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CHAPTER 

INTRODUCTION 

tA 	 1. A Historical Note  

The spectral theorem asserts, in essence, that a bounded normal 

operator on Hilbert space can be approximated in the operator norm by 

linear combinations of projection operators (a "spectral resolution" or 

"decomposition" of the bounded normal operator). Since the inauguration 

of modern trends in spectral theory by J. von Newmann, M. H. Stone and 

others, proofs of the spectral theorem have been given in various set-

tings for Hermitian, unitary, and normal operators. While the spectral 

theorem for Hermitian operators is comparatively easy to prove, the same 

result for normal operators is much more difficult. 

The "algebraization" of the spectral theory was initiated by 

J. von Newmann [20] (1936), H. Freudenthal [6] (1936) and S. Steen [26] 

(1936). M. Nagumo [18] (1936) contributed the notion of Banach algebras 

to analysis. The tendency to emphasize the algebraic aspects of the 

spectral theory was continued in the work of S. Kakutani [12] (1939), 

F. Riesz [23] (1940), M. H. Stone [27] (1940, 1941) and B. Vulich [33] 

(1940). The ideal theory of normed rings due to I. M. Gelfand [7] ( 1 94 1 ) 

proved to be vitally important in following developments. K. Yosida and 

T. Nakayama [32] (1942) applied the Gelfand theory in proving an "ab-

stract spectral theorem" for elements of certain semi-ordered rings, and 

obtained the spectral theorem for bounded Hermitian operators on Hilbert 
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space as a special case. A proof of the spectral theorem for bounded 

normal operators (independent of the Hermitian case) was given by 

K. Yosida [29] (1943), where the ideal theory of normed rings was 

applied directly to a commutative ring of normal operators. 

Note. In much of the literature the terminology "ring" is used 

in place of "algebra," for the algebraic structure with a multiplication 

defined. In this thesis the later terminology will be adopted. In this 

connection, we shall speak of the "Gelfand theory of Banach algebras'," 

rather than "the ideal theory of normed rings.!' 

2. Summary.  

The aim of this thesis is to give the main prerequisites for a 

study of abstract spectral theory from the algebraic viewpoint and a 

proof of the spectral theorem for normal operators in this setting. It 

is intended that the exposition should be readable on the basis of a 

good general background in real analysis. Throughout this thesis refer-

ences are provided for the more basic, well-known results, in lieu of 

proofs. 

Chapter II consists of the more fundamental definitions and facts 

concerning Hilbert spaces, operators on a Hilbert space, and Hermitian 

operators, in particular. The main results of this chapter, which are 

needed later on, are the supremum formula for the norm of a Hermitian 

operator T, 

11 111 	= sup(' (rx,x)1 	1  
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the partial ordering s  On the class of Hermitian operators; the 

Hermitian decomposition of an operator; and the fact that the operators 

I + T T, I + TT are invertible, where T is Hermitian. 

Chapter III gives pertinent results from the Gelfand theory of 

Banach algebras. Section 1 deals with the general properties of complex 

commutative algebras with unit, maximal ideals, homomorphisms, and quo-

tient algebras modulo a maximal ideal. In order to fully develop the 

Gelfand theory of Banach algebras, we shall make use of a generalized 

concept of analytic function. Section 2 indicates how the theory of 

ordinary analytic functions is extended to cover "abstract analytic 

functions" which have values in Banach space. The abstract versions of 

the Liouville theorem, the Cauchy integral theorem, the Cauchy integral 

formula, and the Taylor series expansion of an analytic function are 
p 

given. The proofs of the theorems cited above in their abstract ver- 

sions rest on a consequence of the Hahn-Banach theorem. The principal 

results of Section 3 are the Gelfand-Mazur theorem, the characterization 

of a commutative Banach algebra A with unit by the Gelfand representa-

tion, and the Spectral Radius Formula, 

P(x) = lim HxY ln  (x E A) . 
n 	cc 

The Gelfand topology on a maximal ideal space is discussed in Section 

4. In this concluding section of Chapter III we also prove the Alaoglu 

theorem, and the fact that the structure space of a commutative Banach 

algebra with unit (the maximal ideal space with the Gelfand topology) 

is a compact Hausdorff space. The Tychonoff theorem on product topol- 
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ogies is used in the proof of the Alaoglu theorem. 

In Chapter IV the Gelfand theory of Banach algebras is applied 

to a certain commutative Banach algebra of normal operators on Hilbert 

space. This particular Banach algebra, called "the Banach algebra B 

gerierated by a normal operator," is constructed in Section 1. The 

fundamental properties of the Gelfand representation of the Banach 

algebra B are proved in Section 2. An important conclusion in this 

development, proved by using a consequence of the Stone-Weierstrass 

theorem, states that the space of continuous functions which represents 

the Banach algebra B by the Gelfand representation is actually equal to 

the totality of continuous functions on the structure space of B. We 

relate convergence in norm (strong limit) of a monotone sequence of pos-

itive operators in B to convergence (uniform limit) of a sequence of 

continuous functions on the structure space of B in Section 3, by using 

two theorems due to Baire. The spectral resolution of a normal operator 

is constructed in the concluding section. 

3. Notation  

Within this thesis, items (definitions, lemmas, theorems, corol-

laries, and remarks) are numbered consecutively within a section. Chap-

ters are referred to by roman numerals, sections and items are referred 

to by arabic numerals. Thus, "Theorem 111.3.10" refers to Theorem 10 

of Section 3(the tenth theorem of Section 3)'in Chapter III. If no 

chapter number appears in a reference then the item referenced is within 

the same chapter. Similarly, if no section number appears in a refer-

ence, then the item referenced is within the same section. Thus, 
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"Remark 1" refers to the first remark in the section in which the refer-

ence "Remark 1" appears. Equations, inequalities and other conditions 

are also numbered consecutively within a section, with no connection to 

the numbering of the items mentioned previously. These conditions will 

be referenced by a number in parenthesis. For example, "by III.3(14)" 

refers to the condition numbered (14) in Section 3 of Chapter III. 

Bibliographical references are cited by the name of the author 

followed by the number of the reference in the alphabetized BIBLIOGRAPHY 

in square brackets. 



CHAPTER II 

BACKGROUND IN HILBERT SPACE THEORY 

1. Hilbert Spaces  

Definitions.  A linear space H over the complex field C (the 

scalar field) is an inner product space  (or pre-Hilbert space)  if there 

is a mapping which makes correspond to each pair x,y E H a complex num-

ber (x,y), called the inner product  of x and y, which satisfies the 

following conditions for all x,y,z E H and all X E C: 

(x,x) z  0, and (x,x) = 0 if and only if x = 0 

(x + y,z) = (x,z) + (y,z) 

(Xx,y) = X(x,y) 

(i737) = (y,x), where (x,y) is the 

complex conjugate of (x,y). 

It is easily verified that (x,y + z) = (x,y) + (x,z) and (x,Xy) = 

If H is an inner product space, a norm is introduced in H by 

defining lix11 = (x,x) 1/2  . It follows from properties of the inner product 

that, for all x,y E H and all scalars X, 

6 
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dxd 	0, and dxd = 0 if and only if x = 0 	(5) 

= 	I x i .114 
	

(6) 

1(x,Y)1 s1126°11Y11 	(Schwarz inequality) 
	

(7 ) 

Mx + Yll 5 dxd + 
	

(Minkowski inequality) . 	(8) 

The Schwarz inequality is proved in Rudin [25], for example. This norm, 

in turn, induces a metric  d on H defined by d(x,y) = hx-3711, called the 

distance between  x and y. An open  ball in H with center x and radius 

r > 0 is denoted by S(x,r). Thus 

S(x,r) = Cy s yEH , Mx - y 	< rl 	 (9) 

The corresponding metric topology  in H is obtained by specifying the 

class of open sets as follows. A set E C  H is an open  set in H if to 

each point x E E there corresponds an open sphere S(x,r) (with r > 0 

depending on x) such that S(x,r) C E. A sequence {x il} in H is a Cauchy  

sequence  (in the metric space H) if, for each e > 0, there exists a 

positive integer N such that Mx
m 

x
n
M < e whenever m,n > N. An inner 

product space which is complete  as a metric space (with the metric 

induced by the inner product, as outlined above) is called a Hilbert  

space.  An inner product space H is complete  if, whenever {xn is a 

Cauchy sequence in H. there exists an element x E H such that 



lim 
 Ilx n - xM 	= 0 
	

(10) 

We now mention some examples of Hilbert spaces. Proofs are omitted in 

this section. 

Exam ales. (a). Suppose (X,M,4) is a measure space, with 4 a 

positive measure on a a-algebra M of subsets of X. Let S
2
(X,4) be the 

class of all complex-valued measurable functions f on X such that If 2 

is integrable. This class is a complex linear space. Two functions f, 

g, E S 2 (X,4) are called 4-equivalent if f(x) = g(x) except on a set of 

4 -measure zero. By this equivalence relation,
2 (X,p) is split into 

A 
disjoint equivalence classes. Let f be the equivalence class containing 

the function f, that is, 

A 
f = 	g E S 2 (X,4); f, g are 4-equivalent) . 

The space of equivalence classes (which is a complex linear space if we 

define P f 4 = a is called £ 2 (x,p) when it is understood 

as equipped with the norm 

8 

Ilfll 	= 	1 f 1 2  d41' 	. 
X 

A A 
If f,g E £ 2 (X,µ), let 

A A 
(f,g) = j fg c14 

X 
(12) 
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In this way, an inner product is specified, and it can be proved that 

et
2
MO, with this inner product, is a Hilbert space. For the. detailed 

arguments necessary in this example, see for instance Rudin [25], pp. 

66-67. In practice, and in much of the literature, less precise nota-

tion is employed, and no explicit mention is made of equivalence classes. 

With the less precise notation, one simply refers to the function space  

S(X,p.) as the Hilbert space, and agrees to "identify" p-equivalent 

functions. 

(b). Let 
,2 

be the space of all sequences (an}  of complex num-

bers such that 

cc 

Lan 
n=1 

Define 

(a,b) = 	a
n 	

if a = {ad, b = (bn3 • 

n=1 

Then f
2 

can be shown to be a Hilbert space. 

2. Operators on a Hilbert Space  

Throughout this thesis, the term operator on H will refer to a 

linear transformation T mapping H into H which is bounded in the sense 

that 

sup(HT4 : x E H, Ilxll s 1) 	 (1) 
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The set of all operators on H will be denoted by A(H). For all S,T E 

A(H) and all scalars X, define XT, S + T (operator sum), and ST (oper-

ator product) by 

(XT)x = X(Tx) 	, (2) 

(S + T)x = Sx + Tx (3) 

(ST)x = S(Tx) 	, (4) 

for every x E H. It is easily verified that XT, S + T, and ST are 

elements of A(H), and that A(H) is a complex linear space under the 

scalar multiplication and addition defined. Since, in addition, a 

multiplication is defined under which 

	

S(T1  + T2 ) = ST 1  + ST2  and 
	

(5) 

	

(S 1 + 5 2
)T = S

I
T + 5

2
T 

' 
	 (6) 

A(H) is called an algebra  of operators.  A(H) contains the identity  

operator  I defined by Ix = x for all x E H. The zero operator  0 of 

the linear space A(H) is defined by Ox = 0 for all x E H. If n is a 

positive integer, Tn  = T • • • T, the product of T which itself n times. 

It is convenient to set T °  = I for each T E A(H). If 



11 

p(z) = 	ajzj  

j=0 

is a polynomial in z with complex coefficients, it is easily verified 

that p(T), defined by 

n 

p(T) .  = CC .T J.  
J 

is contained in A(H) if T E A(H). 

Definition 1. The norm of an operator T, written MT11, is the 

nonnegative real number 

11'111 = sup[hT4 	x E H, 1126 s  11 	. 

By (1), IITII is finite for each T E A(H). Since a linear trans-

formation is bounded if and only if it is continuous, every element of 

A(H) is a continuous function on H. The norm of an operator T is also 

given by the formulas (see Rudin [25], p. 96; Berberian [2], pp. 94-96) 

11TH = sup( 

 

Tx x E H, x 	01, if H # [03 	 (7) 

 

x 

    

MTh = sup{HT4 	x E H, 114 = 1}, if H 	(01 	 (8) 

HTH = inf(y 	IITxII s yllx11 for all x E 	. 	( 9 ) 

Theorem 1. Let S and T be operators on H, and let a be a complex 



number. Then 

daTd 	lal •iTh 

Its + Td s IISII + HT11 

11 84 	411 . 114 

This theorem is proved in Halmos [9], P. 35. 

Properties (11) and (12), and the fact that 114 = 0 if and only 

if T = 0, show that 11•11  is a norm on the space A(H). The linear space 

A(H) is complete in the norm defined; that is, A(H) is a Banach space. 

(Refer, for example, to Taylor [28], p. 163, or to Hewitt and Stromberg 

[10], p. 211.) 

Definition 2. An operator T E A(H) is said to be invertible if 

there exists an operator S E A(H) such that ST = TS = I. If such an 

operator S exists for T E A(H), then S is unique, and is called the in-

verse operator of T, and denoted by T
-1

. An operator which is not 

12 

(10) 

(12) 

invertible is said to be singular. 

Note. If ST = TS = I and S IT = TS 1  = I, then S = IS = (S 1T)S 

= S 1 (TS) = S iI = S i . 

Definition 3. Let T be an operator on H. The set of all complex 

numbers X such that T - XI is singular is called the spectrum of the 

operator T, and is denoted by a(T). The complement of a(T) in the com-

plex plane C is called the resolvent set of T, denoted by r(T). 
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3. Hermitian Operators on a Hilbert Space 

Definition 1. Let T E A(H). If there exists an operator T*  such 

that (y,Tx) = (T*y,x) for all x,y E H, then T*  is called the adjoint  

operator of T, or the Hilbert space ad oint of T. 

* 
The existence of a unique adjoint operator T for every operator 

T E A(H) can be proved as a consequence of the Riesz-Frechet representa-

tion theorem for bounded linear functionals on a Hilbert space. (See, 

for example, Halmos [9], pp. 17, 38.) 

Theorem 1. Let S,T E A(H) and X E C. Then 

** 
T 	T 	 (1) 

	

(XT) *  = T.T* 	 (2) 

(S + T) *  = S*  + T* 	 (3) 

	

(ST) *  = T*  S* 	 (4) 

* -1 	 * 
If S is invertible, then S is invertible, and (S ) 	= 	) 	. (5) 

A proof of this theorem is given in Halmos [9], p. 39. 

Definition 2.  An operator T on H is said to be Hermitian (or 

self-adjoint) if T*  = T, and normal if TT*  = T*T. 

Remark 1. Note that a real scalar multiple of a Hermitian opera-

tor is Hermitian, and the sum of two Hermitian operators is Hermitian. 
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The class of all Hermitian operators on H forms a-real normed linear space 

which will be denoted B(H). If T is a Hermitian operator on H, then for 

any element x E H 

(Tx,x) = (x,Tx) = (x,T*x) = (Tx,x) . 	 (6) 

Thus, if T E A(H) is Hermitian, (Tx,x) is real for every x E H. The 

converse is also true; that is, if (Tx,x) is real for every x E H, 

then T is necessarily Hermitian. This is proved as follows. 

Suppose that T E A(H), and (Tx,x) is real for every x E H. Then 

(Tx,x) = (x,Tx) = (T *x,x) for every x E H. Hence ((T - T*)x,x) = 0 for 

every x E H. Let S = T - T* . It follows from the standard polarization 

identity  

4(Sx,y) = (S(x + y), x + y) - (S(x - y), x - y) 

+ i(S(x + iy), x + iy) - i(S(x - iy), x 	iy) 

that (Sx,y) = 0 for all x,y E H. Thus (Sx,Sx) = H 2 = 0 for every 
x E H, and Sx = 0 for every x E H. Hence S = 0 = T - T* , and T is 

Hermitian. 

The above remarks demonstrate the usefulness of the set of num-

bers ((Tx,x) 	x E H), where T is a Hermitian operator on H. If (Tx,x) 

0 for every x E H, we shall call T (necessarily Hermitian) a positive  

operator, and the notation 0 5  T (or T a  0) will be used to denote this 

property of T. If S, T are Hermitian operators on H, then S 5  T 
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(or T Z S) will be used to mean that T - S is a positive operator. 

As we shall see in the following theorem, the supremum of all the 

values taken by I(Tx,x)I over the unit ball { x  : IIxII s 1} in H, where 

T E A(H) is Hermitian, is equal to the norm of the Hermitian operator T. 

Theorem 2. If T is a Hermitian operator on H, then 

II T II = sugl (Tx,x)I 	x E H, 114 s11 	. 	 (7) 

Proof. Put y = sup{I(Tx,x)I : x E H, 114 s  1}. -By the Schwarz 

inequality, if MxII s  I then 

I(Tx,x)I s lTTx I1.114  s IITH.mx11 2  s IITII 	, 

and hence y s IITII.  To show that IITII s  y, note that for each real number 

0 and all x,y E H, the inequality 
o 

I(T(x + 0y), x±0)7)1  s 	+ Oyd 2 	 (8) 

is valid. Also, since T' is Hermitian, 

(Ty,x) = (y,Tx) = (Tx,y) . 	 (9) 

Using (8) and (9) we find that 

I(T(x + 0y), x + 0y) - (T(x - 0y), x - 0y)I = 120 (Tx,y) + 2S (Tx,y 
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= 10 Re (Tx ,Y)1 

and 	I (T(x + Sy), x + 0y) - (T(x - Py), x - 0301 

y(Ilx + Py11 2  + Ilx - 0)711 2 ) = Y((x + 0Y, x + PY) 

2yoce 0 2 11ye) 

Hence the inequality 

1 20 Re(Tx,y) I s  Y(411 2  + 0 2 11Y11 2 ) 

- 0y, x - Py)) 

(3,0), 

is valid for every real 0 and every x,y E H. If y # 0, and 0 is 

replaced by 114/110  in (10), the inequality 

IRe(Tx,y)k Y114•11y11 

is obtained. Note that (11) holds trivially in case x = 0. This 

inequality also holds for y = 0, and thus for all x,y E H. If the com-

plex number (Tx,y) is written in polar form I (Tx,y)I e ia  (where a is 

real), then 

e -11 (Tx,Y) = 1(Tx,y)I a0 

and hence 
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- ia (Tx,y 	= I(Tx,Y)I 	• 
	 (12) 

If y is replaced by e ily in (11), we obtain 

Re {(Tx, eiay)j 5Yhx11'115711 

  

since le ia l = 1. By a property of the inner product and the above 

inequality, we obtain 

Re {e -ia (Tx,y) 
	Y114 .11 y11 	• 

In view of (12), it follows that 

l(Tx,y)I s  Y114.11yd 	• 

In particular, 

hT24 2 
	

(Tx,x) s  Ydx11.11Tx11 	, 

  

and consequently 11Tx11 s  Yhx11, since this inequality holds trivially if 

M T4 = 0, while if 11Tx11 > 0 it is an immediate consequence of the pre- 
ceding inequality. Thus the set (ilTxil : x E H, 	1) is bounded 

above by y, and (by definition of HT11) 

II T II S Y 	. 
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Therefore IITII = y, since it has already been proved that y s 11TH. 

Remark 2. The hypothesis of Theorem 2 can be relaxed consider- 

ably. It has been proved (see Bernau and Smithies [4])that for any 

normal operator T on H, 

IITII 	= 	sugi (Tx, x) I o  11x11 s 1) 	. 

Theorem 3. The set B(H) is partially ordered by the relation s. 

Proof. Let S, T and U be elements of B(H). Then S s  S, since 

(Sx,x) - (Sx,x) = 0 z  0 for every x E H implies that S - S Z 0. Next, 

suppose that S s  T and T s  U. It must be shown that S s  U. Note that 

(Ux,x) z  (Tx,x) and (Tx,x) a (Sx,x) for each x E H, and hence S s  U. 

Finally, suppose that S s  T and T s  S. It must be shown that S = T. 

Note that (Sx,x) s  (Tx,x) and (Tx,x) s  (Sx,x) for each x E H implies 

that (Sx,x) = (Tx,x) for each x E H. That is, 

(Tx - Sx,x) = 0 = ((T-S)x,x) 

for every x E H. By Theorem 11.3.2 this implies that HT - S11 = 0, which 

implies that 

T - S = 0 . 

Remark 3. If T E A(H), then T can be decomposed into "real" and 

"imaginary" parts as follows. Define 
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R = 1 --(T + T*) and S = 	- T*) . 	 (13) 2 

By Theorem 1, 

R = ')(T(T + T*) *  = k(T
* 
 + 

T** 
 ) 	= k(T + T) = R. 

* 
Similarly S = S. Thus, R and S are Hermitian operators. If T = R 1  

+ iS
l' 

where R
1 

and S
1 are Hermitian operators, it follows from Theorem 

* 	* 
1 that T = R1 	iSi  = Ri  - iS i . Thus necessarily R1  = R and S 1  = S. 

Hence the Hermitian decomposition T = R + iS of T is uniquely determined. 

It is an interesting fact (noted in Halmos [9], p. 42) that an operator 

T is normal if and only if RS = SR, where T = R + iS is the Hermitian 

decomposition of T. 

We conclude this chapter with a theorem on the invertibility of 

* 
operators of the form I + T T, which will be required for a later result. 

* 
Theorem 4. Let T be an operator on H. Then the operators T T 

* 	 * 
and TT are Hermitian and I + T T and I + TT are both invertible oper- 

ators. 

The above theorem is due to J. von Neumann [21]. A proof of a 

more general theorem is given by Yosida, (Yosida [30], p, 200). 
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CHAPTER III 

BACKGROUND IN THEORY OF BANACH ALGEBRAS 

1. Complex Commutative Algebras  

Definition 1.  A linear space. A over the complex field C is a 

complex commutative algebra  if there is a multiplication defined which 

makes correspond to each pair x,y E A and element xy E A, called the 

vector product  of x and y, which satisfies the following conditions for 

all x,y,z E A and all X E C: 

X(xy) = (Xx)y = x(Xy) 

(x + y)z = xz + yz 

xy = yx . 

The term commutative algebra  will be used to refer to a complex  

commutative algebra.  A commutative algebra A is said to have the unit 

(or identity) element  e, if A contains an element e such that xe = x 

for every x E A. The terminology is justified, since if xe = x and 

xe =xfor all x E A, then e = ee ' =ee=e, and consequently there 

can be at most one unit element. Every commutative algebra to be used 

in the following discussion will be a commutative algebra  with the unit 

element  e. If A is such an algebra, and x E A, x is called invertible  
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if there exists an element x E A such that xx = e. If y E A is such 
* 

xy = e, then 

* * * 
x = x e = x (xy, ) = (x x)y = ey = y 

Hence, if x is invertible, there is precisely one element in A to be de-

noted x
-1

, such that xx
-1 

= e. The element x
-1E A is called the inverse  

of x. An element x E A which is not invertible is said to be singular. 

Definition 2. Let x E A, where A is a commutative algebra with 

unit e. The set of all complex numbers X such that x - Xe is not invert-

ible is called the spectrum of x, and is denoted by a(x). The comple-

ment of a(x) in C is called the resolvent set of x, denoted by r(x). 

(Note that this terminology corresponds to that used in Chapter II, 

Section 2.) 

Definition 3. Let A be a commutative algebra with unit. A sub-

set J C A is called an ideal of A if 

J is a linear subspace of A, and 

x E J and y E A implies xy E J . 

It is clear that A necessarily has the two ideals {0}  and A it-

self. If J is an ideal of A, and J 	A, then we,say' that:J is a prdpier 

ideal of A. It should be noted here that a proper ideal J can contain 

no invertible element x, for if soe=x
-1 
 x E J, and it would follow 

that J = A. A maximal ideal J of A is a proper ideal of A which is not 
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properly contained in any proper ideal of A. 

Theorem 1.  Let A be a commutative algebra with unit e. Every 

proper ideal of A is contained in a maximal ideal of A. 

Proof. Suppose S is the set of all projer ideals of A which 

contain the proper ideal J. Since J E S, S is nonempty. Let S be par-

tially ordered:by set inclusion. Let (J t 	t E T1 be a chain in S, 

that is, a totally ordered subset of S, and define K = U t E T 

We show that K is an ideal of A, and that K is a proper ideal. Suppose 

x,y E K, z E A, and cc,R E C. There exist indices s and t in T such that 

xEJ , y E J t . Since (J t 	t E T) is a chain in S, either J s  a J t  or 

J
t 

c J
s
. Suppose J

s 
c J

t
. Then both x and y belong to the ideal J

t' 

and thus ax + ri3y E J t  c K and xz E J c K. A similar argument shows 

-that ax +'f3y E K and xz E K if J t  a  Js . Hence K is an ideal of A. 

Since each J t  is proper, no J t  contains the identity e of A, and thus 

e IP K. Hence -K is _a proper ideal of A, and K J since each J t 	J. 

Consequently K is an upper bound in S for the chain. Zorn's lemma 

asserts that S has a maximal element M. Such an element M E S is a 

maximal ideal of A containing J. 

Corollary 1.  If A is as in Theorem 1, and x E A is singular 

(non-invertible), there exists a maximal ideal of. A containing the 

element x. 

Proof. Let J
x 

= (xy y E A). It is easily verified that J
x 

is 

an ideal of A containing x. If e E J x , there would exist an element 

y E A such that xy = e. But this would contradict the hypothesis that 
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x is singular. Hence e 	J
x
, and thus .7x 

is a proper ideal of A. By 

Theorem III.1.1, there is a maximal ideal of A containing Jx  and thus 

containing the singular element x. 

Note. It follows from Corollary 1 and an earlier remark that an 

element x E A is invertible if and only if x is contained in no maximal 

ideal of A. 

Definition 4. Let X and X' be commutative algebras. A mapping 

A : X IC is said to be a homomorphism of X into X' if for all x,y E X 

and all a,0 E C 

A(ax + 0y) = aA(x) + PA(x) 

A(xy) = A(x)k(y) . 

An isomorphism is a one-to-one homomorphism. The inverse , image of the 

zero element of X" is called the kernel of the homomorphism A. 

Let J be a proper ideal of A, where A is a commutative algebra 

with unit. The relation will be defined as follows. For x,y E A, 

y (modulo J) if and only if x 	y E J. This relation is easily 

shown to be an equivalence relation in A, and A is thereby partitioned 

into disjoint equivalence classes. The set (y x-y E J3 C A is called 

the residue class (modulo J) containing x, and will be denoted by cp(x). 

Note that p(x) is precisely the coset of J defined by 

x +J = (x +z:zEJ) . 	 (8) 
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For all x,y E A, and all scalars X, define Xp(x), cp(x) +p(y) and 

P(x)P(Y) by 

Xp(x) = p(Xx) , 

ep(x) + y ) = 	x + y ) , 

P(x)P(Y) = P(xY) • 

It is easily verified that Xp(x), cp(x) + p(y) and cp(x)cp(y) are residue 

classes (modulo J), and that the operations above are well-defined. 

Consider, for example, the proposed definition of the product cp(x)cp(y) 

of the coset cp(x) and cp(y) . Suppose x 1E cp(x), y1E cp(y) . Then x l -x E J 

and yl-y E J. Since J is an ideal, and 

x1y1 	
xy = xi (y i  - y) + (x 1  - x)y , 

it follows that x iyi  - xy E J. Thus p(x iyi ) = cp(xy). Consequently, 

cp(xy) is determined solely by the cosets  cp(x) and p(y), and the defini-

tion cp(x)cp(y) =p(xy) is unambiguous. The set of all residue classes 

(modulo J), denoted by A/J, is called the residue  class algebra  (or 

quotient space)  of A (modulo J). This terminology is appropriate since 

the set A/J becomes a commutative algebra with unit, when endowed with 

the operations defined by (9), (10) and (11), and the unit element e + J 

= cp(e) . 

The mapping cp : A .-' A/J which assigns the cosetp(x) to each 

E 
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x E A is clearly a homomorphism by definition of the operations in A/J. 

This mapping cp is known as the natural homomorphism of A onto A/J. The 

image cp(e) of the unit e E A is the unit element of A/J, and cp(0) is the 

zero element of A/J. 

Any homomorphism A X -4 X', where X and X' are commutative alge-

bras, can be described in terms of ideals in the domain space, as indi-

cated in the following theorem. 

Theorem 2. Under a homomorphism A : X -4 X the kernal K of A is 

an ideal of X. The image A(X) of X is itself isomorphic to the residue 

class algebra X/K. Conversely, every ideal J of X is the kernal of the 

natural homomorphism of X into X/J. 

Refer, for example, to Naimark [19], p. 166 for a proof of this 

theorem. 

Definition 5. A commutative algebra A with unit is called simple  

if it contains no proper ideals different from the trivial ideal Co). 

Maximal ideals play an important role here. 

Theorem 3. The residue class algebra A/J is simple if and only 

if J is a maximal ideal. 

A proof is given in Naimark [19], p. 167. 

Definition 6. Let M denote the set of all maximal ideals of A. 

The radical R of A is the ideal nJEmJ. A is said to be semi-simple if 

R = [0). 

Note that every simple algebra is also semi-simple. The algebra 

of complex numbers is a simple algebra in the sense of Definition 

111.1.5. 

A condition under which the residue class algebra A/J is also a 
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field is given in the following theorem. 

Theorem 4. Let J be a maximal ideal of a commutative algebra A 

with unit e. Then the commutative algebra A/J is a field. 

Proof. It is only necessary to show that each nonzero element of 

A/J has a multiplicative inverse. This will imply that the nonzero ele-

ments of A/J form a group under multiplication. Suppose x E A, but x J. 

Then p(x) # p(0), and cp(x) is a nonzero element of A/J. (Note that such 

an element x exists since J is a proper ideal of A.) Define 

= (ax +b:aEA,bEjl . 

It is easily verified that 3 is an ideal of A containing J, and x E 

since x = ex + 0. Thirs J contains J properly. Since J is a maximal 

ideal, it follows that s1 = A. Since 'j = A, there exists elements a E A, 

b E J such that ax + b = e. It follows that ax = e + (-b) E cp(e). Thus 

cp(ax) = cp(e), and cp(a)P(x) = cp(e). Hence p(a) is the multiplicative 

inverse of cp(x). This completes the proof. 

2. Abstract Analytic Functions  

In this section we indicate how the theory of analytic functions 

can be generalized to functions of a complex variable with values in a 

Banach space. The intent here is merely to indicate, without detailed 

arguments, how the generalization is made. Specific references are 

supplied. 

Definition 1. A linear space X over the complex field C is a 

norme ,d linear space if there is a mapping which makes correspond to each 
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x E X a real number 11•, called the norm of x, which satisfies the 
following conditions for all x,y E X and every X E C: 

11x11 	0 and 11x11 = 0 if and only if x = 0 

11Xx11 	= 	I X I •11x11 

11x11 	11Y11 	• 

A metric topology in X is obtained by defining the metric d by 

d(x,y) = Ilx - A for every x,y E X. The open sets of this topology are 
specified in precisely the same manner as in the metric topology in a 

pre-Hilbert space discussed in Section 1 of Chapter II. A normed linear 

space which is complete  as a metric space (with the metric defined above) 

is called a Banach space. 

Definition 2.  Let {x  n) be a sequence in a normed linear space X. 

If there exists a point x E X such that 

lim 111(n - 	0, 
n 

then x will be called the strong  limit of the sequence (x11), and we 

write 

= s - lim xn n o 
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Definition 3. Let x(•) be a function defined on a subset D of 

the complex plane C with values in a normed linear space X. Let X 0 

 be a limit point of D, and suppose that there exists a point y E X 

such that the following condition is satisfied: For every open set 

S c X containing y, there exists an open set Tc C containing X
o

, 

such that 

E(T - {Xo}  )fl D implies x(X)E S . 

Then we will say that y is the strong limit of x(°) as X approaches 

X
o 

through S, and we shall write 

y = s - lim x(X) . 

0 

If x(*) is defined at X, and 

s - lim x(X) = x(X
o
) , 

X X
o 

then x(X) is said to be strongly continuous at X
o
. If x(°) is strongly 

continuous at every point of S, then x(°) is said to be strongly contin-

uous on S. 

Definition 4. Let D be a region of the complex plane, and X a 

normed linear space. We will say that x(°):D -4  X is strongly differen-

tiable at the point  X o E D if the strong limit as X approaches X
o 

of 

the quotient 

f 



x(X) - x(X ) 

X - X
o 

exists. In this case we shall write 

x(X) - x(X ° 
	
) 

x"(X0) = s- lim 	x 	x   
X " X 

0 

and call x'(X 0 ) the derivative  of x(•) at X0 . If there exists a neigh-

borhood N(X 0 ;e) = (X : X E C, IX - X0 1 < 	of X0  E D such that x(•) is 

strongly differentiable at every point X E N(X;e), then x(•) is said 

to be strongly holomorphic  (or analytic) at X o . The function x(•) is 

said to be strongly holomorphic  in D if x(•) is strongly holomorphic at 

every point X E D. 

"nth  Note. The usual notation will be adopted for 	 derivatives" 

of a function x(•): C 	X. Thus, assuming that the derivatives x'(X), 

(x")"(X) and so on, exist for X E D, we write x (1) (X) = x"(X), x (2) (X) 

= (x")"(X), 	. We define, for convenience, x (°) (X) = x(X). For 

any positive integer n, x
(n) 

 (X) will be called the n
th 
 derivative  of 

x(•)  at X. 

In the following we denote by X the space of all bounded linear 

functionals on the normed linear space X, so that X is the dual space  

of X. 

Lemma 1.  Let D be a region in C, and let X be a normed linear 

space. Suppose x(•): D " X is strongly holomorphic in D, and let 

f E X . Then the composite function fox, defined by (fox)(X) = f[x(X)] 

for every X E D, is a complex-valued holomorphic function on D. 
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(4) 



Proof. Let X 0E D. Since x(.) is strongly holomorphic in D, 

x(X) 	x(X ° 
	
)• 

x ? (X 0) = s - lim 1 	x 	x  
' 

0 

exists. By linearity of f it follows that, for every X E D, 

f[x(X)] 	f[x(X )] 	 F  x(X) - x(X0 ) 

X - X
o 	

fL 	X - X
o 

 

The bounded linear functional f is necessarily a continuous function. 

Hence 

f[x(X)]-f[x(X )] 	 ) 
(f.x) # 0. 0 ) = lim { 	x 	x 	}'_ f{s 	lim 	x( 	X) - x(X ,0-71 J} x xo X 	 X 4•4  X

o 

= f[x (X )] 	. 	 (5 ) 

Since X
o
E D was arbitrarily chosen, (5), implies that f•x is holomorphic 

on D. 

Lemma 2. Let X be a normed linear space, and let x E X be fixed. 

If f(x) = 0 for every f E X * , then x = 0. 

The above lemma is an easy consequence of the Hahn-Banach theorem. 

For a proof of this result, reference may be made to Bachman and Narici 

[1], p. 199. 

Theorem 1. (An Abstract Liouville Theorem 	Let X be a normed 

linear space, and suppose x(•): C X is strongly holomorphic through- 

30 
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out C. If there exists a real number M> 0 such that 

hx(X)11 < M for. all X E C, 

then x(•) must be constant on C. 

Proof. Let f E X*  be any bounded linear functional on X. Then 

f•x is holomorphic on C by Lemma 1. Moreover, we have 

II f Ex (a  )] II 	g 	Ilf II .1Ix (x) II 	g 	Ilf II •14 

for every X E C. Therefore f•x is a bounded function which is holo-

morphic throughout C. By the ordinary Liouville Theorem (see 

Markushevich [16], p. 364), the complex-valued function f•x must be 

constant on C. Let µ and t be any two complex numbers. By the above 

remarks it follows that 

f[x(4)] = f[x(t)] 	. 

By linearity of f E X , this implies 

f[x(4) - x(t)] = 0. 

But f was any bounded linear functional on X, hence 

x(p) - x(t) = 0 	 (6) 
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by Lemma 2. The relation (6) asserts that x(•) is constant on C. 

Note. The above proof follows the general lines of that in 

Bachman and Narici [1]. 

Definition 5.  By a contour  r connecting the points Y 1  and Y 2  in 

C, we will mean a rectifiable Jordan arc in C from y i  to Y 2 . If r is 

a closed Jordan curve (Y 1  = y 2 ), then r is called a closed contour  in C. 

Note. Every contour r has a parametrization y 	[ti ,t2] 	r, 

where y(t) = a(t) + is(t) for t 1  s  t  s t2  and y i  = Y(t1 ), Y 2  = y(t 2 ). 

The mapping y is continuous and one-to-one on [t i ,t2 ). If r is a closed 

contour, then y(t i ) = y(t2 ). r is to be thought of as an oriented curve  

in the following sense: if X', X"E r and X = y(t") 	y(t) . X, 

then X' is said to precede  X" if t' < t". A point X 0  E r is said to 

be between  the points X', X 	E r if X o = y(to), X' = y(t") and X" = 

y(t") implies t" < t o < t". 

According to the Jordan curve theorem (see Markushevich [16], 

p. 70), the complement r c  of any closed Jordan curve r in C has exactly 

two components with r as their common boundary. The bounded component 

of r c  will be called as usual the interior  of r, denoted it'), and the 

unbounded component of r e  will be called the exterior  of r, denoted E(D. 

Definition 6.  Let r be a contour connecting the points y 1  and 

Y 2 in C. Let X be a normed linear space, and x(•): C -4  X. Let R denote 

a partition  y i  = X 0 , X 1 ,..., Xn  = y 2  of r (where X i  # X i  if i # j), and 

denote -  by n a set of points g l' g2" gn  E r which are between the 

points of n. For the partition n, let 
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011 = maxflX. - Xi-1l 	i = 1, 2, ..., n) 

and denote ,  by S(11, 0), the sum 

S (11 ,n) = 	x( i)•(x. - x.1-1  ) E X. 	 (7 ) 

i=1 

We will say that the strong limit 

jx(X)6 = s -0 Il im s(n,n) 	 (8) 
 — 

exists if the following condition is satisfied: for every C > 0 there 

exists a number 6 > 0 such that for every partition II of r with PH < 6 

and for every choice of n, we have 

Ils(n,n) - r
x(x)dxil < e 	 (9) 

If the above condition holds (that is, if the strong limit (8) exists), 

then we say that x(°) is integrable along  r and the strong limit 
x(X)6 is called the contour integral of x(°) along r. 

Theorem 2. Let r be a contour in C. Let X be a Banach space, 

and suppose that x(°):C X is strongly continuous at every point of r. 
Then x(') is integrable along:P. 

The above theorem can be proved as a consequence of the complete-

ness of X, and the uniform continuity of x(.) on the compact set r in C. 

A proof of this existence theorem is given in a more general setting 
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in Hille and Phillips [11] p. 63. 

Theorem 3 1  (An Abstract Cauchy Integral  Theorem). Let X be a 

Banach space. Suppose that x(•)C ~ X is strongly holomorphic on a 

region D bounded by the contour r and that x(•) is strongly continuous 

on r. Then 

J x(X)A = 0 

Proof. Let f E X , and let y = j x(X)dX E X. Since f is a 

bounded linear functional On X, we have 

f(y) = 	j x(X)4XJ = j f[x(X)]d). . 	 (10) 

Relation (10) is a consequence of the linearity and continuity of f on 

X. By Lemma 111.2.1, f•x is a complex-valued holomorphic function on D. 

Also, f•x is easily seen to be continuous on the contour r which bounds 
D. By the ordinary Cauchy integral theorem (see Markushevich [16], 

p. 258), we have 

f [x (X )] dX = 0 = f(y) . 

Since f E X was arbitrary, it follows by Lemma 111.2.2 that y = 0. 

Note. The above proof is similar to that in Bachman and Narici 

[1], p. 310. The other well-known results of ordinary analytic function 

theory carry over to the theory of holomorphic functions with values in 

a Banach space. We can use Lemmas 111.2.1 and 111.2.2 in the manner 
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typified in the above proof to obtain the more general or "abstract" 

versions of the Cauchy integral formula and the Taylor series expansion 

for holomorphic functions. For the proofs of these theorems for ordi-

nary analytic functions, reference may be made to Markushevich [16]. We 

omit the proofs of the following theorems. 

Theorem 4_  (An Abstract Cauchy Integral Formula). Let X be a 

Banach space, and suppose x(.):C -4  X is strongly holomorphic in a region 

D of C which contains a closed contour r and the interior of r, 

Then 

and 

= x(X) if X E I (r ) , 

x(t)  2rri  j 	_ x 	= 0 if X E E(r) . 

Note. Under the hypotheses of Theorem 4, we can also prove the 

formula 

x (n) (x )  = n! r 	x(0  
2rr ii 41 r  ( - x) n+1 dt 

for the nth  derivative x (h)' of x(.).at X E 

Theorem 5, (An Abstract Taylor Series Expansion). Let X be a 

Banach space, and suppose x(•):C -4  X is strongly holomorphic in a region 

D of C. Let X
o 
be an arbitrary point of D. Then x(•) is represented by 

the power series 
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x (h) (X. 0 ) 

n.1 	 x(X) = 	 (X - X0 ) n  

n=0 

(12) 

which converges on the disk IX - X0 1 < 6, where 8 = inf(IX0  - 41 41 E BD) 

is the distance between X 0  and ap, the boundary of D. The nth  derivative 
x (h) (X

o
) is given by 

	

x (h) (X ) = n! I 
	

x(X) 

217 i r 	_ x)n-1-1 	, o   

for n = 1, 2, 3, ... 

Note. If x(•) is strongly holomorphic on the entire complex 

plane C, then 8 = 0., and the power series (12) converges for all 

X E c. 

3. Banach Algebras  

Definition 1. A complex commutative algebra A with unit e is a 

commutative normed algebra if A is a normed linear space by a norm 114 

which also satisfies the following conditions: 

URA for all x,y E A 	 (1) 

Ilell 	= 	1 	 (2) 

Only commutative normed algebras A will be considered in what follows. 

A commutative normed algebra which is a Banach space is called a 

commutative Banach Algebra. The complex field itself is a commutative 
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Banach algebra with the norm 114 ' (XI, for every complex number X. 

Theorem 1. Every maximal ideal J of a commutative Banach algebra 

A (with unit e) is a closed set in the normed linear space A. 

Proof. Suppose x,y E J (the closure of J in A), and a,0 E C. 

Let {xCy I be sequences of elements of A such that x " x and y "y. 

	

n ' 	n 	 n  

Then ax
n 
+ Oy

n 
ax + Oy. Since ax

n 
+ Oy

n 
E J for every n, ax + Oy E J. 

If z E A, then zx
n
E J for every n. Since zx n zx, it follows that 

zx E J. Hence J is an ideal of A. 

Since J is a proper ideal (as is every maximal ideal, by defini-

tion), no invertible element of A belongs to J. Thus all elements of J 

are singular elements of A. It is established in lemmas following this 

argument that the set G of all singular elements of A is a closed set 
— — 

in A. Assuming this result, it follows from J C  G that J C  GC G. Now 

G is a proper subset of A (since e f G). Thus J is properly contained 

in A, and hence is a proper. ideal of A. Since J is a maximal ideal, of 

A, and J C J, then necessarily J = J. Consequently J is closed in A. 

Lemma 1. If A is a commutative Banach algebra with unite, x E A, 

and bcd < 1, then e + x is invertible. 

Proof. By a property of the norm in A, 11x 1111 s  MxIl n  for n = 1, 2, 

3 , ... 	. 	Let 

yn 
= e - x + x

2
- . 	

( _ 1.) nxn 

  

  

  

  

  

  

and note that each ynE A. If k Z 1, 

  

   



n+k 

IIYn+k 	Yn11 
n+1 x 

1 - x 
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j=n+1 

This estimate shows that Cy n) is a Cauchy sequence in A. Since A is 

complete as a normed linear space, there exists a y E A such that y -4  y 

(in the norm of A). The identity 

+ x)3in. 	(.1)n+lxn+1 

yields, upon taking limits as n 	03, 

(e + x)y = 

Thus.e + x is invertible, with 

(e + x) -1  = y = e + nxn (3) 

The series (3) is often called the Neumann series for (e + x) -1 

Corollary 1. Under the hypotheses of Lemma 1, 

11(e + x) -1  - ell s 

Lemma 2. If A is a commutative Banach algebra with identity e, 

if x is an invertible element of A, and h E A is such that 110 < 16 111, 

then the element x + h is invertible. The set G of invertible elements 

of A is thus open in A, and the complementary set G c , the set of 
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singular elements of A, is closed in A. 

Proof. Note that x + h = x(e + x-lh). By a property of the norm, 

Hx-11111s Hx-1111h11 < 1 

since 110 < 1/11x -111. By Lemma 1, e + x -lh is invertible. Hence 

(x + h) (e + x-lh) -1x-1  = e. 

Hence x + h is invertible, with 

(x + h) -1  = (e 	x
-1

h)
-1
x
-1 

. 

It has been proved that if x is invertible, every element of A in some 

open ball about x is invertible. Thus the set of invertible elements 

of A is open in A. 

Corollary 2. Under the hypotheses of Lemma 2, the mapping x -4  x 1 

 defined on the set G of invertible elements is continuous. 

Proof. Note that 

(x + h)
-1

-x
-1 

= [(e + x
-1

h)
-1

-e]x
-1 

. 

By the Corollary of Lemma 1, it follows that 

11(x + h)-1-x-111 s 	 x-lh)-1-ell.hx-111 
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1 

	 Il x -11 1 	-" 1h11  

- bc 	1 - 

This inequality implies the assertion of the corollary. 

Note. The proofs of Theorem 111.3.1 and the lemmas are modified 

versions of similar proofs in Rudin [25], pp. 352-353 and p. 357. 

Definition 2. Let x E A, where A is a commutative Banach algebra 

with unit e. The spectral radius of x, denoted p(x), is the radius of 

the smallest closed disk in C with center at the origin which contains 

the spectrum C(x); in symbols, 

P (x) = sup(' XI : k E 0(x)) 	. 	 (4) 

It can be shown that for x E A, the spectrum of x is a compact 

set in the complex plane (see Rickart [22], p. 30). In view of this 

result the complement of 0(x) in C, the resolvent set r(x), is an open 

unbounded subset of C. 

Definition 3. The resolvent function of an element x E A is the 

function Rx :C ' A defined by 

Rx (X) = (x - ke) -1  for every X. E r(x) . 	 (5 ) 

Remark 1. The resolvent function R
x of x E A satisfies the rela- 

tion 

Rx (g) - Rx (T1) = (g - 	Rx(g) Rx (r) . 	 (6) 
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To deduce this formula, note that 

(x - ne) (x - te) -1  = (x - to + ge - ne) (x - te)
-1 

= e +(g - 11) (x - te) -1  

Upon multiplication by (x - ne)
-1

, we obtain 

(x - ge)
-1 

= (x - ne)
-1 

+ (t - n ) 	- te) -1 (x - Tle)
-1 

, 

which is the formula (6). Fix g E r(x). Then for 1)  E r(x), n 	, it 

follows from (6) that 

Rx (n ) - Rx (g) 

Tl - 

= Rx (g) • Rx (n) = (x - Fe)-1  (x - Tle)
-1 

It has been proved (Corollary to Lemma 111.3.2) that the mapping x x -1 

 is continuous on the set G of invertible elements of A. Hence the 

strong limit 

Rx (n) - Rx (g ) 

	

s - lim 	  - (x - ge) -1  (x - ge) -1  =(Rx (t)) 2E A . n  

	

n g 	-  

This calculation shows that R is a strongly holomorphic function on the 

set r(x). 

Theorem 2. Let A be a commutative Banach algebra with unit e. 

For every element x E A, a(x) is nonempty. 
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Proof. Suppose, on the contrary, that for some x E A, a(x) = 0. 

We will show that the above assumption gives a contradiction. It has 

been shown (in Remark 1) that the resolvent function Rx 
of x is strongly 

holomorphic on the resolvent set r(x) =a(x) c . Since a(x) is empty, Rx 

 is strongly holomorphic everywhere in C. We also have 

- 	= 	VIII 	= 	Hx11 	0 as ix' 

whereby 

e in norm as 

Since the mapping x ~ x
-1 

is a continuous function on the set G of in-

vertible elements of A (Corollary to Lemma 111.3.2), it follows that 

-1 
~ e

-1 
(e - 

x  ) 	e in norm as lxi (7) 

By (7) we obtain 

xe ) -1 1I 	= 	lx -1 1.1 1 (e - i!.) -1 11 e  -40 	 (8) 

   

as lx1 	Hence for any given e > 0, there exists a positive real 1 	 1 

such that 11(x - Xe) -11I < e
1  for IXI > 1" Let 

e 2  = 	max 	11(x - Xe) -1 11 	, 

I Xk6 1 
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and let M = max (ee 2 3. Then 

dRx (X)11 = 11(x - Xe) -1 11 s  M for every X E C. 

By Theorem 1 of Section 2, Rx  must be constant on C, since Rx  is strongly 

holomorphic everywhere in C and is bounded on C. Thus 

Rx (X) = xo  E A for every X E C . 

But (8) implies that x o  = 0, which contradicts the fact that 

(x - Xe) (x - Xe) -1  = e. 

Therefore, we must have a(x) 0 for every x E A. This completes the 

proof.. 

Definition 4. A mapping A: X X' of a normed space X into a 

normed space X' is called an isometry if A preserves norms; that is, 

M A(x)11 = IlxII for every x E X. If the spaces X and X' are commutative 

normed algebras and A is an isomorphism as well as an isometry, then we 

say that A is an isometric isomorphism. 

The following theorem plays a very important role in the theory 

of Banach algebras. 

Theorem 3 	(Gelfand-Mazur). If A is a commutative Banach alge- 

bra with unit e in which every non-zero element is invertible, then A 

is isometrically isomorphic to the field C of complex numbers. This 

isomorphism occurs in the following manner. Every element x E A is of 
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the form x = Xe, where X E C. 

Proof. Let x E A. By Theorem 111.3.2, u(x) 	0. Hence there is 

at least one complex number X E u(x), and x - Xe is not invertible. 

Since, by hypothesis, every non-zero element of A is invertible, we must 

have 

x - Xe = 0 . 

Therefore x = Xe. Denote the complex number X, which depends on x E A, 

by X(x). Then the mapping x X(x) is easily seen to be an isomorphism 

from A onto C. For example, if x,y E A, then x + y = X(x)e + X(y)e = 

EX(x) + X(y)De and x + y = X(x + y)e. Thus, X(x + y) = X(x) + X(y). 

Similarly, the manner in which x X(x) is defined also gives 

X(ax) = aX(x) and X(xy) = X(x)X(y) , 

where x,y E A and a E C. Clearly x X(x) is one-to-one since X(x) = 

X(y) gives 

x = X(x)e = X(y)e = y 

Therefore x X(x) is an isomorphism. For every x E A, 

IX(x)i 	=IX(x)1 	= Hx(x)ell 	= 114 	. 

Hence x X(x) is also an isometry. 
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Note. The proof that for every x E A, x = Xe for some A E C, is 

similar to that given in Gelfand, Raikov and Shilov [8], p. 31. 

Definition 5. Let J be a closed ideal of A. For every element 

cp(x) E A/J define the quotient norm of cp(x) by 

Hcp(x) 	= 	: y E cp(x)3 
	

(9) 

Note that the quotient norm of cp(x)E A/J is also given by 

kgx)11 = -infOx + y h 	y E JI 	 (10) 

(see Rudin [25], p. 358), called the distance from x to J. 

Theorem 4. Let J be a closed ideal of A. Then: 

A/J is a :named algebra by the quot,i.ent norm. 	 (11) 

If A is a commutative Banach algebra and J is a proper 

closed'ideal, then A/J is a commutative Banach algebra. 	(12) 

For a proof, refer to Rudin [25], p. 359. 

Corollary 3. If J is a maximal ideal of the commutative Banach 

algebra A with unit, then A/J is a commutative Banach algebra with unit 

in which every non-zero element has an inverse. 

Proof. The corollary follows directly from Theorems 111.1.4, 

111.3.4, and the fact that every maximal ideal in the Banach algebra A 

is a closed set in A, by Theorem 111.3.1. 
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It is now possible to characterize the elements of the residue 

class algebra A/J, where J is a maximal ideal of the commutative Banach 

algebra A with unit, by applying the Gelfand-Mazur Theorem. 

Theorem 5. Let A be a commutative Banach algebra with unit, and 

let J be a maximal ideal of A. Then the residue class algebra A/J is 

isometrically isomorphic to the field of complex numbers in the sense 

that each cp(x) E A/J is uniquely represented as cp(x) = Xcp(e) where X is 

a complex number depending on cp(x). 

Proof. By the Corollary of Theorem 111.3.4, A/J is a commutative 

Banach algebra with unit in which every non-zero element is invertible. 

The fact that A/J is isometrically isomorphic to the complex field now 

follows by the Gelfand-Mazur Theorem. 

Theorem 6. If A is a commutative Banach algebra with unit e, and 

J is a maximal ideal of A, then J is the kernel of a homomorphism of A 

onto the complex field C. 

- Proof. Let cp denote the natural homomorphism of A onto the field 

A/J, which has kernel J. Let T denote the isomorphism (of Theorem III. 

3.5) of A/J onto the complex field C. The scheme is illustrated by the 

diagram: 

A 	cP  A/J --> C 
onto"— 	onto 

The composition t = T.cp (cp followed by T) maps A onto C, and is easily 

verified to be a homomorphism of A onto C with kernel J. 

Theorem 7. If A is a commutative Banach algebra with unit e, and 

X is a homomorphism of A onto the complex field C, then the kernel of A. 
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is a maximal ideal J of A, and X has the form T.cp where cp is the natural 

homomorphism of A onto A/J, and T is an isomorphisM of A/J onto C. 

Proof. Let J be the kernel of X. Note that 

J = (x c x E A, X(x) = 0) . 

It is easily verified that J is a proper ideal of A. (For example, if 

x E J, y E A, X(xy) = X(x)X(y) = 0. Thus xy E J.) That J is proper 

follows from the observation that X maps A onto C. Suppose that J is 

not maximal. Then there exists a maximal ideal P of A which contains J. 

Consider the image X(P) of P. If z 1 ,z 2  E X(P) and a,8 E C, there exist 

elements x i ,x2  E P such that X(xl ) = z i , X(x2 ) = z 2 . But aX(xl ) + 

OX(x2 ) = X(ax i ) + X(Px2 ) = X(axi  + 0x2 ). Since ax i  + Ox2  E P, it 

follows that aX(x l ) + OX(x2 ) = az i  + Oz 2E X(P). Similarly, if z E X(P) 

and w E C, wz E X(P). Hence X(P) is an ideal of C. We now show that 

X(P) is a proper ideal of C. Suppose X(P) = C. Let x E A - P. There 

exists on element x
o
E P such that X(x

o
) = X(x). Thus X(x - x

o
) = 0, 

which implies that x - x0E JC P. This implies that x E P, since x = 

(x - x
o
) + x

o
, and contradicts x E A - P. It follows that X(P) is a 

proper ideal of C, properly containing the ideal Co) of C. But this 

contradicts the fact that (0) is the only proper ideal of C. Hence J 

is a maximal ideal. If cp is the natural homomorphism of A onto A/J, 

define T:A/J " C by Y' (x + J) = X( ). It is easily verified that T is 

well defined and that T is a homomorphism of A/J onto C. If X(x) = X(y), 

then X(x - y) = 0, and x - y E J, which implies that x.4. J = y + J. 

Hence Y is an isomorphism of A/J onto C. Thus we have X = Y•p. 
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The maximal ideals of A have been characterized in the two pre-

ceding theorems by the set of all homomorphisms 	of A onto C, that is, 

the set of all multiplicative linear functionals on A which are not 

identically zero. 

Definition 6. Let M denote the set of all maximal ideals of the 

commutative Banach algebra A with unit e. M will be called the maximal  

ideal space of A. Let x be a fixed element of A, and define the mapping 

A 
X : M '"" C by 

A 
X(J) = CJJ(x) for every J E M. 

Here c/113 is the-  homOmorphism of Theorem 6, the notation now altered 

A 
to denote dependence of 	on J. The mapping x will be called the repre- 

A 
sentative function of the element x E A. The mapping x ~ x will be 

denoted by 4 and is called the Gelfand representation of the commuta-

tive Banach algebra A with unit e. 

In the following theorem we give some fundamental properties of 

A 
the representative functions x. 

Theorem 8, Let A be a commutative Banach algebra with unit e. 

Let x 1 ,x2  E A, let J 1 ,J2  E M, and let X E C: 

A 

1 
If x = x 1 

+ x2, then x(J) = x 	+ x(J) 	E M). 

If x = Xx l , then X(J) = XX (J) (J E M). 
1 

(13) 

(14) 



A 	A 	A 
If x = xix2 , then x(J) = x i (J)x2 (J) 	E M). 

A 
e(J) = 1 for every J E M. 

A 
X(J) = 0 if and only if x E J. 

If J
1 

J
2' 

then there exists an element x E A such that 

A 	 A 
X(J1) 	x(J2

). 
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(18) 

on M for every x E A. (19) 

Proof. For each fixed J E M, X(J) = t[J](x), and the mapping 

: A -4  C is a homomorphism. The image of e E A under t[J3 is the 

unit 1 of the complex field. The statements (13), (14), (15) and (16) 

follow directly from the above observations. For example, for (15), 

A 
X(J) = t[J3(X

1
x
2
) = t[J](x

1
) • t[J](x

2
) = x 1 (J) • x2 (J) . 

Since t[J] has J as its kernel, an element x E A maps into 0 under this 

homomorphism if and only if x E J; this yields property (17). To show 

(18), suppose that J I , J2  E M, and J l  F J2 . Then there exists an x E A 
A 	 A 

with x E J I  and x J2 . Consequently, x(J i ) = 0 and x(J2 ) F 0, which 

A 	 A 
means that there is an element x E A for which x(J 1

) F x(J
2
). The same 

type of argument applies in the case x E J2  and x J1 . Finally, note 

tl 
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that 

I )4J)I = I EJ] 00 1 = I a .co[J] (x)I = I l epLthx)11 , 

since T[J] is an isometry, by the Gelfand-Mazur theorem. Therefore 

A 
IX(J)I = 'inf {II Y II : y E cp[J]}, by definition of the quotient norm of the 

residue class p(x) = Cp[JJ(x) E A/J. This proves the assertion (19). 

Theorem 9. An element x E A is invertible if and .  only if the 

A 
repiesentative function 	:M~Cvanishes nowhere on M. 

Proof. By the Corollary of Theorem III.1.1, the element x E A 

has an inverse if and only if x is contained in no maximal ideal of A. 

This means that, for each maximal ideal J, X(J) 0, by (17). 

Theorem 10. For each fixed x E A, the range of the representa- 

A 
tive function x is precisely the spectrum of x. 

Proof. Let X 0E G(x). Then x - X oe is not invertible. Therefore, 

A 	A 
by Theorem 111.3.9, x - X oe must vanish on some maximal ideal Jo . Thus . 

A 	A 	 A 	 A 	 A 
(X - X oe) (Jo ) = 0 = x(J o

) - X e (Jo) = x(J
o
) - X.  Therefore x(J

o
) = 

A 
X
o

, and X
o 

is an element of range of x. Conversely, suppose that there 

A 	 A 
exists a J

o 
E M such that x(J0 ) = X

o
, that is, X

o 
is in the range of x. 

	

A 	A 
Then (x - X oe) (J

o
) = 0, and therefore x - X e.is not invertible (again 

by Theorem 111.3.9). This means that X 0E 0(x). 

• 	A 
Remark 2. Since the range of the representative function x 

coincides with the spectrum of x E A, the spectral radius of x is also 

given by 



51 

	

P(x) = suP(1(.1 )1 : J E Ml 	. 

Theorem 11. (Spectral Radius Formula).  Let A be a commutative 

111 
Banach algebra with unit e. For every x E A, lim hxn u 1/n 

 exists, 

	

n 	co 
and 

P(x) = 	1 

Proof.  Put a = sup(1,14,1)1 : J E Ml = P(x), by (4). It will be 

shown that 

limsupIlxnlll 
n 	a s liminf I lxnlll /n

n 	cc, 	 n  .-. 
	 (20) 

	

which clearly will force liminf 	
= limsup 

 Ilxn111/n,and hence the 
n 	co 	n 	co 

conclusion. By (19) it follows that 

11x11 11 	sup(It 	I -n(J), : J E Ml = sup(IX(J)I n  : J E M) = an  

Hence Hxn11 1/11  a for every positive integer n, which implies the right-

hand inequality in (20). Now note that by Definition 111.1.2 and Theorem 

111.3.10 if 4 E C and 141 > a, then x - pe is an invertible element of A; 

that is, 4 E r(x). Hence the function F defined by 

F(X) = (e - Xx) -1  = -(1/X)[x 	(1/X)e] -1  = X -1R (X -1 ) 
	

(21) 
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is strongly holomorphic for IXI < 1/a. By the Neumann series (see Lemma 
111.3.1) 

co 
n xn (-Xx) n  = 	x 	 (22) 

n=0 n=0 

which is valid for IIXxd < 1. Hence the Taylor series for F must be 

identical with (22): 

co 
F(x) 	xn , dXnd < 1 • 	 (23) 

n=0 

By convergence of the above Taylor series (23), it follows that 

lim 11X n  xnd = 0 if IXI < 1/a . 
n -, co 

Therefore, for suitably large positive integers n, 

11xn 11 	= 	1X1 -n  11°  xn11 < 1X1 -n 1 1 when .X. < 1/a 

This means that limsup dx nd l/n s  IX1 -1  , for every complex number X with 1  

n -4 co 
< IX1 -1 

 ; that is, 

limaup 
n -4  00 

n s a . (24) 

This is the left-hand inequality in (20), and the proof is completed. 

Definition 7. An element x of the commutative Banach algebra A 
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with unit e is said to be a generalized nilpotent element of A if 

lim dx
nlin = 0 

n 	cc 
• 

Corollary 4. The radical R = n
J E M J of A coincides with the set 

of all generalized nilpotent elements of A. 

This corollary is a direct consequence of the Spectral Radius 

Formula (and Remark 2) whereby 

sup(IX(J)I : J E 	= 	lim dxn11 1/n  
n . 

4. The Structure Space of a Commutative  

Banach Algebra  

Throughout the following discussion we shall denote by 4(A) the 

A 
totality of representative functions x which correspOnd by the Gelfand 

representation Zito the elements x of the commutative Banach algebra A 

A 
with unit e. Recall that each representative function x E d(A) is a 

mapping of M, the set of all maximal ideals of A, into the complex field 

C. The family of functions 4(A) can be used to induce a topology in the 

set M as follows. 

Definition 1. A neighborhood of an element J o
E m will be defined 

as any subset of M of the form 

U(J0 ; x l , x2 , 	xn ; e) 
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IA 

1 	
A 

GT0  = (.3 	J E M, lx.(J) - x. 	)1 < e, t = 1, 2, ..., 
1  

where the positive integer n, the positive real number e, and the repre- 

A 
sentative functions x

i 
E 40) are arbitrary. The set of all such neigh-

borhoods is a basis for a topology in M (often called the Gelfand  

topology  in M) called the weak topology  defined by the family of func- 

- tions 4(A). The topological space M thus obtained is called the 

structure space  of the commutative Banach algebra A with unit e. 

Note that M is then a Hausdorff space. This is established in 

Remark 2, by use of the result (18) of Theorem 111.3.8, according to 

A 
which the functions x separate  points of M. The terminology in 

Definition 1 is explained in the following remarks, which apply also to 

more general situations. 

Remark 1.  If X is a space (nonemp•y set), and (f a  : a E r) is a 

nonempty family of complex-valued functions on X, there is a weakest 

topology T o  in X for which all the functions fa  are continuous. There 

is at least one topology in X for which all the f a  are continuous, since 

the discrete topology (in which all subsets of X are open) satisfies the 

requirement trivially. The weakest topology in X for which the f a  are 

continuous is the intersection of all topologies T in X for which the 

fa  are continuous. It is possible to describe T
o

, called the weak 

topology generated 	the functions  fa , in a more explicit way. If f a 

 is to be continuous on X, it is necessary and sufficient that the 

inverse images f
a

1 
 (D) E T

o 
for every open disk D in the complex plane. 

Consequently T o  must contain all subsets of X of the form 



(x : x E X, 1fa (x) - fa (x0 )1 < el 

where xo 
E X, a E F, and E > 0. Thus T

o 
 (which is closed under finite 

intersections) must contain all subsets of X of the form 

V(x 0 ; f_ , 	fa  ; e)n  1
, 

= (x: x E X, 1fa  (x) 
1 

OK1 < C, ... 2  1f
an

(x). -  f
a 
 (x

° 
 )1 < el, Jo.  n 

where x E X, E > 0, and 	: (a ]- ..., a n  ) is ,a.finite subset of the index- 

ing set F. Note that x oE v(x ; f 	fa  ; e). Given the sets V(x
o

; 0 	a , i  
fa  , 	fa  . E) and V(xo ; fp  , 	fp  ; 6), the set 

1 	n 2 	 1 

V(x ; f , 	f , f , 	f ; E')C V(x •0 ; f a  , 	f 	• e) 
° a l 	n 	1 	 1 	-n 

n V(x0 ; fp , 	fp ; 8) if i( = mink, 63 . 
1 	

m  

Furthermore, if x l  E v(x0 ; fa  , 	fa  ; e), and 
1 

e l  = e - max(Ifa  (x i ) - fa  (x )1 ' 	1fa  (xi ) - fa  (x0 )11 
1 	1 ° n 	n 

then 
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V(x
1 
 ; fat , 	f

an 
; E

1 
 ) c V(xo  ; f 	2  fan 

• e) 
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To deduce this inclusion, observe that, if x E V(x l ; fa  , . 	f • C 1 
 ) 

1 	a ' n 	' 

then for each i = 1, 	n, 

Ifa  (x) - f_ (x 
fa o (x) - fa . (x 1 )1 	I fa (x i )  - fa (x0 )1  

< e + maxflfa (x) - fa  (x)! 	i = 1, . 

by the definition of e l . Thus x E V(x o 	u ; f_ , ..., fa  ; e), and the in- 
l  n 

clusion is verified. Thus the sets of the form V(x 0 ; fa  , ..., fa  ; 0 
1 	n 

form a neighborhood base for T
o 
at the point x

o
. The weak topology T

o 

generated by the functions fa  is composed of arbitrary unions of sets 

of the form V(x0 ; fa  , 	; e) where x0E X, {a l , ..., an is a 
1 

finite subset of F, and e > 0. 

Remark 2.  It should be pointed out that X with the weak topology 

T
o 

is a Hausdorff space if, whenever x,y E X and x y, there exists an 

a E F (a depending on x,y) such that fa (x) 	fa(y). In this case the 

functions fa  are said to separate  points , of X. To deduce this, let 

e = klyx) - fa (y)I, and consider the neighborhoods V(x; f a ; e), 

V(y; fa ; e). If z E V(x; fa ; e), then it follows from the inequality 

2e = Ifa (y) 	fm(x)I s  Ifm (y) 	fa(x)I + ifm (z) 	fa(x)I 

< Ifm (y) - yz)I + e 

that Ifa (z) - fa (Y)I > e, which implies that z 	V(y; fa ; e). Thus 
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V(x; fa ; E), V(y; fa ; C) are disjoint neighborhoods. 

Remark 3.  The concept of the weak topology generated by a family 

of functions may also be considered in situations more general than that 

considered above. If X
a 
 is a topological space for each a in a nonempty 

indexing set r, the Cartesian ,  product space  X =aEr a X_ is, by defini- 

tion, the set of all functions x with domain r such that x(a) E 	for 

each a E r. Often x(a) is written in the form xa , and xa  is called the 

a th 
coordinate  of x. For each a E F, there is a function pm  on X defined 

by 

p (x) = a 	a 

The function pa  is called the projection  of X onto Xa . The product  

topology  on X is the weak topology generated by the family of projec-

tions pm , and is the weakest topology for which all the projections are 

continuous functions. A very important theorem in general topology is 

the theorem of Tychonoff which asserts that if N a : a E F) is a non-

empty collection of compact topological spaces and the Cartesian product 

space X = aEr-  X_ is given the product topology, then X is compact. 

For a proof of this theorem, reference may be made to Kelley [13], p. 143 

or Royden [24], pp. 144-145. 

It is helpful at this point to recall some basic facts about 

Banach spaces. If X is a Banach space, the dual space  X of X is the 

space of all bounded complex-valued linear functionals on X with norm 

defined by 



58 

II F II 	= sup(IF(x)I = lix11 5 1) 	(F E x* ) 	• 

* 
With this norm, the space X is also a Banach space. Its dual space 

* * 	 ** 
(X ) is called the second  dual space  of X, and is usually denoted X . 

For each x E X, let Ax be the functional defined on the domain X 

by Ax (F) = F(x). It is easily verified that Ax  is linear on X*  for each 

x E X. If 1, 

lAx (F)1 	= 	IF(x)I s 011•1134 s IIxII 

Hence Ax is, for each x E X, a bounded linear functional on X , and IIAx II  
s 114. Thus AxE X

** 
for each x E X. An argument based on the Hahn- 

Banach theorem shows that
x = IIxII. The mapping x -4  Ax is a linear 

space homomorphism of X into X ** , since A
x+y 

= Ax + Ay  and fl
ax ' 

= aAx for 

all a E C, and x,y E X. This mapping is called the natural mapping  of 

** 
X into X . 

The sets of the form 

W(xo ; F l , 	Fn .; e) = fx : x E X, IF i (x) - F i (x0 )1 < e for i = 1, . • • ,n) 

where x 0E X, F l , 	F
n 

E X and e > 0 form a neighborhood base at x
o 

for each x
o
E X. This is shown just as in Remark 1 (p. 54). The asso- 

ciated topology in X is the weak topology generated by the functions 

* 
F E X , and X with this topology is a Hausdorff space. One can define, 

** 
similarly, the weak topology in X generated by the functions in X . 
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* 
But another topology on X has, it turns out, greater importance. This 

* 
topology, called the weak* topology in X is the weak topology generated 

** 
by the subset of X which is the image of X under the natural mapping 

x 1   A. (For non-reflexive Banach spaces, the natural mapping carries X 

** 
onto a proper subset of X .). For the weak* topology a , typical neighbor-

hood at F o 
has the form 

W(F ; A 	, 	A 	; e) = (F : F E X* , IA (F) - A 	(F )1 < s 
o 	xl 	xn 	 x. 

	

1 	
x. o 
1 

for i = 1, ..., n3 

Using the definition of A 	it follows that x i  

W(F ; A , 	A ; e) = (F : F E X* , IF(x i ) - F o (x i ) I < e 

	

0 xi 	xn  

for i = 1, ..., n1 	 (1) 

* 
The space X with the weak* topology is a Hausdorff space. For more 

details regarding the above remarks, reference may be made to Lorch [151 

One of the most important theorems concerning the weak* topology 

* 
in X is the following theorem of Alaoglu. 

Theorem 1. (Alaoglu's Theorem) 	The closed unit ball S = {F : 

H 
F E X* , IIFI 5  1} in X is compact in the weak* topology. 

Proof. For a fixed x E X, and any F E S*, 



1F(x)1 s  0F0 .0x0 5  04 . 

The values assumed by the functionals F at x are contained in the closed 

disk K*= {z 	1z1 	in the complex plarie. By the Tychonoff itheorem, 

as stated in Rema'rk 3-(p. 57), the 	product space P = 	K is xEX x 

compact in the product topology on P. The points of P are the functions 

h with domain X such that h(x) E K*  for each x E X. Thus, on account of 

(2), S c P. A typical neighborhood at h
o
E P in the product topology is 

given by 

W(h 	P 3 P 	...3 px ; E) 	(11 	h E P, 1p (h) - p x 
(h 

0
)1 < E 

o 	x l 	x2 	 x.  

for i = 1, ..., n) 

(h 	h E P, Ih(x i) - ho (x 1)1 < E for i = 1, ..., n3, 

since p
x
(h) = h(x), the x

th 
coordinate of h. The set S, viewed as a 

subset of P, has an induced topology, induced, by the product topology on 

P. A typical basis set in this induced topology  has the form 

W(h o' x 
• p: 	px ; E) n s

* 

= 	: h E S, Ih(x) 	ho
(x

i
)I<e for i = 1, . • n3 	(3) 
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where h
o
E S . Upon comparing (1) and (3), it is seen that the topology 

* 
induced on S by the product topology in P is the same as the topology 

* 	 * 	 * 
induced on S by the weak* topology in X . The subsets of S specified 

as open are the same in each case. 

Since, by a standard theorem in general , topology, a closed subset 

* 
of a compact Hausdorff space is compact, it suffices to prove that S is 

a closed subset of P. Suppose g oE P is a limit point of S* , and let C> 0 

be given. Every open set in P containing g o  then contains points of S . 

Suppose that x, y E X. The neighborhood W(g o ; px , py , px+y ; e) of go  
* 	 * 

contains points of S . Let g E S be such a point. Since g belongs to 

X
*
, g is a bounded linear functional on X, and hence g(x + y) = g(x) + 

g(y). Since g E W(g o ;px,p,px+y' • e) andp
x
(g) = g(x), it follows that 

Ig(x) - go (x)I < e, Ig(y) - go (y)I < e, 

and 

Ig(x + y) - go (x + y)1 < e . 

Thus 

l go (x 	y) - go (x) - go (y)I 

= Igo(x 	y) 	g(x 	y) 	g(x) 	g(y) 	go(x) 	go(Y)I 



Igo (x + y) - g(x + y)I + Ig(x) - go (x)I + Ig(y) - go (y)I < se 

Since g o  does not depend on e and C > 0 is arbitrary, it follows that 

go (x + y) = go (x) + go (y), for all x,y E X . 

A similar argument shows that go (ax) = ago (x) for a E C, and x E X. 

Thus go  is a linear functional on X. For each x E X and e > 0, there 

exists g E S*  such that g E W(g o ; px ; e), that is, such that 

Ig(x) - go (x)I < C. Hence 

lgo(x)I s  Igo (x) 	g(x) 	I g(x) < e + 1444 	e + hxh . 
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If mxh s 1, Igo (x)1 < e + 1. Thus Ilg o  l s  e + 1, for every C > 0. Hence 

Mgo ll s  1. Consequently g o
E S. Thus S is a closed subset of P. The 

proof is complete. 

Note. The above proof of the AlaogAu theorem is a much expanded 

version of that in Loomis [14], p. 22, or that in Lorch [15], pp. 26-27. 

Theorem 2.  The structure space (maximal ideal space with the 

Gelfand topology) M of a commutative Banach algebra A with unit e is a 

A 
compact Hausdorff space. For each x E A, the function x : M -4  C is 

continuous. 

A 
Proof. By Theorem 111.3.8, the functions x separate points of M. 

Thus M is a Hauidorff space. The weak topology generated by the func- 

A 
tions x for x E A is specified by prescribing a neighborhood base at each 
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J
o
E m, with typical neighborhood 

A 	 A 	 A 	A 
U(Jo ; x l , 	 xn ; c) = 	: J E M, lx.(J) 	x

o
)1 < c for 

i = 1, ..., n), 

where x 1" x n 
 E A and e > 0. This topology in M is, it should be re- 

A 
called, the weakest topology in M for which all the functions x for x E A 

are continuous. Viewed as a Banach space, A has the dual space A . For 

each fixed J E M, let Fj : A -4  C be defined by 

A 
F (x) = x(J) . 

A 
Using the known properties of x, it is now shown that each functional 

A -4 Cisabounded linear functional onAand, consequently,FEA, F j ••  

for each J E m. If a, 0 E C and x, y E A, 

F (ax + 0y) = a'5113Y(J) = ax(J) + r4(J) 	aF (x) + PF (y) , 

by conditions 111.3(13), 3(14). Then Fj  is linear. If IIxII s  1, it 

follows from condition 111.3(19) that 

IF J 001 	= 1;1(J)I 5 IIXII  s 1. 

Hence F is a bounded linear functional on A, with IIF J II s  1, in fact. 

This holds for each J E M. Thus the set 
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K = {F : J E ml C s 	, 

H H 
where S is the closed unit sphere {F :FEA* , IIFII 5  1} in A * . By the 

theorem of Alaoglu S is compact in the weak* topology. It is now shown 

* 
that K is closed in the weak* topology in A . Note first that, in any 

case, TCC 3 = S. Suppose PoEli. It must be shown that F 0E K. For 

each C > 0, the neighborhood (in S t ) 

(F : F E St, IF(e) - F o (e)I < e 

contains a point of K. Thus, for some J E M, IFj (e) - Fo (e)I < C. But 
A 

F (e) = e(J) = 1 for every J E M. Thus Il - F
o
(e)I< C for every e > 0, 

and consequently Po (e) = 1.. Next, we show that,P 0 (xy) =y 0 (x)P 0 (y) for 

all x, y E.  A. Let x, y E A and suppose C > 0. The neighborhood of F o 

 in S defined by 

WF0 ; Ax , Ay , Axy ; e) n s 

= (F : F E S* , IF(x)-F 0 (x)1<e, IF(y)-F o (Y)I<e, IF(xy)-F 0 (xy)1<e) 

contains an element Fj  of K. Thus IF j (x) - Fo (x)I < e, IFJ (Y) - F 0 (01<€, 

and IFj (xy) - F o (xy)I < e, But Fj (xy) = 	= X(J) 1}7(J), by condition 

111.3(15). Now 
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IF0 (xy) - F0 (x)F 0 (y)1 

= IF 0 (xy) - Fj (xy) + F j (x)F j (y) - F j (x)F 0 (y) + F j (x)F 0 (y) - F o (x)F o (y)i 

5 IF 0 (xy) - Fj (xY)I + IFj (x)I IFJ (Y) - F o (Y)I + IF 0 (Y)I lyx) 	Fo (x)I. 

Since IF (x)i 
I
x(J) 1411 by condition 111.3(19), and IF o (y) 1 500111A, 

it follows that 

IF 0 (xy) 	F 0 (x)F 0 (y)1 5 ea + 114 + HA) 

Since this is true for each e > 0, then F o (xy) = F o (x)F 0 (y) and Fo  is 

multiplicative, with F o (e) = 1. Hence there exists a maximal ideal 

JoE M, such that F o  = F J  , and it has been shown that F oE K. Hence K is 
o 

 

a closed subset of S in the weak* topology. Thus K is compact in the 

weak* topology, and K, regarded as a topological space, is compact, in 

the weak* topology. A typical neighborhood of F j  in K with this topol-

ogy is 

(Fj 	J E m, IFJ (x i ) - F
J

) < C for i = 1, ..., n) 
0 

 

I A 	A 
= (F 	J E M, lx 	- x o) < e for i = 1, ..., n) 	. 

Referring to the neighborhoods used to define the Gelfand topology in 

the maximal ideal space M, it follows upon identifying J with F j  that the 
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open sets in M are precisely those induced by the open sets in K with the 

weak* topology. An open cover of M induces an open cover of K. Since K 

has been shown to be compact, the open cover induced on K has a finite 

subcover which in turn produces a corresponding subcover of M. Conse-

quently M with the Gelfand topology is a compact Hausdorff space. 

Note. The above proof follows the general lines of proofs in 

Loomis [14], p. 52 and Bachman and Narici [1], p. 341, but is in a consid-

erably expanded form. A somewhat different proof appears in Naimark [19], 

p. 197, not using the Alaoglu theorem explicitly but essentially involv- 

ing the same ideas, including the fundamental use of the Tychonoff 

theorem on product topologies. 

The fundamental properties of the Gelfand representation L1 of the 

commutative Banach algebra A with unit e can now be summarized in the 

following theorem. 

Theorem 3.  A commutative Banach algebra A with unit e is repre- 

A 
sented homomorphically by the algebra NA) of continuous functions x on 

the compact Hausdorff space M of all maximal ideals J of A with the ' 

Gelfand topology. The radical R of A consists of precisely those ele-

ments which are represented in A(A) by functions identically zero on M. 

A 
The representation x x is isomorphic if and only if A is semi-simple. 

Proof. The Gelfand representation Liis a homomorphism by Theorem 

111.3.8. Assume that x E R = nJEmJ. Then x E J for every J E M. Hence 
A 
x(J) = 0 on M by condition 111.3.(17). On the other hand, every function 

A 
X which is identically zero represents an element x E R. Thus, the 

radical R is the kernel of the homomorphism A. Since a homomorphism is 

an isomorphism if and only if its kernel is trivial, it follows that the 
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Gelfand representation is isomorphic if and only if the radical of A is 

the trivial ideal (01. 

Example 1.  Let C[0,1] denote the space of all complex-valued con-

tinuous functions on [0,1] with the usual operations of scalar multipli-

cation, addition, and multiplication. Define the norm of an element x of 

C[0,1] by 

Ilxll 	= sup(lx(01 : 0 5t 5  11 	. 	 (4) 

Then C[0,1] is a commutative Banach algebra with unit. Let t o  be a fixed 

point in [0,1], and define 

J
t 	

= (x E c[o,1] : x(to) = 	 (5) 

It will be shown that : 	Jt  is a maximal ideal of C[0,1], and (ii) 

every maximal ideal in C[0,1] is of the form (5). Note that J t  is a 

linear subspace, and that x E J
t 

implies that x(to )y(t o )    = 0 for every 
o 

 

y E C[0,1]; therefore J
t 

is an ideal. To show that J
t 

is maximal, 
o 	 o 

 

define the homomorphism 

t 
: C[0,1] 	C by 

o 

 

t (x) = x(t
o
) for every x E C[0,1] . 

o 
(6) 

This homomorphism has J t  as its kernel and hence, as in Theorem 111.3.7, 
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J
to 

is maximal. To prove the second assertion (ii), suppose that J
o 

is 

any maximal ideal of C[0,1]. It will be shown that there exists a point 

t
o 

in [0,1] for which J
o 
= J. Assume that the contrary holds; that is, 

o 
 

for every point T in [0,1] there exists an element x T  in Jo  such that 

xT (T) 	0. Then corresponding to each T in [0,1] there is a neighborhood 

of T, say N(T), such that xT (t) # 0 for every t in N(T). This follows by 

continuity of xT . Since [0,1] is a compact topological space, and since 

the neighborhoods N(T) (T E [0,1]) cover [0,1], there is a finite number 

of neighborhoods N(T 1 ), N(T 2), N(T n) which also cover [0,1]. Let 

xT  , xT  , 	xT  in Jo  be the functions corresponding to the points 
1 	2 

T 1 , T 2 , ..., T n . Then the function x defined by 

n 	 n 

x(t) = / xT (t) xT (t) = / I 2C9. (01 2  
1,  i=1 	i 	

i=1 	
i  

(7) 

for every t in [0,1], is also an element of J o . But x does not vanish 

anywhere on [0,1]. Therefore y(t) = 1/x(t) is continuous on the unit 

interval, and is consequently in C[0,1]. This shows that x has the 

inverse y in C[0,1] since x(t)y(t) = y(t)x(t) = 1 in t. Hence, by 

Corollary III.1.1, x cannot belong to a maximal ideal. This is a con-

tradiction. Hence there must be some point t o  in the unit interval such 

that every element of J
o vanishes at t o

. Therefore J
o 	Jt

, which proves 
0 

 

(ii). Note that the correspondence 



between the set of points [0,1] and the set of all maximal ideals of 

C[0,1] is one-to-one. The representative functions x defined by the 

Gelfand representation of C[0,1] are given by 

X(J
t
) =

t
](x) (as in Theorem 111.3.6), 

o 	 o 

 

and in view of (6), 

A 
x(J t ) = t

(x) = x(t
o
) . 

0 	 0 
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CHAPTER IV 

THE SPECTRAL RESOLUTION OF NORMAL OPERATORS ON HILBERT SPACE 

1. The Commutative Banach Algebra Generated by 

a Normal Operator  

Let A(H) denote the Banach algebra with unit of all operators on 

the Hilbert space H. 

Definition 1. Let N be a set of normal operators in A(H) which 

satisfies the conditions: 

S, T E N implies ST = TS (commutativity) 	 (1) 

T E N implies T
* 

E N (closure under adjoint formation). 	(2)_ 

Let N denote the set of all operators in A(H) which commute with every 

operator in N, and let B = N" = (NY denote the set of all operators 

in A(H) which commute with every operator in N'. 

Theorem 1. Let N be as in Definition 1. Then N" = 00' is a 

commutative Banach algebra with unit I (the identity operator on H). The 

algebra B = N" consists of normal operators also. 

Proof. It is easily verified that if T 1 , T2  E N " , and a, p E C, 

then the product (composition) T 1T2  E N" and aT1  + PT2  E N . We show 

next that N"c N''', where N''' is defined as (N'T. If T E N, then 

TS = ST for all S E N by (1), and thus T E N'. Hence N C N'. If T E N" , 
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then TS = ST for all S E N' by definition of N" as (Ii")'. Since N C N', 

it follows that, if T E N", then TS = ST for all S E N, and hence T E N'. 

Thus it has been shown that N" c= N'. If T E N", then TS = ST for all 

S E N'. But N" C N'. Hence, if T E N", then TS = ST for all S E N", 

and consequently T E 
AOI 

 . Thus N C N 	. It follows that multiplica- 

PO 	 •• ■• 	 AO 	 OP ,  
tion in N 	is commutative since if 5, T E N then S E N and T E N 	, 

and this implies that TS = ST. 

It is next shown that N" is closed under formation of adjoints. 

If R E N', then RS = SR for all S E N. Note that, by (2), S *  E N when-

ever S E N. Thus, if R E N', RS*  = S*R for all S E N, and consequently 
* 	* 	 * 

SR = R S for all S E N, which is equivalent to saying that R E N 

Suppose now that T E N . Then TS = ST for all S E N
•
. Hence TS

* 
 = S

* 
 T 

for all S E N". By taking adjoints, it follows that ST
* 
 = T

* 
 S for all 

E N om , and thus T
* 
 E N " . We have shown that T E N"  implies that T

* 
 E N . 

Hence N" is closed under adjbint formation. It is clear that I E N' and 

I E N", since IS = SI for every S E A(H). 

It should be recalled that for each bounded linear operator T on H 

the norm of T is defined by 11 .0 = sup(MT4 : IIxlI 5  11. This norm is used 

in the commutative algebra B = N" to yield a normed algebra B. With 

this norm, B is complete as a normed linear spaace. If (T n3 is a Cauchy 

sequence in N", then in particular (Till is a Cauchy sequence in A(H). 

It is then a consequence of basic theorems on bounded linear operators 

on H that there exists a T E A(H) for which 1lTn  - TM 	0 as n -4  02. The 

limit operator T is defined by 



Tx = s - lim Tn
x for each x E H. 

n 	co 

If (Tn 
is a Cauchy sequence in B = N' s , then T

n
S = STn for all S E N'. 

We wish to show that the limit operator T actually belongs to N". For 

each x E H, (TnS - TS)x = (Tn  T)Sx, and 

11(Tn  - T)Sx11 	 TIHISII°114 " 0 as n " co. 

Thus s - lim TnS = TS. Similarly, s - lim STn  = ST. Thus TnS = STn n " co 	 n  

for n = 1, 2, 3, ... implies that TS = ST. This is true for all S E N'. 

Thus T E N". Hence B = N" is a commutative Banach algebra with unit I. 

Since N c A(H) consists of normal  operators, every element of B = N 

is a normal operator. Indeed, if T E B, then T E B and (since B is commu-

tative) T T = TT,. Thus T is a normal operator. 

Remark 1.  If T is a fixed normal operatOr on H, the set N(T) = 

, 
(T, T J satisfies trivially the conditions (1) and (2) of Definition 1. 

Thus B = N(T)'' has the properties of the set B of Theorem 1, and 

(0, I, T, T*1 C B 

Definition  2. The commutative Banach algebra B = N(T)'' with unit, 

*, 
where T is a fixed normal operator on H and N(T) = (T, T 1, will be called 

the Banach algebra generated  by the normal operator  T. 
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2. The Gelfand Representation of the Banach 

Al ebra Generated b a Normal 0 erator 

Theorem L (Kakutani-Krein).  Let X be a compact Hausdorff space, 

and let C(X) be the set of all complex-valued continuous functions on X. 

Let a subset D of C(X) satisfy the conditions: 

(a) If f, g E D and a, p are complex numbers, then of + (fig E D 

and the product f g E D. 

(b) The constant function 1(x) E 1 belongs to D. 

(c) If {f
n 

is a sequence of functions in D with a uniform limit 

f co  , then f 03E D. 

Then D = C(X) if and only if we have: 

(d) D separates points  of X, and 

(e) If f E D, then f E D, where f denotes the complex conjugate 

of f. 

A proof of this corollary of the Stone-Weierstrass theorem is given 

in Yosida [30], p. 10. The terminology separates points  of X is used in 

the same manner as that given in Remark 4.2 of Chapter III. 

We shall apply Theorem IV.2.1 to show that the Gelfand representa-

tion A maps the Banach algebra B = N(T) 	isomorphically onto the set of 
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all continuous, complex-valued functions on the structure space M of B. 

Theorem  2. Let B be the commutative Banach algebra with unit 

generated by the fixed normal operator ToE A(H). By the Gelfand repre- 

A 
sentation 4 h T 	T, the Banach algebra B is represented isomorphically .  

by the algebra C(M) of all the continuous, complex-valued functions on 

the compact structure space M of all the maximal ideals J of B in such a 

way that, for any T E B: 

e  A IITII = suptIT(J) I e J E M3 (the spectral radius of T) 	(1) 

A 
T M 	C is real-valued if and only if the operator T is 

Hermitian. 	 (2) 

A 
T(J) z  0 on M if and only if T is Hermitian and positive. 	(3) 

Proof. Let T E B. By Theorem 111.3.11 lim 11T 	< 00, 
n 	cc 	n  

and 

sup0(J)1 s J E M3 = 	lim 	 . 	 (4) 
n 	00  

We will show that 

114 = 	lim IlTnh "n 
	

(5) 
n 	00 

By normality of T, it follows that S 	T T = TT is Hermitian. Hence, 

• by Theorem 11.3.2, 



dsh = hT*Th = sugl (T*Tx, x)I : 114 s  13 

sup [1(Tx, Tx) 
	114 s 13 = sup(11Tx11 2  : 114 s 1 3 	• 	(6) 

Since 1114 s 11Th if hxh s 1, hTxh 2  s 11111 2  if hxh s 1. Thus 

a = supOnce ollxhx13s 1ITII 2  . 

i Since HTx11 2  s a for all x such that 114 S  1 implies that 11Tx11 5 fa for 
all x such that 114 s  1, it follows that 11111 s  Ax, and 11T11 2 s  a. It has 

been observed that a s 11TH 2 , and hence 

a = suallbe hxh s 13 = hTh 2  . 

Hence (6) implies that IIxII  =
*
TU= 11T11 2 • 

* 	* * 	* Since (T
2 * 
) = (TT) = T T = (T)

2 , we have 

m T2m2 	m (T2 * T2m = m (T* ) 2 T2m 

Again, by the normality of T, it follows that 

qT2 11 2  = HT* 
T
* 
TTH = 11T*TT*T11 = 11(T*T h 	hs 2 h n   

Since S
2 

is Hermitian, it follows (again by Theorem 11.3.2) that 
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= sup0s4 2 	114 s  1 1 = sugl(sx , sx ) I : 11)0 5  1) 

= 	r sup I‘ (S2x, x) I 	11x11 s  1} 	= 	115 2 11 	. 

Therefore 

	

11T 2 11 2 	42 11 	= 	IISII 2 	= 	(IITd 2 ) 2  

or, equivalently, 

u T2 11 = 1lTe 	 (7) 

We have also shown that T
2 

is normal if T is normal. This fact together 

with (7) yields the result 

II T 2 k 2
k 
for k = 1; 9 	• • ° 

    

by induction on k. Hence 11T11 = lim hT 2  1 2  
k -4 co 	 n -'00 

exists,  it follows that formula (5) is verified. Noting (4), we have 

proved assertion (1). Since dill = 0 if and only if T = 0, it follows 

from Corollary 111.3.4 that the algebra B is semi-simple. Thus the 

A 
mapping T T is an isomorphism by Theorem 111.4.3. 

To show necessity in (2), suppose that T E B is Hermitian but 
A 
T(Jo ) = a + ib, with a, b real and b 	0, for some JoE M. Put 
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1 k —R 	 1/n 
Since lim 



T aI  E B , 
b 

and note that S is also Hermitian. By Theorem 111.3.8 we have 

(I + S
2 
 ) (J o) = I "1-11 	 I :2 	= 	(J0) + (S(J0 ))

2  A 

(a + 	
2 	

2a 
= 1 + 	 a

2 
a  

(a + ib) + — 
b

2ib)  

b
2 

b
2 = 1 + i

2 
= 0.  

By Theorem 111.3.9, I + S 2 
is not invertible in B, since I + S 2  vanishes 

at J
o
E M. This contradicts Theorem 11.3.4. This theorem asserts, in 

fact, that the operator I + S
*
S (which is the same as I + S

2
, since S is 

Hermitian) is invertible in A(H). Since P = I + S 2E B = N", PR = RP for 

all R E N'. Thus P -1 (PR)P -1  = P -1 (RP)P-1  for all R E N', and thus RP-1  = 

P -1R for all R E N
A

. Consequently P
-1 
 = (I + S 2 )

-1E B. 
A 

To show that if T is real-valued then T is Hermitian, suppose that 

T E B and T is not Hermitian. Write 

T + T* T - T
* 

- 
2 	2i 

1 	 1  
where the operators 2  -(T + T

*
) and --(T T

* 
 ) are the unique constituents 2i 

of the Hermitian decomposition of T, as mentioned in Remark 11.3.3. 

* 	 1 1 
Since -(T + T, 	 _ 	 2i• ) is Hermitian, the' Hermitiah operator --(T - T

* ) 
2  

is not the zero operator 0, since if that were the case T would be 

A 
Hermitian, contrary to assumption. By the isomorphism T " T,it follows 
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that there must exist an element o
E M such that 

T 	(Jo) 	0  

Consequently 

At 
h 	 T + T 
T00 ) = 	2 	00) + i 	2i 	

00) 

is not a real number. since by the earlier part of this argument, 
A A*.  
T  

2 (Jo
) and 1 -2i 	00) 	are real, and the latter number is not zero. 

Thus (2) is established. 

We will now proVe that 41(B) = C(M). The conditions (a), (b), and 

(d) (Theorem 111.3,8) in Theorem 1V.2.1 are clearly satisfied by 4(B) as 

a subset of C(M). Consider the linear space C(M) with the supremum norm, 

defined by 

= sup(if(J)1 : J E M) 

for every f E C(M). By (1), it follows that 

= 11Th for every T E B. 

A 
This means that the isomorphism A o T T is also an isometry. Thus, for 

A 
any sequence 

r
n  in AO) with uniform limit fwE C(M), we have that 

s - lim T
n 

= T exists in B (by completeness of B). Therefore, f = 
n m 
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A 	 A /N* 
T E NB). By part (2) of this theorem, the functions (T + T ) and 

/NO /N# 
-i(T - T ) are real-valued on M. Hence T (J) = T(J) on M, as is seen by 

using the Hermitian decomposition of T, and taking the conjugate of each 

A 
side. Since B is closed under formation of adjoints, A(B) contains T 

A 
whenever it contains T. Therefore, all of the conditions (a), (b), (c), 

(d), and (e) in Theorem IV.2.1 are satisfied. Consequently the image A(B) 

of the Gelfand representation.is equal to the space of all continuous, 

complex-valued functions on M. 

It remains to prove (3). Let T(J) a  0 on M. Then the function 

on M defined by 

A 	 A 
S(J) = (TO))

1/2 
 , J E N 

A 
is continuous. By the isomorphism Li s T T, there must exist an operator 

A 
S E B such that S 2 

= T. Moreover, S = S '  since S(J) z  0 on M, by (2). 

Thus 

(Tx, x) = (S 2x, x) = (Sx, Sx) Z 0, 

for every x E H. As stated in Remark 11.3.1, this implies that T is 
r  A 	 A 	 A 	 A 

Hermitian and positive. Put T 1 (J) = maxtT(J), 03 and T2 (J) = T1 (J) - T(J), 

. for every J E M. Then T i  and T2  are nonnegative, continuous functions on 

M. It follows by the above remarks that there exist positive operators 

A 	A 
T1 , T

2 
E B corresponding to the functions T 1 , T2 with (Tj

x, x) z  0 for 

every x E H (j = 1, 2). Since 
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A 
4/'12 (.1) 	Ti (J) T2 (3) 

11 0).0 	if TO) Z  0 
A 

0.(-TO 	T )) if (J) < 0 , 
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it follows that T
1
T
2 
= O. We also have that T2 = T

1 
T and hence 

T
2
T
2 
+ T

2
T = 0. Therefore, for every x E H, 

0 s  (T(T2x), T2x) = ((T1  - T2 ) (T2x), T2x) 

( - T2T2x, T2x) = - (T2x, x), 

since T
2 

is Hermitian. Thus (T2x
, 
x) s  0 for every x E H. On the other 

hand, again since T 2  is Hermitian, 

(T2x, x) 	 T
2
x) 	0 

1 
H 3M 

 HT
2

H = 0 and thus T
2
3  
 = 0, the zero operator on H. Since 11T

2
11 = 

	

2 	' 
n -4  cz 

by Theorem 111.3.11, it follows that T2  = O. But then 0 = TI m  T, and 

A 
hence T = T

1 
 Consequently T is Hermitian, and thus T(J) 	0 for every 

E M. 

3, Stron Limits of Monotone Sequences of Positive Operators  

Theorem 1.  Let (T
n
I be a sequence of Hermitian operators in 

B = N(T0 )" such that 

' Thus (T2x, x) = 0 for every x E H. It follows, by Theorem 11.3.2, that 
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O5T1 	T2  5 ° °s Tn s...sSEB. 	 (1) 

Then s - lim Tn
x = Tx exists for every x E H, that is, s - lim Tn = T n -4  co 	 n 	co 

exists, and T E B with Tn  5  T s S (n = 1, 2, 3, ...). 

Proof. It is convenient to make use of the generalized Schwarz  

imAuality which asserts that, if T is a positive Hermitian operator on 

H, then 

(Tx, y)1 2  s (Tx, x) (Ty, y) 

This inequality is proved in the following way. If 

z = x + X(Tx, y)y 

then z E H and (Tz, z) z  0 for all real scalars X, since T z  0. A simple 

calculation (which uses the fact that T is Hermitian) shows that 

(Tz, z) = (Tx, x) + 2X x,  y)1 2 
+ X 2 

kTx, y)1
2
(Ty, y) 

Since (Tz, z) z  0 for all real X, it follows that the discriminant is non-

positive, and the generalized Schwarz inequality follows from this observa-

tion. The operator R
nk 

= Tn+k - Tn (where n Z 1, k 
z  1) is positive and 

Hermitian, and Rnk  E B. Since 



(Tnx, x) s (Sx, x) s HO if 114 s 1 , 

it follows by Theorem 11.3.2 that 11TnH 5  HSH for n = 1, 2, 	. 

Consequently, since T s T 	HT 	- T 	s HSH, also. Thus HR 	110 
n 	n+k' n+k n 	 nk 

for all n Z 1 and k 1. By the generalized Schwarz inequality, for each 

x E H we have 

2 
HR

nkx
114 = (R

nk
x

' 
R
nk

x) 2 S 
(Rnkx' 

x) (R
nk

x
' 
Rnkx)  

By the usual Schwarz inequality, and the fact that 

IIRnk11.114 s  11s11.114 

we find that 

11Rnkx114 	
(Rnkx, x) IISII 3  IIxIi 2  . 

Hence, since R
nk 

 = T
n+k 

 

HTn+kx - Tnx11 4  s 
((Tn+kx' 

x) -(T
n
x, x)) HS 	x 11 3 11 	11 2 	• 
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Since the sequence (a n  x, x)1 is a convergent increasing sequence of posi- 

tive numbers, it follows that (T nx) is a Cauchy sequence in the norm of the 

Hilbert space H. Since H is complete, there exists a limit Tx, for each 
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x E H. Thus s - lim T n = T. Since the algebra B is a Banach algebra, 
n 

it follows that T E B. Note that, by continuity of the inner product in 

its first argument, 

(Tx, x) = 	lim (T x, x) 	0 
n 	n  

for all x E H. Thus T is Hermitian. In addition, it follows easily that 

T
n 	

T 	S for n = 1, 2, ... 

Definition 1.  A set E in a topological space X is said to be no-

where dense in X if the closure E contains no nonempty open sets of X. We 

say that a set E in X is of the firat category in X if E is expressible as 

the union of a countable number of sets each of which is nowhere dense in 

X; otherwise E is of the second cate gory  in X. 

Remark. 1.  We shall mention here two important theorems due to Baire. 

"Proofs of these theorems are given„ for example, in Yosida [30], p. 12. 

Baire's Theorem 1.  Let D be a set of the first category in a 

compact topological space X. Then the complement D C  = X D is dense in 

X. 

Baire's Theorem 2.  Let (xn(t)] be a Sequence of real ,-valued contin-

uous functionS defined on a topological space X. Suppose that a finite 

limit: 

lim x (t) = x(t) 
n 	n  

exists at every point t of X. Then the set of points at which the function 

x is discontinuous is a set of the first category in X. 
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e A 
Theorem 2. Let a sequehce of real-valued functions tT nJ in C(M) 

satisfy the condition 

0 s T (J) 	T
2

(J) 	. . . 	T
n

(J) s . . . s Cc 
A 	 it 	

(2) 

for every J E M, where M is the structure space of B = N(T o ) 	(a being a 

finite constant). Then s 	lim Tn = T exists, the set 
n 	co 

D = (J t J E M, T(J) # lira Tn (J)1 
n -4  co 

is of the first category in M, and D C  = M D is dense in the space M. 

Proof. From the hypothesis (2) and part (3) of Theorem IV.2.2 we 

have 

OT
1

T
2 	

. . .Tn . • s aI EB, 

and CTn)  is a sequence of Hermitian positive operators in B. By Theorem 

IV.3.1, s - lim T = T exists, T E B, and T 	T 	ai (n 	1). Put F(J) 
n co n 	 n  A 	 eA 

lim T
n
(J) on M; F(J) is the limit of the nondecreasing sequence LT

n
(J)1 

n 

M. Suppose, to the contrary of the conclusion, that the set D = (.3 :JEN, 

A 
T(3) 	F(3)1 is of the second category in M. Since the discontinuity set 

DF of F is of the first category by Baire's Theorem 2, and the set D is 

assumed to be of second category, there exists a point J oE D such that F 

is continuous at J o . Otherwise we would have D C DF'  which would imply 

A 
bounded above by a, for each J E M. By the above remarks, F(J) s  T(J) on 
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A 	 A 
that DF 

is of second category. Since F(J) s  T(J) on M, and F(Jo ) F o ), 
A 

it follows that F(J0 ) < T(J0). The nonnegative function defined on M by 
A 
T(J) 	F(J) is strictly positive at J o . Thus there exists a number 6 > 0 

and an open set V(J0 ) containing Jo  such that 

T(J) 	F(J) z  6 for every J E V(.10 ) . 	 (3) 

Now M is a compact Hausdorff space, and there exists an open set V 1  M 

with compaCt closure such that 

Do) c V1  C N71  C v (Jo) . 

This fact is proved in Rudin [253, O. 37, for example. By Urysohn's lemma 

(see, for example, Kelley [13], p. 115) and the fact that Vi  and V(J0 ) c  

A 
are disjoint closed setts, there exists a function G E C(M) such that 0 s 

A 	

2
1 

	V1 	
A 

G(J) s 6 on M, G(J) = —15 on 	(and thus certainly on V1
), and G(J) = 0 

on V(Jo ) c . It follows from (3) that 

IC 	A 
F(J) + G(J) 	T(J) for all J E M . 

This implies that Tn  s T - G (n 	1), where G is the operator in B corre- 

A 	 A 
G sponding to the representative function G E C(M). Since G (J) Z 0, it 

follows by part (3) of Theorem IV.2.2 that the operator G Z  0. However 
A 

G 	0, since G(J) > 0 on V1 . Thus we have s - lim T s 
T G with G 0, 

n 	n  
G F 0, and this contradicts the fact that T = s 	lim T . Thus D must be 

n 	co n  
a set of the first category. Since M is compact, the complement of the 
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set D of the first category in M is dense in M by Baire's Theorem 1. 

4. The Spectral Resolution of a Normal Operator  

In this concluding section we shall show how the Gelfand theory of 

Banach algebras can be applied to obtain a spectral resolution (or spectral  

decomposition) of a normal operator on the Hilbert space H. 

In what follows, given an arbitrary but fixed normal operator ToE 

A(H), we shall denote by B = N(T 0 )", the commutative Banach algebra with 

unit I generated by the normal operator To , and M will denote the structure 

space of B. 

Remark 1. Let C'(M) denote the set of all complex-valued bounded 

A 
functions f on M which differ from a continuous function T only on a set 

'of the first category in M. Define the relation 	on C'(M) as follows. 

If f, g, E C"(M), then f 	g if and only if the set 

	

a
f,g 	

(.1 e J E M, f(J) 	g(J)) 
	

(1) 

is a set of the first category in M. The equivalence realtion parti-

tions e(M) into distinct equivalence classes which will be denoted by 

(f) = (g 	g E C'(M), g 	f) 	 (2) 

for every f E e(M). 
A 	A 

Remark 2. Suppose that T 1, T2 
E C(M) and T

1 F T2' 	
that is, for 

	

A , A 	 A 	A 
some Jo M, T1 00 ) F T2 (J0 ). By continuity of the functions T i , T2  on M, 

there exists an open set U(J o)C M containing Jo  such that, for each 
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A, A 
J E U(J ) T 	r T2 	 T 

(J). Clearly, U(J 0) c eT  A 
	A 	Since the comple- 

o ' 1 	 2 
ment of a set of the first category in the compact Hausdorff space M is 

A 	I. 	A 
dense in M' T 	T eA 	A cannot be of the first category in M. Thus T1 	(T2 ). 

2 
The above remarks prove that each of the classes (f) contains exactly one 

A 
continuous function T. Therefore the set of all the equivalence classes 

(f) is in one-to-one correspondence with the elements' of the Banach algebra 

B by the Gelfand representation O T -4  T. 

Remark 3. Consider a fixed operator T E B, and let X be a complex 

number. Define 

Qx 
 = (J : J E M, Re'P(J) < ReX, ImT(J) < ImX) , 	(3) 

and let 	= Xn  , the characteristic function of the set Qx. It will be 
xx 

shown that E'E C'(M). For any compleX number g, let 

= (z 	z E C, Rez < Red,, Imz < Imp) . 	 (4) 

There exists an increasing sequence (fn) of continuous real-valued func-

tions defined on the complex plane such that 

lim fn (z) = Xrx (z) 
n -4  03 

for every complex number z. Such a sequence can be defined directly in 

the present case, but existence of such a sequence follows from the fact 

that xr  is lower semicontinuous on the complex plane (as the character- 
). 

istic function of an open set) and by a standard theorem (see, for example, 
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McShane and Botts [17], p. 76) there exists a sequence {f n ) of continuous 

real-valued functions such that f n 	/ 'i (z)i Yr. (z) for every complex number z. x  
It is proved in the reference cited that an appropriate sequence is defined 

by 

fn(z) = inf(X.rx (w) + niw - zi 	w E C) , 	 (5) 

(n = 1, 2, ...). Thus 

A 	 A 
Ex(J) = X, (T(J)) = 	lim fn (T(J)) 

n 
(6) 

for every J E M. By Baire's Theorem 2, as referred to in Section 3 of 

this chapter, the set of discontinuities of E x  is of the first category in 

the space M. Consequently E ):.  E C'(M), by definition of the set e(M). 

Remark 4.  Consider the equivalence class (ED containing the 

characteristic function E. Let Ex be the operator in B which corresponds X. 
A 

to the equivalence class (E;) by the Gelfand representationa: T --* T 

(as in Remark 2). The operators E x  E B so obtained will be used to 

construct a type of spectral resolution  of the normal operator T E B, as 

follows. 

Let e > 0 be given. For the fixed normal operator T E B, let 

a = sup(IRe T(J)I : J E M), and 	 (7) 

P = supflIm T(J)I : J E 14) 	. 	 (8) 
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Note that the complex numbers 	- 	+ iP, a + ip , a = 1.0,  are the 

vertices of a rectangle R which circumscribes the spectrum of T. Let 

	

-a = a 1 
 <a

2 
< . 	. < an 

= a, + 
	

(9 ) 

and 

-0 = 0
1 
< p

2 
< . (10) 

, 	el be partitions of the intervals [-a, 	+ 	
' 	V 2 
[-0, p +-7-.J.respectively, 

such that 

1 
( max (x. - a 1 ) 2  + max (0jj-1)237 	c  i  

' 

The half-open cells of the form 

Rjk 
= (C + in :a 	“.( a  0 	<0 .) 

j-i 	j' k-1 
	 (12) 

for j = 2, ..., n, k = 2, ..., n are pairwise disjoint and cover the closed 

rectangle R which contains the spectrum of T. Let C j , 1k  for j = 1, 2, 

n, k = 1, 2, ..., n be real numbers such that C.  + tnkE k+1  for 

j = 1, 2, ..., n, k = 1, 2, ..., n. We shall first prove that for every 

J E m, 
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n 	n 

I T(J) - 	Li 	C .
J 
 + illkC .. ) E • (J)i 	e, ., n 

J 	k j=2 k=2 

(13) 

where 

E" 	= E
Cj+i

n
k 	

+ E 	 - Ec .4111  (J)  cyrIk j-1k-1 	j 	k-1 

- EC
j-1k

(j) ° 

A 
Recall that the range of T coincides with the spectrum of T (Theorem III. 

3.10). Hence if J E M, then there exist integers r,s (2 5 rn, 2srl) 

A 
such that T(J) E R 

rs
. For this J, we have 

n 	n 

 

) E" (J) = C r  + irs J, k j=2 k=2 

since the half-open cells (R ik  : j = 2, ..., n, k = 2, ..., n) are pair-

wise disjoint. Therefore, by (11) 

I lit  (J) 	ro s)1 s e 

This proves (13). Now, let. Ex be the continuous function defined on M 

corresponding to the operator E XE B (or, corresponding to the equivalence 

A 
class (ED, as in Remark 2). By definition, E x  differs from the character- 

istic function EX only on a set eA• of the first category in M. By EX' EX 
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Baire's Theorem 1, the complement, eb „.„,, of 8A 	is dense in the 
EX  E' X 

structure space M. It follows from (13) that 

11.(J) - 
A 
A 	- 

j,k EX 
	 (j>  

j=2 k=2 	
j,k 

 

s c 	 (14) 

	

where X. 	= C + in for j = 2, ..., n, k = 2, ..., n, and 
j,k 	j 	k  

A 
A 	 A 	 A 	 A 	 A 
Ex 	(J) = E

xj,k
(J) + Ex 	(J) -  Ex 	- Ex 	(J) 

	

j,k 	 j-1,k-1 	j,k-1 	j-1,k 
• 

By part (1) of Theorem IV.2.2, we have 

n n 

11T - j,k LE% 	EX 	- Ex 	- Ex
s e • 

j=2 k=2 	
j-1,k-1 	j-1,k 	j,k-1 

(15) 

Since C > 0 was arbitrary in the above argument, there corresponds to 

every C > 0 a partition (Rik : j = 2, ..., n, k = 2, ..., n) of the closed 

rectangle R containing o(T) such that (15) is true for every choice of the 

complex numbers X bk  E Rik 	= 2, ..., n, k = 2, ..., n). We shall denote 

this result by 

T = ff X dEX ' 	 (16) 

and (16) is called the spectral resolution of the normal operator T in 

the sense of Yosida. 

Note. The fact that every bounded normal operator on a Hilbert 



space has a spectral resolution is known as the spectral theorem.  The 

proof of the spectral theorem given above is a much expanded version of 

the proof due to K. Yosida (refer to Yosida [29], or Yosida [30]). 
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