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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00078279v3


ha
l-

00
07

82
79

, v
er

si
on

 3
 -

 1
3 

M
ay

 2
00

7

TOPOLOGICAL TYPES OF REAL REGULAR

JACOBIAN ELLIPTIC SURFACES

FRÉDÉRIC BIHAN AND FRÉDÉRIC MANGOLTE

Abstract. We present the topological classification of real parts of real reg-
ular elliptic surfaces with a real section.
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1. Introduction

By a real algebraic variety X , we mean a pair (X,σ) where X is a complex
algebraic variety and σ an antiholomorphic involution acting on X . The involution
σ is often called a real structure and the fixed point set Xσ is called the real part
of X and is denoted by X(R). From now on, a surface will be assumed to be a
nonsingular surface and a topological type of real surfaces will be a class of surfaces
with homeomorphic real parts.

Our main purpose is to make a step towards the Enriques-Kodaira classification
of real algebraic surfaces. More precisely, we are interested in the classification
of the topological types of real algebraic surfaces in a given complex deformation
family. The case of real rational surfaces goes back to Comessatti, [6] as well as the
case of real abelian varieties [7], (see also [23, Chap. III, IV]). For real ruled surfaces,
see [23, Chap. V]. The case of K3 surfaces is due to Nikulin and Kharlamov [13, 19].
More recently, the classification of topological types of real Enriques surfaces has
been obtained by Degtyarev and Kharlamov [10], while the classification for real
hyperelliptic surfaces has been achieved by Catanese and Frediani [5].

The remaining class of real algebraic surfaces of special type is made by the
so-called properly elliptic surfaces. In this direction there is the fundamental classi-
fication of the real singular fibres of an elliptic fibration by R. Silhol [22] and some
partial results about the global classification in [15] and [1].

A real elliptic surface will be a morphism π : X → P1 defined over R, where X
is a real algebraic surface such that for all but finitely many points u ∈ P1, the
fibre Xu = π−1(u) is a nonsingular curve of genus one. When π admits at least
one singular fibre, the surface X is regular, which means that H1(X,OX) = {0}.
The elliptic fibration π : X −→ P1 will be called relatively minimal if no fibre of π
contains an exceptional curve of the first kind. When a (real) relatively minimal
elliptic surface π : X → P

1 admits a (real) section s : P
1 → X we call X a (real)

jacobian elliptic surface.

Over C, two regular relatively minimal elliptic surfaces with no multiple fibres
are deformation equivalent if and only if their holomorphic Euler characteristics are
equal, see [12].

The main goal of this paper is to present the classification of the topological
types of real regular jacobian elliptic surfaces in each complex deformation family
of regular jacobian elliptic surfaces.

In order to describe the topological types, we denote by Sg the smooth orientable
surface of genus g, by S the two dimensional sphere (S = S0) and by Vq the non
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orientable surface of Euler characteristic 2−q (Vq is diffeomorphic to the connected
sum of q copies of P2(R)). In what follows, the disjoint union of two surfaces A and
B is denoted by A ⊔ B while the disjoint union of a homeomorphic copies of A is
denoted by aA.

An abstract Morse simplification on a topological type is a transformation which
decreases the total Betti number by 2. There are two kinds of Morse simplifications:

• removing one spherical component, S → ∅,
• contracting one handle Sg+1 → Sg or Vq+2 → Vq .

A topological type of a real regular jacobian elliptic surface is called extremal if it
cannot be obtained by a Morse simplification from the topological type of another
real regular jacobian elliptic surface in the same complex deformation family (i.e.
with the same holomorphic Euler characteristic).

Theorem 1.1. Let k ≥ 1 be an integer. The extremal topological types of real
regular jacobian elliptic surfaces with holomorphic Euler characteristic k are:

(1) M -surfaces, a = k + 4λ− 1, l = 5k − 4λ, λ = 0, 1, . . . , k
• Sl ⊔ aS, k even or
• V2l ⊔ aS, k odd.

(2) (M − 2)-surfaces, a = k + 4λ, l = 5k − 4λ− 3, λ = 0, 1, . . . , k − 1
• Sl ⊔ aS, k even or
• V2l ⊔ aS, k odd.

(3) • S1 ⊔ S1, k even or
• V2 ⊔ V2, k odd.

Any topological type of a real regular jacobian elliptic surface with holomorphic
Euler characteristic k is the result of a sequence of Morse simplifications from one
of the previous extremal types.

Conversely, any topological type corresponding to a surface with first Betti num-
ber ≥ 2 and which can be obtained by a sequence of Morse simplifications from one
of the previous extremal topological types is the topological type of a real regular
jacobian elliptic surface X with k = χ(OX).

Note that in the definition of a jacobian surface, we supposed that the elliptic
fibration was relatively minimal. In fact, the analogue of Theorem 1.1 without
this hypothesis, that is, the classification of topological types of real regular elliptic
surfaces with a real section and contained in a given complex deformation family,
can be deduced directly from Theorem 1.1. Indeed, over C, two regular elliptic
surfaces with no multiple fibres are deformation equivalent if and only if their
holomorphic Euler characteristics are equal and their canonical classes have the
same degree. To realize a topological type in one complex family, say k = χ(OX) and
K2

X = −m < 0, take any real regular jacobian elliptic surface Y with holomorphic
Euler characteristic k, then by definition, K2

Y = 0. Let X be the blow-up of m
points which are globally fixed by the real structure. Then KX = −m. Each blow-
up centered in a real point gives rise to a connected sum with a real projective
plane. Conversely, any topological type of a real regular elliptic surface with a real
section can be obtained in this way.

The rest of the paper is devoted to the proof of Theorem 1.1 (see Subsection 4.3).

Let π : X −→ P1 be a real regular jacobian elliptic surface. Denote by k =
χ(OX) the holomorphic Euler characteristic of X . The Betti numbers of X(R)
are subject to prohibitions. Classical inequalities and congruences on real regular
algebraic surfaces (see [11] for a survey) yield a finite list for the allowed pairs of
topological Euler characteristic χ(X(R)) and total Betti number h∗(X(R)) with
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coefficients in Z/2, see Section 2. The resulting list is shortened thanks to the
following inequalities which arise essentially because the surface is elliptic. Namely
the first mod 2 Betti number h1(X(R)) = rk (H1(X(R),Z/2)) and the number of
connected components are bounded by

(1.2) h1(X(R)) ≤ 10k , #X(R) ≤ 5k .

The upper bound on the first Betti number is due to a more general result of
V. Kharlamov (see Theorem 2.7). The upper bound on the number of connected
components is due to M. Akriche and the second author, see [1].

Using the general prohibitions on real algebraic surfaces and the two specific
inequalities (1.2), we draw for each k, the diagram of the allowed pairs (χ, h∗), see
Figure 1. The existence of a real section imposes strong conditions on the real part of
X . Namely, X(R) 6= ∅, one connected component of X(R) has Euler characteristic
≤ 0 and other components are diffeomorphic to spheres, unless X(R) is the disjoint
union of two tori (if k even) or two Klein bottles (if k odd), see Proposition 2.9.
Hence, except for the pair (0, 8), there is a one-to-one correspondence between
allowed pairs (χ, h∗) and allowed topological types. The list given in Theorem 1.1
is exactly the list of topological types obtained from the diagram in Figure 1 using
this correspondence.

Conversely, for each k ≥ 1 and for each topological type listed in Theorem 1.1,
we prove the existence of a real regular jacobian elliptic surface with the desired
topological type. These surfaces are obtained in the following way.

Fix an integer k ≥ 1 and let R = F2k be the Hirzebruch surface of degree 2k
endowed with the real ruling π̃ : R → P1. Let E be the unique nonsingular algebraic
curve of R with nonzero negative selfintersection. By unicity, E is defined over R.
Consider a nonsingular real algebraic curve C of bidegree (3, 0) on R (see Section 3
for the definition of bidegree). Such curves are often called trigonal curves. Let
ρ : X → R be the double covering ramified over the union C ∪ E which is of even
bidegree (4,−2k). Standard calculation on double coverings yields χ(OX) = k, and
it is an easy exercise to check that π = ρ ◦ π̃ is an elliptic fibration. In fact, X is a
jacobian elliptic surface.

Since the curve C is real, the surface X becomes real with respect to the two
complex conjugations which are lifts of the one on R (they are interchanged by the
covering involution). The topological type of the elliptic surface with respect to
either complex conjugations is determined by the real scheme of C, i.e. the pair
(F (R), C(R)) up to homeomorphism, and the parity of k (see Lemma 3.3). A Morse
simplification for either real elliptic surfaces corresponds then to collapsing one oval
of the curve C. Hence, the list in Theorem 1.1 results in a list of real schemes of
real trigonal curves on R, where extremal ones are those which cannot be obtained
from another by collapsing one oval.

Trigonal curves which produce the exceptional topological types of two tori (if k
is even) or two Klein bottles (if k is odd) are easy to construct, see Example 3.2. The
other extremal cases are constructed by means of the combinatorial patchworking.
The combinatorial patchworking is a combinatorial version of the Viro method,
which is a powerful construction method of real algebraic varieties with prescribed
topology, see [25, 26, 27]. For the remaining real schemes, we use the fact that ovals
of trigonal curves can be collapsed independently 1. This can be shown using the
theory of dessins d’enfants. Though this statement can be easily deduced from [20],
we give here a detailed proof for the reader’s convenience (see Proposition 4.3). The
emergence of dessins d’enfants in real algebraic geometry is recent [18, 20] (see also,

1It is worth noting that this is not true for other types of curves, e.g plane projective curves
of a given degree
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for example, [2, 3]). It is S. Orevkov [20] who discovered that dessins d’enfants can
be used to construct real trigonal curves with given real scheme. Recently, B.
Bertrand and E. Brugalle [2] showed how one can recover the dessin d’enfant of a
trigonal curve constructed by the combinatorial patchworking.

One advantage of the construction used in Section 4 comes from the obvious
observation that a Morse simplification may not be obtained a priori in a continuous
family of real regular jacobian elliptic surfaces. This construction shows that such
a family does exist in each case except possibly for the exceptional extremal pair
of tori or Klein bottles.

Let us finally point out the recent appearance of [9] in which dessins d’enfants
are used in order to study real elliptic surfaces up to equivariant deformation.

We want to thank E. Brugallé, F. Catanese, A. Degtyarev, I. Itenberg and V.
Kharlamov for fruitful discussions. The second author thanks also F. Catanese for
a stimulating visit in Bayreuth.

2. Restrictions on real regular elliptic surfaces

In this section, we collect some classical restrictions on the topology of a real
algebraic surface (X,σ) in term of the numerical invariants of the complex surface
X . Next, we apply them to a real regular elliptic surface. For a complex regular
elliptic surface X , most of the numerical invariants can be deduced from the holo-
morphic Euler characteristic χ(OX). Recall that in fact, when X is jacobian, its
complex deformation class is determined by χ(OX), see [12].

Let (X,σ) be a real algebraic manifold. Denote by Bi(X) = rk
(

Hi(X,Z/2
)

the
i-th mod 2 Betti number of X and by

hi(X(R)) = rk (Hi(X(R),Z/2))

the i-th mod 2 Betti number of X(R). Let h∗(X(R)) =
∑

hi(X(R)) and B∗(X) =
∑

Bi(X). The first important prohibition is given by the Milnor-Smith-Thom
inequality.

Proposition 2.1. Let (X,σ) be a real algebraic manifold. Then

h∗(X(R)) ≤ B∗(X) ;

B∗(X) − h∗(X(R)) is even.

Proof. See e.g. [23, Chap. II] or [11, 3.1.1]. �

Let us denote by τ(X) the signature of the cup-product form on the real vector
spaceH2(X,R) and by τ−(X) = 1

2 (B2(X)−τ(X)) its negative index. The following
inequality, often called Comessatti’s inequality, is well-known.

Proposition 2.2. Let (X,σ) be a real algebraic surface, then

|χ(X(R)) − 1| ≤ τ−(X)

Proof. See e.g. [11, 3.1.2]. �

An important class of restrictions on extremal real surfaces is given by the
Rokhlin congruences and their generalizations by Gudkov and Kharlamov. Recall
that B∗(X) − h∗(X(R)) is even and let 2d = B∗(X) − h∗(X(R)). A real algebraic
surface is an M -surface if d = 0 and an (M − d)-surface if d 6= 0.

Proposition 2.3. If (X,σ) is an M -surface (that is d = 0), then

χ(X(R)) ≡ τ(X) mod 16 .

When (X,σ) is an (M − 1)-surface (that is d = 1), then

χ(X(R)) ≡ τ(X) ± 2 mod 16 .
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Proof. See e.g. [23, Chap. II] or [11, 2.7.1]. �

Proposition 2.4. Let π : X → P1 be a real regular relatively minimal elliptic
surface with no multiple fibres

When (X,σ) is an M -surface, then

χ(X(R)) ≡ 8χ(OX) mod 16 .

When (X,σ) is an (M − 1)-surface, then

χ(X(R)) ≡ 8χ(OX)±2 mod 16 .

Proof. The elliptic fibration has no multiple fibres thus the homology of the
complex surface X has no torsion. Whence we will not distinguish between the
Betti numbers of X and the mod 2 Betti numbers of X . As π is relatively minimal,
the first Chern number c21(X) is zero and the Noether’s formula yields

(2.5) χtop(X) = 12χ(OX) .

For X a regular algebraic surface (i.e. with q(X) = dimH1(X,OX) = 0), the
signature of the cup-product form is τ(X) = 4χ(OX)−2 − B2(X), see e.g. [4,
Thm. 2.7]. Moreover, a regular surface has Betti numbers B1(X) = B3(X) = 0
whence τ(X) = −8χ(OX). The conclusion follows from Proposition 2.3. �

Remark 2.6. Let k = χ(OX). From the previous congruences, the Comessatti
inequality 2.2, and the Theorems 2.7 and 2.7 below, we get the list of the k + 1
admissible pairs of Betti numbers for M -surfaces:

(#X(R), h1(X(R))) = (k + 4λ, 10k − 8λ) , λ ∈ {0, 1, . . . , k} .

From the Betti numbers, we will deduce the jacobian topological type by Propo-
sition 2.9.

By Morse simplifications, any (M − 1)-jacobian topological type allowed by the
Proposition 2.4 comes from an M -jacobian topological type, otherwise said, there
are no extremal (M − 1)-jacobian topological type. There are k extremal (M − 2)-
jacobian topological type, see Theorem 1.1. To prove that the extremal topological
types given in Theorem 1.1 are the only ones, the former classical restrictions on real
algebraic surfaces applied to a real regular relatively minimal elliptic surface with
no multiple fibres are not sufficient. We need the following additional restrictions.

Theorem 2.7. [1, 15] Let X → P
1 be a real regular relatively minimal elliptic

surface with no multiple fibres, then

h1(X(R)) ≤ 10χ(OX) .

Moreover, if π is jacobian, then

#X(R) ≤ 5χ(OX) .

Proposition 2.8. Let π : X → P1 be a real regular jacobian elliptic surface. We
have

4 ≤ h∗(X(R)) ≤ 12χ(OX)

2 − 10χ(OX) ≤ χ(X(R)) ≤ 10χ(OX)−2

Proof. The inequality (2.1) and the Noether formula for a relatively minimal
elliptic fibration (2.5) yield

h∗(X(R)) ≤ 12χ(OX) .

Furthermore, there is a connected component N0 of X(R) containing the real
part S(R) of the image of the real section s : P1 → X . Let α ∈ H1(N0,Z/2) be the
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fundamental class of S(R) and β ∈ H1(N0,Z/2) the class of the restriction to N0

of a smooth fibre, by hypothesis α ∩ β = 1 mod 2 whence h1(N0) ≥ 2.
From B∗(X) = 12χ(OX), a regular relatively minimal elliptic surface with no

multiple fibres X has B2(X) = 12χ(OX)−2 and τ−(X) = 10χ(OX)−1. We get
from Proposition 2.2,

2 − 10χ(OX) ≤ χ(X(R)) ≤ 10χ(OX) .

We want to prove that, in fact, χ(X(R)) ≤ 10χ(OX)−2. Suppose for a moment
that χ(X(R)) = 10χ(OX), that is #X(R) = 5χ(OX)+ 1

2h1(X(R)). Now from the
Theorem 2.7, we get the inequality #X(R) ≤ 5χ(OX) thus #X(R) = 5χ(OX) and
h1(X(R)) = 0. But we have seen previously that X(R) contains a component N0

with h1(N0) ≥ 2; a contradiction.
For X a real relatively minimal elliptic surface, the Euler characteristic of X(R)

is even. Indeed, by Proposition 2.1, χ(X(R)) ≡ χtop(X) mod 2 and by (2.5)
χtop(X) is even. Thus χ(X(R)) = 10χ(OX)−1 does not occur and finally this
yields χ(X(R)) ≤ 10χ(OX)−2. �

The previous proof shows in particular that if X is a real regular jacobian elliptic
surface, then X(R) 6= ∅ and h1(X(R)) ≥ 2. This yields

4 − χ(X(R)) ≤ h∗(X(R)) and χ(X(R)) ≤ h∗(X(R)) − 4.

We also know that χ(X(R)) and h∗(X(R)) are even integer numbers. Together
with Propositions 2.4 and 2.8 and Theorem 2.7, the preceding analysis allows us to
draw, for each k, the diagram of possible values for the pair (χ(X(R)), h∗(X(R))
when X is a real regular jacobian elliptic surface.

Figure 1. Diagram of possible values for (χ(X(R)), h∗(X(R))

The diagram is the right one for k = 8. The black points correspond to the k + 1 M-surfaces (which

are automatically extremal) and the extremal (M − 2)-surfaces. The small circle surrounds the point

(0, 8) which is the only point in the diagram corresponding to two possible topological types

comprising an extremal one: S1 ⊔ S1 if k is even or V2 ⊔ V2 if k is odd. Note that for any k the

diagram is symmetric with respect to the vertical axis χ(X(R)) = 0 while this axis contains a point

corresponding to an M-surface (as it is the case in the picture) only when k is even.
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From the diagram, we will infer the list of allowable topological types of real
regular jacobian elliptic surfaces. For that we use the following result.

Proposition 2.9. Let π : X → P1 be a real regular jacobian elliptic surface. Let
k = χ(OX). Then X(R) is non empty and it is orientable if k is even or non
orientable if k is odd. Moreover, X(R) has one connected component of Euler
characteristic ≤ 0 and other components are diffeomorphic to a sphere, unless X(R)
is the disjoint union of two tori (if k even) or two Klein bottles (if k odd).

Proof. From [23, Chap. VII], we get that when the elliptic fibration admits a real
section, any real singular fibre has connected real part except if the fibre is real
isomorphic to the real cubic curve with one isolated node. Recalling that the real
part of a smooth real curve of genus one has at most two connected components, the
result easily follows except for the assertion about orientability which is deduced
from the following Lemma. �

Lemma 2.10. Let X → P
1 be a real regular relatively minimal elliptic surface with

no multiple fibres.
If χ(OX) is even, X is a Spin-surface, and if X(R) 6= ∅,

X(R) is orientable.

If χ(OX) is odd, X is a non Spin-surface, and if X → P1 admits a real section
or if (X,σ) is an M -surface,

X(R) 6= ∅ and X(R) is non orientable.

Proof. By [4, p. 162], we have for a canonical divisor of X :

KX = (χ(OX) − 2) F̃

where F̃ is any fibre of X → P1. From c1(TX) = −c1(KX) we obtain for the second
Stiefel-Whitney class of the tangent bundle of X

w2(X) = χ(OX) mod 2 .

We use [15, 5.7] for the first two assertions. We use [11, 3.4.1(1)] for the last
assertion on M -surfaces. �

Proposition 2.9 implies that, with the only exception of the point (0, 8), each
point in the diagram depicted in Figure 1 corresponds to at most one topological
type of a real regular jacobian elliptic surface.

Namely, if k is even the point (0, 8) corresponds to S2 ⊔S (non extremal) and to
S1⊔S1 (extremal). If k is odd, the point (0, 8) corresponds to V4⊔S (non extremal)
and to V2 ⊔ V2 (extremal). Any point (χ, h∗) 6= (0, 8) of the diagram corresponds
to the topological type Sl ⊔ aS if k is even, or to V2l ⊔ aS if k is odd, where a and
l are determined by χ = 2(a+ 1) − 2l and h∗ = 2(a+ 1) + 2l.

Collecting the results of this section, we thus obtain a list of non prohibited
topological types, which coincides with the one given in Theorem 1.1.

3. Hirzebruch surfaces and real elliptic surfaces

Let n ≥ 1, denote by π̃ : Fn → P1 the P1-bundle over P1 associated with the
Hirzebruch surface Fn. Let (u, x) be affine coordinates on Fn so that π̃ can be
written locally as (u, x) 7→ u. Denote by B and F the classes in the second homology
group H2(Fn,Z) of the image of a section disjoint from the exceptional divisor E
and a fibre of π̃, respectively. As it is well-known, the homology group H2(Fn,Z) is
generated by B and F with intersection numbers B ·B = n, F ·F = 0 and B ·F = 1.

A curve C on Fn is of bidegree (a, b) if [C] = aB + bF in H2(Fn,Z), or equiv-
alently, if a = [C] · F and b = [C] · E. The intersection number of two curves of
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bidegree (a, b) and (c, d) is then equal to acn+ ad+ bc. The exceptional divisor E
has bidegree (1,−n) and self-intersection −n.

The Hirzebruch surface Fn inherits a real structure coming from the usual com-
plex conjugation on some affine chart of Fn. This is the standard real structure on
Fn and we will consider only this one. The real part Fn(R) of Fn is homeomorphic
to a two-dimensional torus if n is even, or to a Klein bottle if n is odd.

A trigonal curve is a curve of bidegree (3, 0) on Fn. Let r ∈ R[u, x] be a polyno-
mial whose Newton polygon (the convex hull of the exponent vectors of the mono-
mials appearing with non zero coefficients) is the triangle with vertices (0, 0), (3n, 0)
and (0, 3). Such a polynomial defines (affinely) a trigonal curve C. A classical (non
linear) elimination process allows to eliminate the monomials ulx2, l ∈ {0, . . . , n},
from r in order to get a reduced affine equation for C

(3.1) x3 + p(u)x+ q(u) = 0,

where p and q are polynomials of degrees 2n and 3n, respectively. The discriminant
of this polynomial, viewed as a polynomial in R[u][x], is

∆ = 4p3 + 27q2 ∈ R[u] .

The roots of ∆ are those u0 for which the vertical line u = u0 is either tangent to,
or contains a singular point of, the curve C. We have ∆(u0) < 0 exactly when the
line u = u0 intersects C(R) in three points.

Consider the Hirzebruch surface F2k of even degree 2k and let C be a real nonsin-
gular trigonal curve on F2k. A connected component of C(R) is called a pseudo-line
if it intersects each vertical line u = u0, otherwise it is called an oval. An oval sep-
arates F2k(R) into two connected components, one of them being homeomorphic
to a disk called interior of the oval. The image of a pseudo-line by the projection
F2k(R) → P

1(R) induced by (u, x) 7→ u is the whole P
1(R), while the image of an

oval is an interval whose endpoints are real roots of the discriminant ∆.
With one exception, all but one connected components of C(R) are ovals, while

the remaining one is a pseudo-line. The exception arises when C(R) consists of
three (non intersecting) pseudo-lines. This happens only if ∆ < 0 on P1(R). We
give here an explicit example which will be used for the construction of extremal
elliptic surfaces with topological type S1 ⊔ S1 (if k even) or V2 ⊔ V2 (if k is odd),
see Lemma 3.3 below.

Example 3.2. Consider the non reduced polynomial

r(u, x) = (x− g1(u)) · (x− g2(u)) · (x − g3(u)),

where g1, g2 and g3 are real polynomials of degree 2k such that g2 − g1, g3 − g1 and
g3 − g2 have each 2k (simple) non real roots and the resulting 6k roots are pairwise
distinct. In particular, g2−g1, g3−g1 and g3−g2 are polynomials of degree 2k with
no real roots. This implies that r defines a trigonal curve whose real part consists
of three non intersecting pseudo-lines. This trigonal curve has as singularities 6k
non real ordinary double points coming from the above 6k non real roots. A small
perturbation gives a nonsingular trigonal curve whose real part consists of three
pseudo-lines.

Assume now that C(R) does not consist of three pseudo-lines. Let

H = 0

be some bi-homogeneous polynomial equation for C ∪ E. We have [C] · E = 0,
hence C does not intersect E and C ∪ E is a real nonsingular curve of bidegree
(3, 0) + (1,−2k) = (4,−2k). Since this bidegree is even, the polynomial H has a
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well-defined sign on F2k(R). Hence the ovals of C can be divided into two groups
according to the sign of H in the interior of each oval. It follows that, with the
exception of C(R) consisting of three pseudo-lines, the real scheme of C, that is the
pair (F2k(R), C(R)) up to homeomorphism, is uniquely determined by the numbers
a and b of ovals in each of these two groups and will be encoded by 〈a | b〉, see
Figure 2. Note that these two numbers are defined only up to permutation.

Figure 2. Real scheme 〈2 | 3〉

Let ρ : X 7→ F2k be the double covering of F2k ramified over C ∪ E (it is well-
defined since the bidegree of the ramification curve is even). The complex surface
X is a nonsingular jacobian elliptic surface, which can be equipped with two real
structures lifting that of F2k. According to the chosen real structure, the real part
of X projects via ρ onto the subset of F2k(R) where either H ≥ 0, or H ≤ 0.

Lemma 3.3. If C(R) consists of three pseudo-lines, then X(R) is homeomorphic
to S1 ⊔ S1 if k even, or to V2 ⊔ V2 if k is odd.

If C has real scheme 〈a | b〉, then, up to permutation of a and b which corre-
sponds to a permutation between the two real structures for X, the surface X(R) is
homeomeomorphic to aS ⊔ Sb+1 if k is even, or to aS ⊔ V2b+2 if k is odd.

Proof. A direct computation shows that χ(X(R)) = 0 if C(R) consists of three
pseudo-lines and χ(X(R)) = 2(a− b) if C has real scheme 〈a | b〉. It suffices then
to determine if each non spherical component is orientable or not. Let M be such
a component, and let S be a real section whose real part S(R) is contained in M .
The linear class of the effective divisor S is the (reduced part) of the pull-back of
the class B in Pic(F2k). The class B is a part of the branch class of the double
covering ρ. Hence [S] · [S] = 1

2B · B = k, see e.g. [21]. Thus, when k is odd, the

square α2 of the fundamental class of S(R) in H1(M,Z/2) does not vanish whence
M is non orientable.

Conversely, suppose k even, the canonical class of X is given by KX = ρ∗(KF2k
+

L) where KF2k
= −2B+(2k− 2)F and 2L = [C ∪E]. Thus we recover the formula

used in the proof of Lemma 2.10 from KX = ρ∗((k − 2)F ). We therefore conclude
that w1(X(R)) = 0 hence X(R) is orientable. �

4. Constructions

4.1. Collapsing ovals of trigonal curves via dessins d’enfants. Let C be a
real nonsingular trigonal curve on F2k with affine reduced equation

(4.1) x3 + p(u)x+ q(u) = 0
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where deg p = 4k and deg q = 6k. We will assume that C is generic in the sense
that the discriminant ∆ = 4p3+27q2 has only simple roots and p, q,∆ have distinct
roots. The roots of ∆ being simple roots, the curve C is a nonsingular curve and
any root of ∆ corresponds to a vertical line tangent to C.

Following Orevkov [20], consider the real rational function P1(C) → P1(C) de-
fined by

f =
∆

q2
=

4p3

q2
+ 27 .

This a rational function of degree 12k. The roots of ∆, p and q are mapped to 0, 27
and ∞, respectively. These roots as well as the values 0, 27 and ∞ will be called
special.

Remark 4.2. Recall that the functional invariant J : P
1(C) → P

1(C) associated
with the elliptic surface given by the affine equation y2 = x3 + p(u)x+ q(u) is

J =
4p3

∆
.

The real rational functions f and J are related via J = γ ◦ f , where γ is the real
automorphism of P1(C) sending 0, 27, and ∞ to ∞, 0, and 1, respectively.

Color the real line on the target space in three distinct colors as shown in Figure 3
(one color for each interval delimited by two special values, and special symbols for
special values) and define a colored graph on the source space P1(C) as the graph
Γ = f−1(P1(R)) colored via the pull-back of the previous coloring of P1(R). Such
a graph is sometimes called a dessin d’enfant. The graph Γ is invariant under the
complex conjugation and contains P

1(R). Each vertex of Γ has even valency and
corresponds to a critical point of f with multiplicity half the valency (if the valency
is 2 then the point is in fact not a critical point of f). Due to the special form
of the rational function f , the vertices given by the roots of ∆, p and q should
have valencies which are multiple of 2, 6 and 4, respectively. In fact, since we have
assumed that ∆ has only simple roots, the roots of ∆ are not critical points of f
and have valency 2.

Figure 3. Coloring of P1(R)

Hence, to a real trigonal curve C corresponds a colored graph on P1(C) verifying
the above properties. Conversely, drawing dessins d’enfants allows to construct
real trigonal curves with a given real scheme (see, for example, [20], [2]). Here
we will only use a local description of the graph Γ that will allow us to collapse
independently the ovals.

Proposition 4.3. The ovals of C can be collapsed independently. In other words,
if C has real scheme 〈a | b〉, then for any pair of integers (a′, b′) such that 0 ≤ a′ ≤ a
and 0 ≤ b′ ≤ b there exists a real nonsingular trigonal curve C′ on F2k with real
scheme 〈a′ | b′〉.

Proof. Consider one oval of the curve (if the curve has no oval, there is nothing
to prove). Its image under the ruling π̃ : (u, x) 7→ u is a closed interval whose
endpoints are roots of ∆. Denote by I the interior of this interval. For each u0 ∈ I,
the vertical line u = u0 intersects the oval in three distinct real points. This means
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that f is negative on I. In other words, the interval I is uniquely colored as a part
of Γ like (∞, 0) on the target space P1(R) (see Figure 3). Conversely, any such
interval corresponds to an oval of the curve. The critical points of f which belong
to I are either roots of q (critical points with value ∞), or non special critical
points. Let U be a small neighbourhood of I ⊂ P1(C) which is invariant under the
complex conjugation and which contains only real critical points of f . Let H be
one of the two complex conjugate parts of U \ P1(R). Recall that the valency of a
vertex of Γ is twice its multiplicity as a critical point of f . The multiplicity of each
root of q contained in I should be even for otherwise f would be positive inside I.
This means that the number of branches of Γ contained in H and which start from
a real root of q is odd. Moreover, since the derivative f ′ take opposite (non zero)
values at the endpoints of I, it follows that the sum of the multiplicities as roots
of f ′ of the non special critical points contained in I should be an odd integer m.
We note that this m coincides with the total number of branches of Γ contained in
H and which start from these non special critical points.

Figure 4. Deformation around a real root of q (with multiplicity 4)

We perform a continuous deformation of colored graphs (Γt)t∈[0,1], Γ = Γ0,

which is concentrated in the neighbourhood U , as it is shown in Figure 4 and 5 (the
corresponding deformation for the graph of f|P1(R) is depicted at the bottom). In

these pictures, horizontal segments are parts of P1(R) while the complex conjugation
is given by the reflection about P

1(R).
First we deform Γ around each real root of q as depicted in Figure 4. The real

root is transformed into pairs of complex conjugate simple roots, while a non special
real critical point (of the same mulitplicity) is created. Shrinking U if necessary, we
can then assume that it contains only (real) non special critical points of f . This
means that, with the exception of the complement of I in P1(R) ∩U , the part of Γ
contained in U is now entirely colored like (∞, 0) and the total number of branches
contained in H is the odd number m. This gives a new graph at time t = t1. We
then pursue the deformation as shown in Figure 5 (the disk represents U).

It remains to show that along the deformation any graph Γt corresponds to a
real trigonal curve Ct on F2k and that the real scheme of C1 is obtained from that
of C0 by collapsing the oval we started with.

From the topological point of view, the map f : P1(C) → P1(C) is a symmetric
(by which we mean that complex conjugate points are mapped to complex conjugate
points) branched covering of degree 12k which respects the colorings. It is not
difficult to see that the deformation (Γt)t∈[0,1] comes from a continous deformation

(ft)t∈[0,1], with f0 = f , of maps ft sharing the same properties and such that

Γt = f−1
t (P1(R)). Indeed, there exists a continuous map G : P1(C)× [0, 1] → P1(C)
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such that Γt = G(Γ0, t) for each t and the restriction of G to Γ0×{0} is given by the
identity map. Moreover, there is a continous family (ϕt)t∈[0,1] of maps ϕt : Γt →

P1(R) starting at the restriction ϕ0 of f to Γ = Γ0 and which respect the colorings.
Consider now one connected component D0 of P1(C) \ Γ0 and let Dt = G(D0, t)
be the corresponding connected component of P1(C) \ Γt. Denote by D̄t and D̄0

their closures. Looking at Figure 5 shows that D̄t and D̄0 are homeomorphic for
each t. Moreover, one can choose homeomorphisms ψD,t : D̄t → D̄0 coming into a
continuous family such that ϕt and ϕ0 ◦ψD,t coincide on the boundary of Dt. This
allows to extend the restriction of ϕt to the boundary of Dt into a continuous map
fD,t : D̄t → f0(D̄0) by setting fD,t := f0 ◦ ψD,t. Doing that for each D0 in one
given connected component of P1(C) \P1(R), and extending the resulting map into
a symmetric map, one obtains a continuous family of symmetric continuous maps
ft : P1(C) → P1(C). It is then easy to see that each ft has the desired properties.

By Riemann’s uniformization Theorem, each map ft becomes a real rational
map of degree 12k for the standard complex structure on the target space and its
pull-back by ft on the source space. For any t ∈ [0, 1] the (special) points of Γt

where ft take values 0, ∞ and 27 have all a valency which is a multiple of 2, 4 and
6, respectively. This gives the existence of real polynomials pt and qt of degree 4k

and 6k, respectively 2, such that ft =
4p3

t

q2
t

+27 = ∆t

q2
t

where ∆t := 4p3
t +27q2t . Let Ct

denotes the associated trigonal curve with affine equation x3 + pt(u)x+ qt(u) = 0.
For any t 6= t4, the curve Ct is a nonsingular curve since all roots of ∆t have valency
2 in Γt. The curve Ct4 has an unique singular point which corresponds to the real
root of ∆t4 contained in U whose valency is 4. This singular point is an ordinary
double point which is isolated in F2k(R) since ft4 , hence ∆t4 , is positive around
it. To finish, it suffices to note that the number of intervals uniquely colored like
(0,∞) on the target space decreases by 1 along the deformation. �

4.2. Combinatorial patchworking of trigonal curves. We first recall how the
combinatorial patchworking works for the construction of real trigonal curves on
F2k Let k be any positive integer and denote by T the triangle with vertices (0, 0),
(6k, 0) and (0, 3). The input of the combinatorial patchworking are

• A triangulation of T whose vertices have integer coordinates,
• a distribution of signs ±1 at the vertices of this triangulation.

Assume that there exists a convex piecewise-linear function ν : T → R linear on
each triangle of the triangulation, but not linear on the union of any two triangles.
Such a triangulation is called convex (or sometimes coherent).

The so-called T-polynomial associated with these data is the polynomial rt ∈
R[u, x] defined by

rt(u, x) =
∑

s(i1, i2)t
ν(i1,i2)ui1xi2 ,

where the sum is taken over all the vertices (i1, i2) of the triangulation and s(i1, i2)
is the sign of (i1, i2).

Consider now the quadrangle Q with vertices (±6k, 0) and (0,±3). Extend the
triangulation of T to a triangulation of Q which is symmetric with respect to the
coordinate axes. Extend also the initial sign distribution to a sign distribution at
the vertices of the triangulation of Q following the rule

s(ǫ1i1, ǫ2i2) := ǫi11 · ǫi22 · s(i1, i2)

2A priori we can only conclude that deg pt ≤ 4k and deg qt ≤ 6k with at least one equality
occuring, but Figure 5 shows that pt and p0 = p (resp., qt and q0) have the same number of roots,
counted with multiplicities, hence the same degree.
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Figure 5.

for any (ǫ1, ǫ2) ∈ {±1}2.
We are now able to perform the combinatorial patchworking. For any triangle

of the triangulation of Q whose vertices do not all have the same sign, select the
segment joigning the middle points of the two edges whose endpoints have different
signs. Denote by C the piecewise linear curve in Q obtained by taking the union of
all these selected segments. We will use the following version of the combinatorial
patchworking theorem, see [25, 26, 27].

Proposition 4.4. There exists t0 > 0 such that for any positive t < t0 the poly-
nomial rt defines a real nonsingular trigonal curve C. Moreover, there exists an
homeomorphism from R

2 to the interior of Q sending the affine curve defined by rt
to C.

We recall the Harnack’s theorem for real curves, which is a particular case of
Proposition 2.1. If C is a real nonsingular algebraic curve, then the number of
connected components of C(R) is no more than g(C) + 1, where g(C) is the genus
of C. If C(R) has g(C) + 1 connected components, then C is called an M -curve,
while it is called an (M − d)-curve if C(R) has g(C)+1− d connected components.

Proposition 4.5. (1) For any integer λ such that 0 ≤ λ ≤ k, there exists a real
nonsingular trigonal M -curve C with real scheme 〈k−1+4λ | 5k−1−4λ〉.
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Figure 6. Triangulation and signs For Tℓ and tℓ.

Points with integer coordinates are represented by black points.

(2) For any integer λ such that 0 ≤ λ ≤ k − 1, there exists a real nonsingular
trigonal (M − 2)-curve C on F2k with real scheme 〈k + 4λ | 5k − 4 − 4λ〉.

Proof. Use the segments [(0, 3), (6ℓ ± 1)] in order to triangulate T into the two
triangles [(0, 0), (1, 0), (0, 3)], [(6k − 1, 0), (6k, 0), (0, 3)] and the triangles

Tℓ := [(6ℓ+ 1, 0), (6ℓ+ 5, 0), (0, 3)], ℓ = 0, . . . , k − 1

tℓ := [(6ℓ− 1, 0), (6ℓ+ 1, 0), (0, 3)], ℓ = 1, . . . , k − 1.

Then triangulate each Tℓ and tℓ as depicted in Figure 6. It is easy to see that the
resulting triangulation of T is convex, see Remark 4.6.

Let us now choose a sign distribution at the vertices of this triangulation. Put
the sign −1 to the points (0, 0), (6k, 0) and take the sign distribution shown in
Figure 6 for the vertices of the triangulation which are contained in triangles tℓ.
For the vertices of the triangulation which are contained in triangles Tℓ, take the
sign distribution shown in Figure 6 with ǫ = + for λ triangles among T0, . . . , Tk−1

and with ǫ = − for the remaining k − λ triangles.
Let rt ∈ R[u, x] be a T-polynomial associated with these data. Let C be the

trigonal curve on F2k defined by rt for t > 0 sufficiently small and let C ⊂ Q be
the piecewise linear curve constructed via the combinatorial patchworking from the
previous triangulation and sign distribution. Proposition 4.4 implies that C is a
nonsingular curve whose desired properties can be read off the picture of C ⊂ Q.

One can easily check that the union of the four symmetric copies of the interior
of each triangle tℓ contains exactly two ovals of C, one of them surrounding a vertex
with the sign + while the other surrounds a vertex with the sign −. It is also easy
to see that the union of the four symmetric copies of the interior of each triangle
Tℓ contains four ovals of C, all of them surrounding a vertex with the sign ǫ (see
Figure 7 for ǫ = −1). This gives 2(k − 1) + 4k = 6k − 2 ovals of C(R). Note that
C has one connected component more which intersects the segment with vertices
(0,±3). This gives an account of 6k−1 connected components of C(R). But 6k−2
is the genus of the complex curve C. Hence C(R) has exactly 6k − 1 connected
components by Harnack’s theorem, that is C is anM -curve, and the last component
we have obtained is the pseudo line. Finally, it remains to compute the real scheme
〈a | b〉 of C. Clearly, up to permutation of a and b, the number a is the number
of ovals of C which surround a vertex with the sign +, while b is the number of
ovals of C which surround a vertex with the sign −. Since we have choosen the
sign ǫ = + for λ triangles among T0, . . . , Tk−1, we obtain a = k − 1 + 4λ and
b = k − 1 + 4(k − λ) = 5k − 1 − 4λ.
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Figure 7. Modification of the triangulation and sign distribution

In order to prove the statement about (M − 2)-curves, we modify slightly the
previous triangulation and sign distribution. Consider one triangle among those
k − λ > 0 triangles Tℓ for which the sign ǫ = −1 has been choosen and modify
its triangulation and corresponding sign distribution as depicted in Figure 7. The
corresponding modification of real scheme is shown in Figure 7. It follows that this
modification increases by 1 the number a and decreases by 3 the number b. �

Remark 4.6. A classical argument explained below shows that all triangulations
we used are convex. Note that this is in fact unnecessary due to [2] which proves
that the convexity hypothesis can be dropped in the combinatorial patchworking
theorem when starting from a triangulation of [(0, 0), (3n, 0), (0, 3)]. Take a triangu-
lation of T by segments starting from (0, 3) and ending to points of [(0, 0), (6k, 0)].
Such a triangulation is evidently convex. Now subdivide one its triangles into three
triangles using an interior point. Let ν be a function which certifies the convexity
of the starting triangulation. We can construct a function ν′ certifying the convex-
ity of the refined triangulation in the following way: let ν′ coincide with ν at the
vertices of the starting triangulation, take the same value than ν but diminished
by ι with 0 < ι << 1 at the new vertex, and be linear on each triangle of the new
triangulation. The triangulations used in this paper are all obtained by successive
refinements of the previous type, and are thus convex.

4.3. Proof of Theorem 1.1. We organize all the results obtained so far to give a
proof of Theorem 1.1. The fact that the topological types of real jacobian elliptic
surfaces of given holomorphic characteristic k belong to the list in Theorem 1.1 has
been proven in Section 2.

By Lemma 3.3, the extremal topological type S1 ⊔S1 if k is even, or V2 ⊔ V2 if k
is odd, is obtained via a double covering starting with a trigonal curve constructed
in Example 3.2.

Applying Lemma 3.3 to the curves in parts 1) and 2) of Proposition 4.5 produces
via a double covering real jacobian elliptic surfaces whose topological types form the
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list (1) and (2) of Theorem 1.1, respectively. Now, Proposition 4.3 applies to each
of these curves, which in turn implies via Lemma 3.3 that all desired topological
types can be realized by real jacobian elliptic surfaces with holomorphic Euler
characteristic k.
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