((T - T*)x,x) = 0 for

*
every x € H, Let S =T - T , It follows from the standard pelarization

identity
4(Sx,y) = (S(x+vy), x+vy) -.(S(x - y), X = y)
+ 1(S(x + iy), x + iy) - i(S(x - iy), x =~ iy)

that (Sx,y) = 0 for all x,y € H. Thus (Sx,Sx) =‘“Sx”2 = 0 for every
x € H, and Sx = 0 for every x € H. Hence S =0 =T - T*, and T is
Hermitian.

The above remarks demonstrate the usefulness of the set of num-
bers {(Tx,x) : x € H}, where T is a Herﬁitian operator on H. If (Tx,x)
2 0 for every x € H, we shall call T (necessarily Hermitian) a pogitive
operator, and the notation © £ T (or T 2 0) will be used to denote this

property of T. If S, T are Hermitian operators on H, then S £ T
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(or T 2 8) will be used to mean that T - S is a positive operator.

As we shall see iﬁ the following theorem, the supremum of all the
values taken by |(Tx,x)| over the unit ball {x : “x” < 1} in H, where
T € A(H) is Hermitian, is equal to the norm of the: Hermitian operator T.

Theorem 2. If T is a Hermitian eperator on H, then
It = sup{|(Tx,x)| :x €n, [l <1} . (7)

Proof. Put ¥ = sup{|(Ix,x)| : x € H, |x[| = 1}. -By the Schwarz

inequality, if ||x|| < 1 then
2
| (xx,x)| < [l Il < [lll-[1=l]" = izl

and hence Y = HTH. To show that HTH < Y, note that for each real number

B and all x,y € H, the inequality

L4
| (T(x % By), x + By)| =< v[x + 8yl (8)
is valid. Also, since T is Hermitian,
(Ty,x) = (y,Tx) = (Tx,y) . (9

Using (8) and (9) we find that

| (T(x + By), x +By) - (T(x - By), x - By)| = |28(Tx,y) + ZB(Tx,y)l
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= |4B Re(Tx,y)|
and | (T(x +§y), x + By) - (T(x - By), x - By)|
< v(lx + 8yl + [1x - By]®) - V(G + By, x + By) - (x - By, x - By))
= 2v(lxl? + 8%ly1®
Hence the inequality
|28 Re(1x,)| 5 v(llxl? + B2V (10),

is valid for every real B and every x,y € H. If y # 0, and B is

replaced by ”x”/”y“ in (10), the inequality

|Re (T, )| = vllx]] Iyl (11)
is obtained. Note that (11) holds trivially in case x = 0. This
inequality also holds for y = 0, and thus for all x,y € H. If the com-

plex number (Tx,y) is written in polar form | (Tx,vy) enl (where & 1is
y

real), then
-ix
e T (Tx,y) = |(Tx,y)| 20 ,

and hence
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coo3 '}A
Re {e” T (mx,y)p = x| . (12)
i )
If y is replaced by e~ y in (l1), we obtain
Re (e, <&0p = vlall sl

since |en1| = 1. By a property of the inner product: and the above

inequality, we obtain

re {e x,3f = vllsll-lyl
In view of (12), it follows that
| (3] = vl Iyl
In particular,
2
=l = (mx,x) < vl o[lmd]
and consequently ”Tx” < Y”X”, since this inequality holds trivially if
HTx” = 0, while if HTxH > 0 it is an immediate consequence of the pre-
ceding inequality. Thus the set [“Tx“ : x € H, Hx“ < 1} is bounded

above by Y, and (by definition of ”T“)

Izl < v
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Therefore HTH =Y, since it has already been proved that Y = ”TH.
Remark 2. The hypothesis of Theorem 2 can be relaxed censider-
ably. It has been proved (see Bernau and Smithies [4])that for any

normal operator T on H,

Iol = supll x| ¢ el <23 .
Theofeﬁ 3. The set ﬁ(ﬁ) is partially ordered by the relation <.
Proof. Let S, T and U be elements of B(H). Then S < §, since
(Sx,x) - (Sx,x) = 02 0 for every x € H implies that S - § 2 0. Next,
suppose that S € T and T = U. It must be shown that S < U. Neote that
(Ux,x) 2 (Tx,x) and (Tx,x) 2 (Sx,x) for each x € H, and hence S < U.
Finally, suppose that S = T and T =< S, It must be shown that § = T,
Note that (Sx,x) < (Tx,x) and (Tx,x) S (Sx,x) for each x € H implies

that (Sx,x) = (Tx,x) for each x € H. That is,
(Tx - Sx,x) = 0 = ((T-8)x,x)

for every x € H. By Theorem II.3.2 this implies that HT - S“ = 0, which

implies that

Remark 3. If T € A(H), then T can be decomposed into ''real' and

"imaginary' parts as follows. Define
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* . *
R=-§-(T+T)ands=_%('r-'r) . (13)
By Theorem 1,
R = KT+TH = X +177) = 31 +T) = R.

*
Similarly S = S. Thus, R and S are Hermitian operaters. If T =R

1
+ iSl, where Rl and Sl are Hermitian operators, it follows from Theorem
* * *
1l that T = Rl :_iSl = Rl - iSl. Thus necessarily Rl = R and S1 = 8.

Hence the Hermitian decomposition T = R + i8S of T is uniquely determined.
It is an interesting fact (noted in HalmGS‘[9], p. 42) that an operator
T is noermal if and only if RS = SR, where T = R + 1S is the Hermitian
decomposition of T.

We conclude this chapter with a theorem on the invertibility of
operators of the form I + T*T, which will be required for a later result,

Theorem 4. Let T be an operater on H. Then the operators T*T
and TT* are Hermitian and I + T*T and I + TT* are both invertible oper-
ators.

The above theorem is due to J. von Neumann [21]. A proof of a

more general theorem is given by Yosida, (Yosida [30], p. 200).
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CHAPTER III

BACKGROUND IN THEORY OF BANACH ALGEBRAS

1. Complex Cémmuta;ive Algebras

Definition 1. A linear space A over the complex field C is a

complex commutative algebra if there is a multiplication defined which
makes correspond to each pair x,y € A and element xy € A, called the

vector product of x and y, which satisfies the follewing cenditions for

all x,y,z € A and all A € C:

AMxy) = (x)y = xQy) (1)
(x+y)z = xz + yz 2)
Xy = yx . 3)

The term commutative algebra will be used to refer to a complex

commutative algebra. A commutative algebra A is sald te have the unit

(or identity) element e, if A centains an element e such that xe = x

for every x € A. The terminelogy is justified, since if xe = x and
xe = x for all x € A, then e = ee’ =e'e = e', and consequently there
can be at most one unit element. Every commutative algebra to be used

in the follewing discussion will be a commutative algebra with the unit

element e. If A is such an algebra, and x € A, x 1s called invertible
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* * *

if there exists an element x € A such that xx =e. If y € A is such
*

Xy = e, then

* * * % * *
X = xe = x(xy.) = (xx)y = ey =y

Hence, if x is invertible, there is precisely one element in A to be de-
noted x-l, such that xx-1 = e, The element x-le A is called the inverse
f x. An element x € A which is not invertible is said to be singular.

Definition 2. Let x € A, where A is a commutative algebra with

unit e. The set of all complex numbers M such that x - Ae is not invert-
ible is called the spectrum of x, and is denoted by 0(x). The comple-

ment of O(x) in C is called the resolvent set of x, denoted by r(x).

(Note that this terminolegy corresponds to that used in Chapter II,
Section 2.)

Definition 3. Let A be a commutative algebra with unit. A sub-

set J< A 1is called an ideal of A if

J is a linear subspace of A, and (4)

x € Jand y € A implies xy € J . (5)

It is clear that A necessarily has the two ideals {0} and A it-
self. If J is an ideal of A, and J # A, then wefsay-th@tiJ ds a Qrﬁﬁer
ideal of A. 1t sbould be noted here that a proper ideal J can contain
no invertible element x, for if so e = x-lx € J, and it would follow

that J = A. A maximal ideal J of A is a proper ideal of A which is not
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properly contained in any proper ideal of A.

Theorem 1. Let A be a commutative algebra with unit e. Every
proper ideal of A is contained in a maximal ideal of A.

Proof. Suppose S is the set of all proﬁé; ideals of A which
contain the proper ideal J. Since J € §, S is nonempty. Let S be par-
tially ordered by set inclusion. Let {Jt : t €T} be a éhgig in §,
that is, a_totally oraered subset of' §, and define K = U £ €T Jt°
We show that K is an ideal of A, gnd that K is a prope; ideal, Suppose
x,y € K, z € A, and &,B € C. There exist indices s and t in T such that
x € Jo» ¥ € J.. Since {Jt : t € T} is a chain in S, either Js<: J, or
Jt<: Js. Suppose Js(: Jt' Then both x and y belong to the ideal Jt’
.énd thus ax + By € Jt<: K and xz € Jt<: K. A similar argument shows
that ax + By € K and xz € K if J, & J . Hence K is an ideal of A.

Since e‘achjt is proper, no Jt‘coptains the identity e of A, and thus
e ﬁ K. Hence K is .a proper ideal of A, and K= J since each Jt'D J.
Consequently K is an upper bound in S for the chain. Zorn's lemma
asserts that S h;s‘é maximal element M. Such an element M € § is a
maximal ideal of A containing J.

| /Corollarz 1. If A is as in Thearem 1, and k €A is singular
(non-invertible), there exists a maximal ideal of A containing the
element x. .
Proof. Let Jx = {xy :y €A}, It is easily verified that Jx is

an ideal of A containing x. If e € Jx’ there would exist an element

y € A such that xy = e. But this would contradict the hypothesis that
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x is singular. Hence e § Jx’ and thus Jx is a proper ideal of A, By
Theorem III.1l.1, there is a maximal ideal of A containing Jx and thus
containing the singular element x.

Note. It follows from Corollary 1 and an earlier remark that an
element x € A is invertible if and only if x is contained in no maximal

ideal of A.

Definition 4. Let X and X  be commutative algebras. A mapping

A : X~ X" 1is said to be a homomorphism of X into X* if for all x,y € X

and all a,B € C
Aeax + By) = al(x) + BA(x) (6)
Mxy) = AGA(y) . (7)

Aﬂ isomorphism is a one-to-one homomorphism. The inverse image of the
zero element of X’ is called the kernel of the homomorphism A.

Let J be a proper ideal of A, where A is a commutative algebra
witﬁ unit. The relation~ will be defined as follows. For x,y € A,
X~ y (modulo J) if and only if x-~ y € J. This relation is easily
shown to be an equivalence relation in A, and A is thereby partitioned

inte disjoint equivalence classes. The set {y : x-y € J} © A is called

the residue class (module J) containing x, and will be denoted by ¢(x).

Note that ®(x) is precisely the coset of J defined by

x+J = {x+2z:2¢€J} . (8)
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For all x,y € A, and all scalars A, define Ap(x), ®(x) + ©(y) and

®(x)p(y) by

Mp(x) = o(x) |, (9)
o(x) +o(y) = ox +y), ' (10)
e(x)p(y) = ®o(xy) . (11)

It is easily verified that A(x), ®(x) + ©(y) and ©(x)®(y) are residue
classes (modulo J), and that the operations above are well-defined.
Consider, for example, the proposed definition of the product @(x)p(y)
of the coset ®(x) and ®(y). Suppose xle p(x), yle ¢o(y). Then X X €J

and ¥y € J. Since J is an ideal, and

xly1 - Xy = xl(y1 -y) + (x1 - xX)y ,

it follows that X1y, - XY € J. Thus w(xlyl) = @p(xy). Consequently,

tp(xy) is determined solely by the cosets ®(x) and ®(y), and the defini-

tion ®(x)p(y) = ®(xy) is unambiguous. The set of all residue classes
(modulo J), denoted by A/J, is called the residue class algebra (or

quotient space) of A (module J). This terminology is appropriate since

the set A/J becomes a commutative algebra with unit, when endowed with
the operations defined by (9), (10) and (11), and the unit element e + J
= ®(e).

The mapping @ : A = A/J which assigns the coset ®(x) to each
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x € A is clearly a homomorphism by definition of the operations in A/J.

This mapping ¢ is known as the patural homomorphism of A onto A/J. The

image @(e) of the unit e € A is the unit element of A/J, and ®(0) is the
zero element of A/J.

Any homomorphism A : X = X', where X and X  are commutative alge-
bras, can be described in terms of ideals in the domain space, as indi-
cated in the following theorem.

Theorem 2. Undef.a homomorphism A : X - X~ the kernal K of A is
an ideal of X. The image A(X) of X is ifself isomorphic to the residue
class algebra X/K. Conversely, every iaéal J of X is the kernal of the
natural homomorphism of X into X/J.

Refer, for example, to Naimark [191, p. 166 for a proof of this
theorem.

Definition 5. A commutative algebra A with'unit is called gimple
if it contains no proper ideals different from the trivial ideal {0}.

Maximal ideals play an important reole here.

Theorem 3. The residue class algebra A/J is simple if and only
if J is a maximal ideal.

A proof is given in Naimark [19], p. 167.

Definition 6. Let M denote the set of all maximal ideals of A.

The radical R of A is the ideal ﬂJEMJ' A is said to be semi-simple if
R = {0}.

Note that every simple algebra is also semi-simple. The algebra
of complex numbers is a simple algebra in the sense of Definitioen
III.1.5.

A conditien under which the residue class algebra A/J is also a
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field is given in the following theorem.

Theorem 4. Let J be a maximal ideal of a commutative algebra A
with unit e. Then the commutative algebra A/J is a field.

Proof. It is only necessary to show that each nonzero element of
A/J has a multiplicative inverse. This will imply that the nonzero ele-
ments of A/J form a group under multiplication. Suppose x € A, but x f.L
Then @(x) # ©(0), and ®(x) is a nonzero element of A/J. (Note that such
an element x exists since J is a proper ideal of A.) Define

v

3 = {ax+b:a€a,pc g}

It is easily verified that J is an ideal of A containing J, and x € J
since X = ex + 0. Thus J contains J properly. Since J is a maximal

ideal, it follows that J = A. Since J = A, there exists elements a € A,

b € J such that ax + b = e, It follows that ax = e + (~b) € w(e). Thus
w(ax) = p(e), and ®(a)P(x) = ®p(e). Hence W(a) is the multiplicative

inverse of ®(x). This completes the proof,.

2. Abstract Analytic Functions

In this section we indicate how the theory of analytic functions
can be generalized to functions of a complex variable with values in a
Banach . space. The.intent here is merely to indicate, without detailed
arguments, how the generalization is made. Specific references are
supplied.

Definition.1. A linear space X over the complex field C is a

normed linear space if there is a mapping which makes correspond to each
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x € X a real number Hx”, called the norm of x, which satisfies the

following conditions for all x,y € X and every A € C:

||| = 0 and {|x|| = 0 if and only if x = 0 | (1)
Axll = [A] -]l (2)
=+ ll < ll=l + ll5]l (3

A metric topology in X is obtained by defining the metric d by
d(x,y) = ”x - y” for every x,y € X. The open sets of this topology are
specified in precisely the same manner as in the metric topolegy in a

pre-Hilbert space discussed in Section 1 of Chapter II. A normed linear

space which is cogglete as a metric space (with the metric defined above)

is called a Banach space.

Definition 2. Let {*n} be ‘a sequence in a normed linear space X.

If there exists a point x € X such that

Lim [lx - x| = o,
n-"o

then x will be called the strong limit of the sequence {xn}, and we

write

X = 8 = lim x
n —e
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Definition 3. Let x(*) be a function defined on a subset D of

the complex plane C with values in a normed linear space X. Let Xo
be a limit peint of D, and suppose that there exists a point y € X
such that the following condition is satisfied: For every open set
S € X containing y, there exists an open set T & C containing Xo,

such that
A E(T - {Xo})ﬂ D implies x(A)E S

Then we will say that y is the strong limit of x(°+) as A approaches

Xo through S, and we shall write

.y = § - 1im x(\)

A=A
o

If x(') is defined at Xo’ and

s - lim x(\) = x(A ) ,
A - Xo N

then x(A) is said to be strongly continuous g;_&o. If x(-) is strongly

continuous at every point of S, then x(+) is said to be strongly contin-

uous on S.

Definition 4. Let D be a region of the complex plane, and X a

normed linear space. We will say that x(+):D = X is strongly differen-

tiable at the point A € D if the strong limit as A approaches A, of

the quotient
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x(\) - x(ke)
TR -
[o]

exists. In this case we shall write

»()\ ) { X()\) - X()\Q) ° ’ ( )
X = 5 - 1lim : 4

and call x'(le) the derivative of x(+) at Xe. If there exists a neigh-
borhoed N(Xo;e) ={N:N€c, |A- Xol < e} of Xo € D such that x(-) is
strongly differentiable at every peoint A € N(Xe;e), then x(+) is said
to be strongly holomorphic (or analytic) at LD. The function x(:) is
said to be strongly helomorphic in D if x(:) is strongly holomorphic at
every point A € D,

"nth derivatives"

Note. The usual notation will be adopted for
of a function x(-): C = X. Thus, assuming that the derivatives x'(l),
(x") (\) and so on, exist for A € D, we write x(l)(k) =x"(\), x(z)(k)
= (x ) (\), ... . We define, for cenvenience, x(o)(K) = x(A\). For
any pesitive integer n, x(n)(X) will be called the nth derivative of
x(-) at A.

*
In the following we denote by X the space of all bounded linear

functionals on the normed linear space X, so that X* is the dual space
of X.

Lemma 1. Let D be a region in C, and let X be a normed linear
space. Suppose x(+): D~ X is strongly helemeorphic in D, and let
f € X*. Then the composite function f-x, defined by (£-x)(\) = £lx ()]

for every A € D, is a complex-valued holomorphic functien on D.
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Proof. Let KOE D. Since x(:) is strongly holomorphic in D,

0 Fx0) - x0) -
x = 5 - lim ' r——
) \ ko 1 A - ko

exists. By linearity of f it follows that, for every A € D,

flxV)] - f[x(?\‘o)] o0 x() - x()) :l
AR - L TR x

The bounded linear functional £ is necessarily a continuous function.

Hence

flx )] -£lx (A )]
(o

[ x(\) - x(lé?j‘
-

(£:x)°A ) = lim —
o’ TN oA

8 - lim
A= X
o

(o}

v

= fEx'(ko)] X (5)

Since XOG D was arbitrarily chosen, (5); implies that f:x is holemorphic
on D,

Lemma 2. Let X be a normed linear space, and let x € X be fixed.
If £(x) = 0 for every f € X*, then x = 0.

The above lemma is an easy consequence of the Hahn-Banach theorem,
For a proof of this result, referenc; may be made to Bachman and Narici !

(1], p. 199.

Theorem 1. (An Abstract Liouville Theorem;; Let X be a normed

linear space, and suppose x(-): C * X is strongly holomorphic through-
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out C. If there exists a real number M > 0 such that
lx(M)|| < ™ for all A € ¢,

then x(*) must be constant on C.
*
Proof. Let £ € X be any bounded linear functional on X. Then

f:x is holomorphic on C by Lemma 1. Moreover, we have

[ES= e ]| INE1E3 /1 PYeS 1A /B
for every A € C. Therefore f.x is a bounded function which is hole-
morphic throughout C. By the ordinary Liouville Theorem (see
Markushevich [16], p. 364), the complex-valued function f+x must be

constant on C. Let |4 and £ be any two complex numbers. By the above

remarks it follows that
flx)] = £0x(8)]
By linearity of f € X*, this implies
£lx(u) - x(€)] = o.
But £ was any bounded linear functional on X, hence

x(W) - x(€) = 0 , (6)
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by Lemma 2. The relation (6) asserts that x(*) is constant on C.
Note. The above proof follows the general lines of that in

Bachman and Narici [1].

Definition 5. By a contour ' comnecting the points Yl and Y, in
C, we will mean a rectifiable Jordan arc in C from Yl to Y,. 1f T is

a closed Jordan curve (Yl =‘Y2), then I' is called a closed contour in C.

Note. Every contour I has a parametrization Y ¢ [tl,tzj -T,
= S ts = =
where Y (t) = a(t) + iB(t) for tl tst, and Yl Y(tl), Yz Y(tz).

The mapping Y is continuous and ene-to-one on [tl,tz). 1f T is a closed

contour, then Y(tl) = Y(tz). T' is to be thought of as an oriented curve
in the following sense: if X, X"7€T and X" =y(t") #y ("™ =177,
then A~ is said to precede A" if t’ < t”". A point ko €T is said to
be between the points A", A"" € T‘if ko = Y(to), A =y(t’) and A7 =
y(t“") implies t° < t, < e’ .

According to the Jordan curve theorem (see Markushevich [16],
p. 70), the complement TC of any closed Jordan curve I in C has exactly
two components with I’ as their common boundary. The bounded component
of T will be called as usual the interior of I, deroted IT), and the

unbounded component of T° will be called the exterior of ', denoted E().

Definition 6. Let [ be a contour connecting the points Yl and

YZ in C. Let X be a normed linear space, and x(+): C = X. Let I denote

o’ 1’
denote” by €l a set of points gl’ 52,

points of [I. For the partition I, let

a partition Y, = S SR Kn =Y, of I' (where Ki # Xj if 1 # j§), and

cees gn € T’ which are between the
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:i=1,2, ..., n} ,

ol = maxtlh, - n, |

and denote: by S(lI, (1), the sum

n -
SO = ) xE)G, - A, ) EX, @
i=1

We will say that the streng limit

jx(x)dx = ; - lim S(1,Q) (8)
T nff - o. :
n —"e

exists if the following condition is satisfied: for every € > 0 there
exists a number § > O such that for every partition Il of I' with [[]| < &

and for every choice of {1, we have

ls@,Q) - |_xyar] <e . | (9)
T

If the above condition holds (that is, if the strong limit (8) exists),

then we say that x(°) is ingggrable alon&}: and the strong limit

J

T

x(A\)d\ is called the cqniou; integral of x(°) along .
Theorem 2. Let I’ be a contour in C. Let X be a Banach space,
and suppose that x(°):C *'X is strongly continuous at every point of I".
Then x(*) is integrable along .
The above theorem can be proved as a consequence of the complete-
ness of X, and the uniform continuity of x(*) on the compact set ' in C.

A proof of this existence theorem is given in a more general setting.
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in Hille and Phillips [11] p. 63.

Theorem,31 (An Abstract Cauchy Integral Theorem). Let X be a

Banach space. Suppose that x(:)C —* X 1is strongly holomorphic on a
region D bounded by the contour [ and that x(-) is strongly continuous

onl . Then
J x()\)d)\ = 0
I

*
Proof. Let £ € X, and let y = J x(A)dA € X. Since f is a
T

bounded linear functional on X, we have
t) = o] xal = | dxola (10)
T

Relation (10) is a consequence of the linearity and continuity of f on
X. ﬁy Lemma III.2.1, f'x is a complex-valued holomorphic functien on D.
Also, f:x is easily seen to be continuous on the contour I' which bounds
D. By the ordinary Cauchy integral ;heorem (see Markushevich [16],

p. 258), we have

I flay]ar = 0 = f£(y)
T
Since f € X* was arbitrary, it follows by Lemma III.2.2 that y = 0.
Note. The above proof is similar to that in Bachman and Narici
[1], p. 310, The other well-known results of ordinary analytic function
theory carry over to the theory of holomorphic functions with values in

a Banach space. We can use Lemmas II1.2.1 and II1.2.2 in the manner
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typified in the above proof to obtain the more general or '"abstract’
versions of the Cauchy integral formula and the Taylor series expansion
for holomorphic functions. For the proofs of these theorems for ordi-
nary analytic functiens, reference may be made to Markushevich (16]. we
omit the proofs of the following theorems.

Theorem 4. (An Abstract Cauchy Integral Formula). Let X be a

Banach space, and suppose x(:):C X is strongly holomorphic in a region

D of C which contains a cleosed contour I’ and the interior of I', I().

Then
LJ‘ X -
mrg—{%dé - xQ) LEAEID)
and
_I_J“ xE) - 0
mi‘rg-kdg = 0if A €EQT)
Note. Under the hypotheses of Theorem 4, we can also prove the
formula

(n) _ n! . x(8)
x M) = oy Ir € - ) ds (1D

for the nth'derivative x(n)‘of-x(-)_at AE ICF).

Theorem 5. (ég‘Abstract‘Téflor Series Expansion). Let X be a

Banach space, and suppose x(:):C = X is strongly holomorphic in a region
D of C. LlLet ko be an arbitrary point of D. Then x(-) is represented by

the power series
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(n)
x ) .
x) = ) —= 0 - (12)

n=0

which converges on the disk |A - X0| < b, where & = inf{lxo - | s € 3D}

t
is the distance between Xo and 3D, the boundary of D. The n h derivative

x(n)(xo) is given by

v xQ)

(n) _ n
x00) zrrijr O - )\O)n‘-l-l d

forn=1, 2, 3,

Note. If x(*) is strongly holomerphic on the entire complex

plane C, then § = », and the power series (12) converges for all

A€ cC.
3. Banach Algebras
Def inition 1. A complex commutative algebra A with unit e is a
commutative normed algebra if A is a normed linear space by a norm ||*

which also satisfies the following conditioens:
lxyll < llll-llyll  £or a11 x,y € & (1)

lell - = 1. (2)
Only commutative normed algebras A will be considered in what follows.
A commutative normed algebra which is a Banach space is called a

commutative Banach algebra. The complex field itself is a commutative




Banach algebra with the noerm HXH = (KI, for every complex number A,
Theorem 1. Every maximal ideal J ;f a commutative Banach algebra
A (with unit e) is a closed set in the normed linear space A.
Proof. Suppese x,y € J (the closure of J in A), and @,B € C.
Let {xn}, {yn} be sequences of elements of A such that X = X and yn"y..
Then ax + Byn - ax + By. ‘Since ax + Byn € J for every n, ax + By € J.

If z € A, then zan J for every n. Since zX - 2zx, it follows that

zx € J. Hence J is an ideal of A.

Since J is a proper ideal (as is every maximal ideal, by defini-
tion), no invertible element of A belongs to J. Thus all elements of J

are singular elements of A. It is established in lemmas following this '

argument that the set G of all singular elements of A is a closed set

in A. Assuming this result, it foellews frem J & G that JCGS G, Now 2
G is a proper subset of A (since e { G). Thus J is properly coentained :
|
in A, and hence is a proper ideal of A. Since J is a maximal ideal of ’
A, and J < 3, then necessarily J = 3. Consequently J is closed in A. é
emma 1. If A is a commutative Banach algebra with unit' e, x € A, ’

and ”x“ < 1, then e + x is invertible.

Proof. By a property of the norm in A, “xn“ = Han forn =1, 2,

3, ... . Let ‘ !

y = e-x+ x2- I (-l)nxn ,

\
and note that each ynE A, If k=21, . E
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ntk n+l
ly g - vl s ) xld = 28
j=n+l

This estimate shows that {yn}‘is a Cauchy sequence in A. Since A is
complete as a normed linear space, there exists a y € A such that Y “y

(in the norm of A). The identity
(e +x)y. = e+ (D™
yields, upen taking limits as n = =,

(e +x)y = e

Thus e + x is invertible, with

]

(e + x)-1 = y e + ZZ (-l)nxn . (3)
n=1l

The series (3) is often called the Neumann series for (e + x)-l .

Corollary 1. Under the hypotheses of Lemma 1,

X

-1
e + 07 - ol = L

Lemmg 2. If A is a commutative Banach algebra with identity e,
if x is an invertible element of A, and h € A is such that Hh“ < l/Hx_HL
then the element x + h is invertible. The set G of invertible elements

of A is thus open in A, and the complementary set Gc, the set of
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singular elements of A, is closed in A.

Proof. Note that x + h = x(e + x-lh). By a property of the nerm,
" ell < 7H] [l < 1

since HhH < 1/”x-1”. By Lemma 1, e + x-lh is invertible. Hence

(x +h) (e + x-lh)-lx-1 = g,

Hence x + h 1s invertible, with

(x + h)-1 = (e + x-lh)-lx-1

It has been proved that if x is invertible, every element of A in some
open ball about x is invertible.. Thus the set of invertible elements
of A is open in A.

Corollary 2. Undér the hypotheses of Lemma 2, the mapping x - x-l
defined on the set G of invertible elements is continuous.

Proof. Note that

1 1

(x + h)-l-x- = [(e + x-lh)-l-e]x-

By the Corollary of Lemma 1, it follows that

[x + ) Eex 7Y = [l¢e + x ta) el -|lx Y
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ol =Y = - s~ 2 [n]

1= [l L - [l el

This inequality implies the assértion of the corollary.
Note. The proofs 0f Theorem III1.3.1 and the lemmas are modified

versions of similar proefs in Rudin [25], pp. 352-353 and p. 357.

Definition 2. Let x € A, where A is a commutative Banach algebra

with unit e. The spectral radius of x, denoted P(x), is the radius of

the smallest closed disk in C with center at the origin which contains

the spectrum O(x); in symbols,
p(x) = supli|r : A €ox)} . (4)

It can be shown that for x € A, the spectrum of x is a compact
set in the complex plane (see Rickart [22], p. 30). 1In view of this
result the complement of O(x) in C, the resolvent set r(x), is an open
unbounded subset of C.

Definition 3. The resolvent function of an element x € A is the

functioen RX:C = A defined by
RX(X) = (x - )\e)-1 for every M € r(x) . (5)

Remark 1. The resolvent function Rx of x € A satisfies the rela-

tion

REG)-RM = G -mMRE)RM . (6)
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To deduce this formula, note that
-1 -1
(x - Me) (x - e) = (x -Be +E8e - Me) (x - Ee)
-1
= e +(E -1 (x - Ee)
Upon multiplication by (x - ﬂe)-l, we obtain
-8t = x-m) T+ E-N) (x-B) x-ne) Tt

which is the formula (6). Fix € € r(x). Then for M € r(x), N #E, it

follows from (6) that

R (M) - R (5)
n-5

- -1 -1
= Rx(i) *R (M) = (x - €e) © (x - Me)
It has been proved (Corollary to Lemma III.3.2) that the mapping x x-l
is continueus on the set G of invertible elements of A. Hence the
strong limit

R_(M) - R_(5) ) )
X n’_ Ex = (x - Ee) L (x - Ee) L =(Rx(§))2€ A

s - lim
n-g

This calculation shows that Rx is a strongly holomorphic function on the
set r(x).
Theorem 2. Let A be a commutative Banach algebra with unit e.

For every element x € A, 0(x) is nonempty.

16}
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Proof. Suppose, on the contrary, that for some x € A, 6(x) = @,

We will show that the above assumption gives a contradiction. It has

been shown (in Remark 1) that the resolvent function Rx of x is strongly

holomorphic on the resolvent set r(x) = O(X)C. Since U(x) is empty, Rx

is strongly helemerphic everywhére'in C. We also have
e - Pr-ell = Bl = T%I‘ x| = 0 as [A] ==
whereby
(e - %) “ze in norm as |Xl -

Since the mapping x x-1 is a continuous function on the set G of in-

vertible elements of A (Corollary to Lemma III.3.2), it follows that

(e - %)_1 ~e! = e in norm as [x]| == . (7
By (7) we obtain
[ =2 = Y e - B7Y =g - o (®

as \X| - o, Hence for any given €

such that H(x - Xe)-lH < e, for |k| > 61. Let

1

€, = max l(x - Xe)-l“ >
|A|<8

1 > 0, there exists a positive real 51‘
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and let M = max {el,ez}. Then
“Rx(X)” = |[¢x - Ke)-lu < M for every A € C.

By Theorem 1 of Section 2, Rx must be constant on C, since Rx is strongly

holomorphic everywhere in C and is bounded on C. Thus

Rx(X) X € A for every A € C
But (8) implies that X, = 0, which contradicts the fact that
(x - Ae) (x - )xe)-1 = e.
Therefore, we must have 0(x) # ¢ for every x € A, This completes the

proof..

Definition 4. A mapping A: X - X* of a normed space X into a

normed space X’ is called an isometry if A preserves norms; that is,
”A(x)“ = Hx“ for every x € X. If the spaces X and X are commutative
normed algebras and A is an isomorphism as well as an isometry, then we
say that A is an isometric ?somorghism.

The following theorem plays a very important role in the theory
of Banach algebras.

Theorem 3° (Gelfand-Mazur). If A is a commutative Banach alge-

bra with unit e in which every non-zero element is invertible, then A
is isometrically isomorphic to the field C of complex numbers. This

isomorphism occurs in the following manner. Every element x € A is of
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the form x = ie; where A € C.

gzgggai Let x € A. By Theorem III.3.2, o(x) # . Hence there is
at least one complex number A € 0(x), and x - Ae is not invertible.
Since, by hypothesis, every non-zero element of A is invertible, we must

have

X - Ae 0

Therefore x = Ae. Denote the complex number A, which depends on x € A,
by A(x). Then the mapping x — A(x) is easily seen to be an isomorphism
from A onto C. For example, if x,y € A, then x + y = A(x)e + A(y)e =
[(A(x) + A(y)]e and x + y = A(x + y)e. Thus, A(x + y) = A(x) + A(y).
Similarly, the manner in which x = A(x) is defined also gives

A@x) = akr(x) and A(xy) = A@@A(y) ,

where x,y € A and @ € C. Clearly x = A(x) is one-to-one since A(%) =

A(y) gives
x = A(x)e = Ay)e =y .

Therefore x = A(x) is an isomorphism. For every x € A,

NG = @) cllell = [AGdell = =l .

Hence x — A(x) is also an isometry.
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Note. The proof that for every x € A, x = Ae for some A € C, is
similar to that given in Gelfand, Raikov and Shilov (8], p. 31.

. Definition 5. Let J be a clesed ideal of A. For every element

@(x) € A/J define the guotient norm of ®(x) by

loGoll = infl{lyll + vy € o)} . (9)

Note that the quotient norm of ®(x)€ A/J is also given by

o)l = -inf{|lx + ]| + y € 3} (10)

(see Rudin [25], p. 358), called the distance from x to J.

Theorem 4., Let J be a closed ideal of A. Then:
A/J is a normed algebra by the quotient norm. (11)

If A is a commutative Banach algebra and J is a proper

closed'ideai, thén A/j is a commutative Banach algebra. (12)

For a proof, refer to Rudin [25], p. 359,

Corollary 3. If J is a maximal ideal of the commutative Banach
algebra A with unit, then A/J is a commutative Banach algebra with unit
in which every non-zero element has an inverse.

Proof. The corollary follows directly from Theorems III.l.4,
II1.3.4, and the fact that every meximal ideal in the Banach algebra A

is a closed set in A, by Theorem III.3.1.
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It is now possible to characterize the elements of the residue
class algebra A/J, where J is a maximal ideal of the commutative Banach
algebra A with unit, by applying the Gelfand-Mazur Theorem.

Theorem 5. Let A be a commutative Banach algebra with unit, and
let J be a maximal ideal of A. Then the residue class algebra A/J is
isometrically isomorphic to the field of complex numbers in the sense
that each ®(x) € A/J is uniquely répresentéd as ©(x) = Ap(e) where A is
a complex number depen&ing on ®(x).

Proof. . By the Corollary of Theorem III.3.4, A/J is a comﬁutative
Banach algebra with unit in ﬁhich every nen-zero element is invertible.
The fact that A/J is isometrically isomorphic to the complex field now
follows by the Gelfand-Mazur Theorem.

Theorem 6. If A is a commutative Banach algebra with unit e, and
J is a maximal ideal of A, then J is the kernel of a homomorphism of A
onto the complex field C.

- Proof. Let ® denote the natural homomorphism of A onto the field
A/J, which has kernel J. Let Y denote the isomorphism (of Theorem III.
3.5) of A/J onto the complex field C. The scheme is illustrated by the

diagram:

b4
A_o%to_> A/JW C
The composition ¢ = Y« (v followed by ¥) maps A onto C, and is easily
verified to be a homomorphism of A onto C with kernel J.
Theorem 7. If A is a commutative Banach algebra with unit e, and

A 1s a homomorphism of A onto the complex field C, then the kernel of X
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is a maximal ideal J of A, and A has the form Y:p where ¢ is the natural
homomorphism of A onto A/J, and ¥ is an isomorphism of A/J onto C.

Proof. Let J be the kernel of A. Note that
J = {x :x €A, A\(x) =0}

It is easily verified that J is a proper ideal of A. (For example, if

x €J, vy €A, Mxy) = Ax)\(y) = 0. Thus xy € J.) That J is proper
follows from the observation that A maps A onto C. Suppose that J is
not maximal. Then there exists a maximal ideal P of A which contains J.

Consider the image A(P) of P. 1If z 2y € A(P) and &,B € G, there exist

1’
elements X).%, €P such that K(xl) =z, X(xz) = z,. But ak(xl) +

Bk(xz) = K(axl) + k(sz) = Xﬂlxl + sz). Since ax,

follows that ak(xl) + Bk(xz) = az; + Bzze A(P). Similarly, if z € A(P)

+[3x2 € P, it

and w € C, wz € A(P). Hence A(P) 1s an ideal of C. We now show that
A(P) is a éroper ideal of C. Suppose A(P) = C. Let x € A - P, There
exists on element xOE P such that X(xo) = A(x). Thus A(x - xo) = 0,
which implies that x - xOE JC P, This implies that x € P, since x =
(x - xo) + xo; and contradicts x € A - P, It follows that A(P) is a
proper ideal of C, #roperly cbntaining the ideal {0} of C.- But this -
é¢ontradicts the fact that {@] is .the only proper ideal of C. Hence J
is a maximal ideal. If © is the natural'homomcrphism of A onto A/J,
define Y:A/J - C byAY(x + J) = A(x). It is easily verified that ¥ is
well defined and that ¥ 1s a homomorphism of A/J onto C. If A(x) = A(y)
then A(x - y) = 0, and x - y € J, which implies that x.+ J =y + J.

Hence Y is an isomorphism of A/J onto C. Thus we have A = Y.p.
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The maximal ideals of A have been characterized in the two pre-
ceding theorems by the set of all homomorphisms & of A onto C, that is,
the set of all multiplicative linear functionals on A which are not
identically zero.

Definition 6. Let M denote the set of all maximal ideals of the

commutative Banach algebra A with unit e. M will be called the maximal
ideal space of A. Let x be a fixed element of A, and define the mapping

A
X ' M~ C by

A : f
k() = &[Jl(x) for every.J € M.
Here QEJ] is the Homomorphism ¢ of Theorem 6, the notation now altered

A
to denote dependence of ® on J. The mapping x will be called the repre~

A
gentative function of the element x € A. The mapping x — x will be

denoted by A, and is called the Gelfand representation of the commuta-

tive Banach algebra A with unit e.

In the following theorem we give some fundamental properties of

A
the representative functions x.

Theorem 8, Let A be a commutative Banach algebra with unit e.

Let x X, €A, let J :Jy € M, and let A € C:

1 1

If x = x; + x,, then x(J) = QI(J) + QZ(J) (3 €M), (13)

Ax

If x then %(J) = XQI(J) (J € M). (14)

1’
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If x = x x,, then x(J) = X, (D%, (3) (J € W), (15)
Q(J) =1 for every J € M. (16)
Q(J) = 0 if and only if x € J. (17)

1f J1 # J2, then there exists an element x € A such that

A A
x(3)) # x(J,). (18)
IQ(J)l < ||x|| on M for every x € A. (19)

A
Proof. For each fixed J € M, x(J) = 8[J](x), and the mapping

8(g] :A~-cCis a homomorphism. The image of e € A under 3[J] is the

unit 1 of the complex field. The statements (13), (14), (15) and (16)

follow directly from the above observations. For example, for (15),
x(0) = #la(xx,) = 8[ul(x,) - eLal(x,) = %,(J) - x,(J)
172 1 2 1 2 :

Since 8(J] has J as its kernel, an element x € A maps into O under this
homomorphism if and only if x € J; this“&ields property (17). To show
(18), suppose that Jis Iy € M, and Jy # Jy- Then there exists an x € A
with x € J1 and x $ J2. Consequently, Q(Jl) = 0 and ;(JZ) # 0, which

means that there is an element x € A for which Q(Jl) # Q(JZ). The same

type of argument applies in the case x € J2 and x t Jl. Finally, note
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that
x| = leladey] = |olde)| = leladwl

since Y[J] is an isometry, by the Gelfand-Mazur theorem. Therefore
[x3)| = inelllyll : v € @la1}, by definition of the quotient norm of the
residue class ®(x) = wldl(x) € A/J. This proves the assertion (19).

Theorem 9. An element x € A is invertible if and only if the
representative function ; : M~ C vanishes nowhere on M.

Proof. By the Corollary of Theorem III.l.l, the element x € A
has an inverse if and only if x is contained in no maximal ideal of A.
This means that, for each maximal ideal J, Q(J) # 0, by (17).

Theorem 10. For each fixed x € A, the range of the representa=
tive functien ; is precisely the spectrum of x.

Proof. Let XOG 6(x). Then x - Xoe is not invertible. Therefore,
by Theorem III.3.9, x - Xoé must vanish on some maximal ideal J . Thus
(x-Ae) J)=0=x()-A&i(3)=x()-h . Therefore x(J ) =

o o o o o o o o
Xo, and Xo is an element of range of Q. Conversely, suppose that there
exists a Jo € M such that Q(Jb) ='ko, that is, Xo is in the range of ;,
Then (; - ng) (Jo) = 0, and therefore X - Xée_is not invertible (again
by Theerem III.3.9). This means that XOEJG(X);'

Remark 2. Since the range of the representative funection Q

coincides with the spectrum of x € A, the spectral radius of x is also

given by
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p(x) = supl|x()| : J €M

Theorem 11. (§§ectréi Radius Formula). Let A be a commutative

Banach algebra with urnit e. For every x € A, lim ”xn”l/n exists,
n-—"®
and
o) = Lim [&H/"
n-"x
Proof. Put @ = supl|®(I)| : J € M} =p(x), by (4). It will be
shown that

n”l/n

n“l/n ’ (20)

limsup Hx £ o £ liminf Hx
n—.m n—’w

n”l/n nHl/n

which clearly will force liminf ||x = limsup |x
. n=—wo n~—"wo

conclusion. By (19) it follows that

, and hence the

A A
Han 2 Sup{|xn(J)| : J €M) = sup{\x(J)ln : JEM =a”
njl/n . , . . .
Hence “x ” 2 a for every positive integer n, which implies the right-
hand inequality in (20). Now note that by Definition III.1,2 and Theorem
I11.3.10 if | € C and |u\ > a, then x - (e is an invertible element of A;

that is, i € r(x). Hence the function F defined by

FO) = (e - M0t = -aMlx - amel ™t =1 o7h (21)
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is strongly holomorphic for |X| < l/a. By the Neumann series (see Lemma

III.3.1)
(e - Ax) "t - z -1 (Aax)" = ZA“ " (22)
n=0 n=0

which is valid fer ”Kx“ < 1. Hence the Taylor series for F must be

identical with (22): ‘
o
FQA\) = E: AT %", Al <1 (23)
n=0
By convergence of the above Taylor series (23), it follews that

tim A" %" = o if [N <1/ .
n=-"®

Therefqye, for suitably large positive integers n,

= IR R < TR when [A] < 1/

This means that limsup HanI/n s |K|-1, for every complex number A with
n

< IXI‘I; that is,

Limsup [x}/®

n—"

sa . ‘ (24)

This is the left-hand inequality in (20), and the proof is completed.

Definition 7. An element x of the commutative Banach algebra A
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with unit e is said to be a generalized nilpotent element of A if

R -0

lim Hx

n-_—"e«®

Corollary 4. The radical R = ﬂJ c MJ of A coincides with the set
of all generalized nilpotent elements of A.

This corellary is a direct consequence of the Spectral Radius

Formula (and Remark 2) whereby

supl|%()] : €M = 1im [&" .

n-—"®

4, The Structure Space of a Commutative

Banach Algebra
Throughout the following discussion we shall denote by A(A) the

totality of representative functions ﬁ which correspond by the Gelfand
representation A to the elements x of the commutative Banach algebra A
with unit e. Recall that each representative function ; € AA) is a
mapping of M, the set of all maximal ideals of A, into the complex field
C. The family of functions A(A) can be used to induce a topology in the
set M as follows.

Definition 1. A neighborhood of an element JOE M will be defined

as any subset of M of the form

U(JO; X1 Xy Sees X €)
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={J:J¢€m, |§i(J) - ﬁi(Jo)l <e,1=1,2, ..., n} ,
where the positive integer n, the positive real number €, and the repre-
sentative functions Qi € AMA) are arbitrary. The set of all such neigh-
borhoods is a basis for a topology in M (often called the Gelfand
topology in M) called the weak topology defined by the family of func-
tions A(A). The topological space M thus obtained is called the

structure space of the commutative Banach algebra A with unit e.

Note that M is then a Hausdorff space. This is established in
Remark 2, by use of the result (18) of Theorem III.3.8, according to
which the functions ; separate points of M. The terminology in
Definition 1 is explained in the following remarks, which apply also to
more general situatioms.

Remark 1. If X is a space (no#éyQtykset), and {%1 o €T} is a
nenempty family of complex-valued functioné on X, there is a weakest
topology To in X for which all the'functibns ﬁa are continuous. There
is at least one topoldgy inzx‘foriwhicﬁ all thenfafgre continuous, since
the discrete topolegy (in which all subsets of i are open) satisfies the
requirement trivially. The weakest topology in X for which the %1 are
continuous is the iﬁterseétion of all topologies T in X for which the
f_are continuous. It is possible to describe o’ called the weak

a

topology generated by the functioms fa, in a more explicit way. If fa

is to be continuous on X, it is necessary and sufficient that the
inverse iImages ﬁ;l(D) € To for every open disk D in the complex plane.

Consequently To must contain all subsets of X of the form
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(s % €%, [£,00 - &) <e}

where X €X,a€l, and € > 0. Thus To (which is closed under finite

intersections) must contain all subsets of X of the form

V(x 3 £y 5 -ees £y 5 €)

1 - n

= {x: x € X, Ifa

@) -5y @) <y, g @£ G| <€l
1 1 n n

where X € X, €> 0, and {ai, cees an}iisua-finite subset of the index- \

ing set I'. Note that xoé V(xo; ﬁml, ves fan; €). Given the sets V(xo;

£ , ..., £ _€)and V(x ; f5 , ..., f5 ; &), the set

al an, (o] Bl Bm

V(3 £ 5 vees £, fg y we, £g 3 €E)C V(G £, ,» £, 3 €)

o 1 @ Bl Bm o’ "oy @,
N V(xo; fal, cees fB s 8) if € = min{e, 8}

m

Furthermore, if x) € V(xo; ﬁm R s fOL ; €), and
1 n

€, = ¢ - max{lfal(xl) - fal(xo)l, cees |fan(x1) - fan(xe)l} R

then

V(xl; feL s eees fa ; el)l: V(xo; fGL s sees fa ; ) .
1 n 1 n
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To deduce this inclusion, observeé thaf,.if x € V(xlg fa PRI S 61),
1 n
then for each 1 = 1, ..., n,

l£, ) - g x| s gy (0 - £ |+ 1Ey (=) - £y (=)
i i i i i i
< 61 + max[lﬁx (xl) - %1 (xo)[ :i=1, ..., n} = ¢,
i i
by the definition of €

. Thus x € V(xo; %1 s es0y £, 3 €), and the in-

1 1 0‘n
€)

clusion is verified. Thus the sets of the form V(xo; %1 s veey fa H
1 n
form a neighborhood base for To 8t the point x - The weak topology To

generated by the functions fa is composed of arbitrary unions of sets

of the form V(xo; %11, v ﬁxn; €) where XOE X, {al, ceoy an} is a

finite subset of I', and € > 0,

Remafk 2., It should be pointed out that X with the weak topology
To is a Hausdorff space if, whenever x,y € X and x # y, there exists an
@ €' (@ depending on x,y) such that ﬁx(x) # ﬁx(y). In this case the
functions %1 are said to separate pointsiof X. To deduce this, let

€ = %'fa(x) - fa(y)l, and consider the neighborhoods V(x; £_; €),

a,

V(y; fa; €)., If z € V(x; £.; €), then it follows from the inequality

o’
26 = |20 - £,0] = 5,00 = £, + [£,(2) - £,

< g, () - £(2)] +¢

that |fa(z) - ﬁx(y)| > €, which implies that z ¢ V(y; ﬁx; €). Thus
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Vx; fa; €), V(y; fa; €) are disjoint neighberhoods.
Remark 3. The concept of the weak topology generated by a family
of functions may also be considered in situations more general than that

considered agbove. 1If &i is a topological space for each & in a nonempty

indexing set I', the Cartesidn prodict space X = :><:a€Txa is, by defini-
tion, the set of all functions x with domain I' such that x(a) € Xy for

each a €', Offen‘x(aﬁ is writteﬁ in the fdrm Xy and x&'is called the

—

ath coordinate of x. For each o € T, there is a function Py On X defined

by

Py (x) = x

The functien P, is called the projection of X onte Xa. The product
topology on X is the weak topoiogy generated by the family of projec-
tiens Py > and is the weakest topology for which all the preojectioens are
continuous functions. A very important theeorem in general topology is
the theorem of Tychonoff which asserts that if {&m: &« €I'l is a non-
empty collection of compact topological spaces and the éartesian product
space X = ><aerxm is given the product topelogy, then X is compact.
For a prodf of this theorem, reference may be made to Kelley [13], p. 143
or Royden [24], pPpP. l44-145.

It is helpful at this point to recall some basic facts about

*

Banach spaces, If X 1is a Banach space, the dual gpace X of X is the

space of all bounded complex-valued linear functionals on X with norm

defined by
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5l = swilFeol ¢ [« s 13 @ €x™)

With this norm, the space X* is alse a Banach space. 1Its dual space

(X*)* is called the second dual space of X, and is usually denoted X**.
For each x € X, let Ax be the functional defined on the domain X*

by Ax(F) = F(x). It is easily verified that Ax is linear on X* for each

x €x. 1f ||F|| =1,

A @ = [rel| < lIFll- Nl < {f]

*
Hence Ax is, for each x € X, a bounded linear functional on X , and HAXH
%
< Hx”. Thus Axe X for each x € X. An argument based on the Hahn-
Banach theorem shows that “Ax“ = Hx”. The mapping x ~ Ax is a linear

ek
space homomorphism of X inte X , since A =A +A and A, =al feor
A X x y ax x

.‘-y

all @ € C, and x,y € X. This mapping is called the natural mapping of
dok

X inte X .

The sets of the form

W(x 3 Fis ..o, Foj€) = {x : x € x, lFi(x) - Fi(x0)| <e¢fori=1,...,n,
*
where xoe X, Fl’ ceey Fn € X and € > 0 form a neighborhood base at X
for each x0€ X. This is shown just as in Remark 1 (p. 54). The asso-
ciated topology in X 1is the weak topology generated by the functiens
* ‘ .
F € X, and X with this topology is a Hausdorff space. One can define,

* *k
similarly, the weak topology in X generated by the functiens in X .
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*
But another topoelegy on X has, it turns out, greater importance. This

*
topology, called the weak* topology in X 1is the weak topology generated

*k
by the subset of X which is the image of X under the natural mapping
x ~ Ax' (For non-reflexive Banach spaces, the natural mapping carries X
*k :
onto a proper subset of X .). For the weak* topology a typical neighbor-

hood at Fo has the form

%
WEE 5 A, o A5 e) = {F :Fex, |AX_(F) - /\x'(Fo)l <eg
1 n i i

for 1 =1, ..., n}

Using the definition of Ax it follows that
1

,, o
WE_; /\xl, Axn; ey = {F:FEX, |F(xi) - F (x)] <€ |

for i =1, ..., n} . (L

The space X* withAthe weak* topology is a ngsddrff space. For more
details regarding the above remarks, reference may be made te Lorch (15l

One of the most important theorems concerning the weak* topolegy
in X* is the following theerem of Alaeglu.

L%
Theorem 1. (Alaoglu's Theorem); The closed unit ball § = {F

* *
F€X, |IF| £ 1} in X~ is compact in the weak* topolegy.

*
Proof. For a fixed x € X, and any F € § ,
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[F ol = [lell-fl=ll < =]l . (2)

The values assumed by the fﬁnctionals F at x are contained in the closed
dj_‘sl,:'l(.x ={z : |z| < HxH} in the coﬁplex plane. By the Tychonoff itheorem,
as stated in Remark 3-(p. 57), the =~ product space P = :><:x€X Kx is
compact in the product topelogy on P. The points of P are the functions
h with domain X such thdt h(x) € 1(.x for each x € X. Thus, on account of

*
(2), S © P. A typical neighborhood at hOE P in the product topology is

given by
. . = ° - <
WCh s Py s P s -oos P, 5€) = {h:h€P, [p (h)-p (h)l <e
1 2 n i i
for i =1, ..., n}
={h : h€P, |h(xi) - ho(xi)l <e¢efori=1, ..., n},

*
since px(h) = h(x), the xth coordinate of h. The set S , viewed as a
subset of P, has an induced topology, iriduced by the preduct topology on

P. A typical basis set in this inducéd topology has the form

*
W(h 5 Py 5 +-es Py 5 €) ns
1 n

= {h:nhE€ S*, Ih(xi) - ho(xi)|<€ for i =1, ..., n} , (3)
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where hoe S*. Upon comparing (1) and (3), it is seen that the topology
induced on S* by the proeduct topolegy in P is the same as the topology
induced on S* by the weak* topolégy in X*. The subsets of S* specified
as open are the same in each case,

Since, by a standard theorem in general topoleogy, a closed subset
of a compact Hausdorff space is compact, it suffices to prove that S* is
a c¢closed subset of P. Suppoée goe P is a limit point of S*, and let €> 0
be given. Every open set in P cpntaininé 8 then contains points of S*.

Suppose that x, y € X. The neighborhood'W(go; Pys P ; €) of g,

y’ px.‘_,y’
* *
contains points of § . Let g € S be such a point. Since g belongs to

% ‘
X , g is a bounded linear functional on X, and hence g(x + y) = g(x) + |

g(y). Since g € W(go; Py P ':S)vand‘px(g) = g(x), it follows that

y* Py’
lgx) - go(x)l <e, lay - go(y)l <e,
and
lgx + y) - g (x + | <e
Thus
|8 (x +y) - g, (x) - g (9]

= |g0(x +y) - glx+y)+gkx +gly) -g (x)- go(y)l
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s lg x+ ) - gx+ 9| + ) - g | + e - g (] <3¢
Since g does not depend on € and € > 0 is arbitrary, it fellows that

g (xty) = g (x) +g (y), for all x,y €X
A similar argument shows that ge(ax) = ago(x) for @ € C, and x € X.
Thus go is a linear functional on X. For each x € X and € > 0, there
*
exists g € § such that g € W(go; P €), that is, such that

Ig(x) - 8°(x)| < €., Hence
g, 0l = g, ) = g + [g@| <+ [l = & + lx

If ||x|| = 1, Ige(x)|-<'e + 1. Thus‘HgQH <€+ 1, for every € > 0. Hence
”gOH £ 1. Consequéntly gOE S*. ‘Thus S* is a closed sibset of P. The
proef is complete.

Note. The above proof of the Alaoglu theorem is a much expanded
version of that in Loomis L14], p. 22, or that in Lerch [15], pp. 26-27.

Theorem 2. The structure space (maximal ideal space with the
Gelfand topolegy) M of a commutative Banach algebra A with unit e is a
compact Hausdorff space. For each x € A, the function ; : M= C is
continuous.

Proof. By Theorem III.3.8, the functions § separate points of M.
Thus M is a Hausdorff space. The weak topology generated by the fqpc-

A
tions x for x € A is specified by prescribing a neighborhoed base at each
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JOE M, with typical neighborhood

U ; X x;€ = {7:7€mM |xQ) -%x0)] <ct
o) Xp» rees X3 = : L x, (3 or
i=1, ..., n},
where Xq5 .y an A and € > 0. This topology in M is, it should be re-

A
called, the weakest topology in M for which all the functions x for x € A
. *
are continuous. Viewed as a Banach space, A has the dual space A . For

each fixed J € M, let Foe A = C be defined by
A
FJ(x) = x(J) .
A
Using the knewn properties of x, it is new shown that each functional
*
FJ: A 7 C is a bounded linear functional on A and, censequently, FJE A,

for each JEM. If a, B €C and x, y € A,

Fo@@x +By) = @R+ Py() = ox(I) +By() = aF (x) +BF (y) |

by conditions III.3(13), 3(14). Then F  is linear. If x| = 1, it

follows from condition III.3(19) that
£ ol = x| s [« = 1.

Hence FJ is a bounded linear functional on A, with HFJH £ 1, in fact.

This heolds for each J € M. Thus the set
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) %*
K = {F.:JemMcs |,

J

* * *
where S  1is the closed unit sphere {F : F € A", HFH <1} in A". By the

%*
theorem of Alaoglu S 1s compact in the weak* topoleogy. It is now shown
%
that K is closed in the weak* topology in A ., Note first that, in any
case, Ke 5% = 5™, Suppose FOE K. It must be shown that FOE K. For

*
each € > 0, the neighborhood (in § )
*
{F:F€s, |Fle) - Fe(e)| <eg}

contains a point of K. Thus, for some J € M, |FJ(e) - Fo(e)l < e. But
FJ(e) = Q(J) =1 for ev;ry :,E M. Thué |l - Fo(e)|< € for every € > 0,
and consequently,Fo(e) = 1. Next, we show that;Fo(xy) =‘F°(x)Fo(y) for
all x, y € A. Let x, y € A and suppose € > 0. The neighboerhood of Fo

*
in § defined by

={F : FE€ s*, IF(x)-Fo(x)|<e, |F(y)-Fo(y)|<e, IF(xy)-Fo(xy)|<e}

contains an element FJ of K. Thus IFJ(x) -F (x)‘ <eg, |FJ(y) - Fo(y)|<q

o
A A :
and |FJ(xy) - Fo(xy)| <€, But FJ(xy) = %Xy(J) = x(J)y(J), by conditien

III.3(15). Now
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|F (xy) - F_(x)F ()]
= IFO(xy) - Fy(xy) +FGOF ((y) - F (x)F (y) + F (x)F (y) - Fo(x)Fo(y)\
< [F Gxy) - F G| + [F 00| [P 00 - F 0] + [F ) |7 00 - F 0]

Since IFJ(x)|=|§(J)ISHxH by condition II1.3(19), and |F_(y)|s|F_|I-[lyll,

it follows that

£ Gx9) - P oGOF () s et + Il + llylD)

Since this 1s true for each € > 0, then Fo(xy) = Fo(x)Fo(y) and Fo is
multiplicative, with Fo(e) = 1. Hence there exists a maximal ideal .
JOE M, such that F o= FJ , and it has been shown that FOE K. Hence K is
a closed subset of S* inothe weak¥ -topology. Thus K 1s compact in the
weak¥* topology, and K, regarded as a teopolegical space, 1s compact, in

the weak* topology. A typical neighborhood of F_ in K with this topol-

J
ogy 1s

{F

H ) - < = vee
: J EM, lFJ(xi) FJo(xi)' € for 1 = 1, , nJ

J

A A
= {FJ . J €M, |xi(J) - xi(Jo)| <efori=1, ..., n}

Referring te the neighborhoods used to define the Gelfand tepology in

the maximal ideal space M, it follows upon identifying J with FJ that the




66

open sets in M are precisely those induced by the open sets in K with the
weak* topology. An open cover of M induces an open cover of K. Since K
has been shown to be compact, the open cover induced on K has a finite
subcover which in turn produces a corresponding subcover of M, Conse-
quently M with the Gelfand topology is a compact Hausdorff space.

Note. The above proof follows the general lines of proefs in
Loomis El&], P. 52 and Bachman and Narici (1], p. 341, but is in a consid-
erably expanded form. A somewhat different proof appears in Naimark [19],
p. 197, not using the Alaoglu theorem explicitly but essentially involv-
ing the same ideas, including the fundamental use of the Tychonoff
theorem on product topologiéé,

The fundamental:pfoﬁerties,of»the Gelfand representation A of the
commutative Banach algebra A with unit e éan now.be\summarized in the
following theorem.

Theorem 3. A commutative Banach algebra A with unit e is repre-
sented homomorphically by the algebra A(A) of continuous functions ; on
the compact Hausdorff space M of all maximal ideals J of A with the
Gelfand topology. The radical R of A consists of precisely those ele-
ments which are represented in A(A) by functions identically zero on M.
The representation x = ; is isomorphic if and only if A is semi-simple.

Proof. The Gelfand representation A is a homomorphism by Theorem

II11.3.8. Assume that x € R =N_. J. Then x € J for every J € M. Hence

JEM
A

x(J) = 0 on M by condition III.3.(17). On the other hand, every function
A

¥ which is identically zero represents an element x € R. Thus, the

radical R is the kernel of the homomorphism A. Since a homomorphism is

an isomorphism if and only if its kernel is trivial, it follows that the
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Gelfand representation is isomorphic if and only if the radical of A is
the trivial ideal {0}.

Example 1. Let c[0,1] denote the space of all complex-valued con-
tinuous functions on [0,1] with the usual operations of scalar multipli-
cation, addition, and multiplication. Define the norm of an element x of

clo,1] by
I« = sup{|x(t)] : 0= =1} . (4)

Then C[O,l] is a commutative Banach algebra with unit. Let t0 be a fixed

point in [0,1], and define
3, = {xeclo1] s x(e) = 0} . (5)

It will be shown that : (i) Jt is a maximal ideal of C[O,l], and (ii)
every maximal ideal in C[O,l] zs of the form (5). Note that Jt is a
linear subspace, and that x € Jt implies that x(to)y(to) =0 fzr e§ery
y € c[0,1]; therefore Jt is an zdeal. To show that Jt is maximal,
define the homomorphism ° °

¢ :clo,1] = c by

@t (x) = x(to) for every x € clo,1] . (6)
)

This homomorphism has Jt as its kernel and hence, as in Theorem III.3.7,
o

\
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Jt is maximal. To prove the second assertion (ii), suppose that JO is
o

any maximal ideal of C[O,l]. It will be shown that there exists a point

'tO in [0,1] for which JO = Jt . Assume that the contrary holds; that is,

o

for every point T in (0,1] there exists an element x

in J such that
T o]

xT(T) # 0. Then corresponding to each T in [0,1] there is a neighborhood
of T, say N(T), such that xT(t) # O‘fbr'every t in N(T). This follows by
continuity of X Since [0,1] is a compact topological space, and since
the neighborhoods N(T) (T € [0,1]) cover [0,1], there is a finite number
of neighborhoods N(Tl); N(Tz);‘..., N(Tn) which also cover [0,1]. Let
L S T in Jo be thé functions corresponding to the points

n

s «++5 T_. Then the function x defined by
2 n

|

2
O] (7
1 1

x(t) =

W ~13
T 1o

1x,l_i(t) xTi(t) =
for every t in [0,1], is also an"élem;nt of JO. But x does not vanish
anywhere on [0,1]. Therefore y(t) = 1/x(t) is continuous on the unit
interval, and is consequently in C[O,l]. This shows that x has the
inverse y in cl0,1] since x(t)y(t) = y(t)x(t) =1 in t. Hence, by
Corollary III.1.1, X cannot belong to a maximal ideal. This is a con-
tradiction. Hence there must be some point to in the unit interval such
that every element of JO vanishes at to. Therefore JO - Jt , which proves

)
(ii). Note that the correspondence




between the set of points EO,l] and the set of all maximal ideals of
T A
c(0,1] is one-to-one. The representative functions x defined by the

Gelfand representation of C[O,l] are given by

A
x(J, ) = <§|:Jt 1(x) (as in Theorem III.3.6),
[o] [o]

and in view of (6),

X ) = = x(e) . ®)

69
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CHAPTER IV
THE SPECTRAL RESOLUTION OF NORMAL OPERATORS ON HILBERT SPACE

1. The Commutative Banach Algebra Generated by

a Normal Operator

Let A(H) denote the Banach algebra with unit of all operators on
the Hilbert space H.

Definition 1. Let N be a set of normal operators in A(H) which

satisfies the conditions:
S, T € N implies ST = TS (commutativity) (1)
*
T € N implies T € N (closure under adjoint formation). (2).

Let N* denote the set of all operators in A(H) which commute with every
operator in N, and let B = N = (N')' denote the set of all operaters
in A(H) which commute with every operator in N,

Theorem 1. Let N be as in Definition 1. Then N'~ = (N') is a

commutative Banach algebra with unit I (the identity operator on H). The

algebra B = N*’ consists of normal operators alse.

1° T2 €N, and &, B € C,

+ BTZ € N°’. We show

Proof. It is easily verified that if T
then the product (compesitioen) TlT2 € N7 and arl
next that N*~ c N""7, where N°’’ is defined as (N"")'. If T €N, then

TS = ST for all § € N by (1), and thus T € N'. Hence NS N°, If T €N~

b
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then TS = ST for all § € N* by definition of N** as (N°)’. Since NC N,
it follows that, if T € N, then TS = éT for all S € N, and hence T € N’
Thus it has been shown that N°° S N°. If T€ N ', then TS = ST for all
s €N, But NN Hence;'if T € N°°, then TS = ST for all § € N~

rre

and consequently T € N°°°. Thus‘N)"E N It follows that multiplica-
tion in N°° is comnutative since if S, TEN " thenS €N and T € N"‘,
and this implies that TS ; ST. ‘

It is next shown that N*~ is closed under formation of adjoints.

, %
If R € N, then RS = SR for all S € N. Note that, by (2), § € N when-

*
S R for all 8 € N, and consequently

p *
ever 8 € N. Thus, if R € N, RS
* % * ’
SR =R S for all S € N, which is equivalent to saying that R € N .
,e ’, R ) *
Suppose now that T€ N ', Then TS = ST for all S € N'. Hence TS =S T
, * %

for all S € N'. By taking adjoints, it follows that ST =T § for all

’, * Py re % ’
S €N, and thus T € N' . We have shown that T € N~ implies that T € N .
Hence N° ' is closed under adjoint formation. It is clear that I € N’ and
I €N, since IS = SI for every S € A(H).

It should be recalled that for each bounded linear operator T on H
the norm of T is defined by HTH = sup{HTxH : Hx” < 1}. This norm is used
in the commutative aigebra B=N" to vield a normed algebra B. With
this norm, B is complete as a normed linear spaace. If {Tn} is a Cauchy
sequence in N'’, then in particular {Tn} is a Cauchy sequence in A(H).

It is then a consequence of basic theorems on bounded linear operators

on H that there exists a T € A(H) for which ”Tn - TH =+ 0 asn "=, The

limit operator T is defined by
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Tx = s - lim T x for each x € H.
n -
If {Tn} is a Cauchy sequence in B = N", then TnS = STn for all s € N”.
We wish te show that the limit operator T actually belongs to N°". For

each x € H, (TnS - TS)x = (Tn - T)Sx, and

e, - mssl = iz, - sl = 0 as n ==

Thus s = 1lim T S = TS. Similarly, s = 1lim ST = ST. Thus T S = ST
n . . n n n

n-=e n—"o

for n=1, 2, 3, ... implies that TS = ST. .This is true for all S € N".

4

Thus T € N°°. Hence B = N°° is a commutative Banach algebra with unit I.
Since N < A(H) consists of normal operators, every element of B = N°°

' *
is a normal operator. Indeed, if T € B, then T € B and (since B is commu-

* %
tative) TT = TT . Thus T is a normal operator.

Remark 1. If T is a fixed pormal operator on H, the set N(T) =

*
{T, T } satisfies trivially the conditions (1) and (2) of Definitien 1.

Thus B = N(T) ’ has the properties of the set B of Theorem 1, and
%
o, 1, T, T}ICSB .

Definition 2. The commutative Banach algebra B = N(T)" with unit,

*
where T is a fixed normal operator on H and N(T) = {T, T }, will be called

the Banach algebra generated by the normal operator T.
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2. The Gelfand Representation of the Banach

Algebra Generated by a Normal Operator

Theorem .1. (Kakutani-Krein). Let X be a compact Hausdorff space,

and let C(X) be the set of all complex-valued continuous functions on X.

Let a subset D of C(X) satisfy the conditions:

(a) If £, g € D and &, B are complex numbers, then &f + Bg € D

and the product £ g € D.

(b) The constant function 1(x) = 1 belongs to D.

(¢) 1f {fn} is a sequence of functions in D with a uniferm limit

f , then £ € D.
@© [+ <]

Then D = C(X) if and only if we have:

(d) D separates points of X, and

(e) 1f £ € D, then £ € D, where £ denotes the complex conjugate
of £.

A proof of this corollary of the Stone-Weierstrass theorem is given

in Yosida [30], p. 10. The terminology separates points of X is used in

the same manner as that given in Remark 4.2 of Chapter III.
We shall apply Theorem IV.2.1 to show that the Gelfand representa-

tion A maps the Banach algebra B = N(T) "’ isomorphically onto the set of
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all continuous, compléx-valued functions on the structure space M of B,
Theorem 2. Let B be the commutative Banach algebra with unit I
generated by the fixed normal operator TOE A(H). By the Gelfand repre-
sentation A : T ~ %, the Banach algebra B is represented isomorphically
by the algebra C(M) of ali the continuous, complex-valued functions on

the compact structure space M of all the maximal ideals J of B in such a

way that, for any T € B:
h A N . - *
It|| = sup{lT(J)l : J € M} (the spectral radius of T) (L)

\ .
T: M= C is real-valued if and only 1if the operator T is

Hermitian. (2)

A .
T(J) 2 0 on M if and only if T is Hermitian and positive. (3)

Proof. Let T € B. By Theorem III.3.11 1im HTnHI/n < o,
n =c
and
sup{[T@)] : 7€M = 1Lim “Tn\\l/n . )
n o
We will show that
Il - 1 R o

n—"ee

* %
By normality of T, it follows that 8 = T T = TT 1is Hermitian. Hence,

- by Theorem 1I.3.2,
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Isl = It = swll@x, o] : [« < 1}
= sup {[(mx, ™| ¢ Ixl s 1} = swplllm|® s Il s 13 . (6
since ||zxl| = [|7fl £ [l = 1, [l«l|® = [|7|® 12 [« = 1. Thus
o = suwpllmll? ¢ x| < 1) < ||z

Since HTxH2 = @& for all x such that Hx” S 1 implies that HTxH < /o for
all x such that Hx” < 1, it follows that HTH < /a, and HTH2 < @. It has

been observed that a = HTHZ, and hence
2
o = swllml? ¢ [lxfl s 13 = |

' Hence (6) implies that |s|| = [|z77|| ‘= ||T||?.

* %

* % *
Since (TZ) =(TT) =TT = (T )2, we have

1722 < Jlabh* P = @2

Again, by the normality of T, it follows that
2
|

202 ; % . % % *
Iz?)? = |r*r"re] = |rrrTl = e = s

Since S2 is Hermitian, it follows (again by Theorem II.3.2) that
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IslI® = suplllsxll® ¢ [lxl| s 1} = sup{| (sx, sx)| : [Ix]l = 1)
= supl| %, o] el s 13 = [Is%)
Therefore
I = Us® = lisl® = dizl®H?
or, equivalently,
Iz = llz)? . 7

We have also shown that T2 is normal if T is normal. This fact together

with (7) yields the result

12 = 12 ke k= 1y 5,

1
. 2k oK n
by induction on k. Hence HTH = lim HT H Since lim HT H

k = e n e

exists, it follows that formula (5) is verified. Noting (4), we have

proved assertion (1l). Since HTH = 0 if and only if T = 0, it follows
from Corollary II1.3.4 that the algebra B is semi-simple. Thus the
mapping T = t is an isomerphism by Theorem III.4.3.

To show necessity in (2), suppose that T € B is Hermitian but

A
T<Jo) = g + ib, with a, b real and b # 0, for some JOE M. Put
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T;aIEB’

and note that S is also Hermmitian. By Theorem III.3.8 we have

oy A N A A 2
(T+587) Q) = IQ) +5°0) = L)+ (())
2 2
= 1+ 15-i§391~ - 3% (a +ib) +& = 1+ i = o,
b b b

By Theorem III.3.9, I + 82 is not invertible in B, since f<:\§2 vanishes
at JOE M. This contradicts Theorem II.3.4. This theorem asserts, in
fact, that the operateor I + S*S (which is the same as I + Sz, since S is
Hermitian) is invertible in A(H). Since P =1 + 82€ B=N"', PR = RP for

all R € N°. Thus P'1(PR)P"1 = P-l(RP)P-l for all R € N', and thus RP L =

Le @+shHles.

P-lR for all R € N*. Consequently P~
A .
To show that if T is real-valued then T is Hermitian, suppose that

T E€B and T is not Hermitian. Write

where the operators %(T + T*) and %I(T - T*) are the unique constituents
of the Hermitian decomposition of T, as mentioned in Remark II.3.3.
Since '%(T +"f%) is Hermitian, the'. Hermitiah operator _%I(T - T*)
is not the zero operator 0, since if that were the case T would be

A
Hermitian, contrary to assumption. By the isomorphism T — T, it follows
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that there must exist an element JOE M such that

S
Gt

)(Jo)%o
Consequently
A A
%(J)=I¢Q(J)+1Lﬁ(\])
o} 2 o} 21 o

is not a real number. since by the earlier part of this argument,
o4 -4
T +'T T -

(Jo) are real, and the latter number is not zero.
Thus (2) 1s established.’

We will now prove that A(B) = C(M). The conditions (a), (b), and
(d) (Theorem I11I1.3.8) in Theorem IV.2.l1 are clearly satisfied by A(B) as
a subset of C(M). Consider the linear space C{M) with the supremum norm,

|+]l,, defined by
€l = supl{£¢D)] : 3 €
for every £ € C(M). By (1), it follows that
|I%|lw = |||l for every T € B.
This means that the isomorphism A : T = T is also an isometry. Thus, for

A
any sequence {Tn} in A(B) with uniform limit f&E C(M), we have that

g -~ lim Tn = T exists Iin B (by completeness of B). Therefore, £, =

n o
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A WA
T € A(B). By part (2) of this theorem, the functions (T + T ) and

-i(% -/g*) are real-valued on M. Hence‘Q*(J) = %(J) on M, as is seen by
using the Hermitian decomposition of T, and taking the conjugate of each
side. Since B is closed under formation of adjoints, A(B) contains %
whenever it contains %. Therefore, all of the conditions (a), (b), (c),
(d), and (e) in Theorem IV.2.l are satisfied. Consequently the image A(B)
of the Gelfand representation. is equal to the space of all continuous,
complex-valued functions on M.

A A
It remains to prove (3). Let T(J) 2 0 on M. Then the function S

on M defined by
8y = ¥, sewm

o . A
is continuous. By the isomorphism.A : T = T, there must exist an operator
' * A

S € B such that 82 = T. Moreover, § = § since S(J) =2 0 on M, by (2).

Thus f
‘ 2
(Tx, x) = (8x, x) = (8x, Sx) =2 0,

for every x € H. As stated in Remark II.3.1, this implies that T is

A A A A A
Hermitian and positive. Put Tl(J) = max{T(J), 0} and TZ(J) = Tl(J) - T(J),

A A
. for every J € M. Then T1 and T, are nonnegative, continuous functioens on

2
M. It follows by the above remarks that there exiét positive operators

A A
Tl’ T2 € B corresponding to the functions Tl’ T, with (zj, x) 2 0 for

2
every x € H (j =1, 2). Since
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{r} ) A ) A '%(J.)»o if %(J) 20
42 @) = T.() L) =
12 L 2 0-(-T(3)) 1f T <0 ,

it follows that T1T2 = 0. We also have that T2 = Tl = T and hence

T2T2 + T2T = 0. Therefore, for every x € H,

0s (T(sz), sz) = ((T1 - T2) (sz), sz)
. 3
g (- T,T X, sz) = -(sz, Xx),

gince T2 is Hermitian. Thus (Tgx, %) £ 0 for every x € H. On the other

hand, again since T, is Hermitian,

2

(Tgx, X) = (TZ(sz), sz) z0 .

3 ,
Thus (sz, x) = 0 for every x € H. It follows, by Theorem 1I.3.2, that

1
”Ti” = 0 and thus T3 = @, the zero operator on H. Since ”T2” = lim HT;”“,

2

. n e
by Theorem III.3.1l; it follows that T2 = 0. But then 0 = Tl - T, and
A .
hence T = Tl. Consequently T is Hermitian, and thus T(J) 2 O for every
J € M,

3. Strong Limits of Monotone Sequences of Positive Operators

Theorem 1. Let {Tn} be a sequence of Hermitian eperators in

B = N(Tc)" such that
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o<T T, <, ., ,<T <, , .,.<8€EB. (1)

Then s ~ 1lim T x = T_ exists for every x € H, that is, s ~ lim T_ = T
n © n ©

exists, and T € B with Tn ST<S(n=1, 2, 3, ...).

Proof. It is convenient to make use of the generalized Schwarz

inequality which asserts that, if T is a positive Hermitian operator on

H, then
=, I s (=, %) 1y, ¥
This inequality is proved in the following way. If
z = x + ATz, y)Y ,

then z € H and (Tz, z) 2 0 for all redl scalars A, since T 2 0. A simple

calculation (which uses the fact that T is Hermitian) shows that
) » -2 2 2
(Tz, z) = (Tx, x) + 2M\|@x, y)|° + 2% [x, v)| (1y, ¥

Since (Tz, z) =2 0 for all real A, it follows that the discriminant is non-
positive, and the generalized Schwarz inequality follows from this observa-

= - p-3 P
tion. The operator Rnk Tn+k Tn (where n 2 1, k 2 1) is positive and

Hermitian, and Rnk € B. Since
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(T x, x) < (sx, x) < |lsl| i (x| = 1,

it follows by Theorem 1II.3.2 that HTnH < HSH forn=1, 2, ... .

Consequently, since T_< T Ty - TN = lIsll, also. thus IR_, [l = [Is]

n+k’ n+k

for all n2 1 and k 2 1. By the generalized Schwarz inequality, for each

x € H we have
4 2 2
= <
HRnka (R %, R x) (R %, x) (R_,x, R X)

By the usual Schwarz inequality, and the fact that
IRl = IR -l = fisfl- il
we find that
4 3 2
IRl s ® w0 [sl xl? .

Hence, since Rnk = Tn+k - Tn’

3 412
e Tan4 < (T, %, %) =(T x, x)) [Is[|"|l«]

s
Since the sequence Rﬁnx, x)} is a convergent increasing sequence of posi-

tive numbers, it follows that {Tnx] is a Cauchy sequence in the norm of the

Hilbert space H. Since H is complete, there exists a limit Tx, for each
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x € H. Thus s = 1lim T, = T. Since the algebra B is a Banach algebra,
n—ow

it follows that T € B, Note that, by continuity of the inner product in

its first argument,

(Tx, x) = lim (Tnx, x) 20

n-"«

for all x € H. Thus T is Hermitian. In addition, it follows easily that
Tn ST=s§forn=1, 2, ... .

Definition 1. A set E in a topological space X is said to be no-

where dense in X 1if the closure E contains no nonempty open sets of X. We

say that a set E In X i1s of the first category in X if E is expressible as
the union of a countable number of sets each of which is nowhere dense in

X; otherwise E 1s of the second category in X.

Remark 1. We shall mention here two important theorems due to Baire.
“Proofs of thése theorems are given,, for example, in Yosida [30], p. 12,

Baire's Theorem 1. Let D bé a set of the first category in a

compact topological space X. Then the complement D¢ = X -~ D is dense in
xl

Baire's Théorem 2. Let {xn(t)} be a sequence of real-valued contin-

uous functions defined on a topological space X. Suppose that a finite

limit:

lim xn(t) = x(t)

n-—"eo

exlsts at every point t of X. Then the set of points at which the funetion

x 1s discontinuous is a set of the first category in X.
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\ - A
Theorem 2. Let a sequence of real-valued functions [Tn} in c(M)

satisfy the conditien
A A A
0= TI(J) < TZ(J) =, ..5 Tn(J) S, . .54 (2)

for every J € M, where M is the structure space of B = N(To)" (& being a

finite constant). Then s ~ 1im Tn = T exists, the set
n-®

A A
D = {J:J€M TWI)# lim T _(J)}
n = o n
is of the first category in M, and P =M - D is dense in the space M,

Proof, From the hypothesis (2) and part (3) of Theorem IV.2.2 we

have
0T, =< T2 s, ..=sT <., ,sal€B,

and {Tn} is a sequence of Hermitian pesitive operators in B. By Theorem

Iv.3.1, s = 1lim T_ =T exists, T € B, and Tn sTs<al (n=21)., Put F(J) =
A n -0 -~ A
lim Tn(J) on M; F(J) is the limit of the nondecreasing sequence {Tn(J)}
n-—e

bounded above by &, for each J € M. By the above remarks, F(J) < %(J) on
M. Suppese, to the contrary of the conclusion, that the set D = {J :JEM,
%(J) # F(J)} is of the second category in M, Since the discontinuity set
DF of F is of the first category by Baire's Theorem 2, and the set D is

assumed to be of second category, there exists a point JQE D such that F

is continuous at Jo' Otherwise we would have D EEDF, which would imply




85

~ A A

that DF is of second category. Since F(J) < T(J) on M, and F(Jo) # T(Jo),
. A

it follows that F(Jo) < T(Jo). The nonnegative function defined on M by

A . ,

T(J) - F(J) is strictly positive at Jo' Thus there exists a number & > 0

and an open set V(Jo) containing J0 such that
A
T(J) - F(J) 2 & for every J € V(Jo) . (3)

Now M is a compact Hausdorff space, and there exists an open set V1<: M
with compact closure such that

{Jo} SV, SV, V)

1 1
This fact is proved in Rudin [25], p. 37, for example. By Urysohn's lemma

(see, for example, Kelley [13], p. 115) and the fact that V. and V(JO)C

1
, A

are disjoint closed sets; there exists a function G € C(M) such that 0 <

A A - A

G(J) s & onM, GWJ) = %6 on V1 (and thus certainly on Vl)’ and G(J) = 0

on V(Jo)c. It follows from (3) that
‘ N A f
F(J) + G(J) £ T(J) for all JEM

This implies that Tn ST~-G (n=z 1), where G is the operator in B corre-
A A

sponding to the representative function G € C(M). Since G(J) 2 0, it

follows by part (3) of Theorem IV.2.2 that the operator G = 0. However

A
c# 0, since G(J) > 0O on V Thus we have s - lim Tn S T«Gwith ¢ 2 0,

1
n o
G # 0, and this contradicts the fact that T = s - lim Tn. Thus D must be
n e

a set of the first category. Since M is compact, the complement of the




86

\ set D of the first category in M is dense in M by Baire's Theorem 1.

‘ 4. The Spectral Reseclution of a Normal Operator

In this concluding section we shall show how the Gelfand theory of

Banach algebras can be applied- 'to obtain a spectral resolution (or spectral

decomposition) of a normal operator on the Hilbert space H.

In what follows, given an arbitrary but fixed normal operator TOE
A(H), we shall denote by B = N(To)", the commutative Banach algebra with
unit I generated by the normal operator To’ and M will denote the structure

space of B.

| Remark 1. Let C (M) denote the set of all complex-valued bounded
W functions £ on M which differ from a continuous function % only on a set
ﬂ © of ‘the first category in M. Define the relation = on C (M) as follows.
1f £, g, € C'(M), then £ = g if and only if the set

I e, " {3 :3¢€m, £0) # gD} (1)

j is a set of the first category in M, The equivalence realtion = parti-

tions C (M) into distinct equivalence classes which will be denoted by

(£) = {g:g€c’ (), g= £} (2)

for every f € c ).
A A A A
Remark 2. Suppose that Ty» T2 € C(M) and T1 # T2, that is, for
A A A A
some Joe M, Tl(Jo) # TZ(Jo)' By continuity of the functions Tl’ T2 on M,

there exists an open set U(Jo)<: M containing Jo such that, for each
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A A
JE€ U ), T.(J) # T,(J). Clearly, U(J)C EA A . Since the comple-
o 1 2 o} Tl’ T2
ment of a set of the first category in the compact Hausdorff space M is

A A
dense in M, €A A cannot be of the first category in M. Thus T ¢ (T.).
Tl’ T2 1 2

The above remarks prove that each of the classes (f) contains exactly one
continuous function %. Therefore the set of all the equivalence classes
(f) is in ene~to-one correspondence with the elementg of the Banach algebra
B by the Gelfand representation A : T = '%

Remark 3. Consider a fixed operator T € B, and let A be a complex

number. Define

\‘
: ‘ Q = {0 :3¢€¢n\, Ref(J) < Reh, Imf(J) < I} |, 3

and let Ei = XQ , the characteristic function of the set Q.. It will be

A )
shown that E.€ C'(M). For any complex number £, let
A

ré = {z:2€ C; Rez < Re€, Imz < InE} . (4)

There exists an increasing sequence {fn} of continuous real-valued func~

tions defined on the complex plane such that

lim fn(z) = xrk(z)

n o

for every complex number z. Such a sequence can be defined directly in

the present case, but existence of such a sequence follows from the fact
that X is lower semicontinuous on the complex plane (as the character-~
A

istic function of an open set) and by a standard theorem (see, for example,
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McShane and Botts [17], p. 76) there exists a sequence {fn} of continuous
real-valued functions such that fn(z):rxr (z) for every complex number z.
J A

It is proved in the reference cited that an appropriate sequence is def ined

by
fn(z) = inf{XFX(W) + nlw - zl :weécl , (5)
(n=1, 2, ...). Thus

B = g, @) = 1w 3 (6)
for every J € M. By Baire's Theorem 2, as referred to in Section 3 of
this chapter, the set of discontinuities of Ei is of the first category in
the space M. Consequently Ei €c’), by definition of the set c ).
Remark 4. Consider thé equivalence class (Ei) containing the
characteristic function Ei. Let Ey be the operator in B which corresponds
to the equivalence class (Ei) by the Gelfand representation A : T - %
(as in Remark 2). The operators Ey € B so obtained will be used to
construct a type of spectral resolution of the normal operator T € B, as
follows.

Let € > 0 be given. For the fixed normal operator T € B, let
A
o = sup{|Re T(I)| : J €M}, and (7)

8 = sup{|ImTCI)| : 3€M . (8)
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Note that the complex numbers -G - iB, -a + iB, & + if, o - 1B are the

vertices of a rectangle R which circumscribes the spectrum of T. Let

: - £
-a=a1<a2 ,..<an-a+/.2 (9)
and
= ' = __G_
- = Bl < Bz <, ..< Bn B_+\/2 (10)

be partitions of the intervals L-a, a + J%J, (-8B, B + ji]hrespectively,
} 2

v v
such that
2 2 L .

{ max (&, - G.j_l) + max (B, - B'-l) }-2- s€e . (11)

1< j<n ' 1€jspn 4
The half-open cells of the form

= . < < < <
Ry {¢ +1n a, ;s C<ay, By SN<BJ (12)

for =2, ..., n, k=2, ..., n are pairwise disjoint and cover the closed

rectangle R which contains the spectrum of T. Let CJ, Mk for j =1, 2,

eeey, n, k=1, 2, ..., n be real numbers such that QJ + fnke Rj+1 K+ for

j=1,2, ..., n, k=1, 2, ..., n. We shall first prove that for every
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n n
A N . .’
1Ty - ) ) €+ B n Ol % . (13)
j=2 k=2 J
where
E.°_(J) = E/ . (J) +E/ (J) - E, (J3)

- E @)
€ya1™imy

A
Recall that the range of T coincides with the spectrum of T (Theorem III.

3.10). Hence if J € M, then there exist integers r,s (25¥Sn, 2<5=n)

A
such that T(J) € Rrs' For this J, we have

=]

n
z €+ in) '_r:g‘:mk<J> = C +in,
2 k=2 d

h|
since the half-open cells {Rjk :3j=2, ..., n, k=2, ..., n} are pair-
wise disjoint. Therefore, by (11)

1By = €, + i)l e

‘ . A . ,
This preves (13). Now; let_Ek be the continuous function defined on M
corresponding to the operatdr EXE B (or, corresponding to the equivalence

, : A
class (EX>’ as in Remark 2). By definitien, Ey differs from the character-

istic functioen E{ only on a set Sﬁ B of the first categery in M. By
A 2Th
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. (o . .
Baire's Theorem 1, the complement, Eﬁ +, of EA + is dense in the

noE Ey 0By
structure space M. It follows from (13) that

n n A .
A Y A :
By - ) LA B @lse (14)
J, ) k
i=2 k=2 12
where Xj,k = Cj +in, for =2, ..., n, k=2, ..., n, and
A . ,
A A A - A A
j,k j.k j=1,k-1 j,k-1 j=1,k
By part (1) of Theorem IV.2.2, we have
n n
-y Yoa  [r o+ g, -5 lse . as)
J,k }\ >\,- _ )\ - )\, _‘v‘

Since € > 0 was arbitrary in the above argument, there corresponds to

every € > 0-a partition {Rjk: i=2, ..., n, k=2, ..., n} of the closed

rectangle R containing 0(T) such that (15) is true for every choice of the

complex numbers A, K €R, (=2, ...,n, k=2, ..., n). We shall denote

3s ik
this result by

o= [[ra (16)

and (16) is called the spectral resolution of the normal operater T in

the sense of Yosida.

Note. The fact that every bounded normal operator on a Hilbert




space has a spectral resolution is known as the spectral theorem. The

proof of the spectral theorem given above is a much expanded version of

the proof due to K. Yosida (refer to Yosida [29], or Yosida [30]).
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