CKM Fits : What the Data Say (Focused on B Physics)

S. T'Jampens

To cite this version:

S. T'Jampens. CKM Fits : What the Data Say (Focused on B Physics). 11th International Conference on B-Physics at Hadron Machines - BEAUTY 2006, Sep 2006, Oxford, United Kingdom. Elsevier, 170, pp.5-13, 2007, <10.1016/j.nuclphysbps.2007.05.013>. <in2p3-00123996>

HAL Id: in2p3-00123996
http://hal.in2p3.fr/in2p3-00123996

Submitted on 11 Jan 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CKM Fits: What the Data Say (focused on B-Physics)

Stéphane T'JAMPENS
LAPP (CNRS/IN2P3 \& Université de Savoie)

Outline

. CKM phase invariance and unitarity
Statistical issues
CKM metrology
Q Inputs
5 Tree decays: $\left|\mathrm{V}_{\mathrm{ub}},\left|\mathrm{V}_{\mathrm{cb}}\right|\right.$
(40op decays: $\Delta \mathrm{m}_{\mathrm{d}}, \Delta \mathrm{m}_{\mathrm{s}}, \varepsilon_{\mathrm{K}}$
(2T angles: α, β, γ
5 The global CKM fit
What about New Physics?
喺 Conclusion

Charm is interesting in several special areas, but I will concentrate on b's

The Unitary Wolfenstein Parameterization

(7) The standard parameterization uses Euler angles and one CPV phase \rightarrow unitary !

$$
V=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Chau and Keung PRL 53, 1802 (1984) [and PDG]

Buras et al., PRD 50, 3433 (1994)
${ }^{4}$ And insert into $V \rightarrow V$ is still unitary! With this one finds (to all orders in λ):

$$
\rho+i \eta=\frac{\sqrt{1-A^{2} \lambda^{4}}(\bar{\rho}+i \bar{\eta})}{\sqrt{1-\lambda^{2}}\left[1-A^{2} \lambda^{4}(\bar{\rho}+i \bar{\eta})\right]} \quad \text { where: } \quad \bar{\rho}+i \bar{\eta}=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

Charles et al. EPJC 41, 1 (2005)

$$
\lambda^{2} \equiv \frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}} \quad A^{2} \lambda^{4} \equiv \frac{\left|V_{c b}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}
$$

Physically meaningful quantities are phase-convention invariant
\rightarrow Four unknowns [unitary-exact and phase-convention invariant]:

$$
A, \lambda, \bar{\rho}, \bar{\eta}
$$

The CKM Matrix：Four Unknowns

Measurement of Wolfenstein parameters：

期 λ from $\left|V_{u d}\right|$（nuclear transitions）and $\left|V_{u s}\right|$（semileptonic K decays）
\rightarrow combined precision：0．5\％
素 A from $\left|V_{c b}\right|$（inclusive and exclusive semileptonic B decays）
\rightarrow combined precision：2\％
期 $\bar{\rho}, \bar{\eta}$ from（mainly）CKM angle measurements：
\rightarrow combined precision：20\％（ ρ ），7\％（ η ）

Predictive Nature of KM Mechanism

All measurements must agree

Pre B-Factory:

Can the KM mechanism describe flavor dynamics of many constraints from vastly different scales?

This is what matters and not the measurement of the CKM phase's value per se

The (rescaled) Unitarity Triangle: The B_{d} System

Convenient method to illustrate (dis-)agreement of observables with CKM predictions

$$
\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}+\underbrace{1+\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}}_{\text {phase invariant : } \bar{\rho}+i \bar{\eta}}=0
$$

$$
\begin{aligned}
& \text { "There is no such thing as } \alpha / \phi_{2}{ }^{\prime} \\
& {[\alpha=\pi-(\beta+\gamma)]}
\end{aligned}
$$

The Unitarity Triangle: The B_{s} System (hadron machines)

(sb) triangle (" B_{s} triangle"):

$$
\begin{aligned}
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0 \\
& \mathrm{O}\left(\lambda^{4}\right)+\mathrm{O}\left(\lambda^{2}\right)+\mathrm{O}\left(\lambda^{2}\right)=0 \\
& \quad \Rightarrow \text { squashed triangle }
\end{aligned}
$$

$\chi=\beta_{s}=\arg \left[-\frac{V_{c c} V_{c b}^{*}}{V_{t s} V_{t b}^{*}}\right]$
Attention: sign
(ut) triangle:

$$
\begin{aligned}
& V_{t d} V_{u d}^{*}+V_{t s} V_{u s}^{*}+V_{t b} V_{u b}^{*}=0 \\
& \mathrm{O}\left(\lambda^{3}\right)+\mathrm{O}\left(\lambda^{3}\right)+\mathrm{O}\left(\lambda^{3}\right)=0
\end{aligned}
$$

\rightarrow non-squashed triangle

Generic B physics experiment

Probing short distance (quarks) but confined in hadrons (what we observe)
\rightarrow QCD effects must be under control (various tools: HQET, SCET, QCDF, LQCD,...)
\rightarrow "Theoretical uncertainties" have to be controlled quantitatively in order to test the Standard Model. There is however no systematic method to do that.

Digression: Statistics

Digression: Statistics

Statistics tries answering a wide variety of questions \rightarrow two main different! frameworks:
Frequentist: probability about the data (randomness of measurements), given the model

$$
P \text { (data|model) } \begin{aligned}
& \text { [only repeatable events } \\
& \text { (Sampling Theory)] }
\end{aligned}
$$

Hypothesis testing: given a model, assess the consistency of the data with a particular parameter value $\rightarrow 1$-CL curve (by varying the parameter value)

Bayesian: probability about the model (degree of belief), given the data

$$
\text { P(model|data) Likelihood(data,model) } \times \text { Prior(model) }
$$

```
P(data|model) f P(model|data): P (pregnant | female) ~ 3%
model: Male or Female
but
data: pregnant or not pregnant P (female | pregnant) >>>3%
```

Lyons - CDF
Stat Committee

Although the graphical displays appear similar: the meaning of the "Confidence level" is not the same. It is especially important to understand the difference in a time where one seeks10 deviation of the SM.

Digression: Statistics (cont.)

The Bayesian approach in physical science fails in the sense that nothing guarantees that $\underline{m y}$ uncertainty assessment is any good for you - I'm just expressing an opinion (degree of belief). To convince you that it's a good uncertainty assessment, I need to show that the statistical model I created makes good predictions in situations where we know what the truth is, and the process of calibrating predictions against reality is inherently frequentist."
hep-ph/0607246: "Bayesian Statistics at Work: the Troublesome Extraction of the CKM Angle α " (J. Charles et al.)

How to read a Posterior PDF?

\rightarrow updated belief (after seeing the data) of the plausible values of the parameter
${ }^{4}$ it's a bet on a proposition to which there is no scientific answer

My talk is about "What the Data say", thus I will stick to the frequentist approach

Metrology: Inputs to the Global CKM Fit

1) Direct Measurement: magnitude
$\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ [not discussed here]
$\left|V_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$
$B^{+} \rightarrow \tau^{+} v$
CPV in K^{0} mixing [not discussed here]
B_{d} and B_{s} mixing
II) Angle Measurements:
$\sin 2 \beta$
$\alpha:(B \rightarrow \pi \pi, \rho \rho, \rho \pi)$
γ : ADS, GLW, Dalitz (GGSZ)

$\left|V_{c b}\right|$ and $\left|V_{u b}\right|$

$\left|\mathrm{V}_{\mathrm{cb}}\right|(\rightarrow \mathrm{A})$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$

For $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ exist exclusive and inclusive semileptonic approaches (complementary)

\[

\]

OPE parameters measured from data (spectra and moments of $\mathrm{b} \rightarrow \mathrm{s} \gamma$ and $\mathrm{b} \rightarrow \mathrm{clv}$ distributions)

Q $\left|V_{u b}\right|\left(\rightarrow \rho^{2}+\eta^{2}\right)$ is crucial for the SM prediction of $\sin (2 \beta)$
(9) $\left|V_{c b}\right|(\rightarrow A)$ is important in the kaon system ($\left.\varepsilon_{K}, \mathrm{BR}(K \rightarrow \pi \nu \nu), \ldots\right)$

Complication for charmless decays:

$$
\frac{\Gamma(\mathrm{b} \rightarrow \mathrm{ulv})}{\Gamma(\mathrm{b} \rightarrow \mathrm{clv})} \approx \frac{\left|\mathrm{V}_{\mathrm{ub}}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{cb}}\right|^{2}} \approx \frac{1}{50}
$$

\rightarrow need to apply kinematic cuts to suppress
b \rightarrow clv background
\rightarrow measurements of partial branching fractions in restricted phase space regions
\rightarrow theoretical uncertainties more difficult to evaluate

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$

$\left|V_{c b}\right|$: Precision measurement: 1.7% !

$$
\left|\mathrm{V}_{\text {cb }}\right|_{\text {incl }}\left[10^{-3}\right]=41.70 \pm 0.70
$$

PDG06

$$
\begin{array}{r}
\left|\mathrm{V}_{\mathrm{cb}}\right|_{\text {excl. }}\left[10^{-3}\right]=39.7 \pm 2.0 \\
\mathrm{w} / \mathrm{FF}=0.91 \pm 0.04
\end{array}
$$

ICHEPO6

$\left|V_{u b}\right|$:
5 SF params. from $b \rightarrow c / v$, OPE from BLNP
5R precision $\sim 8 \%$, $|\mathrm{Vub}|$ excl. $\sim 16 \%$: theory dominated

HFAG with our error budget
our average

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|\left[10^{-3}\right]=4.10 \pm 0.09_{\exp } \pm 0.39_{\text {theo }}
$$

$B^{+} \rightarrow \tau^{+} \nu_{\tau}$

. helicity-suppressed annihilation decay sensitive to $f_{B} \times\left|V_{u b}\right|$
有. Powerful together with Δm_{d} : removes f_{B} (Lattice QCD) dependence

$$
\mathrm{BR}\left(B^{+} \rightarrow \tau^{+} v\right)=\frac{\mathrm{G}_{F}^{2} m_{B} \tau_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

ICHEP06

Δm_{d} and Δm_{s}

Δm_{d} and Δm_{s} : constraints in the $(\rho-\eta)$ plane

$$
\Delta m_{s}=\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{s}} m_{W}^{2} \eta_{B} S_{0}\left(x_{t}\right) f_{B_{s}}^{2} B_{s}\left|V_{t s} V_{t b}^{*}\right|^{2}
$$

Very weak dependence on $\bar{\rho}$ and $\bar{\eta}$

The point is:

$$
f_{B_{s}}^{2} B_{s}=\frac{f_{B_{s}}^{2} B_{s}}{f_{B_{d}}^{2} B_{d}} f_{B_{d}}^{2} B_{d}=\xi^{2} f_{B_{d}}^{2} B_{d}
$$

ξ : SU(3)-breaking corrections

Measurement of Δm_{s} reduces the uncertainties on $f^{2}{ }_{B_{d}} B_{d}$ since ξ is better known from Lattice QCD $\quad \sigma_{\text {rel }}\left(f_{B_{d / s}}^{2} B_{d / s}\right)=36 \% \quad \rightarrow \quad \sigma_{\text {rel }}\left(\xi^{2}=f_{B_{s}}^{2} B_{s} / f_{B_{d}}^{2} B_{d}\right)=10 \%$
\rightarrow Leads to improvement of the constraint from $\Delta \mathrm{m}_{\mathrm{d}}$ measurement on $\left|\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}^{*}\right|^{2}$

$$
\Delta m_{d}=\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{d}} m_{W}^{2} \eta_{B} S_{0}\left(x_{t}\right) f_{B_{d}}^{2} B_{d}\left|V_{t d} V_{t b}^{*}\right|^{2} \propto A^{2} \lambda^{6}\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}\right]
$$

$\Delta \mathrm{m}_{\mathrm{s}}$

hep-ex/0603029

$$
17<\Delta \mathrm{m}_{\mathrm{s}}<21 \mathrm{ps}^{-1} @ 90 \text { C.L. }
$$

The signal has a significance of 5.4σ

Constraint on $\left|\mathrm{V}_{\text {td }} / V_{\text {ts }}\right|$

$$
\frac{\Delta m_{d}}{\Delta m_{s}}=\frac{m_{B d}}{m_{B s}} \xi_{\Delta m}^{-2} \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}}
$$

angle β

$\sin 2 \beta$

㩧 "The" raison d'être of the B factories:

都 Conflict with $\sin 2 \beta_{\text {eff }}$ from s-penguin modes? (New Physics (NP)?)
some of recent QCDF estimates

NP can contribute differently among the various s-penguin modes (Naïve average: 0.52 ± 0.05).

NB: a disagreement would falsify the SM. The interference NP/SM amplitudes introduces hadronic uncertainties
\rightarrow Cannot determine the NP parameters cleanly

angle α

angle α

都 Time-dependent CP observable :

$$
\begin{aligned}
A_{h^{+} h^{-}}(t) & =S_{h^{+} h^{-}} \sin \left(\Delta m_{d} t\right)-C_{h^{+} h^{-}} \cos \left(\Delta m_{d} t\right) \\
& =\sqrt{1-C_{h^{+} h^{-}}^{2}} \sin \left(2 \alpha_{\text {eff }}\right) \cdot \sin \left(\Delta m_{d} t\right)-C_{h^{+} h^{-}} \cos \left(\Delta m_{d} t\right)
\end{aligned}
$$

Time-dependent $C P$ analysis of $B^{0} \rightarrow \pi^{+} \pi^{-}$alone determines $\alpha_{\text {eff }}$: but, we need α !

Isospin analysis (α can be resolved up to an 8-fold ambiguity within $[0, \pi]$)

Isospin Analysis: $\mathrm{B} \rightarrow \pi \pi$

	BABAR (347m)	Belle (532m)	Average	
$S_{\pi \pi}$	$-0.53 \pm 0.14 \pm 0.02$	$-0.61 \pm 0.10 \pm 0.04$	-0.58 ± 0.09	
$C_{\pi \pi}$	$-0.16 \pm 0.11 \pm 0.03$	$-0.55 \pm 0.08 \pm 0.05$	-0.39 ± 0.07	"agreement": 2.6σ

Isospin Analysis: $B \rightarrow \rho \rho$

	BABAR $(347 \mathrm{~m})$	Belle $(275 \mathrm{~m})$	Average
$S_{\rho \rho}$	$-0.19 \pm 0.21_{-0.07}^{+0.05}$	$0.08 \pm 0.41 \pm 0.09$	-0.13 ± 0.19
$C_{\rho \rho}$	$-0.07 \pm 0.15 \pm 0.06$	$0.0 \pm 0.3 \pm 0.09$	-0.06 ± 0.14

	BABAR $(347 \mathrm{~m})$
f_{L}^{00}	$0.86_{-0.13}^{+0.11} \pm 0.06$
$B R^{00}$	$(1.2 \pm 0.4 \pm 0.3) \times 10^{-6}$

都 Isospin analysis:

$$
\alpha=[94 \pm 21]^{\circ}
$$

Isospin Analysis: angle $\alpha_{\text {eff }}[\mathrm{B} \rightarrow \pi \pi / \rho \rho]$

教 Isospin analysis $\mathrm{B} \rightarrow \pi \pi$:

$$
\left|\alpha-\alpha_{\text {eff }}\right|<32.1^{\circ}(95 \% \mathrm{CL})
$$

琽 Isospin analysis $B \rightarrow \rho \rho$:

$$
\left|\alpha-\alpha_{\text {eff }}\right|<22.4^{\circ}(95 \% C L)
$$

The $B \rightarrow \rho \pi$ System

Dominant mode $\rho^{+} \pi^{-}$is not a CP eigenstate

$$
t=0
$$

\square
Aleksan et al, NP B361, 141 (1991)
Amplitude interference in Dalitz plot
Snyder-Quinn, PRD 48, 2139 (1993)

(4) correlated χ^{2} fit to determine physics quantities

Isospin Analysis: angle $\alpha[B \rightarrow \pi \pi / \rho \pi / \rho \rho]$

$$
\alpha_{\text {B-Factories }}=\left[93_{-9}^{+11}\right]^{\circ} \quad \Rightarrow \quad \alpha_{\text {Global Fit }}=\left[100_{-7}^{+5}\right]^{\circ}
$$

$B \rightarrow \rho \rho$: at very large statistics, systematics and model-dependence will become an issue $B \rightarrow \rho \pi$ Dalitz analysis: model-dependence is an issue!

angle γ

angle γ [next UT input that is not theory limited]

$$
b \rightarrow c \bar{u} s, u \bar{c} s
$$

$$
\begin{array}{lll|}
\text { Tree: dominant } & \propto V_{c b} V_{u s}^{*} \\
\propto \lambda^{3}
\end{array} \quad \text { Tree: color-suppressed } \quad \propto V_{u b} V_{c s}^{*} \begin{array}{ll}
\propto \lambda^{3} \sqrt{\rho^{2}+\eta^{2}}
\end{array}
$$

No Pentins

Several variants:

- GLW: D^{0} decays into $C P$ eigenstate

Q ADS : D^{0} decays to $K^{-} \pi^{+}$(favored) and $K^{+} \pi^{-}$(suppressed)
Q GGSZ: D^{0} decays to $K_{S} \pi^{+} \pi^{-}$(interference in Dalitz plot)
Giri et al, PRD 68, 054018 (2003)
\Rightarrow All methods fit simultaneously: γ, r_{B} and δ (different r_{B} and δ)

$$
\left.\begin{array}{l}
r_{B} \\
r_{R}^{*}
\end{array}\right\} \text { how small ? }
$$ σ_{γ} depends significantly on the value of r_{B}

Constraint on γ

$$
\gamma_{\text {B-Factories }}=\left[\begin{array}{cc}
60 & +-24
\end{array}\right]^{\circ} \quad \| \quad \gamma_{\text {Global Fit }}=\left[59_{-4}^{+9}\right]^{\circ}
$$

$$
\begin{aligned}
& r_{B}(D K)=0.10_{-0.04}^{+0.03} \\
& r_{B}\left(D^{*} K\right)=0.10_{-0.06}^{+0.04} \\
& r_{B}\left(D^{*}\right)=0.11_{-0.11}^{+0.09}
\end{aligned}
$$

Putting it all together

The global CKM fit: Testing the CKM Paradigm

CP Conserving
$C P$-insensitive observables imply CP violation!

Angles (no theory)

CP Violating

No angles (with theory)

The global CKM fit: Testing the CKM Paradigm (cont.)

Tree (NP-Free) "Reference UT"

Loop
[$N o n P$ in $\Delta l=3 / 2 \mathrm{~b} \rightarrow \mathrm{~d}$ EW penguin amplitude Use α with β (charmonium) to cancel NP amplitude]

CKM mechanism: dominant source of CP violation
The global fit is not the whole story: several $\Delta \mathrm{F}=1$ rare decays are not yet measured \rightarrow Sensitive to NP

The global CKM fit: selected predictions

Wolfenstein parameters:

$$
A=0.806_{-0.014}^{+0.014} \quad \lambda=0.2272_{-0.0010}^{+0.0010} \quad \bar{\rho}=0.195_{-0.055}^{+0.022} \quad \bar{\eta}=0.326_{-0.015}^{+0.027}
$$

(3) Jarlskog invariant:

$$
J=\left(2.91_{-0.14}^{+0.25}\right) \times 10^{-5}
$$

(UT Angles:

$$
\alpha=\left(99.0_{-9.4}^{+4.0}\right)^{\circ} \beta=\left(22.03_{-0.62}^{+0.72}\right)^{\circ} \gamma=\left(59.0_{-3.7}^{+9.2}\right)^{\circ} \quad \Sigma_{\text {meas. }}=\left(175_{-27}^{+40}\right)^{\circ}
$$

UT sides:

$$
R_{u}=0.380_{-0.009}^{+0.011} \quad R_{t}=0.868_{-0.025}^{+0.060}
$$

(3-B mixing:

$$
\Delta m_{s}=\left(18.9_{-2.8}^{+5.7}\right) p s^{-1}(\text { CKM Fit }) \quad \Delta \mathrm{m}_{\mathrm{s}}: 17.77 \pm 0.1 \text { (stat.) } \pm 0.07 \text { (syst.) } \mathrm{ps}^{-1}
$$ (direct,CDF)

Q $\rightarrow \tau$

$$
\mathrm{BF}\left(B^{+} \rightarrow \tau^{+} v_{\tau}\right)=\left(0.87_{-0.20}^{+0.13}\right) \times 10^{-4} \quad(\mathrm{CKM} \mathrm{Fit}) \quad\left(1.45_{-0.43}^{+0.46}\right) \times 10^{-4} \quad(\text { direct,WA) })^{36}
$$

New Physics?

New Physics in $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ Mixing?

$$
r_{d}^{2} \exp \left(2 i \theta_{d}\right)=\frac{\left\langle B^{0}\right| H_{e f f}^{\text {full }}\left|\bar{B}^{0}\right\rangle}{\left\langle B^{0}\right| H_{e f f}^{S M}\left|\bar{B}^{0}\right\rangle}
$$

No significant modification of the $B-\bar{B}$ mixing amplitude

NP Parameterization in B_{s} system

$$
\frac{\left\langle B_{s}^{0}\right| H_{e f f}^{\mathrm{SM}+\mathrm{NP}\left|{\overline{B_{s}}}^{0}\right\rangle}}{\left\langle B_{s}^{0}\right| H_{e f f}^{\mathrm{SM}\left|{\overline{B_{s}}}^{0}\right\rangle}}=r_{s}^{2} e^{i 2 \theta_{s}}=1+h_{s} e^{i 2 \sigma_{s}}
$$

Hypothesis: NP in loop processes only (negligible for tree processes)
Mass difference: $\Delta \mathrm{m}_{\mathrm{s}}=\left(\Delta \mathrm{m}_{\mathrm{s}}\right)^{\mathrm{SM}} \mathrm{r}_{\mathrm{s}}{ }^{2}$
Width difference: $\left.\Delta \Gamma_{\mathrm{s}} \mathrm{CP}=\left(\Delta \Gamma_{\mathrm{s}}\right)\right)^{S M} \cos ^{2}\left(2 \chi-2 \theta_{\mathrm{s}}\right)$
Semileptonic asymmetry:
$A_{S L}{ }_{S L}=-\operatorname{Re}\left(\Gamma_{12} / M_{12}\right)^{S M} \sin \left(2 \theta_{\mathrm{s}}\right) / r_{\mathrm{s}}{ }^{2}$
$\mathrm{S} \psi \phi=\sin \left(2 \chi-2 \theta_{\mathrm{s}}\right)$
UT of B_{d} system: non-degenerated
$\rightarrow\left(\mathrm{h}_{\mathrm{d}}, \sigma_{\mathrm{d}}\right)$ strongly correlated to the determination of (ρ, η)
UT of B_{s} system: highly degenerated
$\rightarrow\left(\mathrm{h}_{\mathrm{s}}, \sigma_{\mathrm{s}}\right)$ almost independent of (ρ, η)
B_{s} mixing phase very small in SM: $\chi=-1.02+0.06$ (deg)
\rightarrow Bs mixing: very sensitive probe to NP

$$
\begin{aligned}
& \text { NP wrt to } \mathrm{SM}: \\
& \text { - reduces } \Delta \Gamma_{\mathrm{s}} \\
& \text { • enhances } \Delta \mathrm{m}_{\mathrm{s}} \\
& \hline
\end{aligned}
$$

NP in B_{s} System

First constraint for NP in the B_{s} sector Still plenty of room for NP Large theoretical uncertainties: LQCD

$$
\mathrm{h}_{\mathrm{s}} \sim<=3\left(\mathrm{~h}_{\mathrm{d}} \sim<=0.3, \mathrm{~h}_{\mathrm{K}} \sim<=0.6\right)
$$

B_{s}-mixing phase


```
ICHEP06 - Conf note 5144
```

(Preliminary)

$$
\beta_{s}=\left(-0.56_{-0.41}^{+0.44}\right) \text { (stat+syst) [rad] }
$$

\rightarrow Precision prediction
\rightarrow Sensitive test to NP

NP in $\mathrm{b} \rightarrow \mathrm{s}$ transitions?

NP related solely to the third generations?

Conclusion

-CKM mechanism: success in describing flavor dynamics of many constraints from vastly different scales.
-Improvement of Lattice QCD is very desirable [Charm/tau factory will help]
${ }^{-B_{s}}$: an independent chapter in Nature's book on fundamental dynamics

- there is no reason why NP should have the same flavor structure as in the

SM

- B_{s} transitions can be harnessed as powerful probes for NP (χ : "NP model killer")
-With the increase of statistics, lots of assumptions will be needed to be reconsidered [e.g., extraction of α from $\mathrm{B} \rightarrow 3 \pi, 4 \pi$, etc., $\mathrm{P}_{\mathrm{EW}}, \ldots$]
- Before claiming NP discovery, be sure that everything is "under control" (assumptions, theoretical uncertainties, etc.)
\rightarrow null tests of the SM
- There are still plenty of measurements yet to be done

BACKUP SLIDES

Radiative Penguin Decays: $\mathrm{BR}(\mathrm{B} \rightarrow \rho \gamma) / \mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma\right)$

$B \rightarrow \rho \gamma\left(\propto\left|V_{t d}\right|^{2}\right) \& B \rightarrow K^{*} \gamma\left(\propto\left|V_{t s}\right|^{2}\right)$ sensitive to New Physics

FLAVOR STRUCTURE

		$\mathrm{b} \rightarrow \mathrm{s}$	$\mathrm{b} \rightarrow \mathrm{d}$	$\mathrm{s} \rightarrow \mathrm{d}$
	$\Delta \mathrm{F}=2 \mathrm{box}$	$\begin{aligned} & \Delta \mathrm{M}_{\mathrm{Bs}} \\ & \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \psi \phi\right) \end{aligned}$	$\begin{aligned} & \Delta \mathrm{M}_{\mathrm{Bd}} \\ & \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \psi \mathrm{~K}\right) \end{aligned}$	$\Delta \mathrm{M}_{\mathrm{K}}, \varepsilon_{\mathrm{K}}$
	$\begin{gathered} \Delta \mathrm{F}=1 \\ 4-\text { quark box } \end{gathered}$	$\mathrm{B}_{\mathrm{d}} \rightarrow \phi \mathrm{K}, \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K} \pi, \ldots$	$\mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi, \mathrm{B}_{\mathrm{d}} \rightarrow \rho \pi, \ldots$	$\varepsilon^{\prime} / \varepsilon, \mathrm{K} \rightarrow 3 \pi, \ldots$
	gluon penguin	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma, \mathrm{~B}_{\mathrm{d}} \rightarrow \phi \mathrm{~K}, \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{~K} \pi, \ldots \end{aligned}$	$\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} \gamma, \mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi, \ldots$	$\varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} l^{\prime}, \ldots$
	γ penguin	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} I^{+} \tau, \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \phi \mathrm{~K}, \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{~K} \pi, \ldots \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} l^{+} \tau, \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} \gamma \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \pi \pi, \ldots \end{aligned}$	$\varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} l^{\prime}, \ldots$
	Z^{0} penguin	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} I^{+} \Gamma, \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \phi \mathrm{~K}, \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{~K} \pi, \ldots \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} I \Gamma, \mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \pi \pi, \ldots \end{aligned}$	$\begin{aligned} & \varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} T \\ & \mathrm{~K} \rightarrow \pi \nu v, \mathrm{~K} \rightarrow \mu \mu, \ldots \end{aligned}$
	H^{0} penguin	$\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$	$\mathrm{B}_{\mathrm{d}} \rightarrow \mu \mu$	$\mathrm{K}_{\mathrm{L}, \mathrm{S}} \rightarrow \mu \mu$

G. Isidori - Beauty ‘03

Bayes at work

Zero events seen

Posterior $P(\lambda)$

$P(0$ events $\mid \lambda$)

$$
P(n ; \lambda)=e^{-\lambda} \lambda^{n} / n!
$$

Prior: uniform
(Likelihood)

Same as Frequentist limit Happy coincidence
R. Barlow - YETIO6

Bayes at work again

Is that uniform prior really credible?

Posterior $P(\lambda)$

$P(0$ events $\mid \lambda)$

Prior: uniform in In λ

Upper limit totally different!

$$
\int_{0}^{3} P(\lambda) d \lambda \gg 0.95
$$

Bayes: the bad news

- The prior affects the posterior. It is your choice. That makes the measurement subjective. This is BAD. (We're physicists, dammit!)
- A Uniform Prior does not get you out of this.
- Beware snake-oil merchants in the physics community who will sell you Bayesian statistics (new - cool - easy - intuitive) and don't bother about robustness.

Digression: Statistics(cont.)

Hypersphere:

One knows nothing about the individual Cartesian coordinates $\mathbf{x , y}, \mathbf{z} \ldots$

$$
\begin{aligned}
& \text { What do we known } \\
& \text { about the radius } \\
& r=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2+\ldots\right) ?
\end{aligned}
$$

One has achieved the remarkable feat of learning something about the radius of the hypersphere, whereas one knew nothing about the Cartesian coordinates and without making any experiment.

