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1 Introduction

The quest to understand mechanisms behind the temporal dynamics of a natural population (animal or plant) always

yields useful information for ecological biodiversity management. The present work was motivated by the analysis

of time-fluctuations of an ecological time series, the annual larch cone production. Because of the impracticabil-

ity of quantitative evaluation of such population size, only semi-quantitative data are often available numerically.

Data are coded with finite ordered categories or levels. Fromthis some natural questions arise. Among them, the

following one is of crucial interest here: do lagged values determine future production? The same basic problems

occur as for classical quantitative time series but here thegreatest difficulty stems from the nature of the studied

process (as previously mentioned, working on categorical variables induces many difficulties since most of the

notions used for quantitative variables have no more sense in such context).

Statistical models have been useful instruments for testing hypothesis concerning the mechanisms behind temporal

evolution and to characterize temporal patterns. Two models are used throughout this paper to achieve this goal:

a regression model (Fokianos and Kedem, 2002, 2003) and a parametrized Markovian model (Jacobs and Lewis,

1978a). The first one is a regression model for categorical time series which is based on generalized linear regres-

sion theory (McCullagh and Nelder, 1989). Such model extendlinear models to accommodate both non-normal

response distributions (which is the case in the study of categorical data) and transformations to linearity. So, ap-

plying a generalized linear models consists in two choices:a family of probability distribution and a link function

between the response and the predictors. For categorical data some widely used models are: multinomial-logit

(Agresti, 1990) and cumulative odds models (McCullagh, 1980). Adaptation of such models to categorical times

series is easy to do putting past observations at different lags as categorical predictors of the response at timet

(Fokianos and Kedem, 2002, 2003). The second one is indeed anadaption of the discrete auto-regressive (DAR)

model introduced by Jacobs and Lewis (1978a) to the case of categorical time series. As noticed by McKenzie

(2003), DAR models ¡¡ would be more suited to modelling dependent sequences of categorical observations, but

this does not seem to have been attempted yet ¿¿. To the best ofour knowledge, no advance in this direction is

made since the paper of McKenzie.

These two models have some advantages and some disadvantages which are not necessary the same, implying a

complementarity between these two approaches. Among the common advantages, the main one is that they are

easy to be interpreted by the practitioners. Since most of the time series in ecology are short-length (for a statistical

purpose), we have to consider only models involving a reasonable number of parameters. That is the reason why

we will focus on one order lagged model (even these models canbe extended easily to large order lag values).

Among the inconvenient of the DAR model, the main one is the stationarity of the time series, which can not be

checked by any statistical tests (see (McGee and Harris, 2005) for a discussion about several notions of stationarity

for categorical time series). However it allows us to derivea simple model for taking into account missing values (a

contrario to the regression model, the DAR can not treat directly the case of missing values). Our approach differs

highly of the one recently proposed by Bandt (2005). Indeed he considers a continuous-state, but non-Gaussian,

time series and its analysis relies only on the ordinal property of IR. Moreover his methodology requires a long

time series, which is not realistic in many real cases.

Motivation of the present work is the analysis of time seriesof larch cone production data in spatially disjoint

locations in order to determine some temporal patterns of larch cone production dynamic at different locations

and to discuss some kind of spatial synchrony. Data are detailed in the first section. Next section 3 is devoted to

present two regression models: one for categorical time series and one for ordinal time series. These two regres-

sion models have been studied by Fokianos and Kedem (2002; 2003). In section 4 we adapt the one order discrete

auto-regressive model to the context of categorical data (the ordinal characteristic is not taken into account in this

model). In particular we develop independence tests and estimators of the various parameters of the model. In

section 5, we apply these models to two real data sets: the first one deals with annual larch cone production (over

31 years) and the second one with weekly planktonic abundance (during one year). Last section is devoted to

conclusion and discussion.
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2 Motivations

The masting is the intermittent synchronous production of seed crops by a plant population (Kelly and Sork, 2002).

It often shows an evolved strategy related to others environmental masting patterns such as rainfall, temperatures,

. . . Thus variability in seed production according to past values is a good descriptor of environmental changes in

climate for example. The information arising from the characterization of temporal patterns on such time series

could be used to infer role of environmental parameters and other mechanisms (Priceet al., 2006). The data

accounting cone production were registered for 31 years on four valleys located in the Southern French Alps (in

the same area of the Alps called ”Briançonnais”). Here we will consider four different sites selected to be at

comparable altitudes (ranging from 1800m to 2200m): Ayes (altitude: 2200 meters), Montgenèvre (altitude: 2200

meters), Névache (altitude: 1800 meters) and Prorel (altitude: 1800 meters). Cone production at a given site was

roughly estimated at the beginning of the cone development by counting cones along one meter of branch for at

least one hundred randomly selected trees. The intensity oflarch cone production at any site was then classified

into six classes (Roques, 1988) from no cones (coded 0) to very heavy crop i.e. more than two hundred cones per

tree (coded 4). Annual cone production is considered to be the realization of an ordinal time series with values

{0, 0.5, 1, 2, 3, 4} corresponding to a scale classification endowed with a natural ordering. Data are plotted on

figure 1.

When studying the dynamic of the larch population on each sampling sites, a first step could be to identify temporal

patterns of cone production and then to compare each patterns from one site to others to conclude or not at a spatial

synchrony on a ”short” regional spatial scale (Liebholdet al., 2004). However, the observed series in figure 1 do

not exhibit obviously the presence of such patterns. The salient features of the series are: no seasonality, high

location to location variability with respect of duration and beginning of intensive larch cone production, presence

of missing values, . . . However visual remarks should be considered carefully.

Such time series could appear as too short-length for the statistician who generally needs a lot of information to

infer on a phenomenon but the data are collected from 1975 to 2005, which corresponds to an entire career of a

biologist!

3 Regression models for categorical and ordinal time series

The model used here is a generalization of classical regression models to the case of time-dependent categorical

observations and was studied by (Kauffmann, 1987) (see also(Fokianos and Kedem, 2002, 2003) for a good

summary of the main theoretical aspects).

3.1 Introduction to generalized linear models for qualitative time series

Assume that the observed series is a particular realizationof the stochastic process in discrete time{Yt} which

will be described below. Values ofYt are supposed to belong to a finite setE = {1, . . . , k} of k ordered or not

categories. Because we are interested in temporal dependence between successive observations, we condition on

the observed past. For any positive integerl, let us denote byFt−l theσ-field generated byYt−1, Yt−2, . . . , Yt−l.

Let Yt = (Yt,1, . . . , Yt,k−1)
′ whereYt,j equals to 1 if thej-th is observed at timet and0 otherwise. The analysis

of time series based on a generalized linear model suppose that the response variable is influenced by its past

values which are viewed as predictors influencing the distribution of Yt by way of a transformation of a linear

combination.

IE [Yt|Ft−l] = h
(
Y′

t−lβ
)
,

wherel is the order of the lag time andY′
t−l

is the covariate matrix containing the lagged values of the response

variable until lagl. In the following we will focus onl ∈ {0, 1, 2} (since we aim at treating short-length time

series). The vectorβ is a vector of time-invariant parameters to be estimate which will reflect the intensity of the
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dependency between the response and its past. Because the response variable is a categorical time series, we have

the following relation:

πt,j,l = IE[Yt,j |Ft−l] = IP(Yt,j = 1|Ft−l),

for every j ∈ {1, . . . , k} and everyt{1, . . . , n}, where πt,j,l is a transition probability. Letπt,·,l =

(πt,1,l, . . . , πt,k−1,l). Some adequate regression models for categorical data falls in the family of generalized

linear models which links vector of transition probabilities of the response vector to the covariate process through

the equation:

πt,·,l := πt,·,l(β) = h(Y′
t−lβ) or h−1(πt,·,l(β)) = Y′

t−lβ . (1)

In other words, the study of having the responseYt = j at timet is equivalent to carry out a regression on covariates

which are the lagged values of the categorical response process. This model is also called a Markov regression

model for categorical time series. The functionh is called the inverse link function and is related to a link function

that describes how the mean depends on the linear predictors. For each response distribution there exists a variety

of link functions to connect the mean with the linear predictor. The use of a generalized linear model is the choice

of a combination of response distribution and a link function.

3.2 On the choice of the link function

The link function should adapted to the type of data (Fokianos and Kedem, 2003):

• Nominal data: the most commonly used model for categorical (or nominal) data is the multinomial logit

model (Agresti, 1990):

πt,j,l(β) =
exp(β′

jyt−l)

1 +
∑k−1

q=1 exp(β′
qyt−l)

, (2)

for anyj ∈ {1, . . . , k − 1}. This equation also defines log-odds ratios relative toπtm by:

log

(
πt,j,l

πt,k,l

)
= β′

jyt−l . (3)

• Ordinal data: since data are ordinal, its is more convenientto model the cumulative probability function of

Yt. For ordered categorical time series a reasonable choice oflink function is the logistic distribution one

which leads to the proportional odds model (McCullagh, 1980):

h−1(x) =
1

1 + exp(−x)
. (4)

It follows that the link function is:

log

(
P [Yt ≤ j|Ft−l]

P [Yt > j|Ft−l]

)
= Y′

t−lβ . (5)

3.3 Parameters estimation and global adequacy criteria

Since the joint distribution of response and covariates is often not easy to establish, the likelihood methods are not

applicable to estimate the vector of regression coefficientsβ. As we are interested in the estimation of the effects of

the covariates on the response, we can use the inference theory based on partial likelihood function. The reader can

refer to (Fokianos and Kedem, 2002; Viennetet al., 1998) for more details and application. The partial likelihood

method leads to non linear equations system. Multinomial models were fitted using the functionmultinom from

library sectionnnet onR. Proportional-odds logistic regression models were fittedusing the functionpolr from

library sectionMASS onR. The vector of parameters of this modelβ is estimated using an iterative weighted least

squaresIWLS (Chalmers and Hastie, 1992; Venables and Ripley, 2002).

The analysis of the global adequacy and goodness of fit of suchmodels to the data is discussed using the Akaike’s

information criterion (AIC) which also allows to compare several models. The values of this criterion depends on
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the number of model parameters and penalizes models with large number of parameters. Such consideration is

important in the study of short time series where the number of parameters can be rapidly equal to the length of

the time series. The chosen model is the one which minimizes the value of AIC among the others.

In this preliminary work, no detailed analysis of the residuals of the models is done. Such analysis is important to

assess the goodness of fit between the chosen model and the observed data but was not the priority of this paper.

4 Discrete auto-regressive model and categorical data

The discrete auto-regressive (DAR) model introduced by Jacobs and Lewis (1978a; 1978b; 1978c) is used here

to model categorical data. Some independence tests are developed, using either the Markov property or runs

properties. Estimators of the parameters are studied in theprecise context of categorical data. Simulated data are

used to illustrate numerically the quality of these estimators.

4.1 Introduction and model

In a series of papers, Jacobs and Lewis (1978a; 1978b; 1978c)introduced and studied time series models for

discrete variables. Among them we will focus here on the discrete auto-regressive of order 1, denoted by DAR(1).

Such process{Xt} is a discrete-time stochastic process with values on a finiteordered setE = {1, . . . , k} and is

defined as follows:

∀t > 0 , Xt = VtXt−1 + (1 − Vt)Zt ,

where{Vt} is a sequence of iid Bernoulli random variables with parameter α ∈ [0; 1] and{Zt} is a sequence

of iid random variables having the distributionπ on E, the two sequences being independent. Moreover we will

assume thatX0 is distributed according to the distributionπ, implying that the process{Xt} is stationary. The

case ofα = 1 is not interesting sinceXt = X0, with probability 1, for anyt. The case ofα = 0 means that the

process{Xt} is simply a sequence of iid random variables having distribution π. Hence the parameterα could

be interpreted as follows: the nearest to 0α is, the more ¡¡ independent ¿¿ the sequence{Xt} is. Indeed, for all

h ∈ IN, ρ(h) = αh is the auto-correlation function of a DAR(1) process. HenceDAR(1) models can be used to

describe a situation of short range dependency with high correlation. It is easy to prove that stochastic process

{Xt} as defined above is a Markov chains onE with transition matrixP given by the following equation:

P = αI + (1 − α)Q ,

wheretQ = [tπ| · · · |tπ]. Such Markov chain admits obviously a unique stationary probability distribution which

is π. One can easily deduce theh-th power ofQ andP : for all h > 1, Qh = Q andP h = αhI + (1 − αh)Q,

illustrating one more times the role ofα.

This stochastic process could be generalized to higher order leading to the DAR(p) model. In fact, these models

appear themselves to be a special case of mixture transitiondistribution (MTD) model introduced by Raftery

(1985). Thus DAR(p) can be viewed as an alternative to MTD model. According to Raftery, a MTD model fits

better data in general than a DAR(p) one, especially forp > 3. However here we will prefer to use a DAR(1)

model since it has the following advantages over the MTD model: 1) the two parametersα andπ play different

roles: α is related to the correlation whereasπ is the stationary distribution; 2) these models involve generally a

reasonable number of parameters (more parsimonious) especially when few data are available; 3) parameters could

be easily interpreted by a practitioner. But the special case of DAR(1) model presents the disadvantage of being

restrictive over the transition matrix.

Here we are interested on the use of such stochastic processes for modeling categorical variables (here thek

different modalities are encoded by using thek first positive integers). It implies that many characteristics of

these processes have no sense in such context, as it is the case for the auto-correlation function (see above).

Thus estimators developed by Jacobs and Lewis (1983, see pages 28–30) cannot be used. Hence we address the
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statistical problem of estimating the parameters in a DAR(1) model in presence of categorical data. Assume we

observeX0, . . . , Xn for a fixed valuen > 0. First we will test whether{Xt} is a sequence of independent random

variables (α = 0) or not. In a second step we will estimate all the parameters of the model:α andπ. Then we

propose a very simple model in order to consider the case of missing observations.

4.2 Independence tests

In this section we aim at testing whether{Xt} is a sequence of independent random variables (α = 0) or not. Two

ways will be investigated. The first one will use the Markov property of the DAR(1) model and the second one

will be based on runs property. Anyway, all along this section, the null hypothesisH0 will be ¡¡ α = 0 ¿¿ and the

alternative hypothesis will be ¡¡α 6= 0 ¿¿.

χ2 test based on the Markov property The following test is a classical test for Markov chain (see (Reinert

et al., 2000) for an illustration in DNA analysis context). We onlyuse the fact that{Xt} is a Markov chain, but not

the particular structure of its transition matrix. Classical results on Markov chain inference leads to the following

estimate for the transition matrixP :

P̂j,j′ =
Nn

j,j′

Nn
j,·

,

whereNn
j,j′ =

∑n
i=1 11{Xi−1=j,Xi=j′} andNn

j,· =
∑

j′∈E Nn
j,j′ =

∑n
i=1 11{Xi−1=j}. In other wordsNn

j,j′ is the

number of jumps from statej to statej′ andNn
j,· is the number of visits of statej, in the sequence of observations

X0, . . . , Xn.

The null hypothesis can rephrased as follows:Pj,j′ = Pj,·P·,j′ , for any(j, j′) ∈ E2. UnderH0, the maximum-

likelihood estimate ofPj,j′ is:

P̂j,j′ = P̂j,·P̂·,j′ =
Nn

j,·
n − 1

Nn
·,j′

n − 1
,

whereNn
·,j′ =

∑
j∈E Nn

j,j′ =
∑n

i=1 11{Xi=j′}. Hence one has to consider the following statisticsC2:

C2 =
∑

j∈E

∑

j′∈E

[Nn
j,j′ − Nn

j,·N
n
·,j′/(n − 1)]2

Nn
j,·N

n
·,j′/(n − 1)

.

Theorem 4.1 Under the null hypothesis,C2 d−−−−→
n→∞

χ2
(k−1)2 .

Some well-known practical restrictions exist in order to beable to apply this test. As example, one can require

thatP̂j,j′ > 5%, for any(j, j′) ∈ E2.

Tests based on runs property Unfortunately we cannot compute the power of the previous test, that is the reason

we will now consider a second family of tests. These tests will be based on runs property of the model. Runs in

sequence of iid Bernoulli distributions are studied for a very long time: this problem seems to be considered for

the first time by Abraham de Moivre in 1756 (problem LXXIV in his bookThe Doctrine of Chances). For an

historical perspective, see the introduction of the Part I of (Mood, 1940). Most of the existing papers deal with the

case of Bernoulli random variables, but here we are indeed interested in the general discrete case. Few extensions

were made in this direction. To the best of our knowledge, Mood (1940) is the first one who studied it.

A run can be defined as follows: it is a consecutive sub-sequence of identical values in a sequence of random

numbers. For anyj ∈ E, let us denote byRi
j,n the number of non-overlappingj-runs of lengthi in the sequence

X1, . . . , Xn:

Ri
j,n = |{m ; Xm−1 6= j , , Xm = j , , . . . , , Xm+i−1 = j , , Xm+i 6= j}| .

Let us now define the numberRj,n of j-runs and the total numberRn of non-overlapping runs:

Rj,n =

n∑

i=1

Ri
j,n , and Rn =

∑

j∈E

Rj,n .

6



Mood (1940) obtained the limiting distribution ofRn after renormalization. Two cases have be distinguished:

k = 2 andk > 2.

Theorem 4.2 (corollary 5 p. 390 and corollary 3 p. 392 in (Mood, 1940))

1. If k = 2,
Rn − 2nπ1π2

2
√

nπ1π2(1 − 3π1π2)

d−−−−→
n→∞

N (0, 1).

2. If k > 2, 1√
n

(
Rn − n

(
1 − ∑

j∈E π2
j

))
d−−−−→

n→∞
N (0, σ2

π), with σ2
π =

∑
j∈E π2

j + 2
∑

j∈E π3
j −

3(
∑

j∈E π2
j )2.

One can check that in both cases the asymptotic variance is degenerated if and only if there existsj ∈ E such

thatπj = 1 (and then, for allj′ 6= j, πj′ = 0), then the variance is degenerated. These convergence results could

be used to construct an asymptotic test.

An alternative solution could be to consider the longest runin the sequenceX1, . . . , Xn. Indeed there exists many

works dealing with the case of either independent trials or Markovian trials. Let us denote byLn the longest length

of all runs in the sequenceX1, . . . , Xn. Using the previous notations, we have:

Ln = max{i ; ∃j s.t. Ri
j,n > 0} .

Vaggelatou (2003) studied this random variable in the case of multi-state Markovian trials. It requires that{Xt}
is an irreducible and aperiodic Markov chain on a finite statespaceE with transition probability matrixP and

unique stationary measureπ. The Markov chain induced by a DAR(1) model is irreducible and aperiodic ifπ > 0

(meaning that all the components ofπ are strictly positive) andα 6= 1 (see chapterXV of (Feller, 1968)). Let us

define the two following quantities:

ρ = max
j∈E

Pjj and πρ =
∑

j∈E : Pjj=ρ

πj .

If ρ < 1, then Vaggelatou proved the following asymptotic result (theorem 1 in (Vaggelatou, 2003)):

IP(Ln − [log1/ρ n] < x) = exp
{
−n(1 − ρ)πρρ

[log
1/ρ n]+x−1

}
+ o(1) , (6)

where[·] denotes the integer part ando(1) means that the residual term is ¡¡ small ¿¿ in regard withn. This

result extends the classical one obtained many years ago by Gonc̆arov (1962) in the case of iid Bernoulli trials.

In both case,Ln − [log1/ρ n] does not have a limit distribution, but only certain sub-sequence; for instance,

theorem 2 in (Vaggelatou, 2003) gives a case where the sub-sequence converges in distribution to the Gumbel

distribution. We will use theorem 1 (and not theorem 2) to construct a third (and last) test since we have not

enough observations in real situation. Let us denote byρ0 andρ1 the value ofρ respectively under the null and the

alternative hypothesis. Under the null hypothesis,P will be equal to the matrixQ as defined in the introduction:

∀(j, j′) ∈ E2, Pjj′ = πj′ (the transition probability from statej to statej′ does not depend onj). So we have

thatρ0 = max{πj ; j ∈ E}: ρ0 < 1 if and only if, for anyj ∈ E, πj < 1. Under the alternative hypothesis,

ρ1 = max{Pjj ; j ∈ E} = max{α + (1 − α)πj ; j ∈ E}: ρ1 < 1 if and only if α < 1 (it is initially assumed)

and for anyj ∈ E, πj < 1. Thus we find the same condition in both cases and this assumption is the same as for

the previous test. From now we will assume thatπ > 0 in addition to the previous assumptions (let us recall that

we already assume thatα 6= 1). Using theorem 1 of Vaggelatou (2003), one could obtain an asymptotic confidence

interval with a prescribed confidence levelε ∈ (0; 1):

IPH0

(
L̃n ∈ W̄ε,n =

[
logρ0

(
− ln(ε/2)

n(1 − ρ0)πρ0

)
; logρ0

(
− ln(1 − ε/2)

n(1 − ρ0)πρ0

)])
= 1 − ε ,

L̃n = Ln − 1 (notice that it is corresponding sometimes to the definitionof runs: see for instance (Jacobs and

Lewis, 1978a)). It follows that the powerΠε of this test is:

Πε = 1 + IPH1

(
L̃n < logρ0

(
− ln(ε/2)

n(1 − ρ0)πρ0

))
− IPH1

(
L̃n < logρ0

(
− ln(1 − ε/2)

n(1 − ρ0)πρ0

))
.

To computeΠε, one has to use equation (6) above.
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4.3 Parameters estimations

The two parametersπ andα of such DAR(1) model could be estimated separately since by construction they play

different role.

Estimations of π For anyj ∈ E and for anyi ∈ {1, . . . , n}, let Zij = 11{Xi=j}: these random variables have

the Bernoulli distribution with parameterπj . A natural unbiased estimator ofπj is therefore:

π̂j =
1

n

n∑

i=1

Zij .

Moreover, using the expression ofP h given in the introduction, one can easily derive the variance of π̂j :

Var[π̂j ] =
1

n
πj(1 − πj) +

2

n2
(1 − πj)πjVn(α) ,

and the covariance betweenπ̂j andπ̂j′ (with j′ 6= j):

Cov[π̂j , π̂j′ ] = − 2

n2
πj′πjVn(α) ,

with Vn(α) =
∑n

h=1(n − h)αh. Applying formula (0.113) in (Gradshteyn and Ryznik, 1965)(arithmetico-

geometric progression), we obtain the following expression for Vn(α):

Vn(α) =
n − αn

1 − α
− α(1 − αn−1)

(1 − α)2
− n .

This leads to the following limit for the variances and the covariances:

lim
n→∞

nVar[π̂j ] =
1 + α

1 − α
πj(1 − πj) ,

and:

lim
n→∞

nCov[π̂j , π̂j′ ] = − 2α

1 − α
πj′πj .

As a consequence of Bienaymé-Chebychev inequality, the asymptotic result on the variance implies thatπ̂j is

consistent:

Proposition 4.1 For anyα ∈ [0, 1), π̂j
Pr−−−−→

n→∞
πj .

Moreover one can prove the following central limit theorem for π̂j by application of the ergodic theorem for

Markov chain (Jones, 2004) and Slutsky theorem:

Theorem 4.3 For anyα ∈ [0, 1),
√

n
π̂j − πj√
π̂j(1 − π̂j)

d−−−−→
n→∞

N
(

0,
1 + α

1 − α

)
.

Whenα = 0, the asymptotic variance equals to 1 as it is well-known for Bernoulli trials. The largestα is, the

larger the asymptotic variance is. Since the asymptotic depends onα which is generally unknown, we cannot yet

use the last proposition to construct confidence interval. In order to do it, we will need an consistent estimator of

α.

Estimations of α We will first consider the maximum likelihood estimator ofα, assuming thatπ is known. Since

{Xt} is a Markov chain, the log-likelihood is:

L(X1, . . . , Xn; α) =
∑

(j,j′)∈E2

Nj,j′ log Pj,j′ (α
′) ,
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whereNj,j′ is defined as in section 2 and wherePj,j′ (α) is the transition probability from statej to statej′ (which

only depends onα). Replacing the expression of transition probabilities, we obtain that:

L(X1, . . . , Xn; α) =
∑

j∈E



Nj,j log(α + (1 − α)πj) +
∑

j′∈E\{j}
Nj,j′ log((1 − α)πj′ )



 .

It follows that the maximum likelihood estimatorα∗
1 of α is the solution of the following equation:

1

n

∑

j∈E

Nn
j,j

α + (1 − α)πj
= 1 .

Whenπ is unknown, one can use the estimation given above and so the plug-in estimator̂α1 of α is the solution

of the following equation:
1

n

∑

j∈E

Nn
j,j

α + (1 − α)π̂j
= 1 .

Unfortunately we cannot derive an explicit expression ofα̂1. An alternate possible way is to minimize the following

function:

Qα =
∑

(j,j′)∈E2

(P̂j,j′ − Pj,j′ (α))2 .

Solving this optimization problem leads to an explicit expressionα2
∗:

α∗
2 =

∑

j∈E

(1 − πj)(P̂jj − πj) −
∑

j∈E

∑

j′∈E\{j}
πj′ (P̂jj′ − πj′)

(k − 1)
∑

j∈E

π2
j +

∑

j∈E

(1 − πj)
2

.

It seems to be difficult to establish properties of this intuitive estimator. Hence it is not recommended to use it

as an estimator ofα. However it could provide a possible initialization for an optimization procedure to obtain a

numerical value of̂α1. The corresponding plug-in estimator̂α1 of α is given by the following expression:

α̂2 =

∑

j∈E

(1 − π̂j)(P̂jj − π̂j) −
∑

j∈E

∑

j′∈E\{j}
π̂j′ (P̂jj′ − π̂j′ )

(k − 1)
∑

j∈E

π̂2
j +

∑

j∈E

(1 − π̂j)
2

.

Simulated data The estimators developed above are applied on simulated data in order to evaluate numerically

their performance. We simulate data with various values ofα, π andn:

• π = (1
2 , 1

2 ), π = (1
3 , 2

3 ), π = (1
3 , 1

3 , 1
3 ) andπ = (1

4 , 1
2 , 1

4 )

• α ∈ {0.1; 0.2; 0.5; 0.8; 0.9}.

• n ∈ {50; 100; 500}.

Hence two cases are studied:k = 2 andk = 3. For each values of these parameters, we simulatem = 100

independent DAR(1) Markov chain and then we compute the estimators. Unfortunately these we have no guarantee

that the two estimators ofα belong to the unit interval. Hence we precise for each cases the number of samples on

which the computations were done (as it is reasonable, the number of samples is increasing with the numbern of

observations). Results are given in tables 1 to 4 (only the estimators are computed for simulated data).

4.4 A variant with missing observations

Sometimes categorical time series may contain some missingvalues/observations. Here we now propose a very

simple adaptation of the DAR model in order to taking into account the missing values. Since the DAR model is

9



stationary, it will be easy to derive similar expressions asin the initial model.

Assume that at each unit of time, the probability of a missingvalue equals toβ (which does not depend on the

time). Hence, if we denote byZt the values at timet, we have :

Zt =

{
Xt w.p. 1 − β

−1 w.p. β
,

where−1 is the value corresponding to a missing value and{Xt} is DAR(1) stochastic process as described

previously. Henceβ is the probability that a value is not observed : this probability is assumed to be not depending

on t. Since(Xt) is a stationary stochastic process, it follows that(Zt) is still a Markov chain, but taking values

on the setẼ = {−1} ∪ E. Its transition probabilities matrix̃P can be expressed in function of the transition

probabilities matrixP of (Xt):

P̃ =

[
1 − β βtπ

(1 − β)1k βP

]
,

where1k is the unit vector of IRk. There is now three parameters to be estimated. Indeedπ andα (with the

maximum likelihood method) can be estimated as previously.The extra parameterβ can be simply estimated as

follows:

β̂ =
1

n

n∑

i=1

11{Xi=−1} .

5 Applications to ecological data

Finally tests and estimators are applied in this section to real data. We apply the two models described previously

to two real data sets. The first one deals with larch cone production (see section 2) and the second one to planktonic

abundance.

5.1 Larch cone production

The total number of observations wasn = 31, with k = 6 categories. The goal of this work is to study masting on

such trees. For a full description of the data, see section 2.

First we apply regression models. Tables 5 and 6 contain values of AIC respectively for the categorical time series

regression model and the ordinal one. We also indicate the number of parameters to estimate and the number of

observations (these time series may contain missing values). For the first case, the independence assumption leads

to the better for all sites. For the second case, model with a lag order 1 and 2 fits better for the site Ayes 2200 and

Montgenèvre 2200 while the model with only a lag of order 1 fits better for Névache 1800 and the independent

model fits better for Prorel 1800. Comparing values of AIC, the model for ordinal time series seems to be more

accurate for these data sets.

Second we apply the DAR model. Table 7 contains the estimations of the three parameters for each of the four

data sets. In all cases, the independence hypothesis is rejected with the two first tests, while the third one leads to

accept the assumption of independence (all with a first type error at 5%). However the power of this last test is

more or less weak in all cases (ranging from above 26% to 51%).Thus it is reasonable to reject the assumption of

independent observations.

In all cases the categorical time series regression model leads to accept the temporal independence between obser-

vations. It may be due to the fact that the parameterα in the DAR model is closed to zero. However this parameter

can be assumed to be significantly different of zero, according to the performed tests. It is in concordance with the

fact that observations are time-dependent when using the ordinal time series regression model. Time series studied

here are very short-length and it may the cause that the conclusions based on the ordinal time series regression

model and the ones based on the DAR models. Since few data are available, one should prefer to use the DAR

models (because it involves less parameters than the other models).
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5.2 Planktonic abundance

We now consider weekly planktonic (Thalia democratica) abundance data. Data were kindly given by F. Ménard.

In such context, the objective is to test and to compare the temporal patterns from one year to another. Hence

we apply the two models described above for four years (1987 to 1990). It follows that each data-set is made of

n = 52 observations. Abundances were determined semi-quantitatively according to classes defined on scale of 5

values,E = {1, 2, 3, 4, 5}. The observed series are shown in figure 2 and exhibit the sameproblems as the larch

cone production ones. Notice that the fifth category were notobserved for any year. For a complete description of

the data, the reader could reefer to (Ménardet al., 1993) (see also (Viennetet al., 1998)).

First we apply regression models. Tables 8 and 9 contain the number of parameters to be estimated, the values of

AIC and the number of observations, respectively for the categorical time series regression model and the ordinal

one. With the model for categorical time series, the model with one order lag fits better all the four years. With

the model for categorical time series, model with two order lag fits better for the year 1987 and 1989 while model

with only a one order lag fits better for the two other years, 1988 and 1990.

Second we apply the DAR model. Table 10 contains the estimations of the three parameters for each of the four

data sets. The two first tests leads to reject the null hypothesis, i.e. to reject the independence of the observations.

The third test leads also to reject the independence assumption for the two last year (1989 and 1990) while the null

hypothesis is accepted according to this last test for the years 1987 and 1988 (respectively with a power equal to

44% and 66%). Thus it is also reasonabke to reject the assumption of independent observations.

We can also analyze these data sets as one unique time series (notice that it was not possible for the previous

data-set). Hence the sample size is nown = 208. All the tests lead to reject the assumption of independent

observations (with a power equal to 69% for the last one). Thelast line of table 10 contains the estimations of the

three parameters for the whole period.

Here the situation is totally different than previously. Indeed the categorical time series regression model and the

DAR model lead to the same conclusion, i.e. a one order lag dependence in the time series. One can notice that for

these data sets the parameterα (of the DAR model) is now between 0.308 and 0.540. However theordinal time

series regression model leads in some case to a two order lag dependence. Since the number of observations is

almost the twice than for the first data sets, one should rather prefer to use the ordinal time series regression model.

6 Conclusions and discussions

Applications to real data achieve to convince that these twocomplementary models are relevant for practical pur-

pose. Based on the result obtained over real data, one can conclude that either the ordinal time-series regression

model or the DAR model should be used to treat such data. Indeed in all cases the categorical time-series regres-

sion model seems not to present advantages over the two othermodels. The choice between the ordinal time-series

regression model and the DAR model depends highly on the context, i.e. essentially on the number of observa-

tions and the number of parameters to be estimated. Fokianosand Kedem (2003) claimed that ¡¡ the regression

methodology can discover dependencies in the DNA sequence data which cannot assessed by a Markov model ¿¿.

However data treated here can serve as a counter-example of this sentence. For the two data sets studied here,

conclusions based on the regression models and the one basedon the Markov model are almost identical.

From this work, one can conclude that in any case the DAR modelhas only few parameters to be estimated, but

with an equal to number of unknown parameters (as in the example of larch cone production) one has to prefer the

ordinal time-series regression model.

However both suffers of relying on assumptions or simplifications. Hence these models could be extended in the

following ways:
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• Stationarity: the DAR model is strongly stationary (in the sense defined by McGee and Harris in (2005)).

This assumption should be checked with any statistical tests. However no test of stationarity of a categorical

time series has been developed to the best of our knowledge. Anyway when dealing with short-length

time series stationary assumption is not really restrictive. Otherwise a solution could be in applying the

de-trend algorithm suggested by McGee and Harris in (2005).However their algorithm is more and more

computationally complex as the number of states is increasing (in fact they mainly consider the binary case).

We do not focus here on the study of the possible stationarityof a categorical time series which will be done

in a future work. A major advantage of regression model is that it is not necessary to have stationarity.

• Higher dependence order and number of parameters:since we consider the case of short-length data, we

limit our study to one or two order lagged models. Indeed bothmodels could be applied top-th order

lagged models. However, for the regression model, a large value ofp implies a large number of parameters

to estimate, that may induce some numerical instability (due to correlation between the regressors). The

number of parameters in a DAR(p) model is lower, but ifp > 1 we have no more the Markov property.

• Environmental factors:these models do not include environmental covariates. The regression model could

easily integrate such situations, as shown by Fokianos and Kedem (2002; 2003). For the DAR model, it is

not so easy. A solution could be to consider inhomogeneous Markov chain or a state-space model.
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is applied probability and statistics with interest to applied contexts (engineering, theoretical computer science,

biology, . . . ).

14



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Ayes 2200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b) Montgenèvre 2200
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Figure 1: Annual larch production in four sites in the Southern Alps

α n π̂ α̂1 m1 α̂2 m2

0.1

50 (0.509;0.491) 0.140 65 0.149 72

100 (0.499;0.501) 0.114 82 0.121 85

500 (0.503;0.497) 0.092 100 0.094 100

0.2

50 (0.511;0.489) 0.174 83 0.183 90

100 (0.510;0.490) 0.180 97 0.192 97

500 (0.499;0.501) 0.191 100 0.194 100

0.5

50 (0.501;0.499) 0.451 99 0.481 99

100 (0.510;0.490) 0.465 100 0.479 100

500 (0.499;0.501) 0.494 100 0.497 100

0.8

50 (0.543;0.457) 0.711 99 0.753 99

100 (0.534;0.466) 0.765 100 0.784 100

500 (0.502;0.498) 0.795 100 0.799 100

0.9

50 (0.585;0.415) 0.754 99 0.798 99

100 (0.539;0.461) 0.857 100 0.882 100

500 (0.503;0.494) 0.890 100 0.894 100

Table 1: Results obtained withπ = (1
2 , 1

2 )
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Figure 2: Weekly planktonic abundance for four years

α n π̂ α̂1 m1 α̂2 m2

0.1

50 (0.328;0.672) 0.145 65 0.160 69

100 (0.337;0.663) 0.120 74 0.131 15

500 (0.337;0.663) 0.095 97 0.097 97

0.2

50 (0.335;0.665) 0.202 91 0.226 91

100 (0.335;0.665) 0.205 96 0.217 96

500 (0.336;0.664) 0.190 100 0.192 100

0.5

50 (0.357;0.643) 0.442 100 0.471 100

100 (0.332;0.668) 0.461 100 0.475 100

500 (0.334;0.666) 0.486 100 0.489 100

0.8

50 (0.364;0.636) 0.711 99 0.744 99

100 (0.352;0.648) 0.746 99 0.764 99

500 (0.343;0.657) 0.790 100 0.793 100

0.9

50 (0.438;0.562) 0.795 93 0.846 94

100 (0.410;0.590) 0.849 100 0.870 100

500 (0.336;0664) 0.893 100 0.896 100

Table 2: Results obtained withπ = (1
3 , 2

3 )

16



α n π̂ α̂1 m1 α̂2 m2

0.1

50 (0.324;0.345;0.331) 0.120 74 0.132 75

100 (0.337;0.339;0.324) 0.099 82 0.103 84

500 (0.333;0.329;0.338) 0.104 100 0.105 100

0.2

50 (0.345;0.334;0.321) 0.176 95 0.184 98

100 (0.327;0.342;0.331) 0.186 99 0.193 99

500 (0.330;0.336;0.334) 0.199 100 0.201 100

0.5

50 (0.328;0.315;0.357) 0.443 100 0.447 100

100 (0.345;0.336;0.319) 0.477 100 0.483 100

500 (0.340;0.323;0.332) 0.495 100 0.496 100

0.8

50 (0.366;0.309;0.325) 0.737 100 0.713 100

100 (0.382;0.309;0.309) 0.756 100 0.758 100

500 (0.336;0.328;0.336) 0.793 100 0.795 100

0.9

50 (0.463;0.254;0.283) 0.776 99 0.722 100

100 (0.411;0.283;0.306) 0.860 100 0.837 100

500 (0.348;0.322;0.330) 0.895 100 0.893 100

Table 3: Results obtained withπ = (1
3 , 1

3 , 1
3 )

α n π̂ α̂1 m1 α̂2 m2

0.1

50 (0.255;0.492;0.253) 0.114 82 0.128 82

100 (0.248;0.495;0.257) 0.097 89 0.102 90

500 (0.249;0.501;0.250) 0.098 100 0.099 100

0.2

50 (0.265;0.484;0.251) 0.174 92 0.179 94

100 (0.255;0.494;0.251) 0.177 99 0.182 99

500 (0.246;0.506;0.248) 0.194 100 0.195 100

0.5

50 (0.279;0.467;0.254) 0.467 100 0.467 100

100 (0.250;0.494;0.256) 0.466 100 0.467 100

500 (0.253;0.497;0.250) 0.493 100 0.493 100

0.8

50 (0.299;0.496;0.205) 0.716 100 0.693 100

100 (0.282;0.472;0.246) 0.766 100 0.765 100

500 (0.258;0.503;0.239) 0.799 100 0.799 100

0.9

50 (0.356;0.422;0.222) 0.802 100 0.715 100

100 (0.332;0.460;0.208) 0.858 100 0.827 100

500 (0.248;0.493;0.259) 0.893 100 0.892 100

Table 4: Results obtained withπ = (1
4 , 1

2 , 1
4 )

Ayes 2200 Montgenèvre 2200 Névache 1800 Prorel 1800

Model Nb param AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs

Indep. 6 119.63 24 143.25 29 143.36 27 128.43 24

Lag 1 42 141.26 22 157.58 27 169.06 22 154.02 20

Lags 1-2 78 180.27 20 187.00 25 212.72 17 179.23 17

Table 5: Categorical time-series regression models applied to annual larch cones production
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Ayes 2200 Montgenèvre 2200 Névache 1800 Prorel 1800

Model Nb param AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs

Indep. 6 119.63 24 143.25 29 143.36 27 128.43 24

Lag 1 12 116.34 22 136.3 27 139.32 22 136.62 20

Lags 1-2 18 114.3 20 126.92 25 150.13 17 144.82 17

Table 6: Ordinal time-series regression models applied to annual larch cones production

Valley π̂ α̂1 β̂ AIC

Ayes 2200 (0.167;0.042;0.292;0.292;0.125;0.083)0.082 0.774 121.06

Montgenèvre 2200 (0.138;0.069;0.172;0.310;0.241;0.069)0.070 0.935 118.70

Névache 1800 (0.185;0.185;0.074;0.185;0.296;0.074)0.032 0.871 125.94

Prorel 1800 (0.292;0.167;0.125;0.208;0.167;0.042)0.161 0.774 122.89

Table 7: DAR models applied to annual larch cones production

1987 1988 1989 1990 1987-1990

Model Nb param AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs

Indep. 3 100.56 47 111.52 45 121.61 48 133.6 48 468.21 188

Lag 1 12 73.04 43 89.83 42 96.06 45 99.69 46 331.81 177

Lags 1-2 21 79.52 40 93.57 37 97.17 42 102.90 44 315.96 167

Table 8: Categorical time-series regression models applied to weekly planktonic abundance

1987 1988 1989 1990 1987-1990

Model Nb param AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs AIC Nb obs

Indep. 3 100.56 47 111.52 45 121.61 48 133.6 48 468.21 188

Lag 1 6 65.77 43 84.78 42 95.67 45 92.66 46 323.5 177

Lags 1-2 9 63.69 40 NA 37 85.92 42 93.65 44 298.17 167

Table 9: Ordinal time-series regression models applied to weekly planktonic abundance

Year π̂ α̂1 β̂ AIC

1987 (0.625;0.167;0.042;0.000;0.167)0.540 0.923 108.78

1988 (0.489;0.311;0.089;0.000;0.111)0.308 0.865 143.11

1989 (0.354;0.417;0.167;0.000;0.062)0.445 0.923 132.68

1990 (0.375;0.271;0.146;0.000;0.208)0.484 0.923 135.10

1987-1990 (0.463;0.293;0.112;0.000;0.133)0.468 0.904 511.00

Table 10: DAR models applied to weekly planktonic abundance
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