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Abstract 

When carbon dioxide (CO2) is injected into an aquifer or a depleted geological 

reservoir, its dissolution into solution results in acidification of the pore waters. As a 

consequence, the pore waters become more reactive, which leads to enhanced 

dissolution-precipitation processes and a modification of the mechanical and hydrological 

properties of the rock. This effect is especially important for limestones given that the 

solubility and reactivity of carbonates is strongly dependent on pH and the partial 

pressure of CO2. The main mechanism that couples dissolution, precipitation and rock 

matrix deformation is commonly referred to as intergranular pressure solution creep (IPS) 

or pervasive pressure solution creep (PSC). This process involves dissolution at 

intergranular grain contacts subject to elevated stress, diffusion of dissolved material in 

an intergranular fluid, and precipitation in pore spaces subject to lower stress. This leads 

to an overall and pervasive reduction in porosity due to both grain indentation and 

precipitation in pore spaces. The percolation of CO2-rich fluids may influence on-going 

compaction due to pressure solution and can therefore potentially affect the reservoir and 

its long-term CO2 storage capacity. We aim at quantifying this effect by using a 2D 

numerical model to study the coupling between dissolution-precipitation processes, local 

mass transfer, and deformation of the rock over long time scales. We show that high 

partial pressures of dissolved CO2 (up to 30 MPa) significantly increase the rates of 

compaction by a factor of 50 to 75, and also result in a concomitant decrease in the 

viscosity of the rock matrix. 

 

Résumé 

Lors de l’injection de dioxyde de carbone dans un réservoir déplété ou dans un aquifère, 

la dissolution du CO2 dans l’eau de formation produit une acidification. Ce phénomène 

accélère les réactions de dissolution-précipitation avec la matrice rocheuse, et par 

conséquent, peut modifier notablement les propriétés mécaniques et hydrauliques des 

roches. De tels effets sont particulièrement importants dans les calcaires pour lesquels la 

solubilité et la réactivité des minéraux dépendent directement du pH, qui est lié à la 

pression partielle de CO2. Le mécanisme de déformation par dissolution/précipitation 

sous contrainte est contrôlé par un couplage entre des processus de dissolution et de 



précipitation des minéraux et une déformation macroscopique de la matrice. Ce 

mécanisme implique une dissolution aux joints de grains où la contrainte normale est 

élevée, une diffusion de la matière dissoute dans le fluide intergranulaire, et une 

précipitation de matière dans les pores où la pression est plus faible. Cela induit une 

compaction de la roche et une diminution de porosité contrôlées à la fois par l’indentation 

des grains et par la précipitation dans les pores. La percolation de fluides riches en CO2 

tend à accélérer la compaction et peut ainsi modifier les propriétés mécaniques du 

réservoir à long terme. Dans cet article nous avons cherché à quantifier ce processus à 

l’aide d’un modèle numérique 2D qui couple les processus de dissolution et de 

précipitation à l’échelle des grains avec des transferts de matière à une échelle plus 

importante (quelques décimètres). Nous montrons que des pressions élevées de CO2 

(jusqu’à 30 MPa) accélèrent la vitesse de compaction des roches calcaires d’un facteur 

~50 à ~75 et diminuent aussi leur viscosité.



Introduction 
The subsurface sequestration of CO2 in geological repositories is frequently cited 

as a promising solution for reducing the amount of anthropogenically-produced CO2 in 

the atmosphere. Some of the important issues involved in the long-term sequestration of 

CO2 in such sites are discussed in an overview by Wawersik et al. (2001), for example. 

Therein it has been judged essential that models need to predict CO2 sequestration 

behavior over time periods of several thousand years, which is the same order of 

magnitude as some climatic cycles. Therefore, in order to advance our knowledge of 

processes involved in the geological sequestration of CO2, one of the most important 

objectives confronting geoscientists is understanding and quantifying all of the mechano-

chemical processes, at both short and long time scales, that are relevant to CO2 storage in 

geological formations. 

When considering OHCO 22 −  injection into a geological repository, the 

following general chemical reactions (Stumm and Morgan, 1996) can be used to describe 

the subsequent water-rock interactions, based either on a mineralogy dominated by 

aluminosilicates (Eq. 1) or calcium carbonate 

silicateAlSiOHHCOcationOHCOsilicateAlcation 44322 −+++⇔++−− −  (1) 

+− +⇔++ 2
3223 CaHCO2OHCOCaCO    (2) 

Since we examine CO2 sequestration within the context of pervasive pressure solution 

creep (PSC) in limestone, Eq. (2) is thus of particular relevance to this study. 

PSC is a mechano-chemical process characterized by ductile deformation and 

local mass transfer affecting water saturated porous rocks (e.g. Weyl, 1959; Rutter, 1976; 

Gratier and Guiguet, 1986; Dewers and Ortoleva, 1990; Spiers and Brzesowsky, 1993; 

Gundersen et al., 2002; Yasuhara et al., 2003). This ductile deformation mechanism 

occurs in the upper crust and plays an important role in the compaction of sedimentary 

rocks during diagenesis (Ortoleva, 1994; Tuncay et al., 2000). PSC is driven by 

differences in chemical potential induced by differential stress along grain surfaces in the 

rock matrix. PSC can be modeled as a serial process involving four successive steps: 

- stress-enhanced dissolution at grain-grain interfaces subject to elevated normal 

stress; 



- diffusion of dissolved material (solutes) through intergranular fluid films; 

- precipitation of dissolved material in adjacent pore spaces (grain surfaces in 

contact with pore fluid); 

- transport of dissolved material to distant pores, which can induce local mass 

transfer (Gundersen et al., 2002). 

 Since it is assumed that PSC operates as a serial process, the slowest step imposes 

the overall rate for deformation (Rutter, 1976; Gratz, 1991). The first three individual 

steps of PSC (dissolution, diffusion, precipitation) are in turn influenced by local 

parameters such as temperature, stress state of the rock matrix, fluid pressure, and fluid 

chemistry (Rutter, 1976). The PSC mechanism of deformation is slow and operates over 

long geological time scales. Because of this, it is even possible that the slow step can 

change from one process to another over time during compaction of the rock matrix. 

Because PSC operates over geological time scales, correctly predicting the long-

term stability of a CO2 repository requires accurate modeling. PSC models are based for 

the most part on kinetic and equilibrium parameters derived from laboratory dissolution 

and precipitation experiments, as well as from pressure solution experiments that 

typically run for only a small fraction of the time scales associated with natural PSC 

deformation.  

Injection of CO2 causes chemical and flow regime perturbations that affect the 

PSC process, causing the porosity, permeability, and mechanical stability of the porous 

rock matrix to evolve over time. There are multiple reasons that are responsible for this. 

The acidification of pore fluids due to the dissolution of CO2 generally increases rates of 

fluid-rock interactions. This is particularly important in limestones where a decrease in 

pH increases both the rate of calcite dissolution and calcite solubility. In addition, higher 

concentrations of dissolved calcium carbonate can result in increased rates of 

precipitation. The porosity of the rock matrix is reduced during PSC, due primarily to 

grain indentation and precipitation in pore spaces. Taken together, the dissolution, 

diffusion, and precipitation processes have the potential for modifying the long-term 

porosity and permeability of the repository rock, as well as its mechanical stability. 

The deformation of chalk, both dry and in the presence of fluids, has been widely 

investigated experimentally. Most of the published work is based on chalk deformation 



data that have been interpreted solely in terms of mechanical processes (e.g., Botter, 

1985; Da Silva et al., 1985; Jones and Leddra, 1989; Monjoie et al., 1990; Shao et al., 

1994; Piau and Maury, 1995; Schroeder and Shao, 1996; Homand et al., 1998; Risnes and 

Flaageng, 1999). Recently, however, a few studies have examined chalk-fluid 

deformation within the context of chemical processes associated with PSC (Hellmann et 

al., 2002a, b; Heggheim et al., in press). In addition, PSC rates have also been measured 

for calcite aggregates (Zhang et al., 2002) and single calcite grains (Zubtsov et al., 2004). 

In this study, we examine the effect of elevated concentrations of dissolved CO2 

on the overall PSC rate of limestone dominated aquifers or reservoirs at burial depths 

relevant to CO2 storage (1000-3000 m). The model treats the post-injection phase of 

sequestration, where the aqueous pore fluids have been homogeneously acidified by the 

presence of CO2. The partial pressure of CO2 is fixed and remains constant for each 

simulation. The model also makes the approximation that the 
2COp equals the pore 

pressure in the reservoir. Using a 2D numerical model, we examine how various 

parameters such as grain size, burial depth, rock texture, and the partial pressure of CO2 

modify the rate of matrix compaction by pervasive PSC. Only the effect of CO2 dissolved 

in water is considered (i.e. a single subcritical aqueous phase); we do not consider the 

injection of a supercritical CO2 phase since the reactivity (i.e. solubility) of calcite therein 

is predicted to be minimal. 

Below, we first present a brief review of the relevant thermodynamics and 

kinetics of the calcite-H2O-CO2 system that is used to model the dissolution-precipitation 

processes. This is followed by a description of the basics of our PSC model. Lastly, we 

present several results from the 2D simulations. 

1. Calcite-H2O-CO2 thermodynamics and kinetics 

1.1. Conventions 

 Before we address the thermodynamics of the calcite-H2O-CO2 system, it is 

important to note the conventions we use. First, even though equilibrium constants are by 

definition based on activities of product and reactant species and phases, we make a 

simplifying assumption of equating activities of aqueous species with concentrations (in 

mol m-3); that is we assume that their activity coefficients are equal to 1. This 



approximation is based on the relatively low ionic strength of the solutions (the 

maximum ionic strength (I) = 0.115 molal, calculated using EQ3NR, Wolery, 1992, and 

the activity coefficient is greater than 0.85, see Fig. 1 of Kervevan et al., 2005). Solid 

phases are always assigned an activity equal to 1. We also assume that the molarities are 

equal to the molalities and the density correction is neglected. Lastly, the use of the term 

‘fluid’ has the same meaning as ‘solution’, no supercriticality is implied. 

1.2. Overview of equilibrium thermodynamic relations at 25 °C and 0.1MPa 

 In this study we consider the system CaCO3-H2O-CO2 with the following 

equilibrium constants (Nordstrom et al., 1990) at standard temperature and pressure (STP 

= 25 °C and 0.1 MPa pressure; see Table 1 for symbols) 

 ]OH][H[ −+=wK      log Keq=-14.00  (3a) 

 
22 CO

*
32CO /]COH[ pK =     log Keq=-1.47  (3b) 

 ]COH/[]HCO][H[ *
3231

−+=K    log Keq=-6.35  (3c) 
 ]HCO/[]CO][H[ -

3
2
32

−+=K     log Keq=-10.33  (3d) 

 ]CaHCO/[]HCO][Ca[ 33
2

CaHCO3

+−+=+K   log Keq=-1.11  (3e) 

 ]CO][Ca[ 2
3

2 −+=spK      log Keq=-8.48  (3f) 

In Eqs. 3b,c ]COH[ *
32  denotes ( ) [ ]322 COHaq[CO + . 

 The following derived equilibrium constant expressions are also applied: 
 

22 CO
2
3

2
CO21 /]CO[]H[ pKKK −+=   log Keq=-18.15  (3g) 

 
2CO

2
3

2
calcite,diss. /]HCO][Ca[ pK −+=   log Keq=-5.97  (3h) 

Expression (3g) represents the dissolution/equilibration of CO2 in H2O, including 

dissociation reactions, while (3h) represents equilibrium of the H2O-CO2 system with 

respect to calcite, as shown in Eq. (2). Other aqueous species and reactions in this system, 

for example CaOH+ and CaCO3
0  and their respective dissociation reactions, are not 

considered here since their concentrations are insignificant at 
2COp > 10-4 MPa (see Fig. 

6.5, Langmuir, 1997). The only exception to this is the species −2
3CO  whose 

concentration, albeit low, is necessary for the calculation of the equilibrium constant spK .  

 In addition to the above equilibria, the following aqueous charge balance holds 

 ][OH]2[CO][HCO][H][CaHCO]2[Ca 2
333

2 −−−+++ ++=++   (3i) 



 
At circum-neutral to acid pH conditions and 

2COp > 10-4 MPa, the species +CaOH , 

−2
3CO , and OH- are of minor importance and can be neglected in this charge balance.  

 Using the chemical equilibria and charge balance relations given in Eqs. 3a-i, the 

concentrations of all chemical species pertinent to the calcite-H2O-CO2 system at STP 

can be calculated. However, in order to be useful for PSC, the code recalculates these 

equilibrium concentrations to conform to the relevant temperature and pressure 

conditions of the fluids present either in the contact zone or in the pore space (as 

discussed in the following sections). Note, however, that the charge balance relation in 

Eq. 3i is not pressure or temperature dependent. 

 In order to simplify the numerical code, only the +2Ca  concentration is allowed 

to vary as a function of time. All of the other species’ concentrations remain fixed at their 

initial equilibrium values calculated for t = 0. Thus, at this stage in the development of 

the code, we have made the simplifying assumption that PSC depends only on one 

chemical species, such that only +2Ca  dissolution, precipitation, and local transport are 

rate-determining.  

1.3. Equilibrium thermodynamic relations at elevated temperatures and pressures 

1.3.1. Dependence on temperature 
An empirical expression for the solubility of calcite (Eq. 3f) as a function of 

temperature T and salinity S has been derived by Mucci (1983) and is given by 

  
log Ksp = −171.9065 − 0.077993 T + 2839.319

T
+ 71.595 log T +

−0.77712 + 0.0028426 T +
178.34

T
⎛ 
⎝ 

⎞ 
⎠ S

0.5− 0.07711 S + 0.0041249S 1.5
 (4) 

where T is in Kelvin. As defined by Mucci (1983), this equation is valid for 0-40°C and S 

= 5-35 g/kg. For the purposes of this study, we restrict ourselves to the first four terms of 

Eq. 4, which is the expression originally determined by Plummer and Busenberg (1982) 

and is applicable at 0-90°C. Using the abbreviated form of Eq. (4), log Ksp at 25°C and 

100°C (P = 0.1 MPa) is equal to -8.479 and -9.264, respectively. The retrograde 



solubility of calcite is a consequence of the overall dissolution reaction having a negative 

enthalpy. 

 The general reactions describing CO2 dissolution and dissociation of carbonic 

acid species in solution have a weak temperature dependence, due to small enthalpies of 

reaction. The temperature dependence of 
2COK , K1, K2 and +

3CaHCOK (Eqs. 3b, 3c, 3d, 

3e, respectively) from 0-90 °C can be represented by an empirical relationship (Table 

A1.1, Langmuir, 1997; original reference: Plummer and Busenberg, 1982) of the same 

form as Eq. (4), that is 

210loglog
T
eTd

T
cbTaKi ++++= .   (5) 

The values of a, b, c, d, and e in Eq. (5) are given in Table 2. 

1.3.2. Dependence on pressure of the equilibrium constant of calcite dissociation 
The expression for the pressure dependence of Ksp (Eq. 3f) that we use is the 

following (Lown et al., 1968; Millero, 1982)  

ln K sp
P / K sp

P0( )= − ∆Vr
0 / RT( ) P − P0( )+ 0.5∆κ r / RT( ) P − P0( )2 . (6) 

Here, ∆Vr
0  and ∆κ r  are the molal volume and compressibility changes for the dissolution 

reaction, P is the applied pressure in MPa, and R = 8.32 cm3 MPa mol-1 K-1. Thus, using 
0
KspV∆  = -58.3 cm3 mol-1 at 25°C (Langmuir, 1997) and ∆κ r  = -1.5·10-3 cm3 MPa-1 mol-1 

at 25°C for the solubility of calcite in pure water (Owen and Brinkley, 1941), we can then 

calculate Ksp at elevated pressures. As an example, a change in system pressure from 

P0=0.1 to P=10 MPa results in the following increase in the solubility 

product: 26.1/ 0 =P
sp

P
sp KK  at 25°C in pure water. 

 In the present version of the code, the pressure dependencies of the other 

equilbrium constants (Eqs. 3a-e, g-h) have not been considered.  

1.4. Overview of kinetic rate laws for calcite dissolution 

The rates of calcite dissolution and precipitation in aqueous solutions have been 

actively investigated over many decades (e.g. see a thorough review by Morse and 

Arvidson, 2002; and references therein). One of the most widely used empirically-

derived kinetic rate laws is based on the work of Busenberg, Plummer, and co-workers 



(Plummer et al., 1978; Busenberg and Plummer, 1986), in which the rate of reaction 

(dissolution or precipitation) of calcite can be expressed as a function of three parallel 

forward rates and one backward rate 

R = k1 H+[ ]+ k2 H2CO3
0[ ]+ k3 H2O[ ]− k4 Ca2+[ ] HCO3

−[ ]  (7) 

where R is the overall reaction rate, k1 , k2 , k3 , k4  are kinetic rate constants, and [i] 

represents the bulk solution concentrations (in mol/m3 of water) of aqueous species i. 

When considering only the three forward reactions (k1 , k2 , k3 ) in Eq. (7), the first kinetic 

term dominates at acid pH, the second term dominates at elevated 
2COp  (> 0.01 MPa), 

while the third term dominates at pH > 6 and low 
2COp  (< 0.01 MPa). In 

2COp -pH 

space there is also a region where all three terms must be considered (see Fig. 12, 

Plummer et al., 1978). 

In circum-neutral pH solutions, and close to calcite equilibrium ( Ω  > 0.6), the 

dissolution reaction can be represented by a simpler alternative kinetic rate law for 

dissolution that has the following form (Berner and Morse, 1974; Busenberg and 

Plummer, 1986; Wollast, 1990; Hales and Emerson, 1997) 
n

spdiss
n

diss )K/Q1(k)1(kR −=−= Ω .   (8) 

Here kdiss is the rate constant for calcite dissolution (denoted by k5 in Busenberg and 

Plummer, 1986), )1( Ω− is the chemical reaction affinity term (i.e. degree of solution 

undersaturation or oversaturation), n is the reaction order, and Ω  is defined as the ratio 

of the ion activity product [ ] [ ]−+ ⋅=×= −+
2
3

2
COCap COCaaaQ 2

3
2  (see Section 1.1) to the 

equilibrium constant Ksp (Eq. 3f). For calcite, n = 1 and log kdiss = -9.93 at 25 °C and 0.1 

MPa (Plummer et al., 1978, units of kdiss in mol cm-2 s-1). A linear relation between the 

rate of dissolution and chemical affinity (i.e. n ≈ 1) at conditions close to equilibrium has 

been reported in other studies, as well (e.g. Cubillas et al., 2004). The rate law given in 

Eq. (8) has in fact been described as, "the most commonly used equation in geosciences 

to describe the rate of carbonate mineral dissolution" (Morse and Arvidson, 2002). The 

kinetic expression in Eq. (8), which describes the net rate of reaction (dissolution and 

precipitation), has both a mechanistic and empirical origin (Wollast, 1990), based on the 

simple reaction −+ +↔ 2
3

2
3 COCaCaCO . 



 However, the simple, quasi-linear relationship between rate and chemical affinity 

shown in Eq. 8 is perhaps still debatable. As an example, Svensson and Dreybrodt (1992) 

report that for natural (i.e. impure) calcite, the dissolution rate-affinity relation deviates 

from a linear relation chose to equilibrium, yielding a value of n ≈ 3-4 in Eq. 8. In the 

following treatment, however, we neglect the uncertainty associated with this potential 

non-linearity, as it is much smaller than the uncertainty associated with the measurement 

of the value of kdiss that we adopt. 

1.5. Effect of temperature and pressure on the rate constant kdiss 

Elevated T and P conditions have two effects on the overall rate of calcite 

dissolution: they modify the rate constant kdiss, and also the chemical affinity term 

)1( Ω− . The dependence of kdiss on T can be expressed using the classical Arrhenius 

relation 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
RT
E

Ak a
diss exp     (9) 

where A is a pre-exponential frequency factor, and Ea is the overall thermal activation 

energy. Plummer et al. (1978) determined an Ea = 33.05 kJ mol-1 for the rate constant k3 

(Eq. 7); this corresponds to A = 11.7. An Ea value of 35 kJ mol-1 was also reported by 

Sjöberg (1978). Morse and Arvidson (2002) proposed that activation energy values in 

this range are consistent with surface reaction control kinetics, but the value of 35 kJ/mol 

suggests a mixed control: activation energies in the range 0-25 kJ/mol are typical for 

diffusion in a fluid media, whereas 50 kJ/mol and greater is typical for surface reaction 

control (Lasaga, 1998). In the study of Busenberg and Plummer (1986), the values of k3 

(Eq. 7 above) and kdiss (Eq. 8 above, equiv. to k5) are very close in value, and therefore we 

base the temperature dependence of kdiss on the following empirical expression for k3 (25-

48°C) given in Plummer et al. (1978) 

( ) 1737/T1.10klog 3 −−=    (10) 

The effect of fluid pressure (neglecting the effect of 
2COp -see next section) on 

the rate constant kdiss is not considered, given the lack of pertinent data in the literature.  

1.6. Effect of 
2COp  on the calcite dissolution rate constant  



The effect of 
2COp  on the dissolution rate constant kdiss, independent of the pH 

effect, is controversial. Several studies have reported a positive relation, i.e. a first order 

dependence between calcite dissolution rates and 
2COp  at fixed pH and variable ionic 

strength (Plummer et al., 1978; Busenberg and Plummer,1986; Arakaki and Mucci, 

1995). However, Pokvrosky et al. (2004) have shown that increasing 
2COp  up to 5 MPa 

results in just a modest increase in the calcite dissolution rate. They report that the kinetic 

rate constant increases by a factor of three as 
2COp  is increased from 0.1 to 2 MPa, and 

in the range of 
2COp = 2-5 MPa, they measure no change in the dissolution rate constant. 

In addition, these authors have also shown that the ionic strength has no effect on the 

dissolution rate constant. In our model, we use the results of Pokrovsky et al. (2004) for 

defining the change in kdiss as a function of 
2COp .  

2. The mathematical model of PSC 

2.1. Coupling between dissolution-diffusion-precipitation processes and matrix 

deformation 

Using our model we compute how the petrophysical properties of the rock matrix 

(permeability, porosity) and the volumetric strain (compaction) evolve with time due to 

PSC. The rock aggregate is a monomineralic limestone (i.e., pure calcite), with either a 

homogeneous or variable grain size (i.e. random spatial variation based on a uniform 

grain size distribution). The model treats the coupling between chemical reactions of 

calcite dissolution and precipitation, diffusion, and PSC deformation in two steps: 

- textural equations at the grain scale allow for grain deformation due to chemical 

reactions occurring at contact and pore surfaces (including diffusion in the contact 

fluid); 

- a mass conservation relationship at a global scale which takes into account the 

transfer of dissolved material by diffusion in the interconnected pore spaces. 

Therefore, microscopic grain scale processes and macroscopic mass transport within the 

model volume are fully coupled (for a complete review, see Gundersen et al., 2002).  



The basis of our model for treating the effect of elevated normal stress on 

individual grains comprising a rock matrix is the thermodynamic relationship which 

relates normal stress to chemical potential (Gibbs, 1878; Kamb, 1961; Paterson, 1973; 

Lehner, 1995; Renard et al., 1999). The higher chemical potential of calcite surfaces in 

the contact zone results in a higher solubility with respect to calcite surfaces of the pore 

space. Ultimately, this difference in chemical potentials drives two processes: stress-

enhanced dissolution of the contact zone surfaces and diffusion of dissolved material 

from the contact zone out to the pore fluid. The diffusion of dissolved material occurs 

within a trapped water film separating the grains (Rutter, 1976; de Meer et al., 2002; 

Dysthe et al., 2002b).  

Finally, grain-scale dissolution-precipitation processes in pore spaces are coupled 

to bulk diffusion of solute within the entire porous medium. The conservation 

relationships are derived by a global mass balance of the solute phase in the pore volume 

and a local mass balance at each grain contact (Gundersen et al., 2002). These 

relationships are then coupled to equations which express the deformation of the grains 

and the evolution of the rock texture. 

2.2. Deformation of individual grains and rock matrix 

In our model the rock matrix is a 20x20 cm domain, located at a specified depth. 

The geological conditions (stress at the boundaries, pore pressure, temperature) are 

assumed to stay constant and are chosen to represent relevant conditions for CO2 

sequestration (depths between 1 and 3 km, see Table 3).  

The rock matrix is modeled as a network of solid calcite grains with well-defined 

grain-grain contacts and interconnected pore spaces between grains (Fig. 1). The 

aggregate grain framework is represented by a dense cubic packing of truncated spheres 

that represent the individual grains. In Fig. 1 it is also important to distinguish the two 

different types of grain-fluid interfaces that are treated in the model: 

- grain surfaces at intergranular (i.e. grain-grain) contacts that are separated by a trapped 

fluid film, 

- ‘free’ grain surfaces that are in contact with pore fluids. 

 The intergranular grain boundary is considered as a flat interface (Hickman and 

Evans, 1995) with a mean roughness of several nanometers averaged over the contact. 



This interfacial contact zone contains a trapped fluid film that is postulated to have the 

unusual characteristic of being able to support a shear stress transmitted by the normal 

stress imposed on the grains. In addition to nanoscale topography, there is also ample 

evidence that grain-grain contact zones have a structure of channels and islands at a 

micrometer scale (Hickman and Evans, 1992; Schutjens and Spiers, 1999; Renard et al., 

1999; Dysthe et al., 2002a). The exact relation between these nano- and microscale 

features is not yet well understood. 

The initial radius of the spherical grains, Lf, can vary between the different 

elements. The other lengths, describing the truncations of the spheres, Lx and Lz, are given 

as fL9.02 ⋅⋅ . The choice of this value allows initial porosities close to 30%. Each 

simulation lasts until the porosity in the whole simulation domain is less than a threshold 

value equal to 5%. Below this value, transport by diffusion between the pores ceases and 

pressure solution only continues locally inside this element, as a closed system. The 

decrease in porosity from an initial 30% to a final value of 5% represents a finite 

volumetric strain of approximately 20%. The time associated with this porosity reduction 

defines the average rate of deformation for PSC and forms the basis for comparing the 

various cases examined (variable depth, 
2COp ) 

The entire matrix of grains with cubic packing is subjected to a constant normal 

stress component (σn). We then define a contact normal stress component (σc) as the 

mean stress at each grain contact surface. This stress depends on the relationship between 

the surface area and the diameter of the sphere. This relationship is independent of the 

initial size of the individual grains (Dewers and Ortoleva, 1990), and the stress at the 

contact is proportional to some (positive) power of the porosity.  

The evolution of the rock texture, which leads to a compaction of the aggregate, is 

computed as a result of the coupling between dissolution, diffusion, precipitation and 

mass transport in the fluid. This textural model allows us to take into account the 

sequential coupling between chemical processes (dissolution at grain contacts, diffusion, 

and precipitation on free pore surfaces) and the mechanical evolution (deformation of the 

grains) of the rock matrix. The resulting model is then a set of highly coupled non-linear 

equations that can only be solved using numerical methods. All of the parameters used in 

the following equations and their units are given in Table 1. 



2.3. Matrix-fluid chemical equilibrium at t = 0 
The initial state of the model is based on two separate equilibrium chemical states, 

such that at t = 0, the rock matrix is in equilibrium with, respectively, the contact and 

pore fluids. The initial fluid compositions are determined as a function of the specified 

temperature, pressure (i.e. depth), and 
2COp  (see sections 1.1 and 1.2). Even though T 

and 
2COp  are the same in the contact zone and pore space for any specified depth, the 

respective fluid pressures will differ since the fluid film in the contact zone supports the 

intergranular normal stress, which is higher than the pore fluid pressure (i.e. Pc > Pp). 

Thus, the code starts with two initial local equilibrium conditions: one between the calcite 

in the contact zone and the fluid film, the other between the calcite in the pore space and 

the pore fluid. The initial concentrations of the five most important aqueous species (see 

sections 1.2., 1.3), +2Ca , +
3CaHCO , −

3HCO , −2
3CO , and +H , are calculated for both the 

contact zone fluid and the pore space fluid. Given that Pc > Pp, the concentrations of 

these five species will not be the same in the contact zone fluid and in the pore fluid. 

Thus, an initial chemical imbalance exists between the contact zones and the pore spaces. 

 The evolution of the chemistry of the contact fluid and the pore fluid is treated in 

a different manner once deformation starts, that is for t > 0. The initial chemical 

imbalance between the contact zone fluid and the pore space fluid drives diffusion that 

initiates the PSC deformation of the rock matrix. This diffusion process, which is 

constrained by the code to depend only on the negative [ +2Ca ] gradient between the 

contact zone and the pore space ([ +2Ca ]c > [ +2Ca ]p), occurs within the intergranular 

fluid film in the contact zone. Once initiated by diffusion in the contact zone, PSC 

deformation of the rock matrix continues to evolve with time. In doing so, the code has 

no a priori constraints with respect to whether dissolution, diffusion, or precipitation is 

rate determining. 

The code is presently configured such that once deformation starts (t > 0), only 

the [ +2Ca ] is allowed to change throughout the rock matrix. The concentrations of the 

other chemical species do not change as a function of time; they retain their initial, 

respective equilibrium values in the contact zone fluid and pore space fluid throughout 



the deformation process. Therefore, PSC depends on only one chemical species, and as a 

consequence, +2Ca  dissolution, diffusion, or precipitation is rate-determining. This 

simplication in the code was necessary to ensure sufficient numerical stability of the 

results. Since calcite dissolution and precipitation, as shown in section 1.4, also depends 

on [ −2
3CO ], the code uses its fixed, initial value where appropriate. 

The pore fluid is considered to be an ‘open’ system, permitting the exchange of 

mass within the porous medium. Most importantly, this implies that the 
2COp  remains 

constant with respect to time and the matrix position and does not depend on the reaction 

progress of CaCO3 dissolution in the contact zone or precipitation on pore surfaces. 

2.4. Conservation equations in the pore fluid   

Defining cp, Ca to represent the concentration of +2Ca  in the pore fluid, then 

Ca,pc⋅φ  (where φ is the porosity) is the concentration of +2Ca  in the total model volume. 

The rate of change, given by
t

c Cap

∂

∂ ,φ , is the net result of: 

- diffusion in the pore fluid; 

- addition or loss of +2Ca  into the fluid by, respectively, stress-enhanced 

dissolution at the grain contacts or removal by precipitation in the pore spaces. 

 The mass balance for the +2Ca  phase in the pore volume is then 

φ
∂c p,Ca
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+ 2
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where the lengths Lx, Ly, Lz are geometric grain parameters defined in Fig. 1, Dp is the 

coefficient of diffusion in the pore fluid; mprec,Ca and mdiff,Ca are the moles of precipitated 
+2Ca  on the pore walls (i.e. pore free faces) and the solute moles derived from diffusion 

from the grain contacts to the pore fluid, respectively (see Table 1 for symbols). The first 

term on the right side in Eq. (11) describes the diffusive transport of solutes in the pore 

space by a standard Fickian diffusion relation.  



The second term on the right hand side in Eq. (11) represents mass loss due to 

precipitation on the grain surfaces and is given as: 
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where kp is the rate constant for calcite precipitation, Ap is the grain surface area in 

contact with the pore fluid (reactive area), 3,, COpCap cc  is the ion activity product in the 

pore fluid, and Ksp,p is the calcite solubility product in the pore fluid. Notice that as the 

geometry of the grains changes during compaction, Ap varies as well. At conditions close 

to equilibrium, the rate expression used in the model to calculate the overall reactivity of 

calcite does not differentiate between dissolution and precipitation (i.e. kdiss = kprec). This 

appears to be a reasonable approximation based on available experimental evidence at 

conditions very close to equilibrium (e.g. Fig. 8, Busenberg and Plummer, 1986). 

2.5. Conservation equations at the grain contacts and grain shape evolution 

The last term in Eq. (11) describes mass production due to diffusional mass 

transport out of the intergranular contact zone and reads: 

( )Ca,pCa,i,cc
Ca,i,diff ccD

2
2

t

m
−=

∂

∂ ∆π ; i=x,y,z  (13) 

where cc,i,Ca is the concentration of +2Ca  in the grain contact perpendicular to axis i (i=x, 

y, z). The driving force for this transport is a concentration gradient related to the 

difference in stress concentration at intergranular and free grain contacts. In the model, 

the length of the intergranular diffusion path relates directly to the rate of compaction (i.e. 

smaller grain matrices compact faster than larger grains). The transfer of dissolved +2Ca  

within the interfacial fluid from grain-grain contacts to the pore fluid occurs via a 

diffusion process. Thus, the chemistry of the interfacial fluid evolves not only by the 

addition of material via dissolution, but also by the removal of dissolved material by 

diffusion. 

In general, the rate of ion diffusion (Dc) in thin, confined interfacial fluid films is 

not directly measurable, but recent studies (e.g. Dysthe et al., 2002b; Alcantar et al., 

2003) conclude that the rate is no more than two orders of magnitude slower than the 



corresponding bulk fluid value (at a given T and P). The adopted value for the diffusion 

coefficient Dc of +2Ca  along the grain contact used in the model is 0.01·Dp (Dp is the 

diffusion coefficient in the pore fluid) at the T and P of the contact fluid. The coefficient 

of diffusion within the water film, Dc, follows an Arrhenius law with an activation energy 

of 15 kJ/mol (Dysthe et al., 2002b). Considering the uncertainty in Dc, we can estimate 

that the true value probably differs by at least one order of magnitude from the value we 

have chosen. In Eq. (13) the thickness of the water film at the grain contacts, ∆, is divided 

by two since it is shared between two contact surfaces. We assume that this water film 

has a constant thickness of 3 nm (Dysthe et al., 2002b). 

The global mass balance equation (Eq. 11) is then coupled to Eq. (14) which 

represents the local mass balance for each contact on a truncated spherical grain. The 

concentration of dissolved material within the intergranular fluid phase is given as the 

difference between the mass produced by dissolution and the mass lost by diffusion: 
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In the expression above, Rc,i is the radius of the contact surface in the i-direction, which is 

a function of the truncations of the spherical grains. The first term in Eq. (14) represents 

the local production of dissolved material by dissolution at the grain contacts. The model 

defines the chemical reaction (i.e. dissolution) of grain-grain contacts in terms of the rate 

law already presented in Eq. 8, where R is the overall rate (mol m-2 s-1), kdiss is the rate 

constant, Qc,i is the ion activity product in the contact zone, and Ksp,c,i is the calcite 

solubility product in the intergranular contact zone perpendicular to the i axis (i=x, y, z):  

)K/Q1(k)1(kR i,c,spdissdiss ic,−=−= Ω   (15) 

Using this law, one can write the flux corresponding to the dissolution process as: 
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 In this study, since we simply examine the effect of 
2COp  on the rate of PSC, kdiss 

increases linearly by a factor of 3 when 
2COp  increases from 0.1 MPa to 2 MPa; for 



2COp > 2 MPa, kdiss remains constant (Pokvrovsky et al., 2004). The effect of increasing 

2COp  is not limited to an increase in the rate of dissolution (via kdiss), however, since this 

also results in a concomitant increase in calcite solubility (i.e. Ksp,c and Ksp,p), which will 

also affect the rate of PSC. 

The grain shape evolution is given by the equations 
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where V  is the molar volume of calcite (3.69·10-5 m3 mol-1) and the calcite precipitation 

rate kprec is equal to the dissolution rate constant kdiss. With these equations the code 

continually updates the texture of the grains and thus couples chemical reactions to grain 

deformation. 

It is important to note that even though the two kinetic processes, dissolution (Eq. 

17) and precipitation (Eq. 18), respectively control the grain shape evolution in the 

contact zones and the pore spaces, these processes are coupled to diffusion in the contact 

zones, and therefore are not independent. This coupling results in a modification of the 

chemical affinity terms in both rate equations above (bracketed terms), thereby changing 

the overall rate of grain shape evolution. As an example, taking the rate of dissolution in 

Eq. 17, the chemical affinity term 
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- if dissolution is slower than diffusion (i.e. dissolution-limited), 
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The pore space, however, is a special case since dissolved material enters by 

diffusion from adjacent contact zones, but it can also diffuse to other pore spaces further 

away. 

2.6. Stress at grain contacts 

The simulation domain is a square rock matrix located at depths of 1, 2 or 3 km 

and is exposed to constant lithostatic stress and temperature. The normal stress 

component on an i-contact, σc, i, is related to the lithostatic stress σn on the boundaries Γi 

by the three relationships which take into account the stress concentration effects due to 

the porosity of the rock (Dewers and Ortoleva, 1990). These three equations are obtained 

by circular permutation of the indices in the following relationship: 

i

kj
inic A

LL
,, σσ =       (19) 

where i, j, k represent the three space directions x, y, and z.  

 When the lithostatic stress is kept constant, the contact surface area Ai increases as 

the grains become more and more truncated (Fig. 1). As a consequence the stress normal 

to this contact decreases with time, and therefore, the driving force for pressure solution 

also decreases with time. All of these phenomena are due to the continual removal of 

material at grain-grain contacts by dissolution and the outward diffusion of this dissolved 

material into the pore fluid. 

The final equation updates the porosity, which is defined as the difference 

between the volume of a cubic box, with lengths Lx, Ly, Lz, and the volume of the 

truncated grains (Dewers and Ortoleva, 1990). This relationship arises from the textural 

model of truncated spheres ordered in a centered cubic network (Fig. 1). 

2.7. Numerical methods and boundary conditions 

The equations presented in sections 2.4-2.6 are highly coupled. The deformation 

of the grains is coupled to transport in the pore fluid through the diffusion step at the 

contacts and the Fickian diffusion in the pores. Therefore we choose two different 

numerical modelling techniques. We couple a discrete treatment of the grains (Eqs. 17-



18) with a continuous determination of the dissolved +2Ca  in the pore fluid (Eq. 11). The 

space domain is a 2D rock sample in the x-z plane and is modeled as a cubic packing of 

truncated spheres. It has a thickness of one layer of grains in the y direction (Fig. 1). Each 

element in the numeric grid consists of a chosen number of equal sized grains. The 

heterogeneity of the rock sample is then given as the variation in grain size between 

elements. In each element of the grid the number of grains is large (> 100). This allows 

the treatment of an element as a homogeneous domain with average properties. For 

simplicity we have assumed constant temperature and no fluid pressure gradient within 

the simulation domain (i.e. within the pore volume). This assumption is valid because we 

model processes at the meter-scale and we consider that the hydrodynamics related to the 

injection step is stabilized. Furthermore, the stress at the boundaries remains constant 

during the simulations. 

Two of the boundaries (Γ1 et Γ4) of the grid are fixed as stiff walls, where only 

slip of the simulated domain is allowed. The other two boundaries are free and deform 

during the simulation. The +2Ca  concentration value is fixed at the bottom boundary, 

and is the same as that in the pore volume at any given time. The boundary conditions for 

the concentration cp are imposed on the four boundaries of the system as follows: 

∂cp

∂n
= 0  on Γ1, Γ2 and Γ3,      (20) 

pspp Kc ,= = constant on Γ4,      (21) 

The geometrical evolution of the grains is modeled as a discrete process where the 

grains in each grid element are treated separately (see Eqs. 17-18). In order to visualize 

the deformation of the rock matrix as the grains deform during PSC, an adaptive grid is 

developed. The nodes change position after each time step as the grains deform. In 

addition, the contact surface area of each element is updated according to the lengths and 

radii of the truncated spheres, and is subsequently used to calculate the porosity loss in 

the xz-plane. The total change in volume of each element is then obtained by multiplying 

the volume variation of each grain by the number of grains in the element. The total 

deformation of the rock sample is determined by a summation over all the elements. 



The mass conservation equation (Eqn. 11) is derived from a continuum model, 

assuming a continuous solute phase. This equation is solved using a Galerkin finite 

element method, with linear basis functions on the spatial domain and a Crank-Nicolson 

scheme in the time domain. All the numerical schemes were programmed in C++ and 

make use of the numerical library Diffpack (Langtangen, 1999; Gundersen et al., 2002). 

The program was extensively tested for numerical stability. In all of the simulations, we 

verified that the total mass of solid was conserved as it should be. 

The time step is adjusted such that the maximum deformation is less than 0.1% in 

all the elements between each time increment. Therefore, the time step automatically 

adapts in the regions with the most rapid deformation. 

3. Results 

In our model, three different geometries of rock matrix are studied: 

- a single homogeneous layer with an initially constant grain size; 

- a sedimentary layered rock with an initial local variation of grain size; 

- a gouge filling a fracture. 

In the results presented here, we aim to compare the evolution of the rock with 

and without CO2 injection. In order to compare the various simulations, we have chosen a 

reference case that provides a normalized time scale for the measured PSC rates: the 

reference (see Figs. 2a and 6) is based on the time needed to achieve a porosity of 5% for 

a rock at 1 km depth and 40 °C, with an initial grain size of 2 mm (Lf = 1 mm), and a pore 

fluid that is CO2-free (i.e. 
2COp  = 10-4.5 MPa). In all the simulations, the times scales of 

deformation are normalized to this reference case (total time for reference deformation 

equals 740,000 years- see Table 3). In this way we measure the degree to which the 

sequestration of CO2 perturbs the system and enhances deformation and compaction by 

PSC. The absolute time scales for PSC deformation for all of the simulations are given in 

Table 3. Because of uncertainties with respect to several parameters (kdiss, kprec, Dc), the 

absolute time scales related to PSC deformation are difficult to quantify and should be 

used with caution (see Discussion). 

In all cases, both CO2-free and at elevated 
2COp , the PSC process is controlled by 

the diffusion process in the contact zones. This indicates that the intergranular diffusion 



process is slower than either dissolution in the contact zones or precipitation in the pores. 

Diffusion in the contact zones, controlled by the +2Ca  concentration gradient between 

the intergranular fluid and the pore fluid, therefore, plays the dominant role in defining 

the rate of diffusion, the rate of grain indentation, and most importantly, the overall rate 

of PSC deformation of the rock matrix. This result is predictable, given the rapid kinetics 

of calcite dissolution and precipitation. Figure 2c, which shows that the +2Ca  

concentration in the contacts is always greater than that in the pore fluid, graphically 

demonstrates that the rate of diffusion is the limiting process of PSC for these simulation 

conditions. 

3.1. CO2-free simulations 

The rock matrix, located at 1 km depth, consists of grains with a homogeneous 

size of 2 mm, which corresponds to a coarse oolitic limestone. We consider here a CO2-

free pore fluid (i.e. atmospheric 
2COp  = 10-4.5 MPa). In our model, a typical compaction 

process without CO2 can last between 104 to 106 years, depending on the choice of the 

parameters Dc, kprec, kdiss. As already stated, this configuration represents a reference case 

for comparison with other simulations at elevated 
2COp .  

As PSC proceeds, the porosity decreases progressively with time both by grain 

indentation and by precipitation in the pores (Fig. 2a). As shown in Fig. 2b, Lf increases 

whereas Lz decreases. With time the grains become truncated and the stress on the 

contacts decreases. As a consequence, the gradient in [ +2Ca ] between the grain contacts 

and the pore fluid also decreases (Fig. 2c), leading to a decrease in the rate of overall PSC 

deformation 

For a heterogeneous medium, such as a layered rock, the grain size may vary 

spatially (Fig. 3). In this case, the PSC rate is faster in the layers with small grains than in 

layers with coarse grains. Because of this initial grain size difference, the different 

domains compact at different rates. Layers with smaller grains reach the limit of 5% 

porosity faster than coarser grain layers. This result is an example of the well-known 

inverse dependence of pressure solution creep rate on grain size (Rutter, 1976; Gratz 

1991). Similar behavior can be observed for a fracture filled with a gouge containing 



smaller grains (Fig. 4). Both examples show that compaction is homogeneous in the 

domains with a constant grain size. We do not observe mass transfer between layers as 

we did for the simulation of PSC in sandstones (Gundersen et al., 2002). This is related to 

the faster compaction rate in limestones, and the smaller time scales involved for long 

distance diffusion in the pores.  

3.2. Effect of elevated partial pressures of CO2 

When CO2 is present at hydrostatic pressure (i.e. 
2COp = Pp), PSC is significantly 

faster compared to the CO2-free case. This situation is clearly visualized in Figure 5 

which shows the compaction process for two fractured rocks at 2 km depth, one with 

2COp =10-4.5 MPa (i.e. CO2-free), the other where 
2COp = Pp (see Table 3). The pattern of 

the porosity reduction is similar in both cases, however the characteristic time scales are 

very different; at 
2COp = Pp, the process is roughly 65 times faster. 

We also compare the compaction process at different depths with and without 

injection of CO2. With no injection of CO2 the rock matrix compacts naturally as PSC 

progresses. As depth increases, the temperature and the stress increase as well. On the 

one hand, the effect of stress enhances PSC, mainly by increasing the solubility and the 

rate of dissolution. On the other hand, increasing the temperature decreases the solubility 

of calcite (i.e. calcite has retrograde solubility), and this therefore slows down the PSC 

rate. These two competing factors explain why the PSC rates increase by less than a 

factor of 3 between 1 and 3 km burial depth (Figure 6a). In a similar manner, for elevated 

2COp , the relative increases in the PSC rates with increasing depth are modest (Table 3), 

again reflecting the competing effects of stress, solubility and kinetics. 

When CO2 is present at elevated concentrations, where 
2COp equals the pore fluid 

pressure, the rates of PSC are greater by factors of ~50-75 (Fig. 6b), as compared to the 

CO2-free simulations (Fig. 6a), the exact amount depending on depth (Table 3). This 

translates to a reduction in porosity significantly more rapid than compaction at the same 

depth in the absence of CO2. This can be explained by two factors. First, at elevated 

levels of CO2, the pH decreases dramatically (Table 3), leading to increases in calcite 

solubility by factors of ~50-80, depending on depth. Increasing the values of calcite Ksp 



increases the diffusional gradient between the contact zone and the pores, thereby 

yielding a higher rate of PSC. Second, elevated 
2COp  increases the rates of calcite 

dissolution (Pokrovsky et al., 2004) and precipitation.  

However, an increase in the rate of calcite dissolution in the intergranular zone 

should not affect the rate of deformation since it appears that the diffusion process is the 

rate-limiting step in the overall PSC process. On the other hand, an increase in the rate of 

precipitation in the pores has a positive effect on the rate of diffusion from the contact 

zone to the pores. What, if any, effect increased levels of CO2 has on the rates of 

diffusion is unknown. 

4. Discussion and conclusions 

The injection of CO2 into a geological reservoir and the resulting increase in the 

2COp  cause acidification of the pore fluids. As the pH of the pore fluids decreases, they 

become more reactive with respect to the rock matrix; this effect is especially pronounced 

for carbonates since both the solubility and the reaction kinetics increase dramatically 

with decreasing pH. This is in accord with the general finding that, to a first 

approximation, PSC rates depend linearly on the solubility of minerals (Rutter, 1976). 

Our model shows that for a given depth and temperature, elevated concentrations of 

dissolved CO2 in the pore fluids lead to rates of PSC deformation that are up to 75 times 

faster than reference simulations based on CO2-free pore fluids. Thus, our results 

convincingly demonstrate the direct relation between elevated 
2COp  levels, calcite 

solubility, pore fluid pH, and increased rates of PSC deformation. 

Of particular importance to predicting the behavior of future CO2 geological 

repositories is the accuracy of theoretical PSC deformation rates. Taking just one 

example from our model, the absolute time scale associated with porosity reduction from 

30 to 5% for a carbonate rock matrix with CO2-free pore fluids at 1 km depth (40 °C, 

2mm grain size) is on the order of 700,000 years (Table 3). This time frame is most 

probably unrealistically rapid, given that in nature PSC occurs over much longer time 

scales. As an example, it is observed that Mesozoic chalks and limestones retain some 

porosity after several tens of million years, which represents a time period several orders 



of magnitude greater. There are undoubtedly a myriad number of reasons for this, for 

which a detailed analysis is beyond the scope of this article. Nonetheless, we briefly 

discuss how some important parameters influence theoretical PSC deformation rates 

derived from our model, and how they may contribute to discrepancies with natural PSC 

rates.  

The present study reports ‘preliminary results’ that are derived from a model that 

incorporates many simplifications that are both chemical and physical in nature. One of 

the major simplifications is the lack of coupling between all pertinent chemical species 

during the deformation process, since at present only [ +2Ca ] evolves with time, whereas 

+
3CaHCO , −

3HCO , −2
3CO , and +H  remain fixed at their respective initial, equilibrium 

values. This simplication was necessary in order to reduce numerical noise in the results. 

While it is difficult to quantify the exact effect of this simplification scheme, it is 

probable that this results in an overestimation of the PSC rate. One of the main reasons 

for this is the production of alkalinity via −
3HCO  (see Eqs. 1, 2) during dissolution, 

resulting in an increase in the pH (i.e. decrease in [ +H ]) within the contact fluid and pore 

fluid. The most obvious consequence is a decrease in both calcite solubility and the rate 

of dissolution with time, which ultimately would decrease the rate of PSC. We are 

currently developing a code that integrates and fully couples +2Ca , +
3CaHCO , −

3HCO , 

−2
3CO , and +H  into a consistent model. Even though a fully coupled model should 

produce more realistic PSC rates, we estimate that the deformation patterns would not 

differ too much from those generated in the present study.  

The thermodynamic, kinetic, and diffusion parameters that are incorporated in the 

code play perhaps the most important role in determining the accuracy of theoretical PSC 

rates of deformation. The rates that we have chosen for the kinetic rate parameters kdiss 

and kprec, the value of n (see Eq. 8), and the overall form of the kinetic rate equation(s), 

determine the rates of dissolution and precipitation in the contact zone and pore space, 

respectively, and therefore potentially influence the overall rate of PSC deformation. The 

kinetic parameters we use are not unique and therefore future modeling will include 

sensitivity analyses based on a variation of these kinetic parameters. In addition, the 



accuracy of theoretical PSC rates depends on the availability and quality of experimental 

data, both kinetic and thermodynamic, for conditions relevant to CO2 sequestration. 

Further refinements in PSC models will depend on additional experimental work to 

unravel more precisely the effect of elevated 
2COp  on kdiss and kprec of calcite (and other 

minerals, as well) at conditions close to equilibrium at elevated T and P. 

If we consider CO2 sequestration and PSC deformation within the context of 

conditions in a geological repository, the chemical complexity of natural pore fluids may 

dictate the need for additional kinetic parameters to be used in the kinetic rate laws. As an 

example, the presence of certains ions (e.g. +2Mg , −2
4SO , −3

4PO ; Svensson and 

Dreybrodt, 1992; Zuddas and Mucci, 1998; Zhang et al., 2002) or humic acids (e.g. 

Zuddas et al., 2003) have been shown to inhibit calcite dissolution/precipitation rates. 

The inhibition of calcite kinetic rates has an important implication for carbonate PSC 

deformation since the limiting process may switch from diffusion limited to reaction 

limited. This points out that more experimental work is needed to investigate the effect of 

fluid chemistry on rates of PSC deformation. The mineralogy of the solid phase is also 

important. At present, our code only considers a monomineralic (pure calcite) limestone. 

The effect of impurities, such as clays, potentially has a large effect on PSC deformation. 

For example, it has been experimentally shown that the presence of clays can 

dramatically increase rates of PSC (Hickman and Evans, 1995; Renard et al., 2001). 

Even though the thermodynamics of the calcite-H2O-CO2 system at STP are well 

known and quite accurate, future versions of our code need to further develop the 

temperature and pressure dependencies of most of the equilibria given in Eqs. 3a-h. 

Accounting for non-ideal behavior at high 
2COp  is also necessary with respect to 

Henry’s law constant in Eq. 3b. Moreover, future versions of the code will need to 

consider equilibria relations in terms of activities and not concentrations; this will be 

especially important for solutions with elevated ionic strengths. Two other parameters of 

considerable importance, especially for the case of diffusion-limited PSC deformation, 

are the rate of diffusion and the thickness (and continuity) of the fluid film in 

intergranular contacts. Measurement of diffusion coefficients in thin films is 

experimentally challenging, and therefore the diffusion coefficient and film thickness will 



remain uncertain quantities that probably contribute significantly to the discrepancy 

between natural and theoretical PSC deformation rates.  

At this stage in the development of our model, many uncertainties exist with 

respect to the thermodynamic, kinetic, and physical parameters that have been 

incorporated in the code. Future versions of the code will hopefully be able to address 

many of these issues. We believe that the main value of the results generated in the 

present study lies not in the absolute rates, but rather in the relative rates of PSC 

deformation. Intercomparison of these relative PSC rates will help in better understanding 

and evaluating the long-term effect of increased rates of PSC on the porosity and 

viscosity of rock matrices in contact with high 
2COp  fluids. Another important benefit of 

PSC models such as ours is that they may help in focusing laboratory-based PSC 

experiments. The relation between solubility, pH and PSC rates has important 

ramifications with respect to future experimental laboratory protocols for investigating 

the sequestration of CO2. As an example, the injection of subcritical CO2-H2O mixtures 

into a rock sample could be simplified by the simple injection of an acidic aqueous fluid, 

where the pH is adjusted to be equivalent to the pH due to CO2 acidification alone. 

Nonetheless, such an approach has its limitations and would not be applicable under all 

circumstances, especially in the case of injection of supercritical CO2 fluids.  
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Table 1: Parameters used in Eqs. (3-21). 

Parameter Description Units (S.I.) 

Ai i = x, y, z contact surface area in the i-direction m2 

Ap pore surface area m2 

cc, i,k i = x, y, z concentration of species k in a grain contact in the i-direction mol/m3 of water 

cp,k concentration of species k in the pore fluid mol/m3 of water 

Dc diffusion constant of Ca2+ in the grain contact m2/s 

Dp diffusion constant of Ca2+ in the pore fluid m2/s 

kdiss kinetic rate constant for overall calcite dissolution reaction mol/(m2s) 

kprec kinetic rate constant for calcite precipitation reaction (equal to kdiss) mol/(m2s) 

k1, k2, k3, k4 kinetic rate constants for individual dissolution reactions mol/(m2s) 

Ksp,c calcite solubility product in the grain contacts  (mol/m3)2 

Ksp, p calcite solubility product in the pores  (mol/m3)2 

K1, K2 … equilibrium constants for the calcite-water system - 

Li i = x, y, z length of the truncated sphere in the i-direction m 

Lf radius of the spherical grain m 

Pc contact zone fluid pressure Pa 

Pp pore fluid pressure Pa 

mdiff Ca2+ transported by diffusion out of the contact mol 

mdiss Ca2+ dissolved from the grain contacts mol 

mprec  precipitated Ca2+ on the pore surface mol 

Qc ion activity product for calcite dissolution in grain contacts (mol/m3)2 

Q p ion activity product for calcite dissolution in pores (mol/m3)2 

2COp  partial pressure of carbon dioxide Pa 

Rc, i i = x, y, z radius of a grain contact in the i-direction m 

t time s 

T temperature K 

V  molar volume of calcite m3/mol 

∆ thickness of the water-film in the contact intergranular zone m 

φ  porosity (%) no units 

σc,i i = x, y, z normal stress component in the i-direction Pa 

σn,i i = x, y, z normal stress to a grain-surface in the i-direction Pa 

 

 

 



 

Table 2: Coefficients for calculation of temperature dependence of equilibrium constants 

in the calcite-H2O-CO2 system. After Langmuir (1997), Table A1.1. 
Reaction a b c d e log K 

25°C 
H2CO3 (Eq. 3c) -356.3094 -0.06091964 21834.37 126.8339 -1684915 -6.352 
HCO3

- (Eq. 3d) -107.8871 -0.03252849 5151.79 38.92561 -563713.9 -10.329 
CO2 (Eq. 3b) 108.3865 0.01985076 -6919.53 -40.45154 669365 -1.468 
CaHCO3

+ (Eq. 3e) 1209.120 0.31294 -34765.05 -478.782 not given -1.106 
 

 

Table 3: Initial conditions, parameters, and concentrations for the numerical simulations 

at different depths. Time represents the absolute time required to compact samples from 

30% to 5% porosity. Note that the results in Figs. 2-6 are normalized to the CO2-free 

case of deformation at 1 km depth (i.e. 740,000 years). 

 
Depth 
(km) 

σn 
(MPa) 

Pp 
(MPa) 

T 
(°C) 2COp  

(MPa)
[ +2Ca ] 

(mol m-3) 
[ −2

3CO ] 
(mol m-3) 

[ −
3HC0 ] 

(mol m-3) 

pH Time  
(yrs) 

1 22 10 40 10-4.5 0.38 8.7 e-3 0.74 8.3 740,000 
1 22 10 40 10 20 1.6 e-4 57.3 4.7 13,000 
2 44 20 70 10-4.5 0.25 8.0 e-3 0.49 8.3 280,000 
2 44 20 70 20 16.8 1.2 e-4 47.8 4.5 4300 
3 66 30 100 10-4.5 0.16 5.7 e-3 0.32 8.4 190,000 
3 66 30 100 30 12.6 7.4 e-5 35.4 4.5 2500 
 



 
Figure 1: 2D domain where coupled pressure solution creep and local solute transport are 

simulated. Each element in the numerical grid contains homogeneous grains with a given 

grain size. The grain size can vary between elements. The domain is 2D (x and z-

directions) and has a layer thickness of one grain in the y-direction. In this example the 

rock consists of layers where each element contains grains of different sizes. The left and 

bottom boundaries (Γ1 and Γ4) have no have slip conditions and act as stiff walls, 

whereas the two other boundaries (Γ2 and Γ3) are free to deform. 

 

 



 
Figure 2: PSC deformation for a limestone located at 1 km depth, 40 °C, with a 

homogeneous grain size of 2 mm and CO2-free pore fluid (i.e. 
2COp = 10-4.5 MPa). a) 

Porosity reduction with time b) Increase with time of grain radius, Lf, as precipitation 

occurs in the pore space and decrease of grain height, Lz, as a result of grain indentation. 

c) Concentration of +2Ca  in the contact and in the pore fluids as a function of time.  

The time for the other simulations (Figs. 3-6) is normalized to this simulation, which 

serves as a reference case.



 

 
Figure 3: Time evolution of porosity reduction as a result of PSC for a layered matrix at 2 

km depth and 
2COp = 10-4.5 MPa. The sample was initially 20x20 cm wide. The porosity 

(in %) decreases faster in layers with initially smaller (1.8 mm ±  0.1 mm; 2 off-centered 

layers) grains than in layers with coarser grains (2 mm ±  0.1 mm). The time scales in a, 

b, and c have been normalized with respect to Fig. 2a. 



 

 
Figure 4: Porosity reduction for a sample containing a fracture. The sample, initially 

20x20 cm wide, is located at 2 km depth, 
2COp = 10-4.5 MPa. The gouge inside the 

fracture has a smaller grain size (1 mm ±  0.1 mm instead of 2 mm ±  0.1 mm in bulk) 

and therefore deforms faster. The normalized time (reference case Fig. 2a) increases from 

left to right and top to bottom. 

 



 
Figure 5: Time evolution of the porosity for a fracture filled with a gouge located at 2 km 

depth without CO2, 2COp = 10-4.5 MPa (top), and with an elevated CO2 concentration, 

2COp  = 20 MPa (bottom). The pattern of porosity reduction is similar for the two 

conditions; however, the required time for porosity reduction is roughly 65 times faster in 

the presence of CO2. The time is normalized to that in Fig. 2a.



 

 

 
Figure 6: Simulation of the compaction of a homogeneous porous limestone at three 

different depths, 1, 2 and 3 km, where the geological parameters are given in Table 3. 

The strain for a 1 km deep system is taken to be the reference for the normalized time. a) 

volumetric strain, defined as dV/V, where V is the initial volume of the porous medium, 

for atmospheric 
2COp  (

2COp = 10-4.5 MPa). b) Volumetric strain as a function of time for 

a system where 
2COp  is equal to the hydrostatic pore fluid pressure (

2COp = 10, 20, 30 

MPa). Note that the times required for compaction at a given depth are up to 75 times 

more rapid than for the corresponding cases at atmospheric 
2COp ; note, however, that the 

overall behavior of the compaction curves is similar. 
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